kaslr.c 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172
  1. /*
  2. * This file implements KASLR memory randomization for x86_64. It randomizes
  3. * the virtual address space of kernel memory regions (physical memory
  4. * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
  5. * exploits relying on predictable kernel addresses.
  6. *
  7. * Entropy is generated using the KASLR early boot functions now shared in
  8. * the lib directory (originally written by Kees Cook). Randomization is
  9. * done on PGD & PUD page table levels to increase possible addresses. The
  10. * physical memory mapping code was adapted to support PUD level virtual
  11. * addresses. This implementation on the best configuration provides 30,000
  12. * possible virtual addresses in average for each memory region. An additional
  13. * low memory page is used to ensure each CPU can start with a PGD aligned
  14. * virtual address (for realmode).
  15. *
  16. * The order of each memory region is not changed. The feature looks at
  17. * the available space for the regions based on different configuration
  18. * options and randomizes the base and space between each. The size of the
  19. * physical memory mapping is the available physical memory.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/init.h>
  23. #include <linux/random.h>
  24. #include <asm/pgalloc.h>
  25. #include <asm/pgtable.h>
  26. #include <asm/setup.h>
  27. #include <asm/kaslr.h>
  28. #include "mm_internal.h"
  29. #define TB_SHIFT 40
  30. /*
  31. * Virtual address start and end range for randomization. The end changes base
  32. * on configuration to have the highest amount of space for randomization.
  33. * It increases the possible random position for each randomized region.
  34. *
  35. * You need to add an if/def entry if you introduce a new memory region
  36. * compatible with KASLR. Your entry must be in logical order with memory
  37. * layout. For example, ESPFIX is before EFI because its virtual address is
  38. * before. You also need to add a BUILD_BUG_ON in kernel_randomize_memory to
  39. * ensure that this order is correct and won't be changed.
  40. */
  41. static const unsigned long vaddr_start = __PAGE_OFFSET_BASE;
  42. static const unsigned long vaddr_end = VMEMMAP_START;
  43. /* Default values */
  44. unsigned long page_offset_base = __PAGE_OFFSET_BASE;
  45. EXPORT_SYMBOL(page_offset_base);
  46. unsigned long vmalloc_base = __VMALLOC_BASE;
  47. EXPORT_SYMBOL(vmalloc_base);
  48. /*
  49. * Memory regions randomized by KASLR (except modules that use a separate logic
  50. * earlier during boot). The list is ordered based on virtual addresses. This
  51. * order is kept after randomization.
  52. */
  53. static __initdata struct kaslr_memory_region {
  54. unsigned long *base;
  55. unsigned long size_tb;
  56. } kaslr_regions[] = {
  57. { &page_offset_base, 64/* Maximum */ },
  58. { &vmalloc_base, VMALLOC_SIZE_TB },
  59. };
  60. /* Get size in bytes used by the memory region */
  61. static inline unsigned long get_padding(struct kaslr_memory_region *region)
  62. {
  63. return (region->size_tb << TB_SHIFT);
  64. }
  65. /*
  66. * Apply no randomization if KASLR was disabled at boot or if KASAN
  67. * is enabled. KASAN shadow mappings rely on regions being PGD aligned.
  68. */
  69. static inline bool kaslr_memory_enabled(void)
  70. {
  71. return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
  72. }
  73. /* Initialize base and padding for each memory region randomized with KASLR */
  74. void __init kernel_randomize_memory(void)
  75. {
  76. size_t i;
  77. unsigned long vaddr = vaddr_start;
  78. unsigned long rand, memory_tb;
  79. struct rnd_state rand_state;
  80. unsigned long remain_entropy;
  81. if (!kaslr_memory_enabled())
  82. return;
  83. /*
  84. * Update Physical memory mapping to available and
  85. * add padding if needed (especially for memory hotplug support).
  86. */
  87. BUG_ON(kaslr_regions[0].base != &page_offset_base);
  88. memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
  89. CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
  90. /* Adapt phyiscal memory region size based on available memory */
  91. if (memory_tb < kaslr_regions[0].size_tb)
  92. kaslr_regions[0].size_tb = memory_tb;
  93. /* Calculate entropy available between regions */
  94. remain_entropy = vaddr_end - vaddr_start;
  95. for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
  96. remain_entropy -= get_padding(&kaslr_regions[i]);
  97. prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
  98. for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
  99. unsigned long entropy;
  100. /*
  101. * Select a random virtual address using the extra entropy
  102. * available.
  103. */
  104. entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
  105. prandom_bytes_state(&rand_state, &rand, sizeof(rand));
  106. entropy = (rand % (entropy + 1)) & PUD_MASK;
  107. vaddr += entropy;
  108. *kaslr_regions[i].base = vaddr;
  109. /*
  110. * Jump the region and add a minimum padding based on
  111. * randomization alignment.
  112. */
  113. vaddr += get_padding(&kaslr_regions[i]);
  114. vaddr = round_up(vaddr + 1, PUD_SIZE);
  115. remain_entropy -= entropy;
  116. }
  117. }
  118. /*
  119. * Create PGD aligned trampoline table to allow real mode initialization
  120. * of additional CPUs. Consume only 1 low memory page.
  121. */
  122. void __meminit init_trampoline(void)
  123. {
  124. unsigned long paddr, paddr_next;
  125. pgd_t *pgd;
  126. pud_t *pud_page, *pud_page_tramp;
  127. int i;
  128. if (!kaslr_memory_enabled()) {
  129. init_trampoline_default();
  130. return;
  131. }
  132. pud_page_tramp = alloc_low_page();
  133. paddr = 0;
  134. pgd = pgd_offset_k((unsigned long)__va(paddr));
  135. pud_page = (pud_t *) pgd_page_vaddr(*pgd);
  136. for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) {
  137. pud_t *pud, *pud_tramp;
  138. unsigned long vaddr = (unsigned long)__va(paddr);
  139. pud_tramp = pud_page_tramp + pud_index(paddr);
  140. pud = pud_page + pud_index(vaddr);
  141. paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
  142. *pud_tramp = *pud;
  143. }
  144. set_pgd(&trampoline_pgd_entry,
  145. __pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
  146. }