acpi_lpss.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961
  1. /*
  2. * ACPI support for Intel Lynxpoint LPSS.
  3. *
  4. * Copyright (C) 2013, Intel Corporation
  5. * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
  6. * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/acpi.h>
  13. #include <linux/clkdev.h>
  14. #include <linux/clk-provider.h>
  15. #include <linux/err.h>
  16. #include <linux/io.h>
  17. #include <linux/mutex.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/platform_data/clk-lpss.h>
  20. #include <linux/pm_domain.h>
  21. #include <linux/pm_runtime.h>
  22. #include <linux/delay.h>
  23. #include "internal.h"
  24. ACPI_MODULE_NAME("acpi_lpss");
  25. #ifdef CONFIG_X86_INTEL_LPSS
  26. #include <asm/cpu_device_id.h>
  27. #include <asm/intel-family.h>
  28. #include <asm/iosf_mbi.h>
  29. #include <asm/pmc_atom.h>
  30. #define LPSS_ADDR(desc) ((unsigned long)&desc)
  31. #define LPSS_CLK_SIZE 0x04
  32. #define LPSS_LTR_SIZE 0x18
  33. /* Offsets relative to LPSS_PRIVATE_OFFSET */
  34. #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
  35. #define LPSS_RESETS 0x04
  36. #define LPSS_RESETS_RESET_FUNC BIT(0)
  37. #define LPSS_RESETS_RESET_APB BIT(1)
  38. #define LPSS_GENERAL 0x08
  39. #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
  40. #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
  41. #define LPSS_SW_LTR 0x10
  42. #define LPSS_AUTO_LTR 0x14
  43. #define LPSS_LTR_SNOOP_REQ BIT(15)
  44. #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
  45. #define LPSS_LTR_SNOOP_LAT_1US 0x800
  46. #define LPSS_LTR_SNOOP_LAT_32US 0xC00
  47. #define LPSS_LTR_SNOOP_LAT_SHIFT 5
  48. #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
  49. #define LPSS_LTR_MAX_VAL 0x3FF
  50. #define LPSS_TX_INT 0x20
  51. #define LPSS_TX_INT_MASK BIT(1)
  52. #define LPSS_PRV_REG_COUNT 9
  53. /* LPSS Flags */
  54. #define LPSS_CLK BIT(0)
  55. #define LPSS_CLK_GATE BIT(1)
  56. #define LPSS_CLK_DIVIDER BIT(2)
  57. #define LPSS_LTR BIT(3)
  58. #define LPSS_SAVE_CTX BIT(4)
  59. #define LPSS_NO_D3_DELAY BIT(5)
  60. struct lpss_private_data;
  61. struct lpss_device_desc {
  62. unsigned int flags;
  63. const char *clk_con_id;
  64. unsigned int prv_offset;
  65. size_t prv_size_override;
  66. void (*setup)(struct lpss_private_data *pdata);
  67. };
  68. static const struct lpss_device_desc lpss_dma_desc = {
  69. .flags = LPSS_CLK,
  70. };
  71. struct lpss_private_data {
  72. void __iomem *mmio_base;
  73. resource_size_t mmio_size;
  74. unsigned int fixed_clk_rate;
  75. struct clk *clk;
  76. const struct lpss_device_desc *dev_desc;
  77. u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
  78. };
  79. /* LPSS run time quirks */
  80. static unsigned int lpss_quirks;
  81. /*
  82. * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
  83. *
  84. * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
  85. * it can be powered off automatically whenever the last LPSS device goes down.
  86. * In case of no power any access to the DMA controller will hang the system.
  87. * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
  88. * well as on ASuS T100TA transformer.
  89. *
  90. * This quirk overrides power state of entire LPSS island to keep DMA powered
  91. * on whenever we have at least one other device in use.
  92. */
  93. #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
  94. /* UART Component Parameter Register */
  95. #define LPSS_UART_CPR 0xF4
  96. #define LPSS_UART_CPR_AFCE BIT(4)
  97. static void lpss_uart_setup(struct lpss_private_data *pdata)
  98. {
  99. unsigned int offset;
  100. u32 val;
  101. offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
  102. val = readl(pdata->mmio_base + offset);
  103. writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
  104. val = readl(pdata->mmio_base + LPSS_UART_CPR);
  105. if (!(val & LPSS_UART_CPR_AFCE)) {
  106. offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
  107. val = readl(pdata->mmio_base + offset);
  108. val |= LPSS_GENERAL_UART_RTS_OVRD;
  109. writel(val, pdata->mmio_base + offset);
  110. }
  111. }
  112. static void lpss_deassert_reset(struct lpss_private_data *pdata)
  113. {
  114. unsigned int offset;
  115. u32 val;
  116. offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
  117. val = readl(pdata->mmio_base + offset);
  118. val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
  119. writel(val, pdata->mmio_base + offset);
  120. }
  121. #define LPSS_I2C_ENABLE 0x6c
  122. static void byt_i2c_setup(struct lpss_private_data *pdata)
  123. {
  124. lpss_deassert_reset(pdata);
  125. if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
  126. pdata->fixed_clk_rate = 133000000;
  127. writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
  128. }
  129. static const struct lpss_device_desc lpt_dev_desc = {
  130. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
  131. .prv_offset = 0x800,
  132. };
  133. static const struct lpss_device_desc lpt_i2c_dev_desc = {
  134. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR,
  135. .prv_offset = 0x800,
  136. };
  137. static const struct lpss_device_desc lpt_uart_dev_desc = {
  138. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
  139. .clk_con_id = "baudclk",
  140. .prv_offset = 0x800,
  141. .setup = lpss_uart_setup,
  142. };
  143. static const struct lpss_device_desc lpt_sdio_dev_desc = {
  144. .flags = LPSS_LTR,
  145. .prv_offset = 0x1000,
  146. .prv_size_override = 0x1018,
  147. };
  148. static const struct lpss_device_desc byt_pwm_dev_desc = {
  149. .flags = LPSS_SAVE_CTX,
  150. };
  151. static const struct lpss_device_desc bsw_pwm_dev_desc = {
  152. .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
  153. };
  154. static const struct lpss_device_desc byt_uart_dev_desc = {
  155. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
  156. .clk_con_id = "baudclk",
  157. .prv_offset = 0x800,
  158. .setup = lpss_uart_setup,
  159. };
  160. static const struct lpss_device_desc bsw_uart_dev_desc = {
  161. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
  162. | LPSS_NO_D3_DELAY,
  163. .clk_con_id = "baudclk",
  164. .prv_offset = 0x800,
  165. .setup = lpss_uart_setup,
  166. };
  167. static const struct lpss_device_desc byt_spi_dev_desc = {
  168. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
  169. .prv_offset = 0x400,
  170. };
  171. static const struct lpss_device_desc byt_sdio_dev_desc = {
  172. .flags = LPSS_CLK,
  173. };
  174. static const struct lpss_device_desc byt_i2c_dev_desc = {
  175. .flags = LPSS_CLK | LPSS_SAVE_CTX,
  176. .prv_offset = 0x800,
  177. .setup = byt_i2c_setup,
  178. };
  179. static const struct lpss_device_desc bsw_i2c_dev_desc = {
  180. .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
  181. .prv_offset = 0x800,
  182. .setup = byt_i2c_setup,
  183. };
  184. static const struct lpss_device_desc bsw_spi_dev_desc = {
  185. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
  186. | LPSS_NO_D3_DELAY,
  187. .prv_offset = 0x400,
  188. .setup = lpss_deassert_reset,
  189. };
  190. #define ICPU(model) { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
  191. static const struct x86_cpu_id lpss_cpu_ids[] = {
  192. ICPU(INTEL_FAM6_ATOM_SILVERMONT1), /* Valleyview, Bay Trail */
  193. ICPU(INTEL_FAM6_ATOM_AIRMONT), /* Braswell, Cherry Trail */
  194. {}
  195. };
  196. #else
  197. #define LPSS_ADDR(desc) (0UL)
  198. #endif /* CONFIG_X86_INTEL_LPSS */
  199. static const struct acpi_device_id acpi_lpss_device_ids[] = {
  200. /* Generic LPSS devices */
  201. { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
  202. /* Lynxpoint LPSS devices */
  203. { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
  204. { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
  205. { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
  206. { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
  207. { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
  208. { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
  209. { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
  210. { "INT33C7", },
  211. /* BayTrail LPSS devices */
  212. { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
  213. { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
  214. { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
  215. { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
  216. { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
  217. { "INT33B2", },
  218. { "INT33FC", },
  219. /* Braswell LPSS devices */
  220. { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
  221. { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
  222. { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
  223. { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
  224. /* Broadwell LPSS devices */
  225. { "INT3430", LPSS_ADDR(lpt_dev_desc) },
  226. { "INT3431", LPSS_ADDR(lpt_dev_desc) },
  227. { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
  228. { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
  229. { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
  230. { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
  231. { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
  232. { "INT3437", },
  233. /* Wildcat Point LPSS devices */
  234. { "INT3438", LPSS_ADDR(lpt_dev_desc) },
  235. { }
  236. };
  237. #ifdef CONFIG_X86_INTEL_LPSS
  238. static int is_memory(struct acpi_resource *res, void *not_used)
  239. {
  240. struct resource r;
  241. return !acpi_dev_resource_memory(res, &r);
  242. }
  243. /* LPSS main clock device. */
  244. static struct platform_device *lpss_clk_dev;
  245. static inline void lpt_register_clock_device(void)
  246. {
  247. lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
  248. }
  249. static int register_device_clock(struct acpi_device *adev,
  250. struct lpss_private_data *pdata)
  251. {
  252. const struct lpss_device_desc *dev_desc = pdata->dev_desc;
  253. const char *devname = dev_name(&adev->dev);
  254. struct clk *clk = ERR_PTR(-ENODEV);
  255. struct lpss_clk_data *clk_data;
  256. const char *parent, *clk_name;
  257. void __iomem *prv_base;
  258. if (!lpss_clk_dev)
  259. lpt_register_clock_device();
  260. clk_data = platform_get_drvdata(lpss_clk_dev);
  261. if (!clk_data)
  262. return -ENODEV;
  263. clk = clk_data->clk;
  264. if (!pdata->mmio_base
  265. || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
  266. return -ENODATA;
  267. parent = clk_data->name;
  268. prv_base = pdata->mmio_base + dev_desc->prv_offset;
  269. if (pdata->fixed_clk_rate) {
  270. clk = clk_register_fixed_rate(NULL, devname, parent, 0,
  271. pdata->fixed_clk_rate);
  272. goto out;
  273. }
  274. if (dev_desc->flags & LPSS_CLK_GATE) {
  275. clk = clk_register_gate(NULL, devname, parent, 0,
  276. prv_base, 0, 0, NULL);
  277. parent = devname;
  278. }
  279. if (dev_desc->flags & LPSS_CLK_DIVIDER) {
  280. /* Prevent division by zero */
  281. if (!readl(prv_base))
  282. writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
  283. clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
  284. if (!clk_name)
  285. return -ENOMEM;
  286. clk = clk_register_fractional_divider(NULL, clk_name, parent,
  287. 0, prv_base,
  288. 1, 15, 16, 15, 0, NULL);
  289. parent = clk_name;
  290. clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
  291. if (!clk_name) {
  292. kfree(parent);
  293. return -ENOMEM;
  294. }
  295. clk = clk_register_gate(NULL, clk_name, parent,
  296. CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
  297. prv_base, 31, 0, NULL);
  298. kfree(parent);
  299. kfree(clk_name);
  300. }
  301. out:
  302. if (IS_ERR(clk))
  303. return PTR_ERR(clk);
  304. pdata->clk = clk;
  305. clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
  306. return 0;
  307. }
  308. static int acpi_lpss_create_device(struct acpi_device *adev,
  309. const struct acpi_device_id *id)
  310. {
  311. const struct lpss_device_desc *dev_desc;
  312. struct lpss_private_data *pdata;
  313. struct resource_entry *rentry;
  314. struct list_head resource_list;
  315. struct platform_device *pdev;
  316. int ret;
  317. dev_desc = (const struct lpss_device_desc *)id->driver_data;
  318. if (!dev_desc) {
  319. pdev = acpi_create_platform_device(adev);
  320. return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
  321. }
  322. pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
  323. if (!pdata)
  324. return -ENOMEM;
  325. INIT_LIST_HEAD(&resource_list);
  326. ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
  327. if (ret < 0)
  328. goto err_out;
  329. list_for_each_entry(rentry, &resource_list, node)
  330. if (resource_type(rentry->res) == IORESOURCE_MEM) {
  331. if (dev_desc->prv_size_override)
  332. pdata->mmio_size = dev_desc->prv_size_override;
  333. else
  334. pdata->mmio_size = resource_size(rentry->res);
  335. pdata->mmio_base = ioremap(rentry->res->start,
  336. pdata->mmio_size);
  337. break;
  338. }
  339. acpi_dev_free_resource_list(&resource_list);
  340. if (!pdata->mmio_base) {
  341. ret = -ENOMEM;
  342. goto err_out;
  343. }
  344. pdata->dev_desc = dev_desc;
  345. if (dev_desc->setup)
  346. dev_desc->setup(pdata);
  347. if (dev_desc->flags & LPSS_CLK) {
  348. ret = register_device_clock(adev, pdata);
  349. if (ret) {
  350. /* Skip the device, but continue the namespace scan. */
  351. ret = 0;
  352. goto err_out;
  353. }
  354. }
  355. /*
  356. * This works around a known issue in ACPI tables where LPSS devices
  357. * have _PS0 and _PS3 without _PSC (and no power resources), so
  358. * acpi_bus_init_power() will assume that the BIOS has put them into D0.
  359. */
  360. ret = acpi_device_fix_up_power(adev);
  361. if (ret) {
  362. /* Skip the device, but continue the namespace scan. */
  363. ret = 0;
  364. goto err_out;
  365. }
  366. adev->driver_data = pdata;
  367. pdev = acpi_create_platform_device(adev);
  368. if (!IS_ERR_OR_NULL(pdev)) {
  369. return 1;
  370. }
  371. ret = PTR_ERR(pdev);
  372. adev->driver_data = NULL;
  373. err_out:
  374. kfree(pdata);
  375. return ret;
  376. }
  377. static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
  378. {
  379. return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
  380. }
  381. static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
  382. unsigned int reg)
  383. {
  384. writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
  385. }
  386. static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
  387. {
  388. struct acpi_device *adev;
  389. struct lpss_private_data *pdata;
  390. unsigned long flags;
  391. int ret;
  392. ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
  393. if (WARN_ON(ret))
  394. return ret;
  395. spin_lock_irqsave(&dev->power.lock, flags);
  396. if (pm_runtime_suspended(dev)) {
  397. ret = -EAGAIN;
  398. goto out;
  399. }
  400. pdata = acpi_driver_data(adev);
  401. if (WARN_ON(!pdata || !pdata->mmio_base)) {
  402. ret = -ENODEV;
  403. goto out;
  404. }
  405. *val = __lpss_reg_read(pdata, reg);
  406. out:
  407. spin_unlock_irqrestore(&dev->power.lock, flags);
  408. return ret;
  409. }
  410. static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
  411. char *buf)
  412. {
  413. u32 ltr_value = 0;
  414. unsigned int reg;
  415. int ret;
  416. reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
  417. ret = lpss_reg_read(dev, reg, &ltr_value);
  418. if (ret)
  419. return ret;
  420. return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
  421. }
  422. static ssize_t lpss_ltr_mode_show(struct device *dev,
  423. struct device_attribute *attr, char *buf)
  424. {
  425. u32 ltr_mode = 0;
  426. char *outstr;
  427. int ret;
  428. ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
  429. if (ret)
  430. return ret;
  431. outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
  432. return sprintf(buf, "%s\n", outstr);
  433. }
  434. static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
  435. static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
  436. static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
  437. static struct attribute *lpss_attrs[] = {
  438. &dev_attr_auto_ltr.attr,
  439. &dev_attr_sw_ltr.attr,
  440. &dev_attr_ltr_mode.attr,
  441. NULL,
  442. };
  443. static struct attribute_group lpss_attr_group = {
  444. .attrs = lpss_attrs,
  445. .name = "lpss_ltr",
  446. };
  447. static void acpi_lpss_set_ltr(struct device *dev, s32 val)
  448. {
  449. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  450. u32 ltr_mode, ltr_val;
  451. ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
  452. if (val < 0) {
  453. if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
  454. ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
  455. __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
  456. }
  457. return;
  458. }
  459. ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
  460. if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
  461. ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
  462. val = LPSS_LTR_MAX_VAL;
  463. } else if (val > LPSS_LTR_MAX_VAL) {
  464. ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
  465. val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
  466. } else {
  467. ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
  468. }
  469. ltr_val |= val;
  470. __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
  471. if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
  472. ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
  473. __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
  474. }
  475. }
  476. #ifdef CONFIG_PM
  477. /**
  478. * acpi_lpss_save_ctx() - Save the private registers of LPSS device
  479. * @dev: LPSS device
  480. * @pdata: pointer to the private data of the LPSS device
  481. *
  482. * Most LPSS devices have private registers which may loose their context when
  483. * the device is powered down. acpi_lpss_save_ctx() saves those registers into
  484. * prv_reg_ctx array.
  485. */
  486. static void acpi_lpss_save_ctx(struct device *dev,
  487. struct lpss_private_data *pdata)
  488. {
  489. unsigned int i;
  490. for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
  491. unsigned long offset = i * sizeof(u32);
  492. pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
  493. dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
  494. pdata->prv_reg_ctx[i], offset);
  495. }
  496. }
  497. /**
  498. * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
  499. * @dev: LPSS device
  500. * @pdata: pointer to the private data of the LPSS device
  501. *
  502. * Restores the registers that were previously stored with acpi_lpss_save_ctx().
  503. */
  504. static void acpi_lpss_restore_ctx(struct device *dev,
  505. struct lpss_private_data *pdata)
  506. {
  507. unsigned int i;
  508. for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
  509. unsigned long offset = i * sizeof(u32);
  510. __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
  511. dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
  512. pdata->prv_reg_ctx[i], offset);
  513. }
  514. }
  515. static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
  516. {
  517. /*
  518. * The following delay is needed or the subsequent write operations may
  519. * fail. The LPSS devices are actually PCI devices and the PCI spec
  520. * expects 10ms delay before the device can be accessed after D3 to D0
  521. * transition. However some platforms like BSW does not need this delay.
  522. */
  523. unsigned int delay = 10; /* default 10ms delay */
  524. if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
  525. delay = 0;
  526. msleep(delay);
  527. }
  528. static int acpi_lpss_activate(struct device *dev)
  529. {
  530. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  531. int ret;
  532. ret = acpi_dev_runtime_resume(dev);
  533. if (ret)
  534. return ret;
  535. acpi_lpss_d3_to_d0_delay(pdata);
  536. /*
  537. * This is called only on ->probe() stage where a device is either in
  538. * known state defined by BIOS or most likely powered off. Due to this
  539. * we have to deassert reset line to be sure that ->probe() will
  540. * recognize the device.
  541. */
  542. if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
  543. lpss_deassert_reset(pdata);
  544. return 0;
  545. }
  546. static void acpi_lpss_dismiss(struct device *dev)
  547. {
  548. acpi_dev_runtime_suspend(dev);
  549. }
  550. #ifdef CONFIG_PM_SLEEP
  551. static int acpi_lpss_suspend_late(struct device *dev)
  552. {
  553. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  554. int ret;
  555. ret = pm_generic_suspend_late(dev);
  556. if (ret)
  557. return ret;
  558. if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
  559. acpi_lpss_save_ctx(dev, pdata);
  560. return acpi_dev_suspend_late(dev);
  561. }
  562. static int acpi_lpss_resume_early(struct device *dev)
  563. {
  564. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  565. int ret;
  566. ret = acpi_dev_resume_early(dev);
  567. if (ret)
  568. return ret;
  569. acpi_lpss_d3_to_d0_delay(pdata);
  570. if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
  571. acpi_lpss_restore_ctx(dev, pdata);
  572. return pm_generic_resume_early(dev);
  573. }
  574. #endif /* CONFIG_PM_SLEEP */
  575. /* IOSF SB for LPSS island */
  576. #define LPSS_IOSF_UNIT_LPIOEP 0xA0
  577. #define LPSS_IOSF_UNIT_LPIO1 0xAB
  578. #define LPSS_IOSF_UNIT_LPIO2 0xAC
  579. #define LPSS_IOSF_PMCSR 0x84
  580. #define LPSS_PMCSR_D0 0
  581. #define LPSS_PMCSR_D3hot 3
  582. #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
  583. #define LPSS_IOSF_GPIODEF0 0x154
  584. #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
  585. #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
  586. #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
  587. static DEFINE_MUTEX(lpss_iosf_mutex);
  588. static void lpss_iosf_enter_d3_state(void)
  589. {
  590. u32 value1 = 0;
  591. u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK;
  592. u32 value2 = LPSS_PMCSR_D3hot;
  593. u32 mask2 = LPSS_PMCSR_Dx_MASK;
  594. /*
  595. * PMC provides an information about actual status of the LPSS devices.
  596. * Here we read the values related to LPSS power island, i.e. LPSS
  597. * devices, excluding both LPSS DMA controllers, along with SCC domain.
  598. */
  599. u32 func_dis, d3_sts_0, pmc_status, pmc_mask = 0xfe000ffe;
  600. int ret;
  601. ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
  602. if (ret)
  603. return;
  604. mutex_lock(&lpss_iosf_mutex);
  605. ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
  606. if (ret)
  607. goto exit;
  608. /*
  609. * Get the status of entire LPSS power island per device basis.
  610. * Shutdown both LPSS DMA controllers if and only if all other devices
  611. * are already in D3hot.
  612. */
  613. pmc_status = (~(d3_sts_0 | func_dis)) & pmc_mask;
  614. if (pmc_status)
  615. goto exit;
  616. iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
  617. LPSS_IOSF_PMCSR, value2, mask2);
  618. iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
  619. LPSS_IOSF_PMCSR, value2, mask2);
  620. iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
  621. LPSS_IOSF_GPIODEF0, value1, mask1);
  622. exit:
  623. mutex_unlock(&lpss_iosf_mutex);
  624. }
  625. static void lpss_iosf_exit_d3_state(void)
  626. {
  627. u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3;
  628. u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK;
  629. u32 value2 = LPSS_PMCSR_D0;
  630. u32 mask2 = LPSS_PMCSR_Dx_MASK;
  631. mutex_lock(&lpss_iosf_mutex);
  632. iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
  633. LPSS_IOSF_GPIODEF0, value1, mask1);
  634. iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
  635. LPSS_IOSF_PMCSR, value2, mask2);
  636. iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
  637. LPSS_IOSF_PMCSR, value2, mask2);
  638. mutex_unlock(&lpss_iosf_mutex);
  639. }
  640. static int acpi_lpss_runtime_suspend(struct device *dev)
  641. {
  642. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  643. int ret;
  644. ret = pm_generic_runtime_suspend(dev);
  645. if (ret)
  646. return ret;
  647. if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
  648. acpi_lpss_save_ctx(dev, pdata);
  649. ret = acpi_dev_runtime_suspend(dev);
  650. /*
  651. * This call must be last in the sequence, otherwise PMC will return
  652. * wrong status for devices being about to be powered off. See
  653. * lpss_iosf_enter_d3_state() for further information.
  654. */
  655. if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
  656. lpss_iosf_enter_d3_state();
  657. return ret;
  658. }
  659. static int acpi_lpss_runtime_resume(struct device *dev)
  660. {
  661. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  662. int ret;
  663. /*
  664. * This call is kept first to be in symmetry with
  665. * acpi_lpss_runtime_suspend() one.
  666. */
  667. if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
  668. lpss_iosf_exit_d3_state();
  669. ret = acpi_dev_runtime_resume(dev);
  670. if (ret)
  671. return ret;
  672. acpi_lpss_d3_to_d0_delay(pdata);
  673. if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
  674. acpi_lpss_restore_ctx(dev, pdata);
  675. return pm_generic_runtime_resume(dev);
  676. }
  677. #endif /* CONFIG_PM */
  678. static struct dev_pm_domain acpi_lpss_pm_domain = {
  679. #ifdef CONFIG_PM
  680. .activate = acpi_lpss_activate,
  681. .dismiss = acpi_lpss_dismiss,
  682. #endif
  683. .ops = {
  684. #ifdef CONFIG_PM
  685. #ifdef CONFIG_PM_SLEEP
  686. .prepare = acpi_subsys_prepare,
  687. .complete = pm_complete_with_resume_check,
  688. .suspend = acpi_subsys_suspend,
  689. .suspend_late = acpi_lpss_suspend_late,
  690. .resume_early = acpi_lpss_resume_early,
  691. .freeze = acpi_subsys_freeze,
  692. .poweroff = acpi_subsys_suspend,
  693. .poweroff_late = acpi_lpss_suspend_late,
  694. .restore_early = acpi_lpss_resume_early,
  695. #endif
  696. .runtime_suspend = acpi_lpss_runtime_suspend,
  697. .runtime_resume = acpi_lpss_runtime_resume,
  698. #endif
  699. },
  700. };
  701. static int acpi_lpss_platform_notify(struct notifier_block *nb,
  702. unsigned long action, void *data)
  703. {
  704. struct platform_device *pdev = to_platform_device(data);
  705. struct lpss_private_data *pdata;
  706. struct acpi_device *adev;
  707. const struct acpi_device_id *id;
  708. id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
  709. if (!id || !id->driver_data)
  710. return 0;
  711. if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
  712. return 0;
  713. pdata = acpi_driver_data(adev);
  714. if (!pdata)
  715. return 0;
  716. if (pdata->mmio_base &&
  717. pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
  718. dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
  719. return 0;
  720. }
  721. switch (action) {
  722. case BUS_NOTIFY_BIND_DRIVER:
  723. dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
  724. break;
  725. case BUS_NOTIFY_DRIVER_NOT_BOUND:
  726. case BUS_NOTIFY_UNBOUND_DRIVER:
  727. dev_pm_domain_set(&pdev->dev, NULL);
  728. break;
  729. case BUS_NOTIFY_ADD_DEVICE:
  730. dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
  731. if (pdata->dev_desc->flags & LPSS_LTR)
  732. return sysfs_create_group(&pdev->dev.kobj,
  733. &lpss_attr_group);
  734. break;
  735. case BUS_NOTIFY_DEL_DEVICE:
  736. if (pdata->dev_desc->flags & LPSS_LTR)
  737. sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
  738. dev_pm_domain_set(&pdev->dev, NULL);
  739. break;
  740. default:
  741. break;
  742. }
  743. return 0;
  744. }
  745. static struct notifier_block acpi_lpss_nb = {
  746. .notifier_call = acpi_lpss_platform_notify,
  747. };
  748. static void acpi_lpss_bind(struct device *dev)
  749. {
  750. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  751. if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
  752. return;
  753. if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
  754. dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
  755. else
  756. dev_err(dev, "MMIO size insufficient to access LTR\n");
  757. }
  758. static void acpi_lpss_unbind(struct device *dev)
  759. {
  760. dev->power.set_latency_tolerance = NULL;
  761. }
  762. static struct acpi_scan_handler lpss_handler = {
  763. .ids = acpi_lpss_device_ids,
  764. .attach = acpi_lpss_create_device,
  765. .bind = acpi_lpss_bind,
  766. .unbind = acpi_lpss_unbind,
  767. };
  768. void __init acpi_lpss_init(void)
  769. {
  770. const struct x86_cpu_id *id;
  771. int ret;
  772. ret = lpt_clk_init();
  773. if (ret)
  774. return;
  775. id = x86_match_cpu(lpss_cpu_ids);
  776. if (id)
  777. lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
  778. bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
  779. acpi_scan_add_handler(&lpss_handler);
  780. }
  781. #else
  782. static struct acpi_scan_handler lpss_handler = {
  783. .ids = acpi_lpss_device_ids,
  784. };
  785. void __init acpi_lpss_init(void)
  786. {
  787. acpi_scan_add_handler(&lpss_handler);
  788. }
  789. #endif /* CONFIG_X86_INTEL_LPSS */