interrupt.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414
  1. /*
  2. * handling kvm guest interrupts
  3. *
  4. * Copyright IBM Corp. 2008, 2015
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License (version 2 only)
  8. * as published by the Free Software Foundation.
  9. *
  10. * Author(s): Carsten Otte <cotte@de.ibm.com>
  11. */
  12. #include <linux/interrupt.h>
  13. #include <linux/kvm_host.h>
  14. #include <linux/hrtimer.h>
  15. #include <linux/mmu_context.h>
  16. #include <linux/signal.h>
  17. #include <linux/slab.h>
  18. #include <linux/bitmap.h>
  19. #include <linux/vmalloc.h>
  20. #include <asm/asm-offsets.h>
  21. #include <asm/dis.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/sclp.h>
  24. #include <asm/isc.h>
  25. #include <asm/gmap.h>
  26. #include "kvm-s390.h"
  27. #include "gaccess.h"
  28. #include "trace-s390.h"
  29. #define PFAULT_INIT 0x0600
  30. #define PFAULT_DONE 0x0680
  31. #define VIRTIO_PARAM 0x0d00
  32. /* handle external calls via sigp interpretation facility */
  33. static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
  34. {
  35. int c, scn;
  36. if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
  37. return 0;
  38. read_lock(&vcpu->kvm->arch.sca_lock);
  39. if (vcpu->kvm->arch.use_esca) {
  40. struct esca_block *sca = vcpu->kvm->arch.sca;
  41. union esca_sigp_ctrl sigp_ctrl =
  42. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  43. c = sigp_ctrl.c;
  44. scn = sigp_ctrl.scn;
  45. } else {
  46. struct bsca_block *sca = vcpu->kvm->arch.sca;
  47. union bsca_sigp_ctrl sigp_ctrl =
  48. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  49. c = sigp_ctrl.c;
  50. scn = sigp_ctrl.scn;
  51. }
  52. read_unlock(&vcpu->kvm->arch.sca_lock);
  53. if (src_id)
  54. *src_id = scn;
  55. return c;
  56. }
  57. static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
  58. {
  59. int expect, rc;
  60. read_lock(&vcpu->kvm->arch.sca_lock);
  61. if (vcpu->kvm->arch.use_esca) {
  62. struct esca_block *sca = vcpu->kvm->arch.sca;
  63. union esca_sigp_ctrl *sigp_ctrl =
  64. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  65. union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  66. new_val.scn = src_id;
  67. new_val.c = 1;
  68. old_val.c = 0;
  69. expect = old_val.value;
  70. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  71. } else {
  72. struct bsca_block *sca = vcpu->kvm->arch.sca;
  73. union bsca_sigp_ctrl *sigp_ctrl =
  74. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  75. union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  76. new_val.scn = src_id;
  77. new_val.c = 1;
  78. old_val.c = 0;
  79. expect = old_val.value;
  80. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  81. }
  82. read_unlock(&vcpu->kvm->arch.sca_lock);
  83. if (rc != expect) {
  84. /* another external call is pending */
  85. return -EBUSY;
  86. }
  87. atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
  88. return 0;
  89. }
  90. static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
  91. {
  92. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  93. int rc, expect;
  94. atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
  95. read_lock(&vcpu->kvm->arch.sca_lock);
  96. if (vcpu->kvm->arch.use_esca) {
  97. struct esca_block *sca = vcpu->kvm->arch.sca;
  98. union esca_sigp_ctrl *sigp_ctrl =
  99. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  100. union esca_sigp_ctrl old = *sigp_ctrl;
  101. expect = old.value;
  102. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  103. } else {
  104. struct bsca_block *sca = vcpu->kvm->arch.sca;
  105. union bsca_sigp_ctrl *sigp_ctrl =
  106. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  107. union bsca_sigp_ctrl old = *sigp_ctrl;
  108. expect = old.value;
  109. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  110. }
  111. read_unlock(&vcpu->kvm->arch.sca_lock);
  112. WARN_ON(rc != expect); /* cannot clear? */
  113. }
  114. int psw_extint_disabled(struct kvm_vcpu *vcpu)
  115. {
  116. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
  117. }
  118. static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
  119. {
  120. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
  121. }
  122. static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
  123. {
  124. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
  125. }
  126. static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
  127. {
  128. return psw_extint_disabled(vcpu) &&
  129. psw_ioint_disabled(vcpu) &&
  130. psw_mchk_disabled(vcpu);
  131. }
  132. static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
  133. {
  134. if (psw_extint_disabled(vcpu) ||
  135. !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  136. return 0;
  137. if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
  138. /* No timer interrupts when single stepping */
  139. return 0;
  140. return 1;
  141. }
  142. static int ckc_irq_pending(struct kvm_vcpu *vcpu)
  143. {
  144. if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
  145. return 0;
  146. return ckc_interrupts_enabled(vcpu);
  147. }
  148. static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
  149. {
  150. return !psw_extint_disabled(vcpu) &&
  151. (vcpu->arch.sie_block->gcr[0] & 0x400ul);
  152. }
  153. static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
  154. {
  155. if (!cpu_timer_interrupts_enabled(vcpu))
  156. return 0;
  157. return kvm_s390_get_cpu_timer(vcpu) >> 63;
  158. }
  159. static inline int is_ioirq(unsigned long irq_type)
  160. {
  161. return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
  162. (irq_type <= IRQ_PEND_IO_ISC_7));
  163. }
  164. static uint64_t isc_to_isc_bits(int isc)
  165. {
  166. return (0x80 >> isc) << 24;
  167. }
  168. static inline u8 int_word_to_isc(u32 int_word)
  169. {
  170. return (int_word & 0x38000000) >> 27;
  171. }
  172. static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
  173. {
  174. return vcpu->kvm->arch.float_int.pending_irqs |
  175. vcpu->arch.local_int.pending_irqs;
  176. }
  177. static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
  178. unsigned long active_mask)
  179. {
  180. int i;
  181. for (i = 0; i <= MAX_ISC; i++)
  182. if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
  183. active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));
  184. return active_mask;
  185. }
  186. static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
  187. {
  188. unsigned long active_mask;
  189. active_mask = pending_irqs(vcpu);
  190. if (!active_mask)
  191. return 0;
  192. if (psw_extint_disabled(vcpu))
  193. active_mask &= ~IRQ_PEND_EXT_MASK;
  194. if (psw_ioint_disabled(vcpu))
  195. active_mask &= ~IRQ_PEND_IO_MASK;
  196. else
  197. active_mask = disable_iscs(vcpu, active_mask);
  198. if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  199. __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
  200. if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
  201. __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
  202. if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  203. __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
  204. if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
  205. __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
  206. if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
  207. __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
  208. if (psw_mchk_disabled(vcpu))
  209. active_mask &= ~IRQ_PEND_MCHK_MASK;
  210. if (!(vcpu->arch.sie_block->gcr[14] &
  211. vcpu->kvm->arch.float_int.mchk.cr14))
  212. __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
  213. /*
  214. * STOP irqs will never be actively delivered. They are triggered via
  215. * intercept requests and cleared when the stop intercept is performed.
  216. */
  217. __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
  218. return active_mask;
  219. }
  220. static void __set_cpu_idle(struct kvm_vcpu *vcpu)
  221. {
  222. atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  223. set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  224. }
  225. static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
  226. {
  227. atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  228. clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  229. }
  230. static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
  231. {
  232. atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
  233. &vcpu->arch.sie_block->cpuflags);
  234. vcpu->arch.sie_block->lctl = 0x0000;
  235. vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
  236. if (guestdbg_enabled(vcpu)) {
  237. vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
  238. LCTL_CR10 | LCTL_CR11);
  239. vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
  240. }
  241. }
  242. static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
  243. {
  244. atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
  245. }
  246. static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
  247. {
  248. if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
  249. return;
  250. else if (psw_ioint_disabled(vcpu))
  251. __set_cpuflag(vcpu, CPUSTAT_IO_INT);
  252. else
  253. vcpu->arch.sie_block->lctl |= LCTL_CR6;
  254. }
  255. static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
  256. {
  257. if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
  258. return;
  259. if (psw_extint_disabled(vcpu))
  260. __set_cpuflag(vcpu, CPUSTAT_EXT_INT);
  261. else
  262. vcpu->arch.sie_block->lctl |= LCTL_CR0;
  263. }
  264. static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
  265. {
  266. if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
  267. return;
  268. if (psw_mchk_disabled(vcpu))
  269. vcpu->arch.sie_block->ictl |= ICTL_LPSW;
  270. else
  271. vcpu->arch.sie_block->lctl |= LCTL_CR14;
  272. }
  273. static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
  274. {
  275. if (kvm_s390_is_stop_irq_pending(vcpu))
  276. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  277. }
  278. /* Set interception request for non-deliverable interrupts */
  279. static void set_intercept_indicators(struct kvm_vcpu *vcpu)
  280. {
  281. set_intercept_indicators_io(vcpu);
  282. set_intercept_indicators_ext(vcpu);
  283. set_intercept_indicators_mchk(vcpu);
  284. set_intercept_indicators_stop(vcpu);
  285. }
  286. static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
  287. {
  288. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  289. int rc;
  290. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  291. 0, 0);
  292. rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
  293. (u16 *)__LC_EXT_INT_CODE);
  294. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  295. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  296. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  297. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  298. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  299. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  300. return rc ? -EFAULT : 0;
  301. }
  302. static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
  303. {
  304. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  305. int rc;
  306. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  307. 0, 0);
  308. rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
  309. (u16 __user *)__LC_EXT_INT_CODE);
  310. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  311. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  312. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  313. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  314. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  315. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  316. return rc ? -EFAULT : 0;
  317. }
  318. static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
  319. {
  320. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  321. struct kvm_s390_ext_info ext;
  322. int rc;
  323. spin_lock(&li->lock);
  324. ext = li->irq.ext;
  325. clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  326. li->irq.ext.ext_params2 = 0;
  327. spin_unlock(&li->lock);
  328. VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
  329. ext.ext_params2);
  330. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  331. KVM_S390_INT_PFAULT_INIT,
  332. 0, ext.ext_params2);
  333. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
  334. rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
  335. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  336. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  337. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  338. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  339. rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
  340. return rc ? -EFAULT : 0;
  341. }
  342. static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
  343. {
  344. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  345. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  346. struct kvm_s390_mchk_info mchk = {};
  347. unsigned long adtl_status_addr;
  348. int deliver = 0;
  349. int rc = 0;
  350. spin_lock(&fi->lock);
  351. spin_lock(&li->lock);
  352. if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
  353. test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
  354. /*
  355. * If there was an exigent machine check pending, then any
  356. * repressible machine checks that might have been pending
  357. * are indicated along with it, so always clear bits for
  358. * repressible and exigent interrupts
  359. */
  360. mchk = li->irq.mchk;
  361. clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  362. clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  363. memset(&li->irq.mchk, 0, sizeof(mchk));
  364. deliver = 1;
  365. }
  366. /*
  367. * We indicate floating repressible conditions along with
  368. * other pending conditions. Channel Report Pending and Channel
  369. * Subsystem damage are the only two and and are indicated by
  370. * bits in mcic and masked in cr14.
  371. */
  372. if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  373. mchk.mcic |= fi->mchk.mcic;
  374. mchk.cr14 |= fi->mchk.cr14;
  375. memset(&fi->mchk, 0, sizeof(mchk));
  376. deliver = 1;
  377. }
  378. spin_unlock(&li->lock);
  379. spin_unlock(&fi->lock);
  380. if (deliver) {
  381. VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
  382. mchk.mcic);
  383. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  384. KVM_S390_MCHK,
  385. mchk.cr14, mchk.mcic);
  386. rc = kvm_s390_vcpu_store_status(vcpu,
  387. KVM_S390_STORE_STATUS_PREFIXED);
  388. rc |= read_guest_lc(vcpu, __LC_VX_SAVE_AREA_ADDR,
  389. &adtl_status_addr,
  390. sizeof(unsigned long));
  391. rc |= kvm_s390_vcpu_store_adtl_status(vcpu,
  392. adtl_status_addr);
  393. rc |= put_guest_lc(vcpu, mchk.mcic,
  394. (u64 __user *) __LC_MCCK_CODE);
  395. rc |= put_guest_lc(vcpu, mchk.failing_storage_address,
  396. (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
  397. rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA,
  398. &mchk.fixed_logout,
  399. sizeof(mchk.fixed_logout));
  400. rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
  401. &vcpu->arch.sie_block->gpsw,
  402. sizeof(psw_t));
  403. rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
  404. &vcpu->arch.sie_block->gpsw,
  405. sizeof(psw_t));
  406. }
  407. return rc ? -EFAULT : 0;
  408. }
  409. static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
  410. {
  411. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  412. int rc;
  413. VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
  414. vcpu->stat.deliver_restart_signal++;
  415. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  416. rc = write_guest_lc(vcpu,
  417. offsetof(struct lowcore, restart_old_psw),
  418. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  419. rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
  420. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  421. clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  422. return rc ? -EFAULT : 0;
  423. }
  424. static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
  425. {
  426. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  427. struct kvm_s390_prefix_info prefix;
  428. spin_lock(&li->lock);
  429. prefix = li->irq.prefix;
  430. li->irq.prefix.address = 0;
  431. clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  432. spin_unlock(&li->lock);
  433. vcpu->stat.deliver_prefix_signal++;
  434. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  435. KVM_S390_SIGP_SET_PREFIX,
  436. prefix.address, 0);
  437. kvm_s390_set_prefix(vcpu, prefix.address);
  438. return 0;
  439. }
  440. static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
  441. {
  442. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  443. int rc;
  444. int cpu_addr;
  445. spin_lock(&li->lock);
  446. cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  447. clear_bit(cpu_addr, li->sigp_emerg_pending);
  448. if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
  449. clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  450. spin_unlock(&li->lock);
  451. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
  452. vcpu->stat.deliver_emergency_signal++;
  453. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  454. cpu_addr, 0);
  455. rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
  456. (u16 *)__LC_EXT_INT_CODE);
  457. rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
  458. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  459. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  460. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  461. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  462. return rc ? -EFAULT : 0;
  463. }
  464. static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
  465. {
  466. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  467. struct kvm_s390_extcall_info extcall;
  468. int rc;
  469. spin_lock(&li->lock);
  470. extcall = li->irq.extcall;
  471. li->irq.extcall.code = 0;
  472. clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  473. spin_unlock(&li->lock);
  474. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
  475. vcpu->stat.deliver_external_call++;
  476. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  477. KVM_S390_INT_EXTERNAL_CALL,
  478. extcall.code, 0);
  479. rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
  480. (u16 *)__LC_EXT_INT_CODE);
  481. rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
  482. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  483. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  484. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
  485. sizeof(psw_t));
  486. return rc ? -EFAULT : 0;
  487. }
  488. static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
  489. {
  490. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  491. struct kvm_s390_pgm_info pgm_info;
  492. int rc = 0, nullifying = false;
  493. u16 ilen;
  494. spin_lock(&li->lock);
  495. pgm_info = li->irq.pgm;
  496. clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
  497. memset(&li->irq.pgm, 0, sizeof(pgm_info));
  498. spin_unlock(&li->lock);
  499. ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
  500. VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
  501. pgm_info.code, ilen);
  502. vcpu->stat.deliver_program_int++;
  503. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  504. pgm_info.code, 0);
  505. switch (pgm_info.code & ~PGM_PER) {
  506. case PGM_AFX_TRANSLATION:
  507. case PGM_ASX_TRANSLATION:
  508. case PGM_EX_TRANSLATION:
  509. case PGM_LFX_TRANSLATION:
  510. case PGM_LSTE_SEQUENCE:
  511. case PGM_LSX_TRANSLATION:
  512. case PGM_LX_TRANSLATION:
  513. case PGM_PRIMARY_AUTHORITY:
  514. case PGM_SECONDARY_AUTHORITY:
  515. nullifying = true;
  516. /* fall through */
  517. case PGM_SPACE_SWITCH:
  518. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  519. (u64 *)__LC_TRANS_EXC_CODE);
  520. break;
  521. case PGM_ALEN_TRANSLATION:
  522. case PGM_ALE_SEQUENCE:
  523. case PGM_ASTE_INSTANCE:
  524. case PGM_ASTE_SEQUENCE:
  525. case PGM_ASTE_VALIDITY:
  526. case PGM_EXTENDED_AUTHORITY:
  527. rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
  528. (u8 *)__LC_EXC_ACCESS_ID);
  529. nullifying = true;
  530. break;
  531. case PGM_ASCE_TYPE:
  532. case PGM_PAGE_TRANSLATION:
  533. case PGM_REGION_FIRST_TRANS:
  534. case PGM_REGION_SECOND_TRANS:
  535. case PGM_REGION_THIRD_TRANS:
  536. case PGM_SEGMENT_TRANSLATION:
  537. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  538. (u64 *)__LC_TRANS_EXC_CODE);
  539. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  540. (u8 *)__LC_EXC_ACCESS_ID);
  541. rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
  542. (u8 *)__LC_OP_ACCESS_ID);
  543. nullifying = true;
  544. break;
  545. case PGM_MONITOR:
  546. rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
  547. (u16 *)__LC_MON_CLASS_NR);
  548. rc |= put_guest_lc(vcpu, pgm_info.mon_code,
  549. (u64 *)__LC_MON_CODE);
  550. break;
  551. case PGM_VECTOR_PROCESSING:
  552. case PGM_DATA:
  553. rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
  554. (u32 *)__LC_DATA_EXC_CODE);
  555. break;
  556. case PGM_PROTECTION:
  557. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  558. (u64 *)__LC_TRANS_EXC_CODE);
  559. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  560. (u8 *)__LC_EXC_ACCESS_ID);
  561. break;
  562. case PGM_STACK_FULL:
  563. case PGM_STACK_EMPTY:
  564. case PGM_STACK_SPECIFICATION:
  565. case PGM_STACK_TYPE:
  566. case PGM_STACK_OPERATION:
  567. case PGM_TRACE_TABEL:
  568. case PGM_CRYPTO_OPERATION:
  569. nullifying = true;
  570. break;
  571. }
  572. if (pgm_info.code & PGM_PER) {
  573. rc |= put_guest_lc(vcpu, pgm_info.per_code,
  574. (u8 *) __LC_PER_CODE);
  575. rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
  576. (u8 *)__LC_PER_ATMID);
  577. rc |= put_guest_lc(vcpu, pgm_info.per_address,
  578. (u64 *) __LC_PER_ADDRESS);
  579. rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
  580. (u8 *) __LC_PER_ACCESS_ID);
  581. }
  582. if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
  583. kvm_s390_rewind_psw(vcpu, ilen);
  584. /* bit 1+2 of the target are the ilc, so we can directly use ilen */
  585. rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
  586. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
  587. (u64 *) __LC_LAST_BREAK);
  588. rc |= put_guest_lc(vcpu, pgm_info.code,
  589. (u16 *)__LC_PGM_INT_CODE);
  590. rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
  591. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  592. rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
  593. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  594. return rc ? -EFAULT : 0;
  595. }
  596. static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
  597. {
  598. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  599. struct kvm_s390_ext_info ext;
  600. int rc = 0;
  601. spin_lock(&fi->lock);
  602. if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
  603. spin_unlock(&fi->lock);
  604. return 0;
  605. }
  606. ext = fi->srv_signal;
  607. memset(&fi->srv_signal, 0, sizeof(ext));
  608. clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  609. spin_unlock(&fi->lock);
  610. VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
  611. ext.ext_params);
  612. vcpu->stat.deliver_service_signal++;
  613. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
  614. ext.ext_params, 0);
  615. rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
  616. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  617. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  618. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  619. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  620. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  621. rc |= put_guest_lc(vcpu, ext.ext_params,
  622. (u32 *)__LC_EXT_PARAMS);
  623. return rc ? -EFAULT : 0;
  624. }
  625. static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
  626. {
  627. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  628. struct kvm_s390_interrupt_info *inti;
  629. int rc = 0;
  630. spin_lock(&fi->lock);
  631. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
  632. struct kvm_s390_interrupt_info,
  633. list);
  634. if (inti) {
  635. list_del(&inti->list);
  636. fi->counters[FIRQ_CNTR_PFAULT] -= 1;
  637. }
  638. if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
  639. clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  640. spin_unlock(&fi->lock);
  641. if (inti) {
  642. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  643. KVM_S390_INT_PFAULT_DONE, 0,
  644. inti->ext.ext_params2);
  645. VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
  646. inti->ext.ext_params2);
  647. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  648. (u16 *)__LC_EXT_INT_CODE);
  649. rc |= put_guest_lc(vcpu, PFAULT_DONE,
  650. (u16 *)__LC_EXT_CPU_ADDR);
  651. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  652. &vcpu->arch.sie_block->gpsw,
  653. sizeof(psw_t));
  654. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  655. &vcpu->arch.sie_block->gpsw,
  656. sizeof(psw_t));
  657. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  658. (u64 *)__LC_EXT_PARAMS2);
  659. kfree(inti);
  660. }
  661. return rc ? -EFAULT : 0;
  662. }
  663. static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
  664. {
  665. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  666. struct kvm_s390_interrupt_info *inti;
  667. int rc = 0;
  668. spin_lock(&fi->lock);
  669. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
  670. struct kvm_s390_interrupt_info,
  671. list);
  672. if (inti) {
  673. VCPU_EVENT(vcpu, 4,
  674. "deliver: virtio parm: 0x%x,parm64: 0x%llx",
  675. inti->ext.ext_params, inti->ext.ext_params2);
  676. vcpu->stat.deliver_virtio_interrupt++;
  677. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  678. inti->type,
  679. inti->ext.ext_params,
  680. inti->ext.ext_params2);
  681. list_del(&inti->list);
  682. fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
  683. }
  684. if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
  685. clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  686. spin_unlock(&fi->lock);
  687. if (inti) {
  688. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  689. (u16 *)__LC_EXT_INT_CODE);
  690. rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
  691. (u16 *)__LC_EXT_CPU_ADDR);
  692. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  693. &vcpu->arch.sie_block->gpsw,
  694. sizeof(psw_t));
  695. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  696. &vcpu->arch.sie_block->gpsw,
  697. sizeof(psw_t));
  698. rc |= put_guest_lc(vcpu, inti->ext.ext_params,
  699. (u32 *)__LC_EXT_PARAMS);
  700. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  701. (u64 *)__LC_EXT_PARAMS2);
  702. kfree(inti);
  703. }
  704. return rc ? -EFAULT : 0;
  705. }
  706. static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
  707. unsigned long irq_type)
  708. {
  709. struct list_head *isc_list;
  710. struct kvm_s390_float_interrupt *fi;
  711. struct kvm_s390_interrupt_info *inti = NULL;
  712. int rc = 0;
  713. fi = &vcpu->kvm->arch.float_int;
  714. spin_lock(&fi->lock);
  715. isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
  716. inti = list_first_entry_or_null(isc_list,
  717. struct kvm_s390_interrupt_info,
  718. list);
  719. if (inti) {
  720. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  721. VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
  722. else
  723. VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
  724. inti->io.subchannel_id >> 8,
  725. inti->io.subchannel_id >> 1 & 0x3,
  726. inti->io.subchannel_nr);
  727. vcpu->stat.deliver_io_int++;
  728. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  729. inti->type,
  730. ((__u32)inti->io.subchannel_id << 16) |
  731. inti->io.subchannel_nr,
  732. ((__u64)inti->io.io_int_parm << 32) |
  733. inti->io.io_int_word);
  734. list_del(&inti->list);
  735. fi->counters[FIRQ_CNTR_IO] -= 1;
  736. }
  737. if (list_empty(isc_list))
  738. clear_bit(irq_type, &fi->pending_irqs);
  739. spin_unlock(&fi->lock);
  740. if (inti) {
  741. rc = put_guest_lc(vcpu, inti->io.subchannel_id,
  742. (u16 *)__LC_SUBCHANNEL_ID);
  743. rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
  744. (u16 *)__LC_SUBCHANNEL_NR);
  745. rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
  746. (u32 *)__LC_IO_INT_PARM);
  747. rc |= put_guest_lc(vcpu, inti->io.io_int_word,
  748. (u32 *)__LC_IO_INT_WORD);
  749. rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
  750. &vcpu->arch.sie_block->gpsw,
  751. sizeof(psw_t));
  752. rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
  753. &vcpu->arch.sie_block->gpsw,
  754. sizeof(psw_t));
  755. kfree(inti);
  756. }
  757. return rc ? -EFAULT : 0;
  758. }
  759. typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
  760. static const deliver_irq_t deliver_irq_funcs[] = {
  761. [IRQ_PEND_MCHK_EX] = __deliver_machine_check,
  762. [IRQ_PEND_MCHK_REP] = __deliver_machine_check,
  763. [IRQ_PEND_PROG] = __deliver_prog,
  764. [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
  765. [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
  766. [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
  767. [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
  768. [IRQ_PEND_RESTART] = __deliver_restart,
  769. [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
  770. [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
  771. [IRQ_PEND_EXT_SERVICE] = __deliver_service,
  772. [IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
  773. [IRQ_PEND_VIRTIO] = __deliver_virtio,
  774. };
  775. /* Check whether an external call is pending (deliverable or not) */
  776. int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
  777. {
  778. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  779. if (!sclp.has_sigpif)
  780. return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  781. return sca_ext_call_pending(vcpu, NULL);
  782. }
  783. int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
  784. {
  785. if (deliverable_irqs(vcpu))
  786. return 1;
  787. if (kvm_cpu_has_pending_timer(vcpu))
  788. return 1;
  789. /* external call pending and deliverable */
  790. if (kvm_s390_ext_call_pending(vcpu) &&
  791. !psw_extint_disabled(vcpu) &&
  792. (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  793. return 1;
  794. if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
  795. return 1;
  796. return 0;
  797. }
  798. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  799. {
  800. return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
  801. }
  802. static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
  803. {
  804. u64 now, cputm, sltime = 0;
  805. if (ckc_interrupts_enabled(vcpu)) {
  806. now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
  807. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  808. /* already expired or overflow? */
  809. if (!sltime || vcpu->arch.sie_block->ckc <= now)
  810. return 0;
  811. if (cpu_timer_interrupts_enabled(vcpu)) {
  812. cputm = kvm_s390_get_cpu_timer(vcpu);
  813. /* already expired? */
  814. if (cputm >> 63)
  815. return 0;
  816. return min(sltime, tod_to_ns(cputm));
  817. }
  818. } else if (cpu_timer_interrupts_enabled(vcpu)) {
  819. sltime = kvm_s390_get_cpu_timer(vcpu);
  820. /* already expired? */
  821. if (sltime >> 63)
  822. return 0;
  823. }
  824. return sltime;
  825. }
  826. int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
  827. {
  828. u64 sltime;
  829. vcpu->stat.exit_wait_state++;
  830. /* fast path */
  831. if (kvm_arch_vcpu_runnable(vcpu))
  832. return 0;
  833. if (psw_interrupts_disabled(vcpu)) {
  834. VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
  835. return -EOPNOTSUPP; /* disabled wait */
  836. }
  837. if (!ckc_interrupts_enabled(vcpu) &&
  838. !cpu_timer_interrupts_enabled(vcpu)) {
  839. VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
  840. __set_cpu_idle(vcpu);
  841. goto no_timer;
  842. }
  843. sltime = __calculate_sltime(vcpu);
  844. if (!sltime)
  845. return 0;
  846. __set_cpu_idle(vcpu);
  847. hrtimer_start(&vcpu->arch.ckc_timer, ktime_set (0, sltime) , HRTIMER_MODE_REL);
  848. VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
  849. no_timer:
  850. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  851. kvm_vcpu_block(vcpu);
  852. __unset_cpu_idle(vcpu);
  853. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  854. hrtimer_cancel(&vcpu->arch.ckc_timer);
  855. return 0;
  856. }
  857. void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
  858. {
  859. /*
  860. * We cannot move this into the if, as the CPU might be already
  861. * in kvm_vcpu_block without having the waitqueue set (polling)
  862. */
  863. vcpu->valid_wakeup = true;
  864. if (swait_active(&vcpu->wq)) {
  865. /*
  866. * The vcpu gave up the cpu voluntarily, mark it as a good
  867. * yield-candidate.
  868. */
  869. vcpu->preempted = true;
  870. swake_up(&vcpu->wq);
  871. vcpu->stat.halt_wakeup++;
  872. }
  873. /*
  874. * The VCPU might not be sleeping but is executing the VSIE. Let's
  875. * kick it, so it leaves the SIE to process the request.
  876. */
  877. kvm_s390_vsie_kick(vcpu);
  878. }
  879. enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
  880. {
  881. struct kvm_vcpu *vcpu;
  882. u64 sltime;
  883. vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
  884. sltime = __calculate_sltime(vcpu);
  885. /*
  886. * If the monotonic clock runs faster than the tod clock we might be
  887. * woken up too early and have to go back to sleep to avoid deadlocks.
  888. */
  889. if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
  890. return HRTIMER_RESTART;
  891. kvm_s390_vcpu_wakeup(vcpu);
  892. return HRTIMER_NORESTART;
  893. }
  894. void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
  895. {
  896. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  897. spin_lock(&li->lock);
  898. li->pending_irqs = 0;
  899. bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  900. memset(&li->irq, 0, sizeof(li->irq));
  901. spin_unlock(&li->lock);
  902. sca_clear_ext_call(vcpu);
  903. }
  904. int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
  905. {
  906. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  907. deliver_irq_t func;
  908. int rc = 0;
  909. unsigned long irq_type;
  910. unsigned long irqs;
  911. __reset_intercept_indicators(vcpu);
  912. /* pending ckc conditions might have been invalidated */
  913. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  914. if (ckc_irq_pending(vcpu))
  915. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  916. /* pending cpu timer conditions might have been invalidated */
  917. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  918. if (cpu_timer_irq_pending(vcpu))
  919. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  920. while ((irqs = deliverable_irqs(vcpu)) && !rc) {
  921. /* bits are in the order of interrupt priority */
  922. irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
  923. if (is_ioirq(irq_type)) {
  924. rc = __deliver_io(vcpu, irq_type);
  925. } else {
  926. func = deliver_irq_funcs[irq_type];
  927. if (!func) {
  928. WARN_ON_ONCE(func == NULL);
  929. clear_bit(irq_type, &li->pending_irqs);
  930. continue;
  931. }
  932. rc = func(vcpu);
  933. }
  934. }
  935. set_intercept_indicators(vcpu);
  936. return rc;
  937. }
  938. static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  939. {
  940. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  941. VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
  942. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  943. irq->u.pgm.code, 0);
  944. if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
  945. /* auto detection if no valid ILC was given */
  946. irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
  947. irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
  948. irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
  949. }
  950. if (irq->u.pgm.code == PGM_PER) {
  951. li->irq.pgm.code |= PGM_PER;
  952. li->irq.pgm.flags = irq->u.pgm.flags;
  953. /* only modify PER related information */
  954. li->irq.pgm.per_address = irq->u.pgm.per_address;
  955. li->irq.pgm.per_code = irq->u.pgm.per_code;
  956. li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
  957. li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
  958. } else if (!(irq->u.pgm.code & PGM_PER)) {
  959. li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
  960. irq->u.pgm.code;
  961. li->irq.pgm.flags = irq->u.pgm.flags;
  962. /* only modify non-PER information */
  963. li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
  964. li->irq.pgm.mon_code = irq->u.pgm.mon_code;
  965. li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
  966. li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
  967. li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
  968. li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
  969. } else {
  970. li->irq.pgm = irq->u.pgm;
  971. }
  972. set_bit(IRQ_PEND_PROG, &li->pending_irqs);
  973. return 0;
  974. }
  975. static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  976. {
  977. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  978. VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
  979. irq->u.ext.ext_params2);
  980. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
  981. irq->u.ext.ext_params,
  982. irq->u.ext.ext_params2);
  983. li->irq.ext = irq->u.ext;
  984. set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  985. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  986. return 0;
  987. }
  988. static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  989. {
  990. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  991. struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
  992. uint16_t src_id = irq->u.extcall.code;
  993. VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
  994. src_id);
  995. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
  996. src_id, 0);
  997. /* sending vcpu invalid */
  998. if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
  999. return -EINVAL;
  1000. if (sclp.has_sigpif)
  1001. return sca_inject_ext_call(vcpu, src_id);
  1002. if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
  1003. return -EBUSY;
  1004. *extcall = irq->u.extcall;
  1005. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1006. return 0;
  1007. }
  1008. static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1009. {
  1010. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1011. struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
  1012. VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
  1013. irq->u.prefix.address);
  1014. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
  1015. irq->u.prefix.address, 0);
  1016. if (!is_vcpu_stopped(vcpu))
  1017. return -EBUSY;
  1018. *prefix = irq->u.prefix;
  1019. set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  1020. return 0;
  1021. }
  1022. #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
  1023. static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1024. {
  1025. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1026. struct kvm_s390_stop_info *stop = &li->irq.stop;
  1027. int rc = 0;
  1028. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
  1029. if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
  1030. return -EINVAL;
  1031. if (is_vcpu_stopped(vcpu)) {
  1032. if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
  1033. rc = kvm_s390_store_status_unloaded(vcpu,
  1034. KVM_S390_STORE_STATUS_NOADDR);
  1035. return rc;
  1036. }
  1037. if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
  1038. return -EBUSY;
  1039. stop->flags = irq->u.stop.flags;
  1040. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  1041. return 0;
  1042. }
  1043. static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
  1044. struct kvm_s390_irq *irq)
  1045. {
  1046. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1047. VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
  1048. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  1049. set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  1050. return 0;
  1051. }
  1052. static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
  1053. struct kvm_s390_irq *irq)
  1054. {
  1055. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1056. VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
  1057. irq->u.emerg.code);
  1058. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  1059. irq->u.emerg.code, 0);
  1060. /* sending vcpu invalid */
  1061. if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
  1062. return -EINVAL;
  1063. set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
  1064. set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  1065. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1066. return 0;
  1067. }
  1068. static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1069. {
  1070. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1071. struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
  1072. VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
  1073. irq->u.mchk.mcic);
  1074. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
  1075. irq->u.mchk.mcic);
  1076. /*
  1077. * Because repressible machine checks can be indicated along with
  1078. * exigent machine checks (PoP, Chapter 11, Interruption action)
  1079. * we need to combine cr14, mcic and external damage code.
  1080. * Failing storage address and the logout area should not be or'ed
  1081. * together, we just indicate the last occurrence of the corresponding
  1082. * machine check
  1083. */
  1084. mchk->cr14 |= irq->u.mchk.cr14;
  1085. mchk->mcic |= irq->u.mchk.mcic;
  1086. mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
  1087. mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
  1088. memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
  1089. sizeof(mchk->fixed_logout));
  1090. if (mchk->mcic & MCHK_EX_MASK)
  1091. set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  1092. else if (mchk->mcic & MCHK_REP_MASK)
  1093. set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  1094. return 0;
  1095. }
  1096. static int __inject_ckc(struct kvm_vcpu *vcpu)
  1097. {
  1098. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1099. VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
  1100. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  1101. 0, 0);
  1102. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1103. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1104. return 0;
  1105. }
  1106. static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
  1107. {
  1108. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1109. VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
  1110. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  1111. 0, 0);
  1112. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1113. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1114. return 0;
  1115. }
  1116. static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
  1117. int isc, u32 schid)
  1118. {
  1119. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1120. struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1121. struct kvm_s390_interrupt_info *iter;
  1122. u16 id = (schid & 0xffff0000U) >> 16;
  1123. u16 nr = schid & 0x0000ffffU;
  1124. spin_lock(&fi->lock);
  1125. list_for_each_entry(iter, isc_list, list) {
  1126. if (schid && (id != iter->io.subchannel_id ||
  1127. nr != iter->io.subchannel_nr))
  1128. continue;
  1129. /* found an appropriate entry */
  1130. list_del_init(&iter->list);
  1131. fi->counters[FIRQ_CNTR_IO] -= 1;
  1132. if (list_empty(isc_list))
  1133. clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1134. spin_unlock(&fi->lock);
  1135. return iter;
  1136. }
  1137. spin_unlock(&fi->lock);
  1138. return NULL;
  1139. }
  1140. /*
  1141. * Dequeue and return an I/O interrupt matching any of the interruption
  1142. * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
  1143. */
  1144. struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
  1145. u64 isc_mask, u32 schid)
  1146. {
  1147. struct kvm_s390_interrupt_info *inti = NULL;
  1148. int isc;
  1149. for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
  1150. if (isc_mask & isc_to_isc_bits(isc))
  1151. inti = get_io_int(kvm, isc, schid);
  1152. }
  1153. return inti;
  1154. }
  1155. #define SCCB_MASK 0xFFFFFFF8
  1156. #define SCCB_EVENT_PENDING 0x3
  1157. static int __inject_service(struct kvm *kvm,
  1158. struct kvm_s390_interrupt_info *inti)
  1159. {
  1160. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1161. spin_lock(&fi->lock);
  1162. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
  1163. /*
  1164. * Early versions of the QEMU s390 bios will inject several
  1165. * service interrupts after another without handling a
  1166. * condition code indicating busy.
  1167. * We will silently ignore those superfluous sccb values.
  1168. * A future version of QEMU will take care of serialization
  1169. * of servc requests
  1170. */
  1171. if (fi->srv_signal.ext_params & SCCB_MASK)
  1172. goto out;
  1173. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
  1174. set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  1175. out:
  1176. spin_unlock(&fi->lock);
  1177. kfree(inti);
  1178. return 0;
  1179. }
  1180. static int __inject_virtio(struct kvm *kvm,
  1181. struct kvm_s390_interrupt_info *inti)
  1182. {
  1183. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1184. spin_lock(&fi->lock);
  1185. if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
  1186. spin_unlock(&fi->lock);
  1187. return -EBUSY;
  1188. }
  1189. fi->counters[FIRQ_CNTR_VIRTIO] += 1;
  1190. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
  1191. set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  1192. spin_unlock(&fi->lock);
  1193. return 0;
  1194. }
  1195. static int __inject_pfault_done(struct kvm *kvm,
  1196. struct kvm_s390_interrupt_info *inti)
  1197. {
  1198. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1199. spin_lock(&fi->lock);
  1200. if (fi->counters[FIRQ_CNTR_PFAULT] >=
  1201. (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
  1202. spin_unlock(&fi->lock);
  1203. return -EBUSY;
  1204. }
  1205. fi->counters[FIRQ_CNTR_PFAULT] += 1;
  1206. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
  1207. set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  1208. spin_unlock(&fi->lock);
  1209. return 0;
  1210. }
  1211. #define CR_PENDING_SUBCLASS 28
  1212. static int __inject_float_mchk(struct kvm *kvm,
  1213. struct kvm_s390_interrupt_info *inti)
  1214. {
  1215. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1216. spin_lock(&fi->lock);
  1217. fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
  1218. fi->mchk.mcic |= inti->mchk.mcic;
  1219. set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
  1220. spin_unlock(&fi->lock);
  1221. kfree(inti);
  1222. return 0;
  1223. }
  1224. static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1225. {
  1226. struct kvm_s390_float_interrupt *fi;
  1227. struct list_head *list;
  1228. int isc;
  1229. fi = &kvm->arch.float_int;
  1230. spin_lock(&fi->lock);
  1231. if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
  1232. spin_unlock(&fi->lock);
  1233. return -EBUSY;
  1234. }
  1235. fi->counters[FIRQ_CNTR_IO] += 1;
  1236. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  1237. VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
  1238. else
  1239. VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
  1240. inti->io.subchannel_id >> 8,
  1241. inti->io.subchannel_id >> 1 & 0x3,
  1242. inti->io.subchannel_nr);
  1243. isc = int_word_to_isc(inti->io.io_int_word);
  1244. list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1245. list_add_tail(&inti->list, list);
  1246. set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1247. spin_unlock(&fi->lock);
  1248. return 0;
  1249. }
  1250. /*
  1251. * Find a destination VCPU for a floating irq and kick it.
  1252. */
  1253. static void __floating_irq_kick(struct kvm *kvm, u64 type)
  1254. {
  1255. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1256. struct kvm_s390_local_interrupt *li;
  1257. struct kvm_vcpu *dst_vcpu;
  1258. int sigcpu, online_vcpus, nr_tries = 0;
  1259. online_vcpus = atomic_read(&kvm->online_vcpus);
  1260. if (!online_vcpus)
  1261. return;
  1262. /* find idle VCPUs first, then round robin */
  1263. sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
  1264. if (sigcpu == online_vcpus) {
  1265. do {
  1266. sigcpu = fi->next_rr_cpu;
  1267. fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
  1268. /* avoid endless loops if all vcpus are stopped */
  1269. if (nr_tries++ >= online_vcpus)
  1270. return;
  1271. } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
  1272. }
  1273. dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
  1274. /* make the VCPU drop out of the SIE, or wake it up if sleeping */
  1275. li = &dst_vcpu->arch.local_int;
  1276. spin_lock(&li->lock);
  1277. switch (type) {
  1278. case KVM_S390_MCHK:
  1279. atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
  1280. break;
  1281. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1282. atomic_or(CPUSTAT_IO_INT, li->cpuflags);
  1283. break;
  1284. default:
  1285. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1286. break;
  1287. }
  1288. spin_unlock(&li->lock);
  1289. kvm_s390_vcpu_wakeup(dst_vcpu);
  1290. }
  1291. static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1292. {
  1293. u64 type = READ_ONCE(inti->type);
  1294. int rc;
  1295. switch (type) {
  1296. case KVM_S390_MCHK:
  1297. rc = __inject_float_mchk(kvm, inti);
  1298. break;
  1299. case KVM_S390_INT_VIRTIO:
  1300. rc = __inject_virtio(kvm, inti);
  1301. break;
  1302. case KVM_S390_INT_SERVICE:
  1303. rc = __inject_service(kvm, inti);
  1304. break;
  1305. case KVM_S390_INT_PFAULT_DONE:
  1306. rc = __inject_pfault_done(kvm, inti);
  1307. break;
  1308. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1309. rc = __inject_io(kvm, inti);
  1310. break;
  1311. default:
  1312. rc = -EINVAL;
  1313. }
  1314. if (rc)
  1315. return rc;
  1316. __floating_irq_kick(kvm, type);
  1317. return 0;
  1318. }
  1319. int kvm_s390_inject_vm(struct kvm *kvm,
  1320. struct kvm_s390_interrupt *s390int)
  1321. {
  1322. struct kvm_s390_interrupt_info *inti;
  1323. int rc;
  1324. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1325. if (!inti)
  1326. return -ENOMEM;
  1327. inti->type = s390int->type;
  1328. switch (inti->type) {
  1329. case KVM_S390_INT_VIRTIO:
  1330. VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
  1331. s390int->parm, s390int->parm64);
  1332. inti->ext.ext_params = s390int->parm;
  1333. inti->ext.ext_params2 = s390int->parm64;
  1334. break;
  1335. case KVM_S390_INT_SERVICE:
  1336. VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
  1337. inti->ext.ext_params = s390int->parm;
  1338. break;
  1339. case KVM_S390_INT_PFAULT_DONE:
  1340. inti->ext.ext_params2 = s390int->parm64;
  1341. break;
  1342. case KVM_S390_MCHK:
  1343. VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
  1344. s390int->parm64);
  1345. inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
  1346. inti->mchk.mcic = s390int->parm64;
  1347. break;
  1348. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1349. inti->io.subchannel_id = s390int->parm >> 16;
  1350. inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
  1351. inti->io.io_int_parm = s390int->parm64 >> 32;
  1352. inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
  1353. break;
  1354. default:
  1355. kfree(inti);
  1356. return -EINVAL;
  1357. }
  1358. trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
  1359. 2);
  1360. rc = __inject_vm(kvm, inti);
  1361. if (rc)
  1362. kfree(inti);
  1363. return rc;
  1364. }
  1365. int kvm_s390_reinject_io_int(struct kvm *kvm,
  1366. struct kvm_s390_interrupt_info *inti)
  1367. {
  1368. return __inject_vm(kvm, inti);
  1369. }
  1370. int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
  1371. struct kvm_s390_irq *irq)
  1372. {
  1373. irq->type = s390int->type;
  1374. switch (irq->type) {
  1375. case KVM_S390_PROGRAM_INT:
  1376. if (s390int->parm & 0xffff0000)
  1377. return -EINVAL;
  1378. irq->u.pgm.code = s390int->parm;
  1379. break;
  1380. case KVM_S390_SIGP_SET_PREFIX:
  1381. irq->u.prefix.address = s390int->parm;
  1382. break;
  1383. case KVM_S390_SIGP_STOP:
  1384. irq->u.stop.flags = s390int->parm;
  1385. break;
  1386. case KVM_S390_INT_EXTERNAL_CALL:
  1387. if (s390int->parm & 0xffff0000)
  1388. return -EINVAL;
  1389. irq->u.extcall.code = s390int->parm;
  1390. break;
  1391. case KVM_S390_INT_EMERGENCY:
  1392. if (s390int->parm & 0xffff0000)
  1393. return -EINVAL;
  1394. irq->u.emerg.code = s390int->parm;
  1395. break;
  1396. case KVM_S390_MCHK:
  1397. irq->u.mchk.mcic = s390int->parm64;
  1398. break;
  1399. }
  1400. return 0;
  1401. }
  1402. int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
  1403. {
  1404. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1405. return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1406. }
  1407. void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
  1408. {
  1409. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1410. spin_lock(&li->lock);
  1411. li->irq.stop.flags = 0;
  1412. clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1413. spin_unlock(&li->lock);
  1414. }
  1415. static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1416. {
  1417. int rc;
  1418. switch (irq->type) {
  1419. case KVM_S390_PROGRAM_INT:
  1420. rc = __inject_prog(vcpu, irq);
  1421. break;
  1422. case KVM_S390_SIGP_SET_PREFIX:
  1423. rc = __inject_set_prefix(vcpu, irq);
  1424. break;
  1425. case KVM_S390_SIGP_STOP:
  1426. rc = __inject_sigp_stop(vcpu, irq);
  1427. break;
  1428. case KVM_S390_RESTART:
  1429. rc = __inject_sigp_restart(vcpu, irq);
  1430. break;
  1431. case KVM_S390_INT_CLOCK_COMP:
  1432. rc = __inject_ckc(vcpu);
  1433. break;
  1434. case KVM_S390_INT_CPU_TIMER:
  1435. rc = __inject_cpu_timer(vcpu);
  1436. break;
  1437. case KVM_S390_INT_EXTERNAL_CALL:
  1438. rc = __inject_extcall(vcpu, irq);
  1439. break;
  1440. case KVM_S390_INT_EMERGENCY:
  1441. rc = __inject_sigp_emergency(vcpu, irq);
  1442. break;
  1443. case KVM_S390_MCHK:
  1444. rc = __inject_mchk(vcpu, irq);
  1445. break;
  1446. case KVM_S390_INT_PFAULT_INIT:
  1447. rc = __inject_pfault_init(vcpu, irq);
  1448. break;
  1449. case KVM_S390_INT_VIRTIO:
  1450. case KVM_S390_INT_SERVICE:
  1451. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1452. default:
  1453. rc = -EINVAL;
  1454. }
  1455. return rc;
  1456. }
  1457. int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1458. {
  1459. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1460. int rc;
  1461. spin_lock(&li->lock);
  1462. rc = do_inject_vcpu(vcpu, irq);
  1463. spin_unlock(&li->lock);
  1464. if (!rc)
  1465. kvm_s390_vcpu_wakeup(vcpu);
  1466. return rc;
  1467. }
  1468. static inline void clear_irq_list(struct list_head *_list)
  1469. {
  1470. struct kvm_s390_interrupt_info *inti, *n;
  1471. list_for_each_entry_safe(inti, n, _list, list) {
  1472. list_del(&inti->list);
  1473. kfree(inti);
  1474. }
  1475. }
  1476. static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
  1477. struct kvm_s390_irq *irq)
  1478. {
  1479. irq->type = inti->type;
  1480. switch (inti->type) {
  1481. case KVM_S390_INT_PFAULT_INIT:
  1482. case KVM_S390_INT_PFAULT_DONE:
  1483. case KVM_S390_INT_VIRTIO:
  1484. irq->u.ext = inti->ext;
  1485. break;
  1486. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1487. irq->u.io = inti->io;
  1488. break;
  1489. }
  1490. }
  1491. void kvm_s390_clear_float_irqs(struct kvm *kvm)
  1492. {
  1493. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1494. int i;
  1495. spin_lock(&fi->lock);
  1496. fi->pending_irqs = 0;
  1497. memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
  1498. memset(&fi->mchk, 0, sizeof(fi->mchk));
  1499. for (i = 0; i < FIRQ_LIST_COUNT; i++)
  1500. clear_irq_list(&fi->lists[i]);
  1501. for (i = 0; i < FIRQ_MAX_COUNT; i++)
  1502. fi->counters[i] = 0;
  1503. spin_unlock(&fi->lock);
  1504. };
  1505. static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
  1506. {
  1507. struct kvm_s390_interrupt_info *inti;
  1508. struct kvm_s390_float_interrupt *fi;
  1509. struct kvm_s390_irq *buf;
  1510. struct kvm_s390_irq *irq;
  1511. int max_irqs;
  1512. int ret = 0;
  1513. int n = 0;
  1514. int i;
  1515. if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
  1516. return -EINVAL;
  1517. /*
  1518. * We are already using -ENOMEM to signal
  1519. * userspace it may retry with a bigger buffer,
  1520. * so we need to use something else for this case
  1521. */
  1522. buf = vzalloc(len);
  1523. if (!buf)
  1524. return -ENOBUFS;
  1525. max_irqs = len / sizeof(struct kvm_s390_irq);
  1526. fi = &kvm->arch.float_int;
  1527. spin_lock(&fi->lock);
  1528. for (i = 0; i < FIRQ_LIST_COUNT; i++) {
  1529. list_for_each_entry(inti, &fi->lists[i], list) {
  1530. if (n == max_irqs) {
  1531. /* signal userspace to try again */
  1532. ret = -ENOMEM;
  1533. goto out;
  1534. }
  1535. inti_to_irq(inti, &buf[n]);
  1536. n++;
  1537. }
  1538. }
  1539. if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
  1540. if (n == max_irqs) {
  1541. /* signal userspace to try again */
  1542. ret = -ENOMEM;
  1543. goto out;
  1544. }
  1545. irq = (struct kvm_s390_irq *) &buf[n];
  1546. irq->type = KVM_S390_INT_SERVICE;
  1547. irq->u.ext = fi->srv_signal;
  1548. n++;
  1549. }
  1550. if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  1551. if (n == max_irqs) {
  1552. /* signal userspace to try again */
  1553. ret = -ENOMEM;
  1554. goto out;
  1555. }
  1556. irq = (struct kvm_s390_irq *) &buf[n];
  1557. irq->type = KVM_S390_MCHK;
  1558. irq->u.mchk = fi->mchk;
  1559. n++;
  1560. }
  1561. out:
  1562. spin_unlock(&fi->lock);
  1563. if (!ret && n > 0) {
  1564. if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
  1565. ret = -EFAULT;
  1566. }
  1567. vfree(buf);
  1568. return ret < 0 ? ret : n;
  1569. }
  1570. static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1571. {
  1572. int r;
  1573. switch (attr->group) {
  1574. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1575. r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
  1576. attr->attr);
  1577. break;
  1578. default:
  1579. r = -EINVAL;
  1580. }
  1581. return r;
  1582. }
  1583. static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
  1584. u64 addr)
  1585. {
  1586. struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
  1587. void *target = NULL;
  1588. void __user *source;
  1589. u64 size;
  1590. if (get_user(inti->type, (u64 __user *)addr))
  1591. return -EFAULT;
  1592. switch (inti->type) {
  1593. case KVM_S390_INT_PFAULT_INIT:
  1594. case KVM_S390_INT_PFAULT_DONE:
  1595. case KVM_S390_INT_VIRTIO:
  1596. case KVM_S390_INT_SERVICE:
  1597. target = (void *) &inti->ext;
  1598. source = &uptr->u.ext;
  1599. size = sizeof(inti->ext);
  1600. break;
  1601. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1602. target = (void *) &inti->io;
  1603. source = &uptr->u.io;
  1604. size = sizeof(inti->io);
  1605. break;
  1606. case KVM_S390_MCHK:
  1607. target = (void *) &inti->mchk;
  1608. source = &uptr->u.mchk;
  1609. size = sizeof(inti->mchk);
  1610. break;
  1611. default:
  1612. return -EINVAL;
  1613. }
  1614. if (copy_from_user(target, source, size))
  1615. return -EFAULT;
  1616. return 0;
  1617. }
  1618. static int enqueue_floating_irq(struct kvm_device *dev,
  1619. struct kvm_device_attr *attr)
  1620. {
  1621. struct kvm_s390_interrupt_info *inti = NULL;
  1622. int r = 0;
  1623. int len = attr->attr;
  1624. if (len % sizeof(struct kvm_s390_irq) != 0)
  1625. return -EINVAL;
  1626. else if (len > KVM_S390_FLIC_MAX_BUFFER)
  1627. return -EINVAL;
  1628. while (len >= sizeof(struct kvm_s390_irq)) {
  1629. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1630. if (!inti)
  1631. return -ENOMEM;
  1632. r = copy_irq_from_user(inti, attr->addr);
  1633. if (r) {
  1634. kfree(inti);
  1635. return r;
  1636. }
  1637. r = __inject_vm(dev->kvm, inti);
  1638. if (r) {
  1639. kfree(inti);
  1640. return r;
  1641. }
  1642. len -= sizeof(struct kvm_s390_irq);
  1643. attr->addr += sizeof(struct kvm_s390_irq);
  1644. }
  1645. return r;
  1646. }
  1647. static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
  1648. {
  1649. if (id >= MAX_S390_IO_ADAPTERS)
  1650. return NULL;
  1651. return kvm->arch.adapters[id];
  1652. }
  1653. static int register_io_adapter(struct kvm_device *dev,
  1654. struct kvm_device_attr *attr)
  1655. {
  1656. struct s390_io_adapter *adapter;
  1657. struct kvm_s390_io_adapter adapter_info;
  1658. if (copy_from_user(&adapter_info,
  1659. (void __user *)attr->addr, sizeof(adapter_info)))
  1660. return -EFAULT;
  1661. if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
  1662. (dev->kvm->arch.adapters[adapter_info.id] != NULL))
  1663. return -EINVAL;
  1664. adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
  1665. if (!adapter)
  1666. return -ENOMEM;
  1667. INIT_LIST_HEAD(&adapter->maps);
  1668. init_rwsem(&adapter->maps_lock);
  1669. atomic_set(&adapter->nr_maps, 0);
  1670. adapter->id = adapter_info.id;
  1671. adapter->isc = adapter_info.isc;
  1672. adapter->maskable = adapter_info.maskable;
  1673. adapter->masked = false;
  1674. adapter->swap = adapter_info.swap;
  1675. dev->kvm->arch.adapters[adapter->id] = adapter;
  1676. return 0;
  1677. }
  1678. int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
  1679. {
  1680. int ret;
  1681. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1682. if (!adapter || !adapter->maskable)
  1683. return -EINVAL;
  1684. ret = adapter->masked;
  1685. adapter->masked = masked;
  1686. return ret;
  1687. }
  1688. static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
  1689. {
  1690. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1691. struct s390_map_info *map;
  1692. int ret;
  1693. if (!adapter || !addr)
  1694. return -EINVAL;
  1695. map = kzalloc(sizeof(*map), GFP_KERNEL);
  1696. if (!map) {
  1697. ret = -ENOMEM;
  1698. goto out;
  1699. }
  1700. INIT_LIST_HEAD(&map->list);
  1701. map->guest_addr = addr;
  1702. map->addr = gmap_translate(kvm->arch.gmap, addr);
  1703. if (map->addr == -EFAULT) {
  1704. ret = -EFAULT;
  1705. goto out;
  1706. }
  1707. ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
  1708. if (ret < 0)
  1709. goto out;
  1710. BUG_ON(ret != 1);
  1711. down_write(&adapter->maps_lock);
  1712. if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
  1713. list_add_tail(&map->list, &adapter->maps);
  1714. ret = 0;
  1715. } else {
  1716. put_page(map->page);
  1717. ret = -EINVAL;
  1718. }
  1719. up_write(&adapter->maps_lock);
  1720. out:
  1721. if (ret)
  1722. kfree(map);
  1723. return ret;
  1724. }
  1725. static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
  1726. {
  1727. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1728. struct s390_map_info *map, *tmp;
  1729. int found = 0;
  1730. if (!adapter || !addr)
  1731. return -EINVAL;
  1732. down_write(&adapter->maps_lock);
  1733. list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
  1734. if (map->guest_addr == addr) {
  1735. found = 1;
  1736. atomic_dec(&adapter->nr_maps);
  1737. list_del(&map->list);
  1738. put_page(map->page);
  1739. kfree(map);
  1740. break;
  1741. }
  1742. }
  1743. up_write(&adapter->maps_lock);
  1744. return found ? 0 : -EINVAL;
  1745. }
  1746. void kvm_s390_destroy_adapters(struct kvm *kvm)
  1747. {
  1748. int i;
  1749. struct s390_map_info *map, *tmp;
  1750. for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
  1751. if (!kvm->arch.adapters[i])
  1752. continue;
  1753. list_for_each_entry_safe(map, tmp,
  1754. &kvm->arch.adapters[i]->maps, list) {
  1755. list_del(&map->list);
  1756. put_page(map->page);
  1757. kfree(map);
  1758. }
  1759. kfree(kvm->arch.adapters[i]);
  1760. }
  1761. }
  1762. static int modify_io_adapter(struct kvm_device *dev,
  1763. struct kvm_device_attr *attr)
  1764. {
  1765. struct kvm_s390_io_adapter_req req;
  1766. struct s390_io_adapter *adapter;
  1767. int ret;
  1768. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1769. return -EFAULT;
  1770. adapter = get_io_adapter(dev->kvm, req.id);
  1771. if (!adapter)
  1772. return -EINVAL;
  1773. switch (req.type) {
  1774. case KVM_S390_IO_ADAPTER_MASK:
  1775. ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
  1776. if (ret > 0)
  1777. ret = 0;
  1778. break;
  1779. case KVM_S390_IO_ADAPTER_MAP:
  1780. ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
  1781. break;
  1782. case KVM_S390_IO_ADAPTER_UNMAP:
  1783. ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
  1784. break;
  1785. default:
  1786. ret = -EINVAL;
  1787. }
  1788. return ret;
  1789. }
  1790. static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
  1791. {
  1792. const u64 isc_mask = 0xffUL << 24; /* all iscs set */
  1793. u32 schid;
  1794. if (attr->flags)
  1795. return -EINVAL;
  1796. if (attr->attr != sizeof(schid))
  1797. return -EINVAL;
  1798. if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
  1799. return -EFAULT;
  1800. kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
  1801. /*
  1802. * If userspace is conforming to the architecture, we can have at most
  1803. * one pending I/O interrupt per subchannel, so this is effectively a
  1804. * clear all.
  1805. */
  1806. return 0;
  1807. }
  1808. static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1809. {
  1810. int r = 0;
  1811. unsigned int i;
  1812. struct kvm_vcpu *vcpu;
  1813. switch (attr->group) {
  1814. case KVM_DEV_FLIC_ENQUEUE:
  1815. r = enqueue_floating_irq(dev, attr);
  1816. break;
  1817. case KVM_DEV_FLIC_CLEAR_IRQS:
  1818. kvm_s390_clear_float_irqs(dev->kvm);
  1819. break;
  1820. case KVM_DEV_FLIC_APF_ENABLE:
  1821. dev->kvm->arch.gmap->pfault_enabled = 1;
  1822. break;
  1823. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  1824. dev->kvm->arch.gmap->pfault_enabled = 0;
  1825. /*
  1826. * Make sure no async faults are in transition when
  1827. * clearing the queues. So we don't need to worry
  1828. * about late coming workers.
  1829. */
  1830. synchronize_srcu(&dev->kvm->srcu);
  1831. kvm_for_each_vcpu(i, vcpu, dev->kvm)
  1832. kvm_clear_async_pf_completion_queue(vcpu);
  1833. break;
  1834. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  1835. r = register_io_adapter(dev, attr);
  1836. break;
  1837. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  1838. r = modify_io_adapter(dev, attr);
  1839. break;
  1840. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  1841. r = clear_io_irq(dev->kvm, attr);
  1842. break;
  1843. default:
  1844. r = -EINVAL;
  1845. }
  1846. return r;
  1847. }
  1848. static int flic_has_attr(struct kvm_device *dev,
  1849. struct kvm_device_attr *attr)
  1850. {
  1851. switch (attr->group) {
  1852. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1853. case KVM_DEV_FLIC_ENQUEUE:
  1854. case KVM_DEV_FLIC_CLEAR_IRQS:
  1855. case KVM_DEV_FLIC_APF_ENABLE:
  1856. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  1857. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  1858. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  1859. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  1860. return 0;
  1861. }
  1862. return -ENXIO;
  1863. }
  1864. static int flic_create(struct kvm_device *dev, u32 type)
  1865. {
  1866. if (!dev)
  1867. return -EINVAL;
  1868. if (dev->kvm->arch.flic)
  1869. return -EINVAL;
  1870. dev->kvm->arch.flic = dev;
  1871. return 0;
  1872. }
  1873. static void flic_destroy(struct kvm_device *dev)
  1874. {
  1875. dev->kvm->arch.flic = NULL;
  1876. kfree(dev);
  1877. }
  1878. /* s390 floating irq controller (flic) */
  1879. struct kvm_device_ops kvm_flic_ops = {
  1880. .name = "kvm-flic",
  1881. .get_attr = flic_get_attr,
  1882. .set_attr = flic_set_attr,
  1883. .has_attr = flic_has_attr,
  1884. .create = flic_create,
  1885. .destroy = flic_destroy,
  1886. };
  1887. static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
  1888. {
  1889. unsigned long bit;
  1890. bit = bit_nr + (addr % PAGE_SIZE) * 8;
  1891. return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
  1892. }
  1893. static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
  1894. u64 addr)
  1895. {
  1896. struct s390_map_info *map;
  1897. if (!adapter)
  1898. return NULL;
  1899. list_for_each_entry(map, &adapter->maps, list) {
  1900. if (map->guest_addr == addr)
  1901. return map;
  1902. }
  1903. return NULL;
  1904. }
  1905. static int adapter_indicators_set(struct kvm *kvm,
  1906. struct s390_io_adapter *adapter,
  1907. struct kvm_s390_adapter_int *adapter_int)
  1908. {
  1909. unsigned long bit;
  1910. int summary_set, idx;
  1911. struct s390_map_info *info;
  1912. void *map;
  1913. info = get_map_info(adapter, adapter_int->ind_addr);
  1914. if (!info)
  1915. return -1;
  1916. map = page_address(info->page);
  1917. bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
  1918. set_bit(bit, map);
  1919. idx = srcu_read_lock(&kvm->srcu);
  1920. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  1921. set_page_dirty_lock(info->page);
  1922. info = get_map_info(adapter, adapter_int->summary_addr);
  1923. if (!info) {
  1924. srcu_read_unlock(&kvm->srcu, idx);
  1925. return -1;
  1926. }
  1927. map = page_address(info->page);
  1928. bit = get_ind_bit(info->addr, adapter_int->summary_offset,
  1929. adapter->swap);
  1930. summary_set = test_and_set_bit(bit, map);
  1931. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  1932. set_page_dirty_lock(info->page);
  1933. srcu_read_unlock(&kvm->srcu, idx);
  1934. return summary_set ? 0 : 1;
  1935. }
  1936. /*
  1937. * < 0 - not injected due to error
  1938. * = 0 - coalesced, summary indicator already active
  1939. * > 0 - injected interrupt
  1940. */
  1941. static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
  1942. struct kvm *kvm, int irq_source_id, int level,
  1943. bool line_status)
  1944. {
  1945. int ret;
  1946. struct s390_io_adapter *adapter;
  1947. /* We're only interested in the 0->1 transition. */
  1948. if (!level)
  1949. return 0;
  1950. adapter = get_io_adapter(kvm, e->adapter.adapter_id);
  1951. if (!adapter)
  1952. return -1;
  1953. down_read(&adapter->maps_lock);
  1954. ret = adapter_indicators_set(kvm, adapter, &e->adapter);
  1955. up_read(&adapter->maps_lock);
  1956. if ((ret > 0) && !adapter->masked) {
  1957. struct kvm_s390_interrupt s390int = {
  1958. .type = KVM_S390_INT_IO(1, 0, 0, 0),
  1959. .parm = 0,
  1960. .parm64 = (adapter->isc << 27) | 0x80000000,
  1961. };
  1962. ret = kvm_s390_inject_vm(kvm, &s390int);
  1963. if (ret == 0)
  1964. ret = 1;
  1965. }
  1966. return ret;
  1967. }
  1968. int kvm_set_routing_entry(struct kvm *kvm,
  1969. struct kvm_kernel_irq_routing_entry *e,
  1970. const struct kvm_irq_routing_entry *ue)
  1971. {
  1972. int ret;
  1973. switch (ue->type) {
  1974. case KVM_IRQ_ROUTING_S390_ADAPTER:
  1975. e->set = set_adapter_int;
  1976. e->adapter.summary_addr = ue->u.adapter.summary_addr;
  1977. e->adapter.ind_addr = ue->u.adapter.ind_addr;
  1978. e->adapter.summary_offset = ue->u.adapter.summary_offset;
  1979. e->adapter.ind_offset = ue->u.adapter.ind_offset;
  1980. e->adapter.adapter_id = ue->u.adapter.adapter_id;
  1981. ret = 0;
  1982. break;
  1983. default:
  1984. ret = -EINVAL;
  1985. }
  1986. return ret;
  1987. }
  1988. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
  1989. int irq_source_id, int level, bool line_status)
  1990. {
  1991. return -EINVAL;
  1992. }
  1993. int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
  1994. {
  1995. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1996. struct kvm_s390_irq *buf;
  1997. int r = 0;
  1998. int n;
  1999. buf = vmalloc(len);
  2000. if (!buf)
  2001. return -ENOMEM;
  2002. if (copy_from_user((void *) buf, irqstate, len)) {
  2003. r = -EFAULT;
  2004. goto out_free;
  2005. }
  2006. /*
  2007. * Don't allow setting the interrupt state
  2008. * when there are already interrupts pending
  2009. */
  2010. spin_lock(&li->lock);
  2011. if (li->pending_irqs) {
  2012. r = -EBUSY;
  2013. goto out_unlock;
  2014. }
  2015. for (n = 0; n < len / sizeof(*buf); n++) {
  2016. r = do_inject_vcpu(vcpu, &buf[n]);
  2017. if (r)
  2018. break;
  2019. }
  2020. out_unlock:
  2021. spin_unlock(&li->lock);
  2022. out_free:
  2023. vfree(buf);
  2024. return r;
  2025. }
  2026. static void store_local_irq(struct kvm_s390_local_interrupt *li,
  2027. struct kvm_s390_irq *irq,
  2028. unsigned long irq_type)
  2029. {
  2030. switch (irq_type) {
  2031. case IRQ_PEND_MCHK_EX:
  2032. case IRQ_PEND_MCHK_REP:
  2033. irq->type = KVM_S390_MCHK;
  2034. irq->u.mchk = li->irq.mchk;
  2035. break;
  2036. case IRQ_PEND_PROG:
  2037. irq->type = KVM_S390_PROGRAM_INT;
  2038. irq->u.pgm = li->irq.pgm;
  2039. break;
  2040. case IRQ_PEND_PFAULT_INIT:
  2041. irq->type = KVM_S390_INT_PFAULT_INIT;
  2042. irq->u.ext = li->irq.ext;
  2043. break;
  2044. case IRQ_PEND_EXT_EXTERNAL:
  2045. irq->type = KVM_S390_INT_EXTERNAL_CALL;
  2046. irq->u.extcall = li->irq.extcall;
  2047. break;
  2048. case IRQ_PEND_EXT_CLOCK_COMP:
  2049. irq->type = KVM_S390_INT_CLOCK_COMP;
  2050. break;
  2051. case IRQ_PEND_EXT_CPU_TIMER:
  2052. irq->type = KVM_S390_INT_CPU_TIMER;
  2053. break;
  2054. case IRQ_PEND_SIGP_STOP:
  2055. irq->type = KVM_S390_SIGP_STOP;
  2056. irq->u.stop = li->irq.stop;
  2057. break;
  2058. case IRQ_PEND_RESTART:
  2059. irq->type = KVM_S390_RESTART;
  2060. break;
  2061. case IRQ_PEND_SET_PREFIX:
  2062. irq->type = KVM_S390_SIGP_SET_PREFIX;
  2063. irq->u.prefix = li->irq.prefix;
  2064. break;
  2065. }
  2066. }
  2067. int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
  2068. {
  2069. int scn;
  2070. unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
  2071. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2072. unsigned long pending_irqs;
  2073. struct kvm_s390_irq irq;
  2074. unsigned long irq_type;
  2075. int cpuaddr;
  2076. int n = 0;
  2077. spin_lock(&li->lock);
  2078. pending_irqs = li->pending_irqs;
  2079. memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
  2080. sizeof(sigp_emerg_pending));
  2081. spin_unlock(&li->lock);
  2082. for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
  2083. memset(&irq, 0, sizeof(irq));
  2084. if (irq_type == IRQ_PEND_EXT_EMERGENCY)
  2085. continue;
  2086. if (n + sizeof(irq) > len)
  2087. return -ENOBUFS;
  2088. store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
  2089. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2090. return -EFAULT;
  2091. n += sizeof(irq);
  2092. }
  2093. if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
  2094. for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
  2095. memset(&irq, 0, sizeof(irq));
  2096. if (n + sizeof(irq) > len)
  2097. return -ENOBUFS;
  2098. irq.type = KVM_S390_INT_EMERGENCY;
  2099. irq.u.emerg.code = cpuaddr;
  2100. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2101. return -EFAULT;
  2102. n += sizeof(irq);
  2103. }
  2104. }
  2105. if (sca_ext_call_pending(vcpu, &scn)) {
  2106. if (n + sizeof(irq) > len)
  2107. return -ENOBUFS;
  2108. memset(&irq, 0, sizeof(irq));
  2109. irq.type = KVM_S390_INT_EXTERNAL_CALL;
  2110. irq.u.extcall.code = scn;
  2111. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2112. return -EFAULT;
  2113. n += sizeof(irq);
  2114. }
  2115. return n;
  2116. }