time.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338
  1. /*
  2. * linux/arch/parisc/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6. * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7. *
  8. * 1994-07-02 Alan Modra
  9. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. */
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/rtc.h>
  16. #include <linux/sched.h>
  17. #include <linux/kernel.h>
  18. #include <linux/param.h>
  19. #include <linux/string.h>
  20. #include <linux/mm.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/time.h>
  23. #include <linux/init.h>
  24. #include <linux/smp.h>
  25. #include <linux/profile.h>
  26. #include <linux/clocksource.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/ftrace.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/page.h>
  33. #include <asm/param.h>
  34. #include <asm/pdc.h>
  35. #include <asm/led.h>
  36. #include <linux/timex.h>
  37. static unsigned long clocktick __read_mostly; /* timer cycles per tick */
  38. #ifndef CONFIG_64BIT
  39. /*
  40. * The processor-internal cycle counter (Control Register 16) is used as time
  41. * source for the sched_clock() function. This register is 64bit wide on a
  42. * 64-bit kernel and 32bit on a 32-bit kernel. Since sched_clock() always
  43. * requires a 64bit counter we emulate on the 32-bit kernel the higher 32bits
  44. * with a per-cpu variable which we increase every time the counter
  45. * wraps-around (which happens every ~4 secounds).
  46. */
  47. static DEFINE_PER_CPU(unsigned long, cr16_high_32_bits);
  48. #endif
  49. /*
  50. * We keep time on PA-RISC Linux by using the Interval Timer which is
  51. * a pair of registers; one is read-only and one is write-only; both
  52. * accessed through CR16. The read-only register is 32 or 64 bits wide,
  53. * and increments by 1 every CPU clock tick. The architecture only
  54. * guarantees us a rate between 0.5 and 2, but all implementations use a
  55. * rate of 1. The write-only register is 32-bits wide. When the lowest
  56. * 32 bits of the read-only register compare equal to the write-only
  57. * register, it raises a maskable external interrupt. Each processor has
  58. * an Interval Timer of its own and they are not synchronised.
  59. *
  60. * We want to generate an interrupt every 1/HZ seconds. So we program
  61. * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
  62. * is programmed with the intended time of the next tick. We can be
  63. * held off for an arbitrarily long period of time by interrupts being
  64. * disabled, so we may miss one or more ticks.
  65. */
  66. irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
  67. {
  68. unsigned long now, now2;
  69. unsigned long next_tick;
  70. unsigned long cycles_elapsed, ticks_elapsed = 1;
  71. unsigned long cycles_remainder;
  72. unsigned int cpu = smp_processor_id();
  73. struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
  74. /* gcc can optimize for "read-only" case with a local clocktick */
  75. unsigned long cpt = clocktick;
  76. profile_tick(CPU_PROFILING);
  77. /* Initialize next_tick to the expected tick time. */
  78. next_tick = cpuinfo->it_value;
  79. /* Get current cycle counter (Control Register 16). */
  80. now = mfctl(16);
  81. cycles_elapsed = now - next_tick;
  82. if ((cycles_elapsed >> 6) < cpt) {
  83. /* use "cheap" math (add/subtract) instead
  84. * of the more expensive div/mul method
  85. */
  86. cycles_remainder = cycles_elapsed;
  87. while (cycles_remainder > cpt) {
  88. cycles_remainder -= cpt;
  89. ticks_elapsed++;
  90. }
  91. } else {
  92. /* TODO: Reduce this to one fdiv op */
  93. cycles_remainder = cycles_elapsed % cpt;
  94. ticks_elapsed += cycles_elapsed / cpt;
  95. }
  96. /* convert from "division remainder" to "remainder of clock tick" */
  97. cycles_remainder = cpt - cycles_remainder;
  98. /* Determine when (in CR16 cycles) next IT interrupt will fire.
  99. * We want IT to fire modulo clocktick even if we miss/skip some.
  100. * But those interrupts don't in fact get delivered that regularly.
  101. */
  102. next_tick = now + cycles_remainder;
  103. cpuinfo->it_value = next_tick;
  104. /* Program the IT when to deliver the next interrupt.
  105. * Only bottom 32-bits of next_tick are writable in CR16!
  106. */
  107. mtctl(next_tick, 16);
  108. #if !defined(CONFIG_64BIT)
  109. /* check for overflow on a 32bit kernel (every ~4 seconds). */
  110. if (unlikely(next_tick < now))
  111. this_cpu_inc(cr16_high_32_bits);
  112. #endif
  113. /* Skip one clocktick on purpose if we missed next_tick.
  114. * The new CR16 must be "later" than current CR16 otherwise
  115. * itimer would not fire until CR16 wrapped - e.g 4 seconds
  116. * later on a 1Ghz processor. We'll account for the missed
  117. * tick on the next timer interrupt.
  118. *
  119. * "next_tick - now" will always give the difference regardless
  120. * if one or the other wrapped. If "now" is "bigger" we'll end up
  121. * with a very large unsigned number.
  122. */
  123. now2 = mfctl(16);
  124. if (next_tick - now2 > cpt)
  125. mtctl(next_tick+cpt, 16);
  126. #if 1
  127. /*
  128. * GGG: DEBUG code for how many cycles programming CR16 used.
  129. */
  130. if (unlikely(now2 - now > 0x3000)) /* 12K cycles */
  131. printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
  132. " cyc %lX rem %lX "
  133. " next/now %lX/%lX\n",
  134. cpu, now2 - now, cycles_elapsed, cycles_remainder,
  135. next_tick, now );
  136. #endif
  137. /* Can we differentiate between "early CR16" (aka Scenario 1) and
  138. * "long delay" (aka Scenario 3)? I don't think so.
  139. *
  140. * Timer_interrupt will be delivered at least a few hundred cycles
  141. * after the IT fires. But it's arbitrary how much time passes
  142. * before we call it "late". I've picked one second.
  143. *
  144. * It's important NO printk's are between reading CR16 and
  145. * setting up the next value. May introduce huge variance.
  146. */
  147. if (unlikely(ticks_elapsed > HZ)) {
  148. /* Scenario 3: very long delay? bad in any case */
  149. printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
  150. " cycles %lX rem %lX "
  151. " next/now %lX/%lX\n",
  152. cpu,
  153. cycles_elapsed, cycles_remainder,
  154. next_tick, now );
  155. }
  156. /* Done mucking with unreliable delivery of interrupts.
  157. * Go do system house keeping.
  158. */
  159. if (!--cpuinfo->prof_counter) {
  160. cpuinfo->prof_counter = cpuinfo->prof_multiplier;
  161. update_process_times(user_mode(get_irq_regs()));
  162. }
  163. if (cpu == 0)
  164. xtime_update(ticks_elapsed);
  165. return IRQ_HANDLED;
  166. }
  167. unsigned long profile_pc(struct pt_regs *regs)
  168. {
  169. unsigned long pc = instruction_pointer(regs);
  170. if (regs->gr[0] & PSW_N)
  171. pc -= 4;
  172. #ifdef CONFIG_SMP
  173. if (in_lock_functions(pc))
  174. pc = regs->gr[2];
  175. #endif
  176. return pc;
  177. }
  178. EXPORT_SYMBOL(profile_pc);
  179. /* clock source code */
  180. static cycle_t read_cr16(struct clocksource *cs)
  181. {
  182. return get_cycles();
  183. }
  184. static struct clocksource clocksource_cr16 = {
  185. .name = "cr16",
  186. .rating = 300,
  187. .read = read_cr16,
  188. .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
  189. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  190. };
  191. void __init start_cpu_itimer(void)
  192. {
  193. unsigned int cpu = smp_processor_id();
  194. unsigned long next_tick = mfctl(16) + clocktick;
  195. #if defined(CONFIG_HAVE_UNSTABLE_SCHED_CLOCK) && defined(CONFIG_64BIT)
  196. /* With multiple 64bit CPUs online, the cr16's are not syncronized. */
  197. if (cpu != 0)
  198. clear_sched_clock_stable();
  199. #endif
  200. mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
  201. per_cpu(cpu_data, cpu).it_value = next_tick;
  202. }
  203. #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
  204. static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
  205. {
  206. struct pdc_tod tod_data;
  207. memset(tm, 0, sizeof(*tm));
  208. if (pdc_tod_read(&tod_data) < 0)
  209. return -EOPNOTSUPP;
  210. /* we treat tod_sec as unsigned, so this can work until year 2106 */
  211. rtc_time64_to_tm(tod_data.tod_sec, tm);
  212. return rtc_valid_tm(tm);
  213. }
  214. static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
  215. {
  216. time64_t secs = rtc_tm_to_time64(tm);
  217. if (pdc_tod_set(secs, 0) < 0)
  218. return -EOPNOTSUPP;
  219. return 0;
  220. }
  221. static const struct rtc_class_ops rtc_generic_ops = {
  222. .read_time = rtc_generic_get_time,
  223. .set_time = rtc_generic_set_time,
  224. };
  225. static int __init rtc_init(void)
  226. {
  227. struct platform_device *pdev;
  228. pdev = platform_device_register_data(NULL, "rtc-generic", -1,
  229. &rtc_generic_ops,
  230. sizeof(rtc_generic_ops));
  231. return PTR_ERR_OR_ZERO(pdev);
  232. }
  233. device_initcall(rtc_init);
  234. #endif
  235. void read_persistent_clock(struct timespec *ts)
  236. {
  237. static struct pdc_tod tod_data;
  238. if (pdc_tod_read(&tod_data) == 0) {
  239. ts->tv_sec = tod_data.tod_sec;
  240. ts->tv_nsec = tod_data.tod_usec * 1000;
  241. } else {
  242. printk(KERN_ERR "Error reading tod clock\n");
  243. ts->tv_sec = 0;
  244. ts->tv_nsec = 0;
  245. }
  246. }
  247. /*
  248. * sched_clock() framework
  249. */
  250. static u32 cyc2ns_mul __read_mostly;
  251. static u32 cyc2ns_shift __read_mostly;
  252. u64 sched_clock(void)
  253. {
  254. u64 now;
  255. /* Get current cycle counter (Control Register 16). */
  256. #ifdef CONFIG_64BIT
  257. now = mfctl(16);
  258. #else
  259. now = mfctl(16) + (((u64) this_cpu_read(cr16_high_32_bits)) << 32);
  260. #endif
  261. /* return the value in ns (cycles_2_ns) */
  262. return mul_u64_u32_shr(now, cyc2ns_mul, cyc2ns_shift);
  263. }
  264. /*
  265. * timer interrupt and sched_clock() initialization
  266. */
  267. void __init time_init(void)
  268. {
  269. unsigned long current_cr16_khz;
  270. current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
  271. clocktick = (100 * PAGE0->mem_10msec) / HZ;
  272. /* calculate mult/shift values for cr16 */
  273. clocks_calc_mult_shift(&cyc2ns_mul, &cyc2ns_shift, current_cr16_khz,
  274. NSEC_PER_MSEC, 0);
  275. start_cpu_itimer(); /* get CPU 0 started */
  276. /* register at clocksource framework */
  277. clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
  278. }