clk-bcm2835.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854
  1. /*
  2. * Copyright (C) 2010,2015 Broadcom
  3. * Copyright (C) 2012 Stephen Warren
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. */
  16. /**
  17. * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
  18. *
  19. * The clock tree on the 2835 has several levels. There's a root
  20. * oscillator running at 19.2Mhz. After the oscillator there are 5
  21. * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
  22. * and "HDMI displays". Those 5 PLLs each can divide their output to
  23. * produce up to 4 channels. Finally, there is the level of clocks to
  24. * be consumed by other hardware components (like "H264" or "HDMI
  25. * state machine"), which divide off of some subset of the PLL
  26. * channels.
  27. *
  28. * All of the clocks in the tree are exposed in the DT, because the DT
  29. * may want to make assignments of the final layer of clocks to the
  30. * PLL channels, and some components of the hardware will actually
  31. * skip layers of the tree (for example, the pixel clock comes
  32. * directly from the PLLH PIX channel without using a CM_*CTL clock
  33. * generator).
  34. */
  35. #include <linux/clk-provider.h>
  36. #include <linux/clkdev.h>
  37. #include <linux/clk/bcm2835.h>
  38. #include <linux/debugfs.h>
  39. #include <linux/module.h>
  40. #include <linux/of.h>
  41. #include <linux/platform_device.h>
  42. #include <linux/slab.h>
  43. #include <dt-bindings/clock/bcm2835.h>
  44. #define CM_PASSWORD 0x5a000000
  45. #define CM_GNRICCTL 0x000
  46. #define CM_GNRICDIV 0x004
  47. # define CM_DIV_FRAC_BITS 12
  48. # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
  49. #define CM_VPUCTL 0x008
  50. #define CM_VPUDIV 0x00c
  51. #define CM_SYSCTL 0x010
  52. #define CM_SYSDIV 0x014
  53. #define CM_PERIACTL 0x018
  54. #define CM_PERIADIV 0x01c
  55. #define CM_PERIICTL 0x020
  56. #define CM_PERIIDIV 0x024
  57. #define CM_H264CTL 0x028
  58. #define CM_H264DIV 0x02c
  59. #define CM_ISPCTL 0x030
  60. #define CM_ISPDIV 0x034
  61. #define CM_V3DCTL 0x038
  62. #define CM_V3DDIV 0x03c
  63. #define CM_CAM0CTL 0x040
  64. #define CM_CAM0DIV 0x044
  65. #define CM_CAM1CTL 0x048
  66. #define CM_CAM1DIV 0x04c
  67. #define CM_CCP2CTL 0x050
  68. #define CM_CCP2DIV 0x054
  69. #define CM_DSI0ECTL 0x058
  70. #define CM_DSI0EDIV 0x05c
  71. #define CM_DSI0PCTL 0x060
  72. #define CM_DSI0PDIV 0x064
  73. #define CM_DPICTL 0x068
  74. #define CM_DPIDIV 0x06c
  75. #define CM_GP0CTL 0x070
  76. #define CM_GP0DIV 0x074
  77. #define CM_GP1CTL 0x078
  78. #define CM_GP1DIV 0x07c
  79. #define CM_GP2CTL 0x080
  80. #define CM_GP2DIV 0x084
  81. #define CM_HSMCTL 0x088
  82. #define CM_HSMDIV 0x08c
  83. #define CM_OTPCTL 0x090
  84. #define CM_OTPDIV 0x094
  85. #define CM_PCMCTL 0x098
  86. #define CM_PCMDIV 0x09c
  87. #define CM_PWMCTL 0x0a0
  88. #define CM_PWMDIV 0x0a4
  89. #define CM_SLIMCTL 0x0a8
  90. #define CM_SLIMDIV 0x0ac
  91. #define CM_SMICTL 0x0b0
  92. #define CM_SMIDIV 0x0b4
  93. /* no definition for 0x0b8 and 0x0bc */
  94. #define CM_TCNTCTL 0x0c0
  95. #define CM_TCNTDIV 0x0c4
  96. #define CM_TECCTL 0x0c8
  97. #define CM_TECDIV 0x0cc
  98. #define CM_TD0CTL 0x0d0
  99. #define CM_TD0DIV 0x0d4
  100. #define CM_TD1CTL 0x0d8
  101. #define CM_TD1DIV 0x0dc
  102. #define CM_TSENSCTL 0x0e0
  103. #define CM_TSENSDIV 0x0e4
  104. #define CM_TIMERCTL 0x0e8
  105. #define CM_TIMERDIV 0x0ec
  106. #define CM_UARTCTL 0x0f0
  107. #define CM_UARTDIV 0x0f4
  108. #define CM_VECCTL 0x0f8
  109. #define CM_VECDIV 0x0fc
  110. #define CM_PULSECTL 0x190
  111. #define CM_PULSEDIV 0x194
  112. #define CM_SDCCTL 0x1a8
  113. #define CM_SDCDIV 0x1ac
  114. #define CM_ARMCTL 0x1b0
  115. #define CM_AVEOCTL 0x1b8
  116. #define CM_AVEODIV 0x1bc
  117. #define CM_EMMCCTL 0x1c0
  118. #define CM_EMMCDIV 0x1c4
  119. /* General bits for the CM_*CTL regs */
  120. # define CM_ENABLE BIT(4)
  121. # define CM_KILL BIT(5)
  122. # define CM_GATE_BIT 6
  123. # define CM_GATE BIT(CM_GATE_BIT)
  124. # define CM_BUSY BIT(7)
  125. # define CM_BUSYD BIT(8)
  126. # define CM_FRAC BIT(9)
  127. # define CM_SRC_SHIFT 0
  128. # define CM_SRC_BITS 4
  129. # define CM_SRC_MASK 0xf
  130. # define CM_SRC_GND 0
  131. # define CM_SRC_OSC 1
  132. # define CM_SRC_TESTDEBUG0 2
  133. # define CM_SRC_TESTDEBUG1 3
  134. # define CM_SRC_PLLA_CORE 4
  135. # define CM_SRC_PLLA_PER 4
  136. # define CM_SRC_PLLC_CORE0 5
  137. # define CM_SRC_PLLC_PER 5
  138. # define CM_SRC_PLLC_CORE1 8
  139. # define CM_SRC_PLLD_CORE 6
  140. # define CM_SRC_PLLD_PER 6
  141. # define CM_SRC_PLLH_AUX 7
  142. # define CM_SRC_PLLC_CORE1 8
  143. # define CM_SRC_PLLC_CORE2 9
  144. #define CM_OSCCOUNT 0x100
  145. #define CM_PLLA 0x104
  146. # define CM_PLL_ANARST BIT(8)
  147. # define CM_PLLA_HOLDPER BIT(7)
  148. # define CM_PLLA_LOADPER BIT(6)
  149. # define CM_PLLA_HOLDCORE BIT(5)
  150. # define CM_PLLA_LOADCORE BIT(4)
  151. # define CM_PLLA_HOLDCCP2 BIT(3)
  152. # define CM_PLLA_LOADCCP2 BIT(2)
  153. # define CM_PLLA_HOLDDSI0 BIT(1)
  154. # define CM_PLLA_LOADDSI0 BIT(0)
  155. #define CM_PLLC 0x108
  156. # define CM_PLLC_HOLDPER BIT(7)
  157. # define CM_PLLC_LOADPER BIT(6)
  158. # define CM_PLLC_HOLDCORE2 BIT(5)
  159. # define CM_PLLC_LOADCORE2 BIT(4)
  160. # define CM_PLLC_HOLDCORE1 BIT(3)
  161. # define CM_PLLC_LOADCORE1 BIT(2)
  162. # define CM_PLLC_HOLDCORE0 BIT(1)
  163. # define CM_PLLC_LOADCORE0 BIT(0)
  164. #define CM_PLLD 0x10c
  165. # define CM_PLLD_HOLDPER BIT(7)
  166. # define CM_PLLD_LOADPER BIT(6)
  167. # define CM_PLLD_HOLDCORE BIT(5)
  168. # define CM_PLLD_LOADCORE BIT(4)
  169. # define CM_PLLD_HOLDDSI1 BIT(3)
  170. # define CM_PLLD_LOADDSI1 BIT(2)
  171. # define CM_PLLD_HOLDDSI0 BIT(1)
  172. # define CM_PLLD_LOADDSI0 BIT(0)
  173. #define CM_PLLH 0x110
  174. # define CM_PLLH_LOADRCAL BIT(2)
  175. # define CM_PLLH_LOADAUX BIT(1)
  176. # define CM_PLLH_LOADPIX BIT(0)
  177. #define CM_LOCK 0x114
  178. # define CM_LOCK_FLOCKH BIT(12)
  179. # define CM_LOCK_FLOCKD BIT(11)
  180. # define CM_LOCK_FLOCKC BIT(10)
  181. # define CM_LOCK_FLOCKB BIT(9)
  182. # define CM_LOCK_FLOCKA BIT(8)
  183. #define CM_EVENT 0x118
  184. #define CM_DSI1ECTL 0x158
  185. #define CM_DSI1EDIV 0x15c
  186. #define CM_DSI1PCTL 0x160
  187. #define CM_DSI1PDIV 0x164
  188. #define CM_DFTCTL 0x168
  189. #define CM_DFTDIV 0x16c
  190. #define CM_PLLB 0x170
  191. # define CM_PLLB_HOLDARM BIT(1)
  192. # define CM_PLLB_LOADARM BIT(0)
  193. #define A2W_PLLA_CTRL 0x1100
  194. #define A2W_PLLC_CTRL 0x1120
  195. #define A2W_PLLD_CTRL 0x1140
  196. #define A2W_PLLH_CTRL 0x1160
  197. #define A2W_PLLB_CTRL 0x11e0
  198. # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
  199. # define A2W_PLL_CTRL_PWRDN BIT(16)
  200. # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
  201. # define A2W_PLL_CTRL_PDIV_SHIFT 12
  202. # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
  203. # define A2W_PLL_CTRL_NDIV_SHIFT 0
  204. #define A2W_PLLA_ANA0 0x1010
  205. #define A2W_PLLC_ANA0 0x1030
  206. #define A2W_PLLD_ANA0 0x1050
  207. #define A2W_PLLH_ANA0 0x1070
  208. #define A2W_PLLB_ANA0 0x10f0
  209. #define A2W_PLL_KA_SHIFT 7
  210. #define A2W_PLL_KA_MASK GENMASK(9, 7)
  211. #define A2W_PLL_KI_SHIFT 19
  212. #define A2W_PLL_KI_MASK GENMASK(21, 19)
  213. #define A2W_PLL_KP_SHIFT 15
  214. #define A2W_PLL_KP_MASK GENMASK(18, 15)
  215. #define A2W_PLLH_KA_SHIFT 19
  216. #define A2W_PLLH_KA_MASK GENMASK(21, 19)
  217. #define A2W_PLLH_KI_LOW_SHIFT 22
  218. #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
  219. #define A2W_PLLH_KI_HIGH_SHIFT 0
  220. #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
  221. #define A2W_PLLH_KP_SHIFT 1
  222. #define A2W_PLLH_KP_MASK GENMASK(4, 1)
  223. #define A2W_XOSC_CTRL 0x1190
  224. # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
  225. # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
  226. # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
  227. # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
  228. # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
  229. # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
  230. # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
  231. # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
  232. #define A2W_PLLA_FRAC 0x1200
  233. #define A2W_PLLC_FRAC 0x1220
  234. #define A2W_PLLD_FRAC 0x1240
  235. #define A2W_PLLH_FRAC 0x1260
  236. #define A2W_PLLB_FRAC 0x12e0
  237. # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
  238. # define A2W_PLL_FRAC_BITS 20
  239. #define A2W_PLL_CHANNEL_DISABLE BIT(8)
  240. #define A2W_PLL_DIV_BITS 8
  241. #define A2W_PLL_DIV_SHIFT 0
  242. #define A2W_PLLA_DSI0 0x1300
  243. #define A2W_PLLA_CORE 0x1400
  244. #define A2W_PLLA_PER 0x1500
  245. #define A2W_PLLA_CCP2 0x1600
  246. #define A2W_PLLC_CORE2 0x1320
  247. #define A2W_PLLC_CORE1 0x1420
  248. #define A2W_PLLC_PER 0x1520
  249. #define A2W_PLLC_CORE0 0x1620
  250. #define A2W_PLLD_DSI0 0x1340
  251. #define A2W_PLLD_CORE 0x1440
  252. #define A2W_PLLD_PER 0x1540
  253. #define A2W_PLLD_DSI1 0x1640
  254. #define A2W_PLLH_AUX 0x1360
  255. #define A2W_PLLH_RCAL 0x1460
  256. #define A2W_PLLH_PIX 0x1560
  257. #define A2W_PLLH_STS 0x1660
  258. #define A2W_PLLH_CTRLR 0x1960
  259. #define A2W_PLLH_FRACR 0x1a60
  260. #define A2W_PLLH_AUXR 0x1b60
  261. #define A2W_PLLH_RCALR 0x1c60
  262. #define A2W_PLLH_PIXR 0x1d60
  263. #define A2W_PLLH_STSR 0x1e60
  264. #define A2W_PLLB_ARM 0x13e0
  265. #define A2W_PLLB_SP0 0x14e0
  266. #define A2W_PLLB_SP1 0x15e0
  267. #define A2W_PLLB_SP2 0x16e0
  268. #define LOCK_TIMEOUT_NS 100000000
  269. #define BCM2835_MAX_FB_RATE 1750000000u
  270. struct bcm2835_cprman {
  271. struct device *dev;
  272. void __iomem *regs;
  273. spinlock_t regs_lock; /* spinlock for all clocks */
  274. const char *osc_name;
  275. struct clk_onecell_data onecell;
  276. struct clk *clks[];
  277. };
  278. static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
  279. {
  280. writel(CM_PASSWORD | val, cprman->regs + reg);
  281. }
  282. static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
  283. {
  284. return readl(cprman->regs + reg);
  285. }
  286. static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
  287. struct debugfs_reg32 *regs, size_t nregs,
  288. struct dentry *dentry)
  289. {
  290. struct dentry *regdump;
  291. struct debugfs_regset32 *regset;
  292. regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
  293. if (!regset)
  294. return -ENOMEM;
  295. regset->regs = regs;
  296. regset->nregs = nregs;
  297. regset->base = cprman->regs + base;
  298. regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
  299. regset);
  300. return regdump ? 0 : -ENOMEM;
  301. }
  302. /*
  303. * These are fixed clocks. They're probably not all root clocks and it may
  304. * be possible to turn them on and off but until this is mapped out better
  305. * it's the only way they can be used.
  306. */
  307. void __init bcm2835_init_clocks(void)
  308. {
  309. struct clk *clk;
  310. int ret;
  311. clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
  312. if (IS_ERR(clk))
  313. pr_err("apb_pclk not registered\n");
  314. clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
  315. if (IS_ERR(clk))
  316. pr_err("uart0_pclk not registered\n");
  317. ret = clk_register_clkdev(clk, NULL, "20201000.uart");
  318. if (ret)
  319. pr_err("uart0_pclk alias not registered\n");
  320. clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
  321. if (IS_ERR(clk))
  322. pr_err("uart1_pclk not registered\n");
  323. ret = clk_register_clkdev(clk, NULL, "20215000.uart");
  324. if (ret)
  325. pr_err("uart1_pclk alias not registered\n");
  326. }
  327. struct bcm2835_pll_data {
  328. const char *name;
  329. u32 cm_ctrl_reg;
  330. u32 a2w_ctrl_reg;
  331. u32 frac_reg;
  332. u32 ana_reg_base;
  333. u32 reference_enable_mask;
  334. /* Bit in CM_LOCK to indicate when the PLL has locked. */
  335. u32 lock_mask;
  336. const struct bcm2835_pll_ana_bits *ana;
  337. unsigned long min_rate;
  338. unsigned long max_rate;
  339. /*
  340. * Highest rate for the VCO before we have to use the
  341. * pre-divide-by-2.
  342. */
  343. unsigned long max_fb_rate;
  344. };
  345. struct bcm2835_pll_ana_bits {
  346. u32 mask0;
  347. u32 set0;
  348. u32 mask1;
  349. u32 set1;
  350. u32 mask3;
  351. u32 set3;
  352. u32 fb_prediv_mask;
  353. };
  354. static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
  355. .mask0 = 0,
  356. .set0 = 0,
  357. .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
  358. .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
  359. .mask3 = (u32)~A2W_PLL_KA_MASK,
  360. .set3 = (2 << A2W_PLL_KA_SHIFT),
  361. .fb_prediv_mask = BIT(14),
  362. };
  363. static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
  364. .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
  365. .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
  366. .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
  367. .set1 = (6 << A2W_PLLH_KP_SHIFT),
  368. .mask3 = 0,
  369. .set3 = 0,
  370. .fb_prediv_mask = BIT(11),
  371. };
  372. struct bcm2835_pll_divider_data {
  373. const char *name;
  374. const char *source_pll;
  375. u32 cm_reg;
  376. u32 a2w_reg;
  377. u32 load_mask;
  378. u32 hold_mask;
  379. u32 fixed_divider;
  380. };
  381. struct bcm2835_clock_data {
  382. const char *name;
  383. const char *const *parents;
  384. int num_mux_parents;
  385. u32 ctl_reg;
  386. u32 div_reg;
  387. /* Number of integer bits in the divider */
  388. u32 int_bits;
  389. /* Number of fractional bits in the divider */
  390. u32 frac_bits;
  391. bool is_vpu_clock;
  392. bool is_mash_clock;
  393. };
  394. struct bcm2835_gate_data {
  395. const char *name;
  396. const char *parent;
  397. u32 ctl_reg;
  398. };
  399. struct bcm2835_pll {
  400. struct clk_hw hw;
  401. struct bcm2835_cprman *cprman;
  402. const struct bcm2835_pll_data *data;
  403. };
  404. static int bcm2835_pll_is_on(struct clk_hw *hw)
  405. {
  406. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  407. struct bcm2835_cprman *cprman = pll->cprman;
  408. const struct bcm2835_pll_data *data = pll->data;
  409. return cprman_read(cprman, data->a2w_ctrl_reg) &
  410. A2W_PLL_CTRL_PRST_DISABLE;
  411. }
  412. static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
  413. unsigned long parent_rate,
  414. u32 *ndiv, u32 *fdiv)
  415. {
  416. u64 div;
  417. div = (u64)rate << A2W_PLL_FRAC_BITS;
  418. do_div(div, parent_rate);
  419. *ndiv = div >> A2W_PLL_FRAC_BITS;
  420. *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
  421. }
  422. static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
  423. u32 ndiv, u32 fdiv, u32 pdiv)
  424. {
  425. u64 rate;
  426. if (pdiv == 0)
  427. return 0;
  428. rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
  429. do_div(rate, pdiv);
  430. return rate >> A2W_PLL_FRAC_BITS;
  431. }
  432. static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
  433. unsigned long *parent_rate)
  434. {
  435. u32 ndiv, fdiv;
  436. bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
  437. return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
  438. }
  439. static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
  440. unsigned long parent_rate)
  441. {
  442. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  443. struct bcm2835_cprman *cprman = pll->cprman;
  444. const struct bcm2835_pll_data *data = pll->data;
  445. u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
  446. u32 ndiv, pdiv, fdiv;
  447. bool using_prediv;
  448. if (parent_rate == 0)
  449. return 0;
  450. fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
  451. ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
  452. pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
  453. using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
  454. data->ana->fb_prediv_mask;
  455. if (using_prediv)
  456. ndiv *= 2;
  457. return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
  458. }
  459. static void bcm2835_pll_off(struct clk_hw *hw)
  460. {
  461. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  462. struct bcm2835_cprman *cprman = pll->cprman;
  463. const struct bcm2835_pll_data *data = pll->data;
  464. spin_lock(&cprman->regs_lock);
  465. cprman_write(cprman, data->cm_ctrl_reg,
  466. cprman_read(cprman, data->cm_ctrl_reg) |
  467. CM_PLL_ANARST);
  468. cprman_write(cprman, data->a2w_ctrl_reg,
  469. cprman_read(cprman, data->a2w_ctrl_reg) |
  470. A2W_PLL_CTRL_PWRDN);
  471. spin_unlock(&cprman->regs_lock);
  472. }
  473. static int bcm2835_pll_on(struct clk_hw *hw)
  474. {
  475. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  476. struct bcm2835_cprman *cprman = pll->cprman;
  477. const struct bcm2835_pll_data *data = pll->data;
  478. ktime_t timeout;
  479. cprman_write(cprman, data->a2w_ctrl_reg,
  480. cprman_read(cprman, data->a2w_ctrl_reg) &
  481. ~A2W_PLL_CTRL_PWRDN);
  482. /* Take the PLL out of reset. */
  483. cprman_write(cprman, data->cm_ctrl_reg,
  484. cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
  485. /* Wait for the PLL to lock. */
  486. timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
  487. while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
  488. if (ktime_after(ktime_get(), timeout)) {
  489. dev_err(cprman->dev, "%s: couldn't lock PLL\n",
  490. clk_hw_get_name(hw));
  491. return -ETIMEDOUT;
  492. }
  493. cpu_relax();
  494. }
  495. return 0;
  496. }
  497. static void
  498. bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
  499. {
  500. int i;
  501. /*
  502. * ANA register setup is done as a series of writes to
  503. * ANA3-ANA0, in that order. This lets us write all 4
  504. * registers as a single cycle of the serdes interface (taking
  505. * 100 xosc clocks), whereas if we were to update ana0, 1, and
  506. * 3 individually through their partial-write registers, each
  507. * would be their own serdes cycle.
  508. */
  509. for (i = 3; i >= 0; i--)
  510. cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
  511. }
  512. static int bcm2835_pll_set_rate(struct clk_hw *hw,
  513. unsigned long rate, unsigned long parent_rate)
  514. {
  515. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  516. struct bcm2835_cprman *cprman = pll->cprman;
  517. const struct bcm2835_pll_data *data = pll->data;
  518. bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
  519. u32 ndiv, fdiv, a2w_ctl;
  520. u32 ana[4];
  521. int i;
  522. if (rate < data->min_rate || rate > data->max_rate) {
  523. dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
  524. clk_hw_get_name(hw), rate,
  525. data->min_rate, data->max_rate);
  526. return -EINVAL;
  527. }
  528. if (rate > data->max_fb_rate) {
  529. use_fb_prediv = true;
  530. rate /= 2;
  531. } else {
  532. use_fb_prediv = false;
  533. }
  534. bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
  535. for (i = 3; i >= 0; i--)
  536. ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
  537. was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
  538. ana[0] &= ~data->ana->mask0;
  539. ana[0] |= data->ana->set0;
  540. ana[1] &= ~data->ana->mask1;
  541. ana[1] |= data->ana->set1;
  542. ana[3] &= ~data->ana->mask3;
  543. ana[3] |= data->ana->set3;
  544. if (was_using_prediv && !use_fb_prediv) {
  545. ana[1] &= ~data->ana->fb_prediv_mask;
  546. do_ana_setup_first = true;
  547. } else if (!was_using_prediv && use_fb_prediv) {
  548. ana[1] |= data->ana->fb_prediv_mask;
  549. do_ana_setup_first = false;
  550. } else {
  551. do_ana_setup_first = true;
  552. }
  553. /* Unmask the reference clock from the oscillator. */
  554. cprman_write(cprman, A2W_XOSC_CTRL,
  555. cprman_read(cprman, A2W_XOSC_CTRL) |
  556. data->reference_enable_mask);
  557. if (do_ana_setup_first)
  558. bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
  559. /* Set the PLL multiplier from the oscillator. */
  560. cprman_write(cprman, data->frac_reg, fdiv);
  561. a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
  562. a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
  563. a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
  564. a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
  565. a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
  566. cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
  567. if (!do_ana_setup_first)
  568. bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
  569. return 0;
  570. }
  571. static int bcm2835_pll_debug_init(struct clk_hw *hw,
  572. struct dentry *dentry)
  573. {
  574. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  575. struct bcm2835_cprman *cprman = pll->cprman;
  576. const struct bcm2835_pll_data *data = pll->data;
  577. struct debugfs_reg32 *regs;
  578. regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
  579. if (!regs)
  580. return -ENOMEM;
  581. regs[0].name = "cm_ctrl";
  582. regs[0].offset = data->cm_ctrl_reg;
  583. regs[1].name = "a2w_ctrl";
  584. regs[1].offset = data->a2w_ctrl_reg;
  585. regs[2].name = "frac";
  586. regs[2].offset = data->frac_reg;
  587. regs[3].name = "ana0";
  588. regs[3].offset = data->ana_reg_base + 0 * 4;
  589. regs[4].name = "ana1";
  590. regs[4].offset = data->ana_reg_base + 1 * 4;
  591. regs[5].name = "ana2";
  592. regs[5].offset = data->ana_reg_base + 2 * 4;
  593. regs[6].name = "ana3";
  594. regs[6].offset = data->ana_reg_base + 3 * 4;
  595. return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
  596. }
  597. static const struct clk_ops bcm2835_pll_clk_ops = {
  598. .is_prepared = bcm2835_pll_is_on,
  599. .prepare = bcm2835_pll_on,
  600. .unprepare = bcm2835_pll_off,
  601. .recalc_rate = bcm2835_pll_get_rate,
  602. .set_rate = bcm2835_pll_set_rate,
  603. .round_rate = bcm2835_pll_round_rate,
  604. .debug_init = bcm2835_pll_debug_init,
  605. };
  606. struct bcm2835_pll_divider {
  607. struct clk_divider div;
  608. struct bcm2835_cprman *cprman;
  609. const struct bcm2835_pll_divider_data *data;
  610. };
  611. static struct bcm2835_pll_divider *
  612. bcm2835_pll_divider_from_hw(struct clk_hw *hw)
  613. {
  614. return container_of(hw, struct bcm2835_pll_divider, div.hw);
  615. }
  616. static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
  617. {
  618. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  619. struct bcm2835_cprman *cprman = divider->cprman;
  620. const struct bcm2835_pll_divider_data *data = divider->data;
  621. return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
  622. }
  623. static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
  624. unsigned long rate,
  625. unsigned long *parent_rate)
  626. {
  627. return clk_divider_ops.round_rate(hw, rate, parent_rate);
  628. }
  629. static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
  630. unsigned long parent_rate)
  631. {
  632. return clk_divider_ops.recalc_rate(hw, parent_rate);
  633. }
  634. static void bcm2835_pll_divider_off(struct clk_hw *hw)
  635. {
  636. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  637. struct bcm2835_cprman *cprman = divider->cprman;
  638. const struct bcm2835_pll_divider_data *data = divider->data;
  639. spin_lock(&cprman->regs_lock);
  640. cprman_write(cprman, data->cm_reg,
  641. (cprman_read(cprman, data->cm_reg) &
  642. ~data->load_mask) | data->hold_mask);
  643. cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
  644. spin_unlock(&cprman->regs_lock);
  645. }
  646. static int bcm2835_pll_divider_on(struct clk_hw *hw)
  647. {
  648. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  649. struct bcm2835_cprman *cprman = divider->cprman;
  650. const struct bcm2835_pll_divider_data *data = divider->data;
  651. spin_lock(&cprman->regs_lock);
  652. cprman_write(cprman, data->a2w_reg,
  653. cprman_read(cprman, data->a2w_reg) &
  654. ~A2W_PLL_CHANNEL_DISABLE);
  655. cprman_write(cprman, data->cm_reg,
  656. cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
  657. spin_unlock(&cprman->regs_lock);
  658. return 0;
  659. }
  660. static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
  661. unsigned long rate,
  662. unsigned long parent_rate)
  663. {
  664. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  665. struct bcm2835_cprman *cprman = divider->cprman;
  666. const struct bcm2835_pll_divider_data *data = divider->data;
  667. u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
  668. div = DIV_ROUND_UP_ULL(parent_rate, rate);
  669. div = min(div, max_div);
  670. if (div == max_div)
  671. div = 0;
  672. cprman_write(cprman, data->a2w_reg, div);
  673. cm = cprman_read(cprman, data->cm_reg);
  674. cprman_write(cprman, data->cm_reg, cm | data->load_mask);
  675. cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
  676. return 0;
  677. }
  678. static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
  679. struct dentry *dentry)
  680. {
  681. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  682. struct bcm2835_cprman *cprman = divider->cprman;
  683. const struct bcm2835_pll_divider_data *data = divider->data;
  684. struct debugfs_reg32 *regs;
  685. regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
  686. if (!regs)
  687. return -ENOMEM;
  688. regs[0].name = "cm";
  689. regs[0].offset = data->cm_reg;
  690. regs[1].name = "a2w";
  691. regs[1].offset = data->a2w_reg;
  692. return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
  693. }
  694. static const struct clk_ops bcm2835_pll_divider_clk_ops = {
  695. .is_prepared = bcm2835_pll_divider_is_on,
  696. .prepare = bcm2835_pll_divider_on,
  697. .unprepare = bcm2835_pll_divider_off,
  698. .recalc_rate = bcm2835_pll_divider_get_rate,
  699. .set_rate = bcm2835_pll_divider_set_rate,
  700. .round_rate = bcm2835_pll_divider_round_rate,
  701. .debug_init = bcm2835_pll_divider_debug_init,
  702. };
  703. /*
  704. * The CM dividers do fixed-point division, so we can't use the
  705. * generic integer divider code like the PLL dividers do (and we can't
  706. * fake it by having some fixed shifts preceding it in the clock tree,
  707. * because we'd run out of bits in a 32-bit unsigned long).
  708. */
  709. struct bcm2835_clock {
  710. struct clk_hw hw;
  711. struct bcm2835_cprman *cprman;
  712. const struct bcm2835_clock_data *data;
  713. };
  714. static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
  715. {
  716. return container_of(hw, struct bcm2835_clock, hw);
  717. }
  718. static int bcm2835_clock_is_on(struct clk_hw *hw)
  719. {
  720. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  721. struct bcm2835_cprman *cprman = clock->cprman;
  722. const struct bcm2835_clock_data *data = clock->data;
  723. return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
  724. }
  725. static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
  726. unsigned long rate,
  727. unsigned long parent_rate,
  728. bool round_up)
  729. {
  730. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  731. const struct bcm2835_clock_data *data = clock->data;
  732. u32 unused_frac_mask =
  733. GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
  734. u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
  735. u64 rem;
  736. u32 div, mindiv, maxdiv;
  737. rem = do_div(temp, rate);
  738. div = temp;
  739. /* Round up and mask off the unused bits */
  740. if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
  741. div += unused_frac_mask + 1;
  742. div &= ~unused_frac_mask;
  743. /* different clamping limits apply for a mash clock */
  744. if (data->is_mash_clock) {
  745. /* clamp to min divider of 2 */
  746. mindiv = 2 << CM_DIV_FRAC_BITS;
  747. /* clamp to the highest possible integer divider */
  748. maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
  749. } else {
  750. /* clamp to min divider of 1 */
  751. mindiv = 1 << CM_DIV_FRAC_BITS;
  752. /* clamp to the highest possible fractional divider */
  753. maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
  754. CM_DIV_FRAC_BITS - data->frac_bits);
  755. }
  756. /* apply the clamping limits */
  757. div = max_t(u32, div, mindiv);
  758. div = min_t(u32, div, maxdiv);
  759. return div;
  760. }
  761. static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
  762. unsigned long parent_rate,
  763. u32 div)
  764. {
  765. const struct bcm2835_clock_data *data = clock->data;
  766. u64 temp;
  767. /*
  768. * The divisor is a 12.12 fixed point field, but only some of
  769. * the bits are populated in any given clock.
  770. */
  771. div >>= CM_DIV_FRAC_BITS - data->frac_bits;
  772. div &= (1 << (data->int_bits + data->frac_bits)) - 1;
  773. if (div == 0)
  774. return 0;
  775. temp = (u64)parent_rate << data->frac_bits;
  776. do_div(temp, div);
  777. return temp;
  778. }
  779. static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
  780. unsigned long parent_rate)
  781. {
  782. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  783. struct bcm2835_cprman *cprman = clock->cprman;
  784. const struct bcm2835_clock_data *data = clock->data;
  785. u32 div = cprman_read(cprman, data->div_reg);
  786. return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
  787. }
  788. static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
  789. {
  790. struct bcm2835_cprman *cprman = clock->cprman;
  791. const struct bcm2835_clock_data *data = clock->data;
  792. ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
  793. while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
  794. if (ktime_after(ktime_get(), timeout)) {
  795. dev_err(cprman->dev, "%s: couldn't lock PLL\n",
  796. clk_hw_get_name(&clock->hw));
  797. return;
  798. }
  799. cpu_relax();
  800. }
  801. }
  802. static void bcm2835_clock_off(struct clk_hw *hw)
  803. {
  804. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  805. struct bcm2835_cprman *cprman = clock->cprman;
  806. const struct bcm2835_clock_data *data = clock->data;
  807. spin_lock(&cprman->regs_lock);
  808. cprman_write(cprman, data->ctl_reg,
  809. cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
  810. spin_unlock(&cprman->regs_lock);
  811. /* BUSY will remain high until the divider completes its cycle. */
  812. bcm2835_clock_wait_busy(clock);
  813. }
  814. static int bcm2835_clock_on(struct clk_hw *hw)
  815. {
  816. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  817. struct bcm2835_cprman *cprman = clock->cprman;
  818. const struct bcm2835_clock_data *data = clock->data;
  819. spin_lock(&cprman->regs_lock);
  820. cprman_write(cprman, data->ctl_reg,
  821. cprman_read(cprman, data->ctl_reg) |
  822. CM_ENABLE |
  823. CM_GATE);
  824. spin_unlock(&cprman->regs_lock);
  825. return 0;
  826. }
  827. static int bcm2835_clock_set_rate(struct clk_hw *hw,
  828. unsigned long rate, unsigned long parent_rate)
  829. {
  830. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  831. struct bcm2835_cprman *cprman = clock->cprman;
  832. const struct bcm2835_clock_data *data = clock->data;
  833. u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
  834. u32 ctl;
  835. spin_lock(&cprman->regs_lock);
  836. /*
  837. * Setting up frac support
  838. *
  839. * In principle it is recommended to stop/start the clock first,
  840. * but as we set CLK_SET_RATE_GATE during registration of the
  841. * clock this requirement should be take care of by the
  842. * clk-framework.
  843. */
  844. ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
  845. ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
  846. cprman_write(cprman, data->ctl_reg, ctl);
  847. cprman_write(cprman, data->div_reg, div);
  848. spin_unlock(&cprman->regs_lock);
  849. return 0;
  850. }
  851. static int bcm2835_clock_determine_rate(struct clk_hw *hw,
  852. struct clk_rate_request *req)
  853. {
  854. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  855. struct clk_hw *parent, *best_parent = NULL;
  856. unsigned long rate, best_rate = 0;
  857. unsigned long prate, best_prate = 0;
  858. size_t i;
  859. u32 div;
  860. /*
  861. * Select parent clock that results in the closest but lower rate
  862. */
  863. for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
  864. parent = clk_hw_get_parent_by_index(hw, i);
  865. if (!parent)
  866. continue;
  867. prate = clk_hw_get_rate(parent);
  868. div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
  869. rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
  870. if (rate > best_rate && rate <= req->rate) {
  871. best_parent = parent;
  872. best_prate = prate;
  873. best_rate = rate;
  874. }
  875. }
  876. if (!best_parent)
  877. return -EINVAL;
  878. req->best_parent_hw = best_parent;
  879. req->best_parent_rate = best_prate;
  880. req->rate = best_rate;
  881. return 0;
  882. }
  883. static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
  884. {
  885. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  886. struct bcm2835_cprman *cprman = clock->cprman;
  887. const struct bcm2835_clock_data *data = clock->data;
  888. u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
  889. cprman_write(cprman, data->ctl_reg, src);
  890. return 0;
  891. }
  892. static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
  893. {
  894. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  895. struct bcm2835_cprman *cprman = clock->cprman;
  896. const struct bcm2835_clock_data *data = clock->data;
  897. u32 src = cprman_read(cprman, data->ctl_reg);
  898. return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
  899. }
  900. static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
  901. {
  902. .name = "ctl",
  903. .offset = 0,
  904. },
  905. {
  906. .name = "div",
  907. .offset = 4,
  908. },
  909. };
  910. static int bcm2835_clock_debug_init(struct clk_hw *hw,
  911. struct dentry *dentry)
  912. {
  913. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  914. struct bcm2835_cprman *cprman = clock->cprman;
  915. const struct bcm2835_clock_data *data = clock->data;
  916. return bcm2835_debugfs_regset(
  917. cprman, data->ctl_reg,
  918. bcm2835_debugfs_clock_reg32,
  919. ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
  920. dentry);
  921. }
  922. static const struct clk_ops bcm2835_clock_clk_ops = {
  923. .is_prepared = bcm2835_clock_is_on,
  924. .prepare = bcm2835_clock_on,
  925. .unprepare = bcm2835_clock_off,
  926. .recalc_rate = bcm2835_clock_get_rate,
  927. .set_rate = bcm2835_clock_set_rate,
  928. .determine_rate = bcm2835_clock_determine_rate,
  929. .set_parent = bcm2835_clock_set_parent,
  930. .get_parent = bcm2835_clock_get_parent,
  931. .debug_init = bcm2835_clock_debug_init,
  932. };
  933. static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
  934. {
  935. return true;
  936. }
  937. /*
  938. * The VPU clock can never be disabled (it doesn't have an ENABLE
  939. * bit), so it gets its own set of clock ops.
  940. */
  941. static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
  942. .is_prepared = bcm2835_vpu_clock_is_on,
  943. .recalc_rate = bcm2835_clock_get_rate,
  944. .set_rate = bcm2835_clock_set_rate,
  945. .determine_rate = bcm2835_clock_determine_rate,
  946. .set_parent = bcm2835_clock_set_parent,
  947. .get_parent = bcm2835_clock_get_parent,
  948. .debug_init = bcm2835_clock_debug_init,
  949. };
  950. static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
  951. const struct bcm2835_pll_data *data)
  952. {
  953. struct bcm2835_pll *pll;
  954. struct clk_init_data init;
  955. memset(&init, 0, sizeof(init));
  956. /* All of the PLLs derive from the external oscillator. */
  957. init.parent_names = &cprman->osc_name;
  958. init.num_parents = 1;
  959. init.name = data->name;
  960. init.ops = &bcm2835_pll_clk_ops;
  961. init.flags = CLK_IGNORE_UNUSED;
  962. pll = kzalloc(sizeof(*pll), GFP_KERNEL);
  963. if (!pll)
  964. return NULL;
  965. pll->cprman = cprman;
  966. pll->data = data;
  967. pll->hw.init = &init;
  968. return devm_clk_register(cprman->dev, &pll->hw);
  969. }
  970. static struct clk *
  971. bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
  972. const struct bcm2835_pll_divider_data *data)
  973. {
  974. struct bcm2835_pll_divider *divider;
  975. struct clk_init_data init;
  976. struct clk *clk;
  977. const char *divider_name;
  978. if (data->fixed_divider != 1) {
  979. divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
  980. "%s_prediv", data->name);
  981. if (!divider_name)
  982. return NULL;
  983. } else {
  984. divider_name = data->name;
  985. }
  986. memset(&init, 0, sizeof(init));
  987. init.parent_names = &data->source_pll;
  988. init.num_parents = 1;
  989. init.name = divider_name;
  990. init.ops = &bcm2835_pll_divider_clk_ops;
  991. init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
  992. divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
  993. if (!divider)
  994. return NULL;
  995. divider->div.reg = cprman->regs + data->a2w_reg;
  996. divider->div.shift = A2W_PLL_DIV_SHIFT;
  997. divider->div.width = A2W_PLL_DIV_BITS;
  998. divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
  999. divider->div.lock = &cprman->regs_lock;
  1000. divider->div.hw.init = &init;
  1001. divider->div.table = NULL;
  1002. divider->cprman = cprman;
  1003. divider->data = data;
  1004. clk = devm_clk_register(cprman->dev, &divider->div.hw);
  1005. if (IS_ERR(clk))
  1006. return clk;
  1007. /*
  1008. * PLLH's channels have a fixed divide by 10 afterwards, which
  1009. * is what our consumers are actually using.
  1010. */
  1011. if (data->fixed_divider != 1) {
  1012. return clk_register_fixed_factor(cprman->dev, data->name,
  1013. divider_name,
  1014. CLK_SET_RATE_PARENT,
  1015. 1,
  1016. data->fixed_divider);
  1017. }
  1018. return clk;
  1019. }
  1020. static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
  1021. const struct bcm2835_clock_data *data)
  1022. {
  1023. struct bcm2835_clock *clock;
  1024. struct clk_init_data init;
  1025. const char *parents[1 << CM_SRC_BITS];
  1026. size_t i;
  1027. /*
  1028. * Replace our "xosc" references with the oscillator's
  1029. * actual name.
  1030. */
  1031. for (i = 0; i < data->num_mux_parents; i++) {
  1032. if (strcmp(data->parents[i], "xosc") == 0)
  1033. parents[i] = cprman->osc_name;
  1034. else
  1035. parents[i] = data->parents[i];
  1036. }
  1037. memset(&init, 0, sizeof(init));
  1038. init.parent_names = parents;
  1039. init.num_parents = data->num_mux_parents;
  1040. init.name = data->name;
  1041. init.flags = CLK_IGNORE_UNUSED;
  1042. if (data->is_vpu_clock) {
  1043. init.ops = &bcm2835_vpu_clock_clk_ops;
  1044. } else {
  1045. init.ops = &bcm2835_clock_clk_ops;
  1046. init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
  1047. }
  1048. clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
  1049. if (!clock)
  1050. return NULL;
  1051. clock->cprman = cprman;
  1052. clock->data = data;
  1053. clock->hw.init = &init;
  1054. return devm_clk_register(cprman->dev, &clock->hw);
  1055. }
  1056. static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
  1057. const struct bcm2835_gate_data *data)
  1058. {
  1059. return clk_register_gate(cprman->dev, data->name, data->parent,
  1060. CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
  1061. cprman->regs + data->ctl_reg,
  1062. CM_GATE_BIT, 0, &cprman->regs_lock);
  1063. }
  1064. typedef struct clk *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
  1065. const void *data);
  1066. struct bcm2835_clk_desc {
  1067. bcm2835_clk_register clk_register;
  1068. const void *data;
  1069. };
  1070. /* assignment helper macros for different clock types */
  1071. #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
  1072. .data = __VA_ARGS__ }
  1073. #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
  1074. &(struct bcm2835_pll_data) \
  1075. {__VA_ARGS__})
  1076. #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
  1077. &(struct bcm2835_pll_divider_data) \
  1078. {__VA_ARGS__})
  1079. #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
  1080. &(struct bcm2835_clock_data) \
  1081. {__VA_ARGS__})
  1082. #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
  1083. &(struct bcm2835_gate_data) \
  1084. {__VA_ARGS__})
  1085. /* parent mux arrays plus helper macros */
  1086. /* main oscillator parent mux */
  1087. static const char *const bcm2835_clock_osc_parents[] = {
  1088. "gnd",
  1089. "xosc",
  1090. "testdebug0",
  1091. "testdebug1"
  1092. };
  1093. #define REGISTER_OSC_CLK(...) REGISTER_CLK( \
  1094. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
  1095. .parents = bcm2835_clock_osc_parents, \
  1096. __VA_ARGS__)
  1097. /* main peripherial parent mux */
  1098. static const char *const bcm2835_clock_per_parents[] = {
  1099. "gnd",
  1100. "xosc",
  1101. "testdebug0",
  1102. "testdebug1",
  1103. "plla_per",
  1104. "pllc_per",
  1105. "plld_per",
  1106. "pllh_aux",
  1107. };
  1108. #define REGISTER_PER_CLK(...) REGISTER_CLK( \
  1109. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
  1110. .parents = bcm2835_clock_per_parents, \
  1111. __VA_ARGS__)
  1112. /* main vpu parent mux */
  1113. static const char *const bcm2835_clock_vpu_parents[] = {
  1114. "gnd",
  1115. "xosc",
  1116. "testdebug0",
  1117. "testdebug1",
  1118. "plla_core",
  1119. "pllc_core0",
  1120. "plld_core",
  1121. "pllh_aux",
  1122. "pllc_core1",
  1123. "pllc_core2",
  1124. };
  1125. #define REGISTER_VPU_CLK(...) REGISTER_CLK( \
  1126. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
  1127. .parents = bcm2835_clock_vpu_parents, \
  1128. __VA_ARGS__)
  1129. /*
  1130. * the real definition of all the pll, pll_dividers and clocks
  1131. * these make use of the above REGISTER_* macros
  1132. */
  1133. static const struct bcm2835_clk_desc clk_desc_array[] = {
  1134. /* the PLL + PLL dividers */
  1135. /*
  1136. * PLLA is the auxiliary PLL, used to drive the CCP2
  1137. * (Compact Camera Port 2) transmitter clock.
  1138. *
  1139. * It is in the PX LDO power domain, which is on when the
  1140. * AUDIO domain is on.
  1141. */
  1142. [BCM2835_PLLA] = REGISTER_PLL(
  1143. .name = "plla",
  1144. .cm_ctrl_reg = CM_PLLA,
  1145. .a2w_ctrl_reg = A2W_PLLA_CTRL,
  1146. .frac_reg = A2W_PLLA_FRAC,
  1147. .ana_reg_base = A2W_PLLA_ANA0,
  1148. .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
  1149. .lock_mask = CM_LOCK_FLOCKA,
  1150. .ana = &bcm2835_ana_default,
  1151. .min_rate = 600000000u,
  1152. .max_rate = 2400000000u,
  1153. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1154. [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
  1155. .name = "plla_core",
  1156. .source_pll = "plla",
  1157. .cm_reg = CM_PLLA,
  1158. .a2w_reg = A2W_PLLA_CORE,
  1159. .load_mask = CM_PLLA_LOADCORE,
  1160. .hold_mask = CM_PLLA_HOLDCORE,
  1161. .fixed_divider = 1),
  1162. [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
  1163. .name = "plla_per",
  1164. .source_pll = "plla",
  1165. .cm_reg = CM_PLLA,
  1166. .a2w_reg = A2W_PLLA_PER,
  1167. .load_mask = CM_PLLA_LOADPER,
  1168. .hold_mask = CM_PLLA_HOLDPER,
  1169. .fixed_divider = 1),
  1170. [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
  1171. .name = "plla_dsi0",
  1172. .source_pll = "plla",
  1173. .cm_reg = CM_PLLA,
  1174. .a2w_reg = A2W_PLLA_DSI0,
  1175. .load_mask = CM_PLLA_LOADDSI0,
  1176. .hold_mask = CM_PLLA_HOLDDSI0,
  1177. .fixed_divider = 1),
  1178. [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
  1179. .name = "plla_ccp2",
  1180. .source_pll = "plla",
  1181. .cm_reg = CM_PLLA,
  1182. .a2w_reg = A2W_PLLA_CCP2,
  1183. .load_mask = CM_PLLA_LOADCCP2,
  1184. .hold_mask = CM_PLLA_HOLDCCP2,
  1185. .fixed_divider = 1),
  1186. /* PLLB is used for the ARM's clock. */
  1187. [BCM2835_PLLB] = REGISTER_PLL(
  1188. .name = "pllb",
  1189. .cm_ctrl_reg = CM_PLLB,
  1190. .a2w_ctrl_reg = A2W_PLLB_CTRL,
  1191. .frac_reg = A2W_PLLB_FRAC,
  1192. .ana_reg_base = A2W_PLLB_ANA0,
  1193. .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
  1194. .lock_mask = CM_LOCK_FLOCKB,
  1195. .ana = &bcm2835_ana_default,
  1196. .min_rate = 600000000u,
  1197. .max_rate = 3000000000u,
  1198. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1199. [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
  1200. .name = "pllb_arm",
  1201. .source_pll = "pllb",
  1202. .cm_reg = CM_PLLB,
  1203. .a2w_reg = A2W_PLLB_ARM,
  1204. .load_mask = CM_PLLB_LOADARM,
  1205. .hold_mask = CM_PLLB_HOLDARM,
  1206. .fixed_divider = 1),
  1207. /*
  1208. * PLLC is the core PLL, used to drive the core VPU clock.
  1209. *
  1210. * It is in the PX LDO power domain, which is on when the
  1211. * AUDIO domain is on.
  1212. */
  1213. [BCM2835_PLLC] = REGISTER_PLL(
  1214. .name = "pllc",
  1215. .cm_ctrl_reg = CM_PLLC,
  1216. .a2w_ctrl_reg = A2W_PLLC_CTRL,
  1217. .frac_reg = A2W_PLLC_FRAC,
  1218. .ana_reg_base = A2W_PLLC_ANA0,
  1219. .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
  1220. .lock_mask = CM_LOCK_FLOCKC,
  1221. .ana = &bcm2835_ana_default,
  1222. .min_rate = 600000000u,
  1223. .max_rate = 3000000000u,
  1224. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1225. [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
  1226. .name = "pllc_core0",
  1227. .source_pll = "pllc",
  1228. .cm_reg = CM_PLLC,
  1229. .a2w_reg = A2W_PLLC_CORE0,
  1230. .load_mask = CM_PLLC_LOADCORE0,
  1231. .hold_mask = CM_PLLC_HOLDCORE0,
  1232. .fixed_divider = 1),
  1233. [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
  1234. .name = "pllc_core1",
  1235. .source_pll = "pllc",
  1236. .cm_reg = CM_PLLC,
  1237. .a2w_reg = A2W_PLLC_CORE1,
  1238. .load_mask = CM_PLLC_LOADCORE1,
  1239. .hold_mask = CM_PLLC_HOLDCORE1,
  1240. .fixed_divider = 1),
  1241. [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
  1242. .name = "pllc_core2",
  1243. .source_pll = "pllc",
  1244. .cm_reg = CM_PLLC,
  1245. .a2w_reg = A2W_PLLC_CORE2,
  1246. .load_mask = CM_PLLC_LOADCORE2,
  1247. .hold_mask = CM_PLLC_HOLDCORE2,
  1248. .fixed_divider = 1),
  1249. [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
  1250. .name = "pllc_per",
  1251. .source_pll = "pllc",
  1252. .cm_reg = CM_PLLC,
  1253. .a2w_reg = A2W_PLLC_PER,
  1254. .load_mask = CM_PLLC_LOADPER,
  1255. .hold_mask = CM_PLLC_HOLDPER,
  1256. .fixed_divider = 1),
  1257. /*
  1258. * PLLD is the display PLL, used to drive DSI display panels.
  1259. *
  1260. * It is in the PX LDO power domain, which is on when the
  1261. * AUDIO domain is on.
  1262. */
  1263. [BCM2835_PLLD] = REGISTER_PLL(
  1264. .name = "plld",
  1265. .cm_ctrl_reg = CM_PLLD,
  1266. .a2w_ctrl_reg = A2W_PLLD_CTRL,
  1267. .frac_reg = A2W_PLLD_FRAC,
  1268. .ana_reg_base = A2W_PLLD_ANA0,
  1269. .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
  1270. .lock_mask = CM_LOCK_FLOCKD,
  1271. .ana = &bcm2835_ana_default,
  1272. .min_rate = 600000000u,
  1273. .max_rate = 2400000000u,
  1274. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1275. [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
  1276. .name = "plld_core",
  1277. .source_pll = "plld",
  1278. .cm_reg = CM_PLLD,
  1279. .a2w_reg = A2W_PLLD_CORE,
  1280. .load_mask = CM_PLLD_LOADCORE,
  1281. .hold_mask = CM_PLLD_HOLDCORE,
  1282. .fixed_divider = 1),
  1283. [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
  1284. .name = "plld_per",
  1285. .source_pll = "plld",
  1286. .cm_reg = CM_PLLD,
  1287. .a2w_reg = A2W_PLLD_PER,
  1288. .load_mask = CM_PLLD_LOADPER,
  1289. .hold_mask = CM_PLLD_HOLDPER,
  1290. .fixed_divider = 1),
  1291. [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
  1292. .name = "plld_dsi0",
  1293. .source_pll = "plld",
  1294. .cm_reg = CM_PLLD,
  1295. .a2w_reg = A2W_PLLD_DSI0,
  1296. .load_mask = CM_PLLD_LOADDSI0,
  1297. .hold_mask = CM_PLLD_HOLDDSI0,
  1298. .fixed_divider = 1),
  1299. [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
  1300. .name = "plld_dsi1",
  1301. .source_pll = "plld",
  1302. .cm_reg = CM_PLLD,
  1303. .a2w_reg = A2W_PLLD_DSI1,
  1304. .load_mask = CM_PLLD_LOADDSI1,
  1305. .hold_mask = CM_PLLD_HOLDDSI1,
  1306. .fixed_divider = 1),
  1307. /*
  1308. * PLLH is used to supply the pixel clock or the AUX clock for the
  1309. * TV encoder.
  1310. *
  1311. * It is in the HDMI power domain.
  1312. */
  1313. [BCM2835_PLLH] = REGISTER_PLL(
  1314. "pllh",
  1315. .cm_ctrl_reg = CM_PLLH,
  1316. .a2w_ctrl_reg = A2W_PLLH_CTRL,
  1317. .frac_reg = A2W_PLLH_FRAC,
  1318. .ana_reg_base = A2W_PLLH_ANA0,
  1319. .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
  1320. .lock_mask = CM_LOCK_FLOCKH,
  1321. .ana = &bcm2835_ana_pllh,
  1322. .min_rate = 600000000u,
  1323. .max_rate = 3000000000u,
  1324. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1325. [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
  1326. .name = "pllh_rcal",
  1327. .source_pll = "pllh",
  1328. .cm_reg = CM_PLLH,
  1329. .a2w_reg = A2W_PLLH_RCAL,
  1330. .load_mask = CM_PLLH_LOADRCAL,
  1331. .hold_mask = 0,
  1332. .fixed_divider = 10),
  1333. [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
  1334. .name = "pllh_aux",
  1335. .source_pll = "pllh",
  1336. .cm_reg = CM_PLLH,
  1337. .a2w_reg = A2W_PLLH_AUX,
  1338. .load_mask = CM_PLLH_LOADAUX,
  1339. .hold_mask = 0,
  1340. .fixed_divider = 10),
  1341. [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
  1342. .name = "pllh_pix",
  1343. .source_pll = "pllh",
  1344. .cm_reg = CM_PLLH,
  1345. .a2w_reg = A2W_PLLH_PIX,
  1346. .load_mask = CM_PLLH_LOADPIX,
  1347. .hold_mask = 0,
  1348. .fixed_divider = 10),
  1349. /* the clocks */
  1350. /* clocks with oscillator parent mux */
  1351. /* One Time Programmable Memory clock. Maximum 10Mhz. */
  1352. [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
  1353. .name = "otp",
  1354. .ctl_reg = CM_OTPCTL,
  1355. .div_reg = CM_OTPDIV,
  1356. .int_bits = 4,
  1357. .frac_bits = 0),
  1358. /*
  1359. * Used for a 1Mhz clock for the system clocksource, and also used
  1360. * bythe watchdog timer and the camera pulse generator.
  1361. */
  1362. [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
  1363. .name = "timer",
  1364. .ctl_reg = CM_TIMERCTL,
  1365. .div_reg = CM_TIMERDIV,
  1366. .int_bits = 6,
  1367. .frac_bits = 12),
  1368. /*
  1369. * Clock for the temperature sensor.
  1370. * Generally run at 2Mhz, max 5Mhz.
  1371. */
  1372. [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
  1373. .name = "tsens",
  1374. .ctl_reg = CM_TSENSCTL,
  1375. .div_reg = CM_TSENSDIV,
  1376. .int_bits = 5,
  1377. .frac_bits = 0),
  1378. [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
  1379. .name = "tec",
  1380. .ctl_reg = CM_TECCTL,
  1381. .div_reg = CM_TECDIV,
  1382. .int_bits = 6,
  1383. .frac_bits = 0),
  1384. /* clocks with vpu parent mux */
  1385. [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
  1386. .name = "h264",
  1387. .ctl_reg = CM_H264CTL,
  1388. .div_reg = CM_H264DIV,
  1389. .int_bits = 4,
  1390. .frac_bits = 8),
  1391. [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
  1392. .name = "isp",
  1393. .ctl_reg = CM_ISPCTL,
  1394. .div_reg = CM_ISPDIV,
  1395. .int_bits = 4,
  1396. .frac_bits = 8),
  1397. /*
  1398. * Secondary SDRAM clock. Used for low-voltage modes when the PLL
  1399. * in the SDRAM controller can't be used.
  1400. */
  1401. [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
  1402. .name = "sdram",
  1403. .ctl_reg = CM_SDCCTL,
  1404. .div_reg = CM_SDCDIV,
  1405. .int_bits = 6,
  1406. .frac_bits = 0),
  1407. [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
  1408. .name = "v3d",
  1409. .ctl_reg = CM_V3DCTL,
  1410. .div_reg = CM_V3DDIV,
  1411. .int_bits = 4,
  1412. .frac_bits = 8),
  1413. /*
  1414. * VPU clock. This doesn't have an enable bit, since it drives
  1415. * the bus for everything else, and is special so it doesn't need
  1416. * to be gated for rate changes. It is also known as "clk_audio"
  1417. * in various hardware documentation.
  1418. */
  1419. [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
  1420. .name = "vpu",
  1421. .ctl_reg = CM_VPUCTL,
  1422. .div_reg = CM_VPUDIV,
  1423. .int_bits = 12,
  1424. .frac_bits = 8,
  1425. .is_vpu_clock = true),
  1426. /* clocks with per parent mux */
  1427. [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
  1428. .name = "aveo",
  1429. .ctl_reg = CM_AVEOCTL,
  1430. .div_reg = CM_AVEODIV,
  1431. .int_bits = 4,
  1432. .frac_bits = 0),
  1433. [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
  1434. .name = "cam0",
  1435. .ctl_reg = CM_CAM0CTL,
  1436. .div_reg = CM_CAM0DIV,
  1437. .int_bits = 4,
  1438. .frac_bits = 8),
  1439. [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
  1440. .name = "cam1",
  1441. .ctl_reg = CM_CAM1CTL,
  1442. .div_reg = CM_CAM1DIV,
  1443. .int_bits = 4,
  1444. .frac_bits = 8),
  1445. [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
  1446. .name = "dft",
  1447. .ctl_reg = CM_DFTCTL,
  1448. .div_reg = CM_DFTDIV,
  1449. .int_bits = 5,
  1450. .frac_bits = 0),
  1451. [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
  1452. .name = "dpi",
  1453. .ctl_reg = CM_DPICTL,
  1454. .div_reg = CM_DPIDIV,
  1455. .int_bits = 4,
  1456. .frac_bits = 8),
  1457. /* Arasan EMMC clock */
  1458. [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
  1459. .name = "emmc",
  1460. .ctl_reg = CM_EMMCCTL,
  1461. .div_reg = CM_EMMCDIV,
  1462. .int_bits = 4,
  1463. .frac_bits = 8),
  1464. /* General purpose (GPIO) clocks */
  1465. [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
  1466. .name = "gp0",
  1467. .ctl_reg = CM_GP0CTL,
  1468. .div_reg = CM_GP0DIV,
  1469. .int_bits = 12,
  1470. .frac_bits = 12,
  1471. .is_mash_clock = true),
  1472. [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
  1473. .name = "gp1",
  1474. .ctl_reg = CM_GP1CTL,
  1475. .div_reg = CM_GP1DIV,
  1476. .int_bits = 12,
  1477. .frac_bits = 12,
  1478. .is_mash_clock = true),
  1479. [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
  1480. .name = "gp2",
  1481. .ctl_reg = CM_GP2CTL,
  1482. .div_reg = CM_GP2DIV,
  1483. .int_bits = 12,
  1484. .frac_bits = 12),
  1485. /* HDMI state machine */
  1486. [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
  1487. .name = "hsm",
  1488. .ctl_reg = CM_HSMCTL,
  1489. .div_reg = CM_HSMDIV,
  1490. .int_bits = 4,
  1491. .frac_bits = 8),
  1492. [BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
  1493. .name = "pcm",
  1494. .ctl_reg = CM_PCMCTL,
  1495. .div_reg = CM_PCMDIV,
  1496. .int_bits = 12,
  1497. .frac_bits = 12,
  1498. .is_mash_clock = true),
  1499. [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
  1500. .name = "pwm",
  1501. .ctl_reg = CM_PWMCTL,
  1502. .div_reg = CM_PWMDIV,
  1503. .int_bits = 12,
  1504. .frac_bits = 12,
  1505. .is_mash_clock = true),
  1506. [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
  1507. .name = "slim",
  1508. .ctl_reg = CM_SLIMCTL,
  1509. .div_reg = CM_SLIMDIV,
  1510. .int_bits = 12,
  1511. .frac_bits = 12,
  1512. .is_mash_clock = true),
  1513. [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
  1514. .name = "smi",
  1515. .ctl_reg = CM_SMICTL,
  1516. .div_reg = CM_SMIDIV,
  1517. .int_bits = 4,
  1518. .frac_bits = 8),
  1519. [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
  1520. .name = "uart",
  1521. .ctl_reg = CM_UARTCTL,
  1522. .div_reg = CM_UARTDIV,
  1523. .int_bits = 10,
  1524. .frac_bits = 12),
  1525. /* TV encoder clock. Only operating frequency is 108Mhz. */
  1526. [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
  1527. .name = "vec",
  1528. .ctl_reg = CM_VECCTL,
  1529. .div_reg = CM_VECDIV,
  1530. .int_bits = 4,
  1531. .frac_bits = 0),
  1532. /* dsi clocks */
  1533. [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
  1534. .name = "dsi0e",
  1535. .ctl_reg = CM_DSI0ECTL,
  1536. .div_reg = CM_DSI0EDIV,
  1537. .int_bits = 4,
  1538. .frac_bits = 8),
  1539. [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
  1540. .name = "dsi1e",
  1541. .ctl_reg = CM_DSI1ECTL,
  1542. .div_reg = CM_DSI1EDIV,
  1543. .int_bits = 4,
  1544. .frac_bits = 8),
  1545. /* the gates */
  1546. /*
  1547. * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
  1548. * you have the debug bit set in the power manager, which we
  1549. * don't bother exposing) are individual gates off of the
  1550. * non-stop vpu clock.
  1551. */
  1552. [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
  1553. .name = "peri_image",
  1554. .parent = "vpu",
  1555. .ctl_reg = CM_PERIICTL),
  1556. };
  1557. static int bcm2835_clk_probe(struct platform_device *pdev)
  1558. {
  1559. struct device *dev = &pdev->dev;
  1560. struct clk **clks;
  1561. struct bcm2835_cprman *cprman;
  1562. struct resource *res;
  1563. const struct bcm2835_clk_desc *desc;
  1564. const size_t asize = ARRAY_SIZE(clk_desc_array);
  1565. size_t i;
  1566. cprman = devm_kzalloc(dev,
  1567. sizeof(*cprman) + asize * sizeof(*clks),
  1568. GFP_KERNEL);
  1569. if (!cprman)
  1570. return -ENOMEM;
  1571. spin_lock_init(&cprman->regs_lock);
  1572. cprman->dev = dev;
  1573. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1574. cprman->regs = devm_ioremap_resource(dev, res);
  1575. if (IS_ERR(cprman->regs))
  1576. return PTR_ERR(cprman->regs);
  1577. cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
  1578. if (!cprman->osc_name)
  1579. return -ENODEV;
  1580. platform_set_drvdata(pdev, cprman);
  1581. cprman->onecell.clk_num = asize;
  1582. cprman->onecell.clks = cprman->clks;
  1583. clks = cprman->clks;
  1584. for (i = 0; i < asize; i++) {
  1585. desc = &clk_desc_array[i];
  1586. if (desc->clk_register && desc->data)
  1587. clks[i] = desc->clk_register(cprman, desc->data);
  1588. }
  1589. return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
  1590. &cprman->onecell);
  1591. }
  1592. static const struct of_device_id bcm2835_clk_of_match[] = {
  1593. { .compatible = "brcm,bcm2835-cprman", },
  1594. {}
  1595. };
  1596. MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
  1597. static struct platform_driver bcm2835_clk_driver = {
  1598. .driver = {
  1599. .name = "bcm2835-clk",
  1600. .of_match_table = bcm2835_clk_of_match,
  1601. },
  1602. .probe = bcm2835_clk_probe,
  1603. };
  1604. builtin_platform_driver(bcm2835_clk_driver);
  1605. MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
  1606. MODULE_DESCRIPTION("BCM2835 clock driver");
  1607. MODULE_LICENSE("GPL v2");