process.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. /*
  2. * Based on arch/arm/kernel/process.c
  3. *
  4. * Original Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  6. * Copyright (C) 2012 ARM Ltd.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include <stdarg.h>
  21. #include <linux/compat.h>
  22. #include <linux/efi.h>
  23. #include <linux/export.h>
  24. #include <linux/sched.h>
  25. #include <linux/kernel.h>
  26. #include <linux/mm.h>
  27. #include <linux/stddef.h>
  28. #include <linux/unistd.h>
  29. #include <linux/user.h>
  30. #include <linux/delay.h>
  31. #include <linux/reboot.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kallsyms.h>
  34. #include <linux/init.h>
  35. #include <linux/cpu.h>
  36. #include <linux/elfcore.h>
  37. #include <linux/pm.h>
  38. #include <linux/tick.h>
  39. #include <linux/utsname.h>
  40. #include <linux/uaccess.h>
  41. #include <linux/random.h>
  42. #include <linux/hw_breakpoint.h>
  43. #include <linux/personality.h>
  44. #include <linux/notifier.h>
  45. #include <trace/events/power.h>
  46. #include <asm/alternative.h>
  47. #include <asm/compat.h>
  48. #include <asm/cacheflush.h>
  49. #include <asm/fpsimd.h>
  50. #include <asm/mmu_context.h>
  51. #include <asm/processor.h>
  52. #include <asm/stacktrace.h>
  53. #ifdef CONFIG_CC_STACKPROTECTOR
  54. #include <linux/stackprotector.h>
  55. unsigned long __stack_chk_guard __read_mostly;
  56. EXPORT_SYMBOL(__stack_chk_guard);
  57. #endif
  58. /*
  59. * Function pointers to optional machine specific functions
  60. */
  61. void (*pm_power_off)(void);
  62. EXPORT_SYMBOL_GPL(pm_power_off);
  63. void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  64. /*
  65. * This is our default idle handler.
  66. */
  67. void arch_cpu_idle(void)
  68. {
  69. /*
  70. * This should do all the clock switching and wait for interrupt
  71. * tricks
  72. */
  73. trace_cpu_idle_rcuidle(1, smp_processor_id());
  74. cpu_do_idle();
  75. local_irq_enable();
  76. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  77. }
  78. #ifdef CONFIG_HOTPLUG_CPU
  79. void arch_cpu_idle_dead(void)
  80. {
  81. cpu_die();
  82. }
  83. #endif
  84. /*
  85. * Called by kexec, immediately prior to machine_kexec().
  86. *
  87. * This must completely disable all secondary CPUs; simply causing those CPUs
  88. * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
  89. * kexec'd kernel to use any and all RAM as it sees fit, without having to
  90. * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
  91. * functionality embodied in disable_nonboot_cpus() to achieve this.
  92. */
  93. void machine_shutdown(void)
  94. {
  95. disable_nonboot_cpus();
  96. }
  97. /*
  98. * Halting simply requires that the secondary CPUs stop performing any
  99. * activity (executing tasks, handling interrupts). smp_send_stop()
  100. * achieves this.
  101. */
  102. void machine_halt(void)
  103. {
  104. local_irq_disable();
  105. smp_send_stop();
  106. while (1);
  107. }
  108. /*
  109. * Power-off simply requires that the secondary CPUs stop performing any
  110. * activity (executing tasks, handling interrupts). smp_send_stop()
  111. * achieves this. When the system power is turned off, it will take all CPUs
  112. * with it.
  113. */
  114. void machine_power_off(void)
  115. {
  116. local_irq_disable();
  117. smp_send_stop();
  118. if (pm_power_off)
  119. pm_power_off();
  120. }
  121. /*
  122. * Restart requires that the secondary CPUs stop performing any activity
  123. * while the primary CPU resets the system. Systems with multiple CPUs must
  124. * provide a HW restart implementation, to ensure that all CPUs reset at once.
  125. * This is required so that any code running after reset on the primary CPU
  126. * doesn't have to co-ordinate with other CPUs to ensure they aren't still
  127. * executing pre-reset code, and using RAM that the primary CPU's code wishes
  128. * to use. Implementing such co-ordination would be essentially impossible.
  129. */
  130. void machine_restart(char *cmd)
  131. {
  132. /* Disable interrupts first */
  133. local_irq_disable();
  134. smp_send_stop();
  135. /*
  136. * UpdateCapsule() depends on the system being reset via
  137. * ResetSystem().
  138. */
  139. if (efi_enabled(EFI_RUNTIME_SERVICES))
  140. efi_reboot(reboot_mode, NULL);
  141. /* Now call the architecture specific reboot code. */
  142. if (arm_pm_restart)
  143. arm_pm_restart(reboot_mode, cmd);
  144. else
  145. do_kernel_restart(cmd);
  146. /*
  147. * Whoops - the architecture was unable to reboot.
  148. */
  149. printk("Reboot failed -- System halted\n");
  150. while (1);
  151. }
  152. void __show_regs(struct pt_regs *regs)
  153. {
  154. int i, top_reg;
  155. u64 lr, sp;
  156. if (compat_user_mode(regs)) {
  157. lr = regs->compat_lr;
  158. sp = regs->compat_sp;
  159. top_reg = 12;
  160. } else {
  161. lr = regs->regs[30];
  162. sp = regs->sp;
  163. top_reg = 29;
  164. }
  165. show_regs_print_info(KERN_DEFAULT);
  166. print_symbol("PC is at %s\n", instruction_pointer(regs));
  167. print_symbol("LR is at %s\n", lr);
  168. printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
  169. regs->pc, lr, regs->pstate);
  170. printk("sp : %016llx\n", sp);
  171. for (i = top_reg; i >= 0; i--) {
  172. printk("x%-2d: %016llx ", i, regs->regs[i]);
  173. if (i % 2 == 0)
  174. printk("\n");
  175. }
  176. printk("\n");
  177. }
  178. void show_regs(struct pt_regs * regs)
  179. {
  180. printk("\n");
  181. __show_regs(regs);
  182. }
  183. static void tls_thread_flush(void)
  184. {
  185. asm ("msr tpidr_el0, xzr");
  186. if (is_compat_task()) {
  187. current->thread.tp_value = 0;
  188. /*
  189. * We need to ensure ordering between the shadow state and the
  190. * hardware state, so that we don't corrupt the hardware state
  191. * with a stale shadow state during context switch.
  192. */
  193. barrier();
  194. asm ("msr tpidrro_el0, xzr");
  195. }
  196. }
  197. void flush_thread(void)
  198. {
  199. fpsimd_flush_thread();
  200. tls_thread_flush();
  201. flush_ptrace_hw_breakpoint(current);
  202. }
  203. void release_thread(struct task_struct *dead_task)
  204. {
  205. }
  206. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  207. {
  208. if (current->mm)
  209. fpsimd_preserve_current_state();
  210. *dst = *src;
  211. return 0;
  212. }
  213. asmlinkage void ret_from_fork(void) asm("ret_from_fork");
  214. int copy_thread(unsigned long clone_flags, unsigned long stack_start,
  215. unsigned long stk_sz, struct task_struct *p)
  216. {
  217. struct pt_regs *childregs = task_pt_regs(p);
  218. memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
  219. if (likely(!(p->flags & PF_KTHREAD))) {
  220. *childregs = *current_pt_regs();
  221. childregs->regs[0] = 0;
  222. /*
  223. * Read the current TLS pointer from tpidr_el0 as it may be
  224. * out-of-sync with the saved value.
  225. */
  226. asm("mrs %0, tpidr_el0" : "=r" (*task_user_tls(p)));
  227. if (stack_start) {
  228. if (is_compat_thread(task_thread_info(p)))
  229. childregs->compat_sp = stack_start;
  230. else
  231. childregs->sp = stack_start;
  232. }
  233. /*
  234. * If a TLS pointer was passed to clone (4th argument), use it
  235. * for the new thread.
  236. */
  237. if (clone_flags & CLONE_SETTLS)
  238. p->thread.tp_value = childregs->regs[3];
  239. } else {
  240. memset(childregs, 0, sizeof(struct pt_regs));
  241. childregs->pstate = PSR_MODE_EL1h;
  242. if (IS_ENABLED(CONFIG_ARM64_UAO) &&
  243. cpus_have_cap(ARM64_HAS_UAO))
  244. childregs->pstate |= PSR_UAO_BIT;
  245. p->thread.cpu_context.x19 = stack_start;
  246. p->thread.cpu_context.x20 = stk_sz;
  247. }
  248. p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
  249. p->thread.cpu_context.sp = (unsigned long)childregs;
  250. ptrace_hw_copy_thread(p);
  251. return 0;
  252. }
  253. static void tls_thread_switch(struct task_struct *next)
  254. {
  255. unsigned long tpidr, tpidrro;
  256. asm("mrs %0, tpidr_el0" : "=r" (tpidr));
  257. *task_user_tls(current) = tpidr;
  258. tpidr = *task_user_tls(next);
  259. tpidrro = is_compat_thread(task_thread_info(next)) ?
  260. next->thread.tp_value : 0;
  261. asm(
  262. " msr tpidr_el0, %0\n"
  263. " msr tpidrro_el0, %1"
  264. : : "r" (tpidr), "r" (tpidrro));
  265. }
  266. /* Restore the UAO state depending on next's addr_limit */
  267. static void uao_thread_switch(struct task_struct *next)
  268. {
  269. if (IS_ENABLED(CONFIG_ARM64_UAO)) {
  270. if (task_thread_info(next)->addr_limit == KERNEL_DS)
  271. asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
  272. else
  273. asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
  274. }
  275. }
  276. /*
  277. * Thread switching.
  278. */
  279. struct task_struct *__switch_to(struct task_struct *prev,
  280. struct task_struct *next)
  281. {
  282. struct task_struct *last;
  283. fpsimd_thread_switch(next);
  284. tls_thread_switch(next);
  285. hw_breakpoint_thread_switch(next);
  286. contextidr_thread_switch(next);
  287. uao_thread_switch(next);
  288. /*
  289. * Complete any pending TLB or cache maintenance on this CPU in case
  290. * the thread migrates to a different CPU.
  291. */
  292. dsb(ish);
  293. /* the actual thread switch */
  294. last = cpu_switch_to(prev, next);
  295. return last;
  296. }
  297. unsigned long get_wchan(struct task_struct *p)
  298. {
  299. struct stackframe frame;
  300. unsigned long stack_page;
  301. int count = 0;
  302. if (!p || p == current || p->state == TASK_RUNNING)
  303. return 0;
  304. frame.fp = thread_saved_fp(p);
  305. frame.sp = thread_saved_sp(p);
  306. frame.pc = thread_saved_pc(p);
  307. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  308. frame.graph = p->curr_ret_stack;
  309. #endif
  310. stack_page = (unsigned long)task_stack_page(p);
  311. do {
  312. if (frame.sp < stack_page ||
  313. frame.sp >= stack_page + THREAD_SIZE ||
  314. unwind_frame(p, &frame))
  315. return 0;
  316. if (!in_sched_functions(frame.pc))
  317. return frame.pc;
  318. } while (count ++ < 16);
  319. return 0;
  320. }
  321. unsigned long arch_align_stack(unsigned long sp)
  322. {
  323. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  324. sp -= get_random_int() & ~PAGE_MASK;
  325. return sp & ~0xf;
  326. }
  327. unsigned long arch_randomize_brk(struct mm_struct *mm)
  328. {
  329. unsigned long range_end = mm->brk;
  330. if (is_compat_task())
  331. range_end += 0x02000000;
  332. else
  333. range_end += 0x40000000;
  334. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  335. }