caamhash.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_AHASH_BASE (4 * CAAM_CMD_SZ)
  70. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  75. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  76. CAAM_MAX_HASH_KEY_SIZE)
  77. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  78. /* caam context sizes for hashes: running digest + 8 */
  79. #define HASH_MSG_LEN 8
  80. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  81. #ifdef DEBUG
  82. /* for print_hex_dumps with line references */
  83. #define debug(format, arg...) printk(format, arg)
  84. #else
  85. #define debug(format, arg...)
  86. #endif
  87. static struct list_head hash_list;
  88. /* ahash per-session context */
  89. struct caam_hash_ctx {
  90. struct device *jrdev;
  91. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN];
  92. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN];
  93. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN];
  94. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN];
  95. u32 sh_desc_finup[DESC_HASH_MAX_USED_LEN];
  96. dma_addr_t sh_desc_update_dma;
  97. dma_addr_t sh_desc_update_first_dma;
  98. dma_addr_t sh_desc_fin_dma;
  99. dma_addr_t sh_desc_digest_dma;
  100. dma_addr_t sh_desc_finup_dma;
  101. u32 alg_type;
  102. u32 alg_op;
  103. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  104. dma_addr_t key_dma;
  105. int ctx_len;
  106. unsigned int split_key_len;
  107. unsigned int split_key_pad_len;
  108. };
  109. /* ahash state */
  110. struct caam_hash_state {
  111. dma_addr_t buf_dma;
  112. dma_addr_t ctx_dma;
  113. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  114. int buflen_0;
  115. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  116. int buflen_1;
  117. u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
  118. int (*update)(struct ahash_request *req);
  119. int (*final)(struct ahash_request *req);
  120. int (*finup)(struct ahash_request *req);
  121. int current_buf;
  122. };
  123. struct caam_export_state {
  124. u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
  125. u8 caam_ctx[MAX_CTX_LEN];
  126. int buflen;
  127. int (*update)(struct ahash_request *req);
  128. int (*final)(struct ahash_request *req);
  129. int (*finup)(struct ahash_request *req);
  130. };
  131. /* Common job descriptor seq in/out ptr routines */
  132. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  133. static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  134. struct caam_hash_state *state,
  135. int ctx_len)
  136. {
  137. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  138. ctx_len, DMA_FROM_DEVICE);
  139. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  140. dev_err(jrdev, "unable to map ctx\n");
  141. return -ENOMEM;
  142. }
  143. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  144. return 0;
  145. }
  146. /* Map req->result, and append seq_out_ptr command that points to it */
  147. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  148. u8 *result, int digestsize)
  149. {
  150. dma_addr_t dst_dma;
  151. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  152. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  153. return dst_dma;
  154. }
  155. /* Map current buffer in state and put it in link table */
  156. static inline dma_addr_t buf_map_to_sec4_sg(struct device *jrdev,
  157. struct sec4_sg_entry *sec4_sg,
  158. u8 *buf, int buflen)
  159. {
  160. dma_addr_t buf_dma;
  161. buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  162. dma_to_sec4_sg_one(sec4_sg, buf_dma, buflen, 0);
  163. return buf_dma;
  164. }
  165. /* Map req->src and put it in link table */
  166. static inline void src_map_to_sec4_sg(struct device *jrdev,
  167. struct scatterlist *src, int src_nents,
  168. struct sec4_sg_entry *sec4_sg)
  169. {
  170. dma_map_sg(jrdev, src, src_nents, DMA_TO_DEVICE);
  171. sg_to_sec4_sg_last(src, src_nents, sec4_sg, 0);
  172. }
  173. /*
  174. * Only put buffer in link table if it contains data, which is possible,
  175. * since a buffer has previously been used, and needs to be unmapped,
  176. */
  177. static inline dma_addr_t
  178. try_buf_map_to_sec4_sg(struct device *jrdev, struct sec4_sg_entry *sec4_sg,
  179. u8 *buf, dma_addr_t buf_dma, int buflen,
  180. int last_buflen)
  181. {
  182. if (buf_dma && !dma_mapping_error(jrdev, buf_dma))
  183. dma_unmap_single(jrdev, buf_dma, last_buflen, DMA_TO_DEVICE);
  184. if (buflen)
  185. buf_dma = buf_map_to_sec4_sg(jrdev, sec4_sg, buf, buflen);
  186. else
  187. buf_dma = 0;
  188. return buf_dma;
  189. }
  190. /* Map state->caam_ctx, and add it to link table */
  191. static inline int ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  192. struct caam_hash_state *state, int ctx_len,
  193. struct sec4_sg_entry *sec4_sg, u32 flag)
  194. {
  195. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  196. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  197. dev_err(jrdev, "unable to map ctx\n");
  198. return -ENOMEM;
  199. }
  200. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  201. return 0;
  202. }
  203. /* Common shared descriptor commands */
  204. static inline void append_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  205. {
  206. append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
  207. ctx->split_key_len, CLASS_2 |
  208. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  209. }
  210. /* Append key if it has been set */
  211. static inline void init_sh_desc_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  212. {
  213. u32 *key_jump_cmd;
  214. init_sh_desc(desc, HDR_SHARE_SERIAL);
  215. if (ctx->split_key_len) {
  216. /* Skip if already shared */
  217. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  218. JUMP_COND_SHRD);
  219. append_key_ahash(desc, ctx);
  220. set_jump_tgt_here(desc, key_jump_cmd);
  221. }
  222. /* Propagate errors from shared to job descriptor */
  223. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  224. }
  225. /*
  226. * For ahash read data from seqin following state->caam_ctx,
  227. * and write resulting class2 context to seqout, which may be state->caam_ctx
  228. * or req->result
  229. */
  230. static inline void ahash_append_load_str(u32 *desc, int digestsize)
  231. {
  232. /* Calculate remaining bytes to read */
  233. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  234. /* Read remaining bytes */
  235. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  236. FIFOLD_TYPE_MSG | KEY_VLF);
  237. /* Store class2 context bytes */
  238. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  239. LDST_SRCDST_BYTE_CONTEXT);
  240. }
  241. /*
  242. * For ahash update, final and finup, import context, read and write to seqout
  243. */
  244. static inline void ahash_ctx_data_to_out(u32 *desc, u32 op, u32 state,
  245. int digestsize,
  246. struct caam_hash_ctx *ctx)
  247. {
  248. init_sh_desc_key_ahash(desc, ctx);
  249. /* Import context from software */
  250. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  251. LDST_CLASS_2_CCB | ctx->ctx_len);
  252. /* Class 2 operation */
  253. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  254. /*
  255. * Load from buf and/or src and write to req->result or state->context
  256. */
  257. ahash_append_load_str(desc, digestsize);
  258. }
  259. /* For ahash firsts and digest, read and write to seqout */
  260. static inline void ahash_data_to_out(u32 *desc, u32 op, u32 state,
  261. int digestsize, struct caam_hash_ctx *ctx)
  262. {
  263. init_sh_desc_key_ahash(desc, ctx);
  264. /* Class 2 operation */
  265. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  266. /*
  267. * Load from buf and/or src and write to req->result or state->context
  268. */
  269. ahash_append_load_str(desc, digestsize);
  270. }
  271. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  272. {
  273. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  274. int digestsize = crypto_ahash_digestsize(ahash);
  275. struct device *jrdev = ctx->jrdev;
  276. u32 have_key = 0;
  277. u32 *desc;
  278. if (ctx->split_key_len)
  279. have_key = OP_ALG_AAI_HMAC_PRECOMP;
  280. /* ahash_update shared descriptor */
  281. desc = ctx->sh_desc_update;
  282. init_sh_desc(desc, HDR_SHARE_SERIAL);
  283. /* Import context from software */
  284. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  285. LDST_CLASS_2_CCB | ctx->ctx_len);
  286. /* Class 2 operation */
  287. append_operation(desc, ctx->alg_type | OP_ALG_AS_UPDATE |
  288. OP_ALG_ENCRYPT);
  289. /* Load data and write to result or context */
  290. ahash_append_load_str(desc, ctx->ctx_len);
  291. ctx->sh_desc_update_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  292. DMA_TO_DEVICE);
  293. if (dma_mapping_error(jrdev, ctx->sh_desc_update_dma)) {
  294. dev_err(jrdev, "unable to map shared descriptor\n");
  295. return -ENOMEM;
  296. }
  297. #ifdef DEBUG
  298. print_hex_dump(KERN_ERR,
  299. "ahash update shdesc@"__stringify(__LINE__)": ",
  300. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  301. #endif
  302. /* ahash_update_first shared descriptor */
  303. desc = ctx->sh_desc_update_first;
  304. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INIT,
  305. ctx->ctx_len, ctx);
  306. ctx->sh_desc_update_first_dma = dma_map_single(jrdev, desc,
  307. desc_bytes(desc),
  308. DMA_TO_DEVICE);
  309. if (dma_mapping_error(jrdev, ctx->sh_desc_update_first_dma)) {
  310. dev_err(jrdev, "unable to map shared descriptor\n");
  311. return -ENOMEM;
  312. }
  313. #ifdef DEBUG
  314. print_hex_dump(KERN_ERR,
  315. "ahash update first shdesc@"__stringify(__LINE__)": ",
  316. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  317. #endif
  318. /* ahash_final shared descriptor */
  319. desc = ctx->sh_desc_fin;
  320. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  321. OP_ALG_AS_FINALIZE, digestsize, ctx);
  322. ctx->sh_desc_fin_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  323. DMA_TO_DEVICE);
  324. if (dma_mapping_error(jrdev, ctx->sh_desc_fin_dma)) {
  325. dev_err(jrdev, "unable to map shared descriptor\n");
  326. return -ENOMEM;
  327. }
  328. #ifdef DEBUG
  329. print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
  330. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  331. desc_bytes(desc), 1);
  332. #endif
  333. /* ahash_finup shared descriptor */
  334. desc = ctx->sh_desc_finup;
  335. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  336. OP_ALG_AS_FINALIZE, digestsize, ctx);
  337. ctx->sh_desc_finup_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  338. DMA_TO_DEVICE);
  339. if (dma_mapping_error(jrdev, ctx->sh_desc_finup_dma)) {
  340. dev_err(jrdev, "unable to map shared descriptor\n");
  341. return -ENOMEM;
  342. }
  343. #ifdef DEBUG
  344. print_hex_dump(KERN_ERR, "ahash finup shdesc@"__stringify(__LINE__)": ",
  345. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  346. desc_bytes(desc), 1);
  347. #endif
  348. /* ahash_digest shared descriptor */
  349. desc = ctx->sh_desc_digest;
  350. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INITFINAL,
  351. digestsize, ctx);
  352. ctx->sh_desc_digest_dma = dma_map_single(jrdev, desc,
  353. desc_bytes(desc),
  354. DMA_TO_DEVICE);
  355. if (dma_mapping_error(jrdev, ctx->sh_desc_digest_dma)) {
  356. dev_err(jrdev, "unable to map shared descriptor\n");
  357. return -ENOMEM;
  358. }
  359. #ifdef DEBUG
  360. print_hex_dump(KERN_ERR,
  361. "ahash digest shdesc@"__stringify(__LINE__)": ",
  362. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  363. desc_bytes(desc), 1);
  364. #endif
  365. return 0;
  366. }
  367. static int gen_split_hash_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  368. u32 keylen)
  369. {
  370. return gen_split_key(ctx->jrdev, ctx->key, ctx->split_key_len,
  371. ctx->split_key_pad_len, key_in, keylen,
  372. ctx->alg_op);
  373. }
  374. /* Digest hash size if it is too large */
  375. static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  376. u32 *keylen, u8 *key_out, u32 digestsize)
  377. {
  378. struct device *jrdev = ctx->jrdev;
  379. u32 *desc;
  380. struct split_key_result result;
  381. dma_addr_t src_dma, dst_dma;
  382. int ret = 0;
  383. desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  384. if (!desc) {
  385. dev_err(jrdev, "unable to allocate key input memory\n");
  386. return -ENOMEM;
  387. }
  388. init_job_desc(desc, 0);
  389. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  390. DMA_TO_DEVICE);
  391. if (dma_mapping_error(jrdev, src_dma)) {
  392. dev_err(jrdev, "unable to map key input memory\n");
  393. kfree(desc);
  394. return -ENOMEM;
  395. }
  396. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  397. DMA_FROM_DEVICE);
  398. if (dma_mapping_error(jrdev, dst_dma)) {
  399. dev_err(jrdev, "unable to map key output memory\n");
  400. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  401. kfree(desc);
  402. return -ENOMEM;
  403. }
  404. /* Job descriptor to perform unkeyed hash on key_in */
  405. append_operation(desc, ctx->alg_type | OP_ALG_ENCRYPT |
  406. OP_ALG_AS_INITFINAL);
  407. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  408. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  409. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  410. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  411. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  412. LDST_SRCDST_BYTE_CONTEXT);
  413. #ifdef DEBUG
  414. print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
  415. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  416. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  417. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  418. #endif
  419. result.err = 0;
  420. init_completion(&result.completion);
  421. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  422. if (!ret) {
  423. /* in progress */
  424. wait_for_completion_interruptible(&result.completion);
  425. ret = result.err;
  426. #ifdef DEBUG
  427. print_hex_dump(KERN_ERR,
  428. "digested key@"__stringify(__LINE__)": ",
  429. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  430. digestsize, 1);
  431. #endif
  432. }
  433. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  434. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  435. *keylen = digestsize;
  436. kfree(desc);
  437. return ret;
  438. }
  439. static int ahash_setkey(struct crypto_ahash *ahash,
  440. const u8 *key, unsigned int keylen)
  441. {
  442. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  443. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  444. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  445. struct device *jrdev = ctx->jrdev;
  446. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  447. int digestsize = crypto_ahash_digestsize(ahash);
  448. int ret = 0;
  449. u8 *hashed_key = NULL;
  450. #ifdef DEBUG
  451. printk(KERN_ERR "keylen %d\n", keylen);
  452. #endif
  453. if (keylen > blocksize) {
  454. hashed_key = kmalloc(sizeof(u8) * digestsize, GFP_KERNEL |
  455. GFP_DMA);
  456. if (!hashed_key)
  457. return -ENOMEM;
  458. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  459. digestsize);
  460. if (ret)
  461. goto badkey;
  462. key = hashed_key;
  463. }
  464. /* Pick class 2 key length from algorithm submask */
  465. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  466. OP_ALG_ALGSEL_SHIFT] * 2;
  467. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  468. #ifdef DEBUG
  469. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  470. ctx->split_key_len, ctx->split_key_pad_len);
  471. print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
  472. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  473. #endif
  474. ret = gen_split_hash_key(ctx, key, keylen);
  475. if (ret)
  476. goto badkey;
  477. ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  478. DMA_TO_DEVICE);
  479. if (dma_mapping_error(jrdev, ctx->key_dma)) {
  480. dev_err(jrdev, "unable to map key i/o memory\n");
  481. ret = -ENOMEM;
  482. goto map_err;
  483. }
  484. #ifdef DEBUG
  485. print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
  486. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  487. ctx->split_key_pad_len, 1);
  488. #endif
  489. ret = ahash_set_sh_desc(ahash);
  490. if (ret) {
  491. dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len,
  492. DMA_TO_DEVICE);
  493. }
  494. map_err:
  495. kfree(hashed_key);
  496. return ret;
  497. badkey:
  498. kfree(hashed_key);
  499. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  500. return -EINVAL;
  501. }
  502. /*
  503. * ahash_edesc - s/w-extended ahash descriptor
  504. * @dst_dma: physical mapped address of req->result
  505. * @sec4_sg_dma: physical mapped address of h/w link table
  506. * @src_nents: number of segments in input scatterlist
  507. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  508. * @sec4_sg: pointer to h/w link table
  509. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  510. */
  511. struct ahash_edesc {
  512. dma_addr_t dst_dma;
  513. dma_addr_t sec4_sg_dma;
  514. int src_nents;
  515. int sec4_sg_bytes;
  516. struct sec4_sg_entry *sec4_sg;
  517. u32 hw_desc[0];
  518. };
  519. static inline void ahash_unmap(struct device *dev,
  520. struct ahash_edesc *edesc,
  521. struct ahash_request *req, int dst_len)
  522. {
  523. if (edesc->src_nents)
  524. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  525. if (edesc->dst_dma)
  526. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  527. if (edesc->sec4_sg_bytes)
  528. dma_unmap_single(dev, edesc->sec4_sg_dma,
  529. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  530. }
  531. static inline void ahash_unmap_ctx(struct device *dev,
  532. struct ahash_edesc *edesc,
  533. struct ahash_request *req, int dst_len, u32 flag)
  534. {
  535. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  536. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  537. struct caam_hash_state *state = ahash_request_ctx(req);
  538. if (state->ctx_dma)
  539. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  540. ahash_unmap(dev, edesc, req, dst_len);
  541. }
  542. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  543. void *context)
  544. {
  545. struct ahash_request *req = context;
  546. struct ahash_edesc *edesc;
  547. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  548. int digestsize = crypto_ahash_digestsize(ahash);
  549. #ifdef DEBUG
  550. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  551. struct caam_hash_state *state = ahash_request_ctx(req);
  552. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  553. #endif
  554. edesc = (struct ahash_edesc *)((char *)desc -
  555. offsetof(struct ahash_edesc, hw_desc));
  556. if (err)
  557. caam_jr_strstatus(jrdev, err);
  558. ahash_unmap(jrdev, edesc, req, digestsize);
  559. kfree(edesc);
  560. #ifdef DEBUG
  561. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  562. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  563. ctx->ctx_len, 1);
  564. if (req->result)
  565. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  566. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  567. digestsize, 1);
  568. #endif
  569. req->base.complete(&req->base, err);
  570. }
  571. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  572. void *context)
  573. {
  574. struct ahash_request *req = context;
  575. struct ahash_edesc *edesc;
  576. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  577. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  578. #ifdef DEBUG
  579. struct caam_hash_state *state = ahash_request_ctx(req);
  580. int digestsize = crypto_ahash_digestsize(ahash);
  581. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  582. #endif
  583. edesc = (struct ahash_edesc *)((char *)desc -
  584. offsetof(struct ahash_edesc, hw_desc));
  585. if (err)
  586. caam_jr_strstatus(jrdev, err);
  587. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  588. kfree(edesc);
  589. #ifdef DEBUG
  590. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  591. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  592. ctx->ctx_len, 1);
  593. if (req->result)
  594. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  595. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  596. digestsize, 1);
  597. #endif
  598. req->base.complete(&req->base, err);
  599. }
  600. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  601. void *context)
  602. {
  603. struct ahash_request *req = context;
  604. struct ahash_edesc *edesc;
  605. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  606. int digestsize = crypto_ahash_digestsize(ahash);
  607. #ifdef DEBUG
  608. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  609. struct caam_hash_state *state = ahash_request_ctx(req);
  610. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  611. #endif
  612. edesc = (struct ahash_edesc *)((char *)desc -
  613. offsetof(struct ahash_edesc, hw_desc));
  614. if (err)
  615. caam_jr_strstatus(jrdev, err);
  616. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_TO_DEVICE);
  617. kfree(edesc);
  618. #ifdef DEBUG
  619. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  620. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  621. ctx->ctx_len, 1);
  622. if (req->result)
  623. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  624. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  625. digestsize, 1);
  626. #endif
  627. req->base.complete(&req->base, err);
  628. }
  629. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  630. void *context)
  631. {
  632. struct ahash_request *req = context;
  633. struct ahash_edesc *edesc;
  634. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  635. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  636. #ifdef DEBUG
  637. struct caam_hash_state *state = ahash_request_ctx(req);
  638. int digestsize = crypto_ahash_digestsize(ahash);
  639. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  640. #endif
  641. edesc = (struct ahash_edesc *)((char *)desc -
  642. offsetof(struct ahash_edesc, hw_desc));
  643. if (err)
  644. caam_jr_strstatus(jrdev, err);
  645. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_FROM_DEVICE);
  646. kfree(edesc);
  647. #ifdef DEBUG
  648. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  649. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  650. ctx->ctx_len, 1);
  651. if (req->result)
  652. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  653. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  654. digestsize, 1);
  655. #endif
  656. req->base.complete(&req->base, err);
  657. }
  658. /* submit update job descriptor */
  659. static int ahash_update_ctx(struct ahash_request *req)
  660. {
  661. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  662. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  663. struct caam_hash_state *state = ahash_request_ctx(req);
  664. struct device *jrdev = ctx->jrdev;
  665. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  666. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  667. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  668. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  669. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  670. int *next_buflen = state->current_buf ? &state->buflen_0 :
  671. &state->buflen_1, last_buflen;
  672. int in_len = *buflen + req->nbytes, to_hash;
  673. u32 *sh_desc = ctx->sh_desc_update, *desc;
  674. dma_addr_t ptr = ctx->sh_desc_update_dma;
  675. int src_nents, sec4_sg_bytes, sec4_sg_src_index;
  676. struct ahash_edesc *edesc;
  677. int ret = 0;
  678. int sh_len;
  679. last_buflen = *next_buflen;
  680. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  681. to_hash = in_len - *next_buflen;
  682. if (to_hash) {
  683. src_nents = sg_nents_for_len(req->src,
  684. req->nbytes - (*next_buflen));
  685. if (src_nents < 0) {
  686. dev_err(jrdev, "Invalid number of src SG.\n");
  687. return src_nents;
  688. }
  689. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  690. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  691. sizeof(struct sec4_sg_entry);
  692. /*
  693. * allocate space for base edesc and hw desc commands,
  694. * link tables
  695. */
  696. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN +
  697. sec4_sg_bytes, GFP_DMA | flags);
  698. if (!edesc) {
  699. dev_err(jrdev,
  700. "could not allocate extended descriptor\n");
  701. return -ENOMEM;
  702. }
  703. edesc->src_nents = src_nents;
  704. edesc->sec4_sg_bytes = sec4_sg_bytes;
  705. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  706. DESC_JOB_IO_LEN;
  707. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  708. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  709. if (ret)
  710. return ret;
  711. state->buf_dma = try_buf_map_to_sec4_sg(jrdev,
  712. edesc->sec4_sg + 1,
  713. buf, state->buf_dma,
  714. *buflen, last_buflen);
  715. if (src_nents) {
  716. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  717. edesc->sec4_sg + sec4_sg_src_index);
  718. if (*next_buflen)
  719. scatterwalk_map_and_copy(next_buf, req->src,
  720. to_hash - *buflen,
  721. *next_buflen, 0);
  722. } else {
  723. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  724. cpu_to_caam32(SEC4_SG_LEN_FIN);
  725. }
  726. state->current_buf = !state->current_buf;
  727. sh_len = desc_len(sh_desc);
  728. desc = edesc->hw_desc;
  729. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  730. HDR_REVERSE);
  731. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  732. sec4_sg_bytes,
  733. DMA_TO_DEVICE);
  734. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  735. dev_err(jrdev, "unable to map S/G table\n");
  736. return -ENOMEM;
  737. }
  738. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  739. to_hash, LDST_SGF);
  740. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  741. #ifdef DEBUG
  742. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  743. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  744. desc_bytes(desc), 1);
  745. #endif
  746. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  747. if (!ret) {
  748. ret = -EINPROGRESS;
  749. } else {
  750. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  751. DMA_BIDIRECTIONAL);
  752. kfree(edesc);
  753. }
  754. } else if (*next_buflen) {
  755. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  756. req->nbytes, 0);
  757. *buflen = *next_buflen;
  758. *next_buflen = last_buflen;
  759. }
  760. #ifdef DEBUG
  761. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  762. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  763. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  764. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  765. *next_buflen, 1);
  766. #endif
  767. return ret;
  768. }
  769. static int ahash_final_ctx(struct ahash_request *req)
  770. {
  771. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  772. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  773. struct caam_hash_state *state = ahash_request_ctx(req);
  774. struct device *jrdev = ctx->jrdev;
  775. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  776. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  777. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  778. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  779. int last_buflen = state->current_buf ? state->buflen_0 :
  780. state->buflen_1;
  781. u32 *sh_desc = ctx->sh_desc_fin, *desc;
  782. dma_addr_t ptr = ctx->sh_desc_fin_dma;
  783. int sec4_sg_bytes, sec4_sg_src_index;
  784. int digestsize = crypto_ahash_digestsize(ahash);
  785. struct ahash_edesc *edesc;
  786. int ret = 0;
  787. int sh_len;
  788. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  789. sec4_sg_bytes = sec4_sg_src_index * sizeof(struct sec4_sg_entry);
  790. /* allocate space for base edesc and hw desc commands, link tables */
  791. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN + sec4_sg_bytes,
  792. GFP_DMA | flags);
  793. if (!edesc) {
  794. dev_err(jrdev, "could not allocate extended descriptor\n");
  795. return -ENOMEM;
  796. }
  797. sh_len = desc_len(sh_desc);
  798. desc = edesc->hw_desc;
  799. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  800. edesc->sec4_sg_bytes = sec4_sg_bytes;
  801. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  802. DESC_JOB_IO_LEN;
  803. edesc->src_nents = 0;
  804. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  805. edesc->sec4_sg, DMA_TO_DEVICE);
  806. if (ret)
  807. return ret;
  808. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  809. buf, state->buf_dma, buflen,
  810. last_buflen);
  811. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  812. cpu_to_caam32(SEC4_SG_LEN_FIN);
  813. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  814. sec4_sg_bytes, DMA_TO_DEVICE);
  815. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  816. dev_err(jrdev, "unable to map S/G table\n");
  817. return -ENOMEM;
  818. }
  819. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  820. LDST_SGF);
  821. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  822. digestsize);
  823. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  824. dev_err(jrdev, "unable to map dst\n");
  825. return -ENOMEM;
  826. }
  827. #ifdef DEBUG
  828. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  829. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  830. #endif
  831. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  832. if (!ret) {
  833. ret = -EINPROGRESS;
  834. } else {
  835. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  836. kfree(edesc);
  837. }
  838. return ret;
  839. }
  840. static int ahash_finup_ctx(struct ahash_request *req)
  841. {
  842. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  843. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  844. struct caam_hash_state *state = ahash_request_ctx(req);
  845. struct device *jrdev = ctx->jrdev;
  846. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  847. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  848. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  849. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  850. int last_buflen = state->current_buf ? state->buflen_0 :
  851. state->buflen_1;
  852. u32 *sh_desc = ctx->sh_desc_finup, *desc;
  853. dma_addr_t ptr = ctx->sh_desc_finup_dma;
  854. int sec4_sg_bytes, sec4_sg_src_index;
  855. int src_nents;
  856. int digestsize = crypto_ahash_digestsize(ahash);
  857. struct ahash_edesc *edesc;
  858. int ret = 0;
  859. int sh_len;
  860. src_nents = sg_nents_for_len(req->src, req->nbytes);
  861. if (src_nents < 0) {
  862. dev_err(jrdev, "Invalid number of src SG.\n");
  863. return src_nents;
  864. }
  865. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  866. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  867. sizeof(struct sec4_sg_entry);
  868. /* allocate space for base edesc and hw desc commands, link tables */
  869. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN + sec4_sg_bytes,
  870. GFP_DMA | flags);
  871. if (!edesc) {
  872. dev_err(jrdev, "could not allocate extended descriptor\n");
  873. return -ENOMEM;
  874. }
  875. sh_len = desc_len(sh_desc);
  876. desc = edesc->hw_desc;
  877. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  878. edesc->src_nents = src_nents;
  879. edesc->sec4_sg_bytes = sec4_sg_bytes;
  880. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  881. DESC_JOB_IO_LEN;
  882. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  883. edesc->sec4_sg, DMA_TO_DEVICE);
  884. if (ret)
  885. return ret;
  886. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  887. buf, state->buf_dma, buflen,
  888. last_buflen);
  889. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg +
  890. sec4_sg_src_index);
  891. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  892. sec4_sg_bytes, DMA_TO_DEVICE);
  893. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  894. dev_err(jrdev, "unable to map S/G table\n");
  895. return -ENOMEM;
  896. }
  897. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  898. buflen + req->nbytes, LDST_SGF);
  899. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  900. digestsize);
  901. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  902. dev_err(jrdev, "unable to map dst\n");
  903. return -ENOMEM;
  904. }
  905. #ifdef DEBUG
  906. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  907. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  908. #endif
  909. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  910. if (!ret) {
  911. ret = -EINPROGRESS;
  912. } else {
  913. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  914. kfree(edesc);
  915. }
  916. return ret;
  917. }
  918. static int ahash_digest(struct ahash_request *req)
  919. {
  920. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  921. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  922. struct device *jrdev = ctx->jrdev;
  923. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  924. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  925. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  926. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  927. int digestsize = crypto_ahash_digestsize(ahash);
  928. int src_nents, sec4_sg_bytes;
  929. dma_addr_t src_dma;
  930. struct ahash_edesc *edesc;
  931. int ret = 0;
  932. u32 options;
  933. int sh_len;
  934. src_nents = sg_count(req->src, req->nbytes);
  935. if (src_nents < 0) {
  936. dev_err(jrdev, "Invalid number of src SG.\n");
  937. return src_nents;
  938. }
  939. dma_map_sg(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE);
  940. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  941. /* allocate space for base edesc and hw desc commands, link tables */
  942. edesc = kzalloc(sizeof(*edesc) + sec4_sg_bytes + DESC_JOB_IO_LEN,
  943. GFP_DMA | flags);
  944. if (!edesc) {
  945. dev_err(jrdev, "could not allocate extended descriptor\n");
  946. return -ENOMEM;
  947. }
  948. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  949. DESC_JOB_IO_LEN;
  950. edesc->sec4_sg_bytes = sec4_sg_bytes;
  951. edesc->src_nents = src_nents;
  952. sh_len = desc_len(sh_desc);
  953. desc = edesc->hw_desc;
  954. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  955. if (src_nents) {
  956. sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0);
  957. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  958. sec4_sg_bytes, DMA_TO_DEVICE);
  959. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  960. dev_err(jrdev, "unable to map S/G table\n");
  961. return -ENOMEM;
  962. }
  963. src_dma = edesc->sec4_sg_dma;
  964. options = LDST_SGF;
  965. } else {
  966. src_dma = sg_dma_address(req->src);
  967. options = 0;
  968. }
  969. append_seq_in_ptr(desc, src_dma, req->nbytes, options);
  970. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  971. digestsize);
  972. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  973. dev_err(jrdev, "unable to map dst\n");
  974. return -ENOMEM;
  975. }
  976. #ifdef DEBUG
  977. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  978. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  979. #endif
  980. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  981. if (!ret) {
  982. ret = -EINPROGRESS;
  983. } else {
  984. ahash_unmap(jrdev, edesc, req, digestsize);
  985. kfree(edesc);
  986. }
  987. return ret;
  988. }
  989. /* submit ahash final if it the first job descriptor */
  990. static int ahash_final_no_ctx(struct ahash_request *req)
  991. {
  992. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  993. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  994. struct caam_hash_state *state = ahash_request_ctx(req);
  995. struct device *jrdev = ctx->jrdev;
  996. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  997. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  998. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  999. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  1000. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  1001. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  1002. int digestsize = crypto_ahash_digestsize(ahash);
  1003. struct ahash_edesc *edesc;
  1004. int ret = 0;
  1005. int sh_len;
  1006. /* allocate space for base edesc and hw desc commands, link tables */
  1007. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN, GFP_DMA | flags);
  1008. if (!edesc) {
  1009. dev_err(jrdev, "could not allocate extended descriptor\n");
  1010. return -ENOMEM;
  1011. }
  1012. edesc->sec4_sg_bytes = 0;
  1013. sh_len = desc_len(sh_desc);
  1014. desc = edesc->hw_desc;
  1015. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  1016. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  1017. if (dma_mapping_error(jrdev, state->buf_dma)) {
  1018. dev_err(jrdev, "unable to map src\n");
  1019. return -ENOMEM;
  1020. }
  1021. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  1022. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1023. digestsize);
  1024. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1025. dev_err(jrdev, "unable to map dst\n");
  1026. return -ENOMEM;
  1027. }
  1028. edesc->src_nents = 0;
  1029. #ifdef DEBUG
  1030. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1031. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1032. #endif
  1033. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1034. if (!ret) {
  1035. ret = -EINPROGRESS;
  1036. } else {
  1037. ahash_unmap(jrdev, edesc, req, digestsize);
  1038. kfree(edesc);
  1039. }
  1040. return ret;
  1041. }
  1042. /* submit ahash update if it the first job descriptor after update */
  1043. static int ahash_update_no_ctx(struct ahash_request *req)
  1044. {
  1045. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1046. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1047. struct caam_hash_state *state = ahash_request_ctx(req);
  1048. struct device *jrdev = ctx->jrdev;
  1049. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1050. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1051. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1052. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  1053. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  1054. int *next_buflen = state->current_buf ? &state->buflen_0 :
  1055. &state->buflen_1;
  1056. int in_len = *buflen + req->nbytes, to_hash;
  1057. int sec4_sg_bytes, src_nents;
  1058. struct ahash_edesc *edesc;
  1059. u32 *desc, *sh_desc = ctx->sh_desc_update_first;
  1060. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1061. int ret = 0;
  1062. int sh_len;
  1063. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  1064. to_hash = in_len - *next_buflen;
  1065. if (to_hash) {
  1066. src_nents = sg_nents_for_len(req->src,
  1067. req->nbytes - (*next_buflen));
  1068. if (src_nents < 0) {
  1069. dev_err(jrdev, "Invalid number of src SG.\n");
  1070. return src_nents;
  1071. }
  1072. sec4_sg_bytes = (1 + src_nents) *
  1073. sizeof(struct sec4_sg_entry);
  1074. /*
  1075. * allocate space for base edesc and hw desc commands,
  1076. * link tables
  1077. */
  1078. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN +
  1079. sec4_sg_bytes, GFP_DMA | flags);
  1080. if (!edesc) {
  1081. dev_err(jrdev,
  1082. "could not allocate extended descriptor\n");
  1083. return -ENOMEM;
  1084. }
  1085. edesc->src_nents = src_nents;
  1086. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1087. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1088. DESC_JOB_IO_LEN;
  1089. edesc->dst_dma = 0;
  1090. state->buf_dma = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg,
  1091. buf, *buflen);
  1092. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  1093. edesc->sec4_sg + 1);
  1094. if (*next_buflen) {
  1095. scatterwalk_map_and_copy(next_buf, req->src,
  1096. to_hash - *buflen,
  1097. *next_buflen, 0);
  1098. }
  1099. state->current_buf = !state->current_buf;
  1100. sh_len = desc_len(sh_desc);
  1101. desc = edesc->hw_desc;
  1102. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1103. HDR_REVERSE);
  1104. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1105. sec4_sg_bytes,
  1106. DMA_TO_DEVICE);
  1107. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1108. dev_err(jrdev, "unable to map S/G table\n");
  1109. return -ENOMEM;
  1110. }
  1111. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1112. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1113. if (ret)
  1114. return ret;
  1115. #ifdef DEBUG
  1116. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1117. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1118. desc_bytes(desc), 1);
  1119. #endif
  1120. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1121. if (!ret) {
  1122. ret = -EINPROGRESS;
  1123. state->update = ahash_update_ctx;
  1124. state->finup = ahash_finup_ctx;
  1125. state->final = ahash_final_ctx;
  1126. } else {
  1127. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1128. DMA_TO_DEVICE);
  1129. kfree(edesc);
  1130. }
  1131. } else if (*next_buflen) {
  1132. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  1133. req->nbytes, 0);
  1134. *buflen = *next_buflen;
  1135. *next_buflen = 0;
  1136. }
  1137. #ifdef DEBUG
  1138. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  1139. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1140. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1141. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1142. *next_buflen, 1);
  1143. #endif
  1144. return ret;
  1145. }
  1146. /* submit ahash finup if it the first job descriptor after update */
  1147. static int ahash_finup_no_ctx(struct ahash_request *req)
  1148. {
  1149. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1150. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1151. struct caam_hash_state *state = ahash_request_ctx(req);
  1152. struct device *jrdev = ctx->jrdev;
  1153. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1154. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1155. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1156. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  1157. int last_buflen = state->current_buf ? state->buflen_0 :
  1158. state->buflen_1;
  1159. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  1160. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  1161. int sec4_sg_bytes, sec4_sg_src_index, src_nents;
  1162. int digestsize = crypto_ahash_digestsize(ahash);
  1163. struct ahash_edesc *edesc;
  1164. int sh_len;
  1165. int ret = 0;
  1166. src_nents = sg_nents_for_len(req->src, req->nbytes);
  1167. if (src_nents < 0) {
  1168. dev_err(jrdev, "Invalid number of src SG.\n");
  1169. return src_nents;
  1170. }
  1171. sec4_sg_src_index = 2;
  1172. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  1173. sizeof(struct sec4_sg_entry);
  1174. /* allocate space for base edesc and hw desc commands, link tables */
  1175. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN + sec4_sg_bytes,
  1176. GFP_DMA | flags);
  1177. if (!edesc) {
  1178. dev_err(jrdev, "could not allocate extended descriptor\n");
  1179. return -ENOMEM;
  1180. }
  1181. sh_len = desc_len(sh_desc);
  1182. desc = edesc->hw_desc;
  1183. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  1184. edesc->src_nents = src_nents;
  1185. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1186. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1187. DESC_JOB_IO_LEN;
  1188. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, buf,
  1189. state->buf_dma, buflen,
  1190. last_buflen);
  1191. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg + 1);
  1192. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1193. sec4_sg_bytes, DMA_TO_DEVICE);
  1194. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1195. dev_err(jrdev, "unable to map S/G table\n");
  1196. return -ENOMEM;
  1197. }
  1198. append_seq_in_ptr(desc, edesc->sec4_sg_dma, buflen +
  1199. req->nbytes, LDST_SGF);
  1200. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1201. digestsize);
  1202. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1203. dev_err(jrdev, "unable to map dst\n");
  1204. return -ENOMEM;
  1205. }
  1206. #ifdef DEBUG
  1207. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1208. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1209. #endif
  1210. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1211. if (!ret) {
  1212. ret = -EINPROGRESS;
  1213. } else {
  1214. ahash_unmap(jrdev, edesc, req, digestsize);
  1215. kfree(edesc);
  1216. }
  1217. return ret;
  1218. }
  1219. /* submit first update job descriptor after init */
  1220. static int ahash_update_first(struct ahash_request *req)
  1221. {
  1222. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1223. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1224. struct caam_hash_state *state = ahash_request_ctx(req);
  1225. struct device *jrdev = ctx->jrdev;
  1226. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1227. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1228. u8 *next_buf = state->current_buf ? state->buf_1 : state->buf_0;
  1229. int *next_buflen = state->current_buf ?
  1230. &state->buflen_1 : &state->buflen_0;
  1231. int to_hash;
  1232. u32 *sh_desc = ctx->sh_desc_update_first, *desc;
  1233. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1234. int sec4_sg_bytes, src_nents;
  1235. dma_addr_t src_dma;
  1236. u32 options;
  1237. struct ahash_edesc *edesc;
  1238. int ret = 0;
  1239. int sh_len;
  1240. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1241. 1);
  1242. to_hash = req->nbytes - *next_buflen;
  1243. if (to_hash) {
  1244. src_nents = sg_count(req->src, req->nbytes - (*next_buflen));
  1245. if (src_nents < 0) {
  1246. dev_err(jrdev, "Invalid number of src SG.\n");
  1247. return src_nents;
  1248. }
  1249. dma_map_sg(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE);
  1250. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  1251. /*
  1252. * allocate space for base edesc and hw desc commands,
  1253. * link tables
  1254. */
  1255. edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN +
  1256. sec4_sg_bytes, GFP_DMA | flags);
  1257. if (!edesc) {
  1258. dev_err(jrdev,
  1259. "could not allocate extended descriptor\n");
  1260. return -ENOMEM;
  1261. }
  1262. edesc->src_nents = src_nents;
  1263. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1264. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1265. DESC_JOB_IO_LEN;
  1266. edesc->dst_dma = 0;
  1267. if (src_nents) {
  1268. sg_to_sec4_sg_last(req->src, src_nents,
  1269. edesc->sec4_sg, 0);
  1270. edesc->sec4_sg_dma = dma_map_single(jrdev,
  1271. edesc->sec4_sg,
  1272. sec4_sg_bytes,
  1273. DMA_TO_DEVICE);
  1274. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1275. dev_err(jrdev, "unable to map S/G table\n");
  1276. return -ENOMEM;
  1277. }
  1278. src_dma = edesc->sec4_sg_dma;
  1279. options = LDST_SGF;
  1280. } else {
  1281. src_dma = sg_dma_address(req->src);
  1282. options = 0;
  1283. }
  1284. if (*next_buflen)
  1285. scatterwalk_map_and_copy(next_buf, req->src, to_hash,
  1286. *next_buflen, 0);
  1287. sh_len = desc_len(sh_desc);
  1288. desc = edesc->hw_desc;
  1289. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1290. HDR_REVERSE);
  1291. append_seq_in_ptr(desc, src_dma, to_hash, options);
  1292. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1293. if (ret)
  1294. return ret;
  1295. #ifdef DEBUG
  1296. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1297. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1298. desc_bytes(desc), 1);
  1299. #endif
  1300. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst,
  1301. req);
  1302. if (!ret) {
  1303. ret = -EINPROGRESS;
  1304. state->update = ahash_update_ctx;
  1305. state->finup = ahash_finup_ctx;
  1306. state->final = ahash_final_ctx;
  1307. } else {
  1308. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1309. DMA_TO_DEVICE);
  1310. kfree(edesc);
  1311. }
  1312. } else if (*next_buflen) {
  1313. state->update = ahash_update_no_ctx;
  1314. state->finup = ahash_finup_no_ctx;
  1315. state->final = ahash_final_no_ctx;
  1316. scatterwalk_map_and_copy(next_buf, req->src, 0,
  1317. req->nbytes, 0);
  1318. }
  1319. #ifdef DEBUG
  1320. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1321. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1322. *next_buflen, 1);
  1323. #endif
  1324. return ret;
  1325. }
  1326. static int ahash_finup_first(struct ahash_request *req)
  1327. {
  1328. return ahash_digest(req);
  1329. }
  1330. static int ahash_init(struct ahash_request *req)
  1331. {
  1332. struct caam_hash_state *state = ahash_request_ctx(req);
  1333. state->update = ahash_update_first;
  1334. state->finup = ahash_finup_first;
  1335. state->final = ahash_final_no_ctx;
  1336. state->current_buf = 0;
  1337. state->buf_dma = 0;
  1338. state->buflen_0 = 0;
  1339. state->buflen_1 = 0;
  1340. return 0;
  1341. }
  1342. static int ahash_update(struct ahash_request *req)
  1343. {
  1344. struct caam_hash_state *state = ahash_request_ctx(req);
  1345. return state->update(req);
  1346. }
  1347. static int ahash_finup(struct ahash_request *req)
  1348. {
  1349. struct caam_hash_state *state = ahash_request_ctx(req);
  1350. return state->finup(req);
  1351. }
  1352. static int ahash_final(struct ahash_request *req)
  1353. {
  1354. struct caam_hash_state *state = ahash_request_ctx(req);
  1355. return state->final(req);
  1356. }
  1357. static int ahash_export(struct ahash_request *req, void *out)
  1358. {
  1359. struct caam_hash_state *state = ahash_request_ctx(req);
  1360. struct caam_export_state *export = out;
  1361. int len;
  1362. u8 *buf;
  1363. if (state->current_buf) {
  1364. buf = state->buf_1;
  1365. len = state->buflen_1;
  1366. } else {
  1367. buf = state->buf_0;
  1368. len = state->buflen_0;
  1369. }
  1370. memcpy(export->buf, buf, len);
  1371. memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
  1372. export->buflen = len;
  1373. export->update = state->update;
  1374. export->final = state->final;
  1375. export->finup = state->finup;
  1376. return 0;
  1377. }
  1378. static int ahash_import(struct ahash_request *req, const void *in)
  1379. {
  1380. struct caam_hash_state *state = ahash_request_ctx(req);
  1381. const struct caam_export_state *export = in;
  1382. memset(state, 0, sizeof(*state));
  1383. memcpy(state->buf_0, export->buf, export->buflen);
  1384. memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
  1385. state->buflen_0 = export->buflen;
  1386. state->update = export->update;
  1387. state->final = export->final;
  1388. state->finup = export->finup;
  1389. return 0;
  1390. }
  1391. struct caam_hash_template {
  1392. char name[CRYPTO_MAX_ALG_NAME];
  1393. char driver_name[CRYPTO_MAX_ALG_NAME];
  1394. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1395. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1396. unsigned int blocksize;
  1397. struct ahash_alg template_ahash;
  1398. u32 alg_type;
  1399. u32 alg_op;
  1400. };
  1401. /* ahash descriptors */
  1402. static struct caam_hash_template driver_hash[] = {
  1403. {
  1404. .name = "sha1",
  1405. .driver_name = "sha1-caam",
  1406. .hmac_name = "hmac(sha1)",
  1407. .hmac_driver_name = "hmac-sha1-caam",
  1408. .blocksize = SHA1_BLOCK_SIZE,
  1409. .template_ahash = {
  1410. .init = ahash_init,
  1411. .update = ahash_update,
  1412. .final = ahash_final,
  1413. .finup = ahash_finup,
  1414. .digest = ahash_digest,
  1415. .export = ahash_export,
  1416. .import = ahash_import,
  1417. .setkey = ahash_setkey,
  1418. .halg = {
  1419. .digestsize = SHA1_DIGEST_SIZE,
  1420. .statesize = sizeof(struct caam_export_state),
  1421. },
  1422. },
  1423. .alg_type = OP_ALG_ALGSEL_SHA1,
  1424. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  1425. }, {
  1426. .name = "sha224",
  1427. .driver_name = "sha224-caam",
  1428. .hmac_name = "hmac(sha224)",
  1429. .hmac_driver_name = "hmac-sha224-caam",
  1430. .blocksize = SHA224_BLOCK_SIZE,
  1431. .template_ahash = {
  1432. .init = ahash_init,
  1433. .update = ahash_update,
  1434. .final = ahash_final,
  1435. .finup = ahash_finup,
  1436. .digest = ahash_digest,
  1437. .export = ahash_export,
  1438. .import = ahash_import,
  1439. .setkey = ahash_setkey,
  1440. .halg = {
  1441. .digestsize = SHA224_DIGEST_SIZE,
  1442. .statesize = sizeof(struct caam_export_state),
  1443. },
  1444. },
  1445. .alg_type = OP_ALG_ALGSEL_SHA224,
  1446. .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
  1447. }, {
  1448. .name = "sha256",
  1449. .driver_name = "sha256-caam",
  1450. .hmac_name = "hmac(sha256)",
  1451. .hmac_driver_name = "hmac-sha256-caam",
  1452. .blocksize = SHA256_BLOCK_SIZE,
  1453. .template_ahash = {
  1454. .init = ahash_init,
  1455. .update = ahash_update,
  1456. .final = ahash_final,
  1457. .finup = ahash_finup,
  1458. .digest = ahash_digest,
  1459. .export = ahash_export,
  1460. .import = ahash_import,
  1461. .setkey = ahash_setkey,
  1462. .halg = {
  1463. .digestsize = SHA256_DIGEST_SIZE,
  1464. .statesize = sizeof(struct caam_export_state),
  1465. },
  1466. },
  1467. .alg_type = OP_ALG_ALGSEL_SHA256,
  1468. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  1469. }, {
  1470. .name = "sha384",
  1471. .driver_name = "sha384-caam",
  1472. .hmac_name = "hmac(sha384)",
  1473. .hmac_driver_name = "hmac-sha384-caam",
  1474. .blocksize = SHA384_BLOCK_SIZE,
  1475. .template_ahash = {
  1476. .init = ahash_init,
  1477. .update = ahash_update,
  1478. .final = ahash_final,
  1479. .finup = ahash_finup,
  1480. .digest = ahash_digest,
  1481. .export = ahash_export,
  1482. .import = ahash_import,
  1483. .setkey = ahash_setkey,
  1484. .halg = {
  1485. .digestsize = SHA384_DIGEST_SIZE,
  1486. .statesize = sizeof(struct caam_export_state),
  1487. },
  1488. },
  1489. .alg_type = OP_ALG_ALGSEL_SHA384,
  1490. .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
  1491. }, {
  1492. .name = "sha512",
  1493. .driver_name = "sha512-caam",
  1494. .hmac_name = "hmac(sha512)",
  1495. .hmac_driver_name = "hmac-sha512-caam",
  1496. .blocksize = SHA512_BLOCK_SIZE,
  1497. .template_ahash = {
  1498. .init = ahash_init,
  1499. .update = ahash_update,
  1500. .final = ahash_final,
  1501. .finup = ahash_finup,
  1502. .digest = ahash_digest,
  1503. .export = ahash_export,
  1504. .import = ahash_import,
  1505. .setkey = ahash_setkey,
  1506. .halg = {
  1507. .digestsize = SHA512_DIGEST_SIZE,
  1508. .statesize = sizeof(struct caam_export_state),
  1509. },
  1510. },
  1511. .alg_type = OP_ALG_ALGSEL_SHA512,
  1512. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  1513. }, {
  1514. .name = "md5",
  1515. .driver_name = "md5-caam",
  1516. .hmac_name = "hmac(md5)",
  1517. .hmac_driver_name = "hmac-md5-caam",
  1518. .blocksize = MD5_BLOCK_WORDS * 4,
  1519. .template_ahash = {
  1520. .init = ahash_init,
  1521. .update = ahash_update,
  1522. .final = ahash_final,
  1523. .finup = ahash_finup,
  1524. .digest = ahash_digest,
  1525. .export = ahash_export,
  1526. .import = ahash_import,
  1527. .setkey = ahash_setkey,
  1528. .halg = {
  1529. .digestsize = MD5_DIGEST_SIZE,
  1530. .statesize = sizeof(struct caam_export_state),
  1531. },
  1532. },
  1533. .alg_type = OP_ALG_ALGSEL_MD5,
  1534. .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
  1535. },
  1536. };
  1537. struct caam_hash_alg {
  1538. struct list_head entry;
  1539. int alg_type;
  1540. int alg_op;
  1541. struct ahash_alg ahash_alg;
  1542. };
  1543. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1544. {
  1545. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1546. struct crypto_alg *base = tfm->__crt_alg;
  1547. struct hash_alg_common *halg =
  1548. container_of(base, struct hash_alg_common, base);
  1549. struct ahash_alg *alg =
  1550. container_of(halg, struct ahash_alg, halg);
  1551. struct caam_hash_alg *caam_hash =
  1552. container_of(alg, struct caam_hash_alg, ahash_alg);
  1553. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1554. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1555. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1556. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1557. HASH_MSG_LEN + 32,
  1558. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1559. HASH_MSG_LEN + 64,
  1560. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1561. int ret = 0;
  1562. /*
  1563. * Get a Job ring from Job Ring driver to ensure in-order
  1564. * crypto request processing per tfm
  1565. */
  1566. ctx->jrdev = caam_jr_alloc();
  1567. if (IS_ERR(ctx->jrdev)) {
  1568. pr_err("Job Ring Device allocation for transform failed\n");
  1569. return PTR_ERR(ctx->jrdev);
  1570. }
  1571. /* copy descriptor header template value */
  1572. ctx->alg_type = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1573. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_hash->alg_op;
  1574. ctx->ctx_len = runninglen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  1575. OP_ALG_ALGSEL_SHIFT];
  1576. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1577. sizeof(struct caam_hash_state));
  1578. ret = ahash_set_sh_desc(ahash);
  1579. return ret;
  1580. }
  1581. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1582. {
  1583. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1584. if (ctx->sh_desc_update_dma &&
  1585. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_dma))
  1586. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_dma,
  1587. desc_bytes(ctx->sh_desc_update),
  1588. DMA_TO_DEVICE);
  1589. if (ctx->sh_desc_update_first_dma &&
  1590. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_first_dma))
  1591. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_first_dma,
  1592. desc_bytes(ctx->sh_desc_update_first),
  1593. DMA_TO_DEVICE);
  1594. if (ctx->sh_desc_fin_dma &&
  1595. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_fin_dma))
  1596. dma_unmap_single(ctx->jrdev, ctx->sh_desc_fin_dma,
  1597. desc_bytes(ctx->sh_desc_fin), DMA_TO_DEVICE);
  1598. if (ctx->sh_desc_digest_dma &&
  1599. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_digest_dma))
  1600. dma_unmap_single(ctx->jrdev, ctx->sh_desc_digest_dma,
  1601. desc_bytes(ctx->sh_desc_digest),
  1602. DMA_TO_DEVICE);
  1603. if (ctx->sh_desc_finup_dma &&
  1604. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_finup_dma))
  1605. dma_unmap_single(ctx->jrdev, ctx->sh_desc_finup_dma,
  1606. desc_bytes(ctx->sh_desc_finup), DMA_TO_DEVICE);
  1607. caam_jr_free(ctx->jrdev);
  1608. }
  1609. static void __exit caam_algapi_hash_exit(void)
  1610. {
  1611. struct caam_hash_alg *t_alg, *n;
  1612. if (!hash_list.next)
  1613. return;
  1614. list_for_each_entry_safe(t_alg, n, &hash_list, entry) {
  1615. crypto_unregister_ahash(&t_alg->ahash_alg);
  1616. list_del(&t_alg->entry);
  1617. kfree(t_alg);
  1618. }
  1619. }
  1620. static struct caam_hash_alg *
  1621. caam_hash_alloc(struct caam_hash_template *template,
  1622. bool keyed)
  1623. {
  1624. struct caam_hash_alg *t_alg;
  1625. struct ahash_alg *halg;
  1626. struct crypto_alg *alg;
  1627. t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
  1628. if (!t_alg) {
  1629. pr_err("failed to allocate t_alg\n");
  1630. return ERR_PTR(-ENOMEM);
  1631. }
  1632. t_alg->ahash_alg = template->template_ahash;
  1633. halg = &t_alg->ahash_alg;
  1634. alg = &halg->halg.base;
  1635. if (keyed) {
  1636. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1637. template->hmac_name);
  1638. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1639. template->hmac_driver_name);
  1640. } else {
  1641. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1642. template->name);
  1643. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1644. template->driver_name);
  1645. t_alg->ahash_alg.setkey = NULL;
  1646. }
  1647. alg->cra_module = THIS_MODULE;
  1648. alg->cra_init = caam_hash_cra_init;
  1649. alg->cra_exit = caam_hash_cra_exit;
  1650. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1651. alg->cra_priority = CAAM_CRA_PRIORITY;
  1652. alg->cra_blocksize = template->blocksize;
  1653. alg->cra_alignmask = 0;
  1654. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1655. alg->cra_type = &crypto_ahash_type;
  1656. t_alg->alg_type = template->alg_type;
  1657. t_alg->alg_op = template->alg_op;
  1658. return t_alg;
  1659. }
  1660. static int __init caam_algapi_hash_init(void)
  1661. {
  1662. struct device_node *dev_node;
  1663. struct platform_device *pdev;
  1664. struct device *ctrldev;
  1665. int i = 0, err = 0;
  1666. struct caam_drv_private *priv;
  1667. unsigned int md_limit = SHA512_DIGEST_SIZE;
  1668. u32 cha_inst, cha_vid;
  1669. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1670. if (!dev_node) {
  1671. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1672. if (!dev_node)
  1673. return -ENODEV;
  1674. }
  1675. pdev = of_find_device_by_node(dev_node);
  1676. if (!pdev) {
  1677. of_node_put(dev_node);
  1678. return -ENODEV;
  1679. }
  1680. ctrldev = &pdev->dev;
  1681. priv = dev_get_drvdata(ctrldev);
  1682. of_node_put(dev_node);
  1683. /*
  1684. * If priv is NULL, it's probably because the caam driver wasn't
  1685. * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
  1686. */
  1687. if (!priv)
  1688. return -ENODEV;
  1689. /*
  1690. * Register crypto algorithms the device supports. First, identify
  1691. * presence and attributes of MD block.
  1692. */
  1693. cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
  1694. cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
  1695. /*
  1696. * Skip registration of any hashing algorithms if MD block
  1697. * is not present.
  1698. */
  1699. if (!((cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT))
  1700. return -ENODEV;
  1701. /* Limit digest size based on LP256 */
  1702. if ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256)
  1703. md_limit = SHA256_DIGEST_SIZE;
  1704. INIT_LIST_HEAD(&hash_list);
  1705. /* register crypto algorithms the device supports */
  1706. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1707. struct caam_hash_alg *t_alg;
  1708. struct caam_hash_template *alg = driver_hash + i;
  1709. /* If MD size is not supported by device, skip registration */
  1710. if (alg->template_ahash.halg.digestsize > md_limit)
  1711. continue;
  1712. /* register hmac version */
  1713. t_alg = caam_hash_alloc(alg, true);
  1714. if (IS_ERR(t_alg)) {
  1715. err = PTR_ERR(t_alg);
  1716. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1717. continue;
  1718. }
  1719. err = crypto_register_ahash(&t_alg->ahash_alg);
  1720. if (err) {
  1721. pr_warn("%s alg registration failed: %d\n",
  1722. t_alg->ahash_alg.halg.base.cra_driver_name,
  1723. err);
  1724. kfree(t_alg);
  1725. } else
  1726. list_add_tail(&t_alg->entry, &hash_list);
  1727. /* register unkeyed version */
  1728. t_alg = caam_hash_alloc(alg, false);
  1729. if (IS_ERR(t_alg)) {
  1730. err = PTR_ERR(t_alg);
  1731. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1732. continue;
  1733. }
  1734. err = crypto_register_ahash(&t_alg->ahash_alg);
  1735. if (err) {
  1736. pr_warn("%s alg registration failed: %d\n",
  1737. t_alg->ahash_alg.halg.base.cra_driver_name,
  1738. err);
  1739. kfree(t_alg);
  1740. } else
  1741. list_add_tail(&t_alg->entry, &hash_list);
  1742. }
  1743. return err;
  1744. }
  1745. module_init(caam_algapi_hash_init);
  1746. module_exit(caam_algapi_hash_exit);
  1747. MODULE_LICENSE("GPL");
  1748. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1749. MODULE_AUTHOR("Freescale Semiconductor - NMG");