cpufeature.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083
  1. /*
  2. * Contains CPU feature definitions
  3. *
  4. * Copyright (C) 2015 ARM Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #define pr_fmt(fmt) "CPU features: " fmt
  19. #include <linux/bsearch.h>
  20. #include <linux/sort.h>
  21. #include <linux/types.h>
  22. #include <asm/cpu.h>
  23. #include <asm/cpufeature.h>
  24. #include <asm/cpu_ops.h>
  25. #include <asm/mmu_context.h>
  26. #include <asm/processor.h>
  27. #include <asm/sysreg.h>
  28. #include <asm/virt.h>
  29. unsigned long elf_hwcap __read_mostly;
  30. EXPORT_SYMBOL_GPL(elf_hwcap);
  31. #ifdef CONFIG_COMPAT
  32. #define COMPAT_ELF_HWCAP_DEFAULT \
  33. (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
  34. COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
  35. COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
  36. COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
  37. COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
  38. COMPAT_HWCAP_LPAE)
  39. unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
  40. unsigned int compat_elf_hwcap2 __read_mostly;
  41. #endif
  42. DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
  43. #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
  44. { \
  45. .sign = SIGNED, \
  46. .strict = STRICT, \
  47. .type = TYPE, \
  48. .shift = SHIFT, \
  49. .width = WIDTH, \
  50. .safe_val = SAFE_VAL, \
  51. }
  52. /* Define a feature with unsigned values */
  53. #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
  54. __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
  55. /* Define a feature with a signed value */
  56. #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
  57. __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
  58. #define ARM64_FTR_END \
  59. { \
  60. .width = 0, \
  61. }
  62. /* meta feature for alternatives */
  63. static bool __maybe_unused
  64. cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
  65. static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
  66. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
  67. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
  68. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
  69. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
  70. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
  71. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
  72. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
  73. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
  74. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
  75. ARM64_FTR_END,
  76. };
  77. static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
  78. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
  79. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
  80. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
  81. S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
  82. S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
  83. /* Linux doesn't care about the EL3 */
  84. ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
  85. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
  86. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
  87. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
  88. ARM64_FTR_END,
  89. };
  90. static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
  91. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
  92. S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
  93. S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
  94. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
  95. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
  96. /* Linux shouldn't care about secure memory */
  97. ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
  98. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
  99. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
  100. /*
  101. * Differing PARange is fine as long as all peripherals and memory are mapped
  102. * within the minimum PARange of all CPUs
  103. */
  104. ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
  105. ARM64_FTR_END,
  106. };
  107. static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
  108. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
  109. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
  110. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
  111. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
  112. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
  113. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
  114. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
  115. ARM64_FTR_END,
  116. };
  117. static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
  118. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
  119. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
  120. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
  121. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
  122. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
  123. ARM64_FTR_END,
  124. };
  125. static struct arm64_ftr_bits ftr_ctr[] = {
  126. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
  127. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
  128. ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
  129. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
  130. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
  131. /*
  132. * Linux can handle differing I-cache policies. Userspace JITs will
  133. * make use of *minLine
  134. */
  135. ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0), /* L1Ip */
  136. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
  137. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
  138. ARM64_FTR_END,
  139. };
  140. static struct arm64_ftr_bits ftr_id_mmfr0[] = {
  141. S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
  142. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
  143. ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
  144. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
  145. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
  146. S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
  147. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
  148. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
  149. ARM64_FTR_END,
  150. };
  151. static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
  152. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
  153. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
  154. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
  155. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
  156. S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
  157. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
  158. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
  159. ARM64_FTR_END,
  160. };
  161. static struct arm64_ftr_bits ftr_mvfr2[] = {
  162. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
  163. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
  164. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
  165. ARM64_FTR_END,
  166. };
  167. static struct arm64_ftr_bits ftr_dczid[] = {
  168. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
  169. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
  170. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
  171. ARM64_FTR_END,
  172. };
  173. static struct arm64_ftr_bits ftr_id_isar5[] = {
  174. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
  175. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
  176. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
  177. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
  178. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
  179. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
  180. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
  181. ARM64_FTR_END,
  182. };
  183. static struct arm64_ftr_bits ftr_id_mmfr4[] = {
  184. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
  185. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
  186. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
  187. ARM64_FTR_END,
  188. };
  189. static struct arm64_ftr_bits ftr_id_pfr0[] = {
  190. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
  191. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
  192. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
  193. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
  194. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
  195. ARM64_FTR_END,
  196. };
  197. static struct arm64_ftr_bits ftr_id_dfr0[] = {
  198. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
  199. S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
  200. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
  201. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
  202. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
  203. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
  204. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
  205. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
  206. ARM64_FTR_END,
  207. };
  208. /*
  209. * Common ftr bits for a 32bit register with all hidden, strict
  210. * attributes, with 4bit feature fields and a default safe value of
  211. * 0. Covers the following 32bit registers:
  212. * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
  213. */
  214. static struct arm64_ftr_bits ftr_generic_32bits[] = {
  215. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
  216. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
  217. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
  218. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
  219. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
  220. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
  221. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
  222. ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
  223. ARM64_FTR_END,
  224. };
  225. static struct arm64_ftr_bits ftr_generic[] = {
  226. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
  227. ARM64_FTR_END,
  228. };
  229. static struct arm64_ftr_bits ftr_generic32[] = {
  230. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
  231. ARM64_FTR_END,
  232. };
  233. static struct arm64_ftr_bits ftr_aa64raz[] = {
  234. ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
  235. ARM64_FTR_END,
  236. };
  237. #define ARM64_FTR_REG(id, table) \
  238. { \
  239. .sys_id = id, \
  240. .name = #id, \
  241. .ftr_bits = &((table)[0]), \
  242. }
  243. static struct arm64_ftr_reg arm64_ftr_regs[] = {
  244. /* Op1 = 0, CRn = 0, CRm = 1 */
  245. ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
  246. ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
  247. ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
  248. ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
  249. ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
  250. ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
  251. ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
  252. /* Op1 = 0, CRn = 0, CRm = 2 */
  253. ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
  254. ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
  255. ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
  256. ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
  257. ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
  258. ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
  259. ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
  260. /* Op1 = 0, CRn = 0, CRm = 3 */
  261. ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
  262. ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
  263. ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
  264. /* Op1 = 0, CRn = 0, CRm = 4 */
  265. ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
  266. ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
  267. /* Op1 = 0, CRn = 0, CRm = 5 */
  268. ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
  269. ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
  270. /* Op1 = 0, CRn = 0, CRm = 6 */
  271. ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
  272. ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
  273. /* Op1 = 0, CRn = 0, CRm = 7 */
  274. ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
  275. ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
  276. ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
  277. /* Op1 = 3, CRn = 0, CRm = 0 */
  278. ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
  279. ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
  280. /* Op1 = 3, CRn = 14, CRm = 0 */
  281. ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
  282. };
  283. static int search_cmp_ftr_reg(const void *id, const void *regp)
  284. {
  285. return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
  286. }
  287. /*
  288. * get_arm64_ftr_reg - Lookup a feature register entry using its
  289. * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
  290. * ascending order of sys_id , we use binary search to find a matching
  291. * entry.
  292. *
  293. * returns - Upon success, matching ftr_reg entry for id.
  294. * - NULL on failure. It is upto the caller to decide
  295. * the impact of a failure.
  296. */
  297. static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
  298. {
  299. return bsearch((const void *)(unsigned long)sys_id,
  300. arm64_ftr_regs,
  301. ARRAY_SIZE(arm64_ftr_regs),
  302. sizeof(arm64_ftr_regs[0]),
  303. search_cmp_ftr_reg);
  304. }
  305. static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
  306. {
  307. u64 mask = arm64_ftr_mask(ftrp);
  308. reg &= ~mask;
  309. reg |= (ftr_val << ftrp->shift) & mask;
  310. return reg;
  311. }
  312. static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
  313. {
  314. s64 ret = 0;
  315. switch (ftrp->type) {
  316. case FTR_EXACT:
  317. ret = ftrp->safe_val;
  318. break;
  319. case FTR_LOWER_SAFE:
  320. ret = new < cur ? new : cur;
  321. break;
  322. case FTR_HIGHER_SAFE:
  323. ret = new > cur ? new : cur;
  324. break;
  325. default:
  326. BUG();
  327. }
  328. return ret;
  329. }
  330. static int __init sort_cmp_ftr_regs(const void *a, const void *b)
  331. {
  332. return ((const struct arm64_ftr_reg *)a)->sys_id -
  333. ((const struct arm64_ftr_reg *)b)->sys_id;
  334. }
  335. static void __init swap_ftr_regs(void *a, void *b, int size)
  336. {
  337. struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
  338. *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
  339. *(struct arm64_ftr_reg *)b = tmp;
  340. }
  341. static void __init sort_ftr_regs(void)
  342. {
  343. /* Keep the array sorted so that we can do the binary search */
  344. sort(arm64_ftr_regs,
  345. ARRAY_SIZE(arm64_ftr_regs),
  346. sizeof(arm64_ftr_regs[0]),
  347. sort_cmp_ftr_regs,
  348. swap_ftr_regs);
  349. }
  350. /*
  351. * Initialise the CPU feature register from Boot CPU values.
  352. * Also initiliases the strict_mask for the register.
  353. */
  354. static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
  355. {
  356. u64 val = 0;
  357. u64 strict_mask = ~0x0ULL;
  358. struct arm64_ftr_bits *ftrp;
  359. struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
  360. BUG_ON(!reg);
  361. for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
  362. s64 ftr_new = arm64_ftr_value(ftrp, new);
  363. val = arm64_ftr_set_value(ftrp, val, ftr_new);
  364. if (!ftrp->strict)
  365. strict_mask &= ~arm64_ftr_mask(ftrp);
  366. }
  367. reg->sys_val = val;
  368. reg->strict_mask = strict_mask;
  369. }
  370. void __init init_cpu_features(struct cpuinfo_arm64 *info)
  371. {
  372. /* Before we start using the tables, make sure it is sorted */
  373. sort_ftr_regs();
  374. init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
  375. init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
  376. init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
  377. init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
  378. init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
  379. init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
  380. init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
  381. init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
  382. init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
  383. init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
  384. init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
  385. init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
  386. if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
  387. init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
  388. init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
  389. init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
  390. init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
  391. init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
  392. init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
  393. init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
  394. init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
  395. init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
  396. init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
  397. init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
  398. init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
  399. init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
  400. init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
  401. init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
  402. init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
  403. }
  404. }
  405. static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
  406. {
  407. struct arm64_ftr_bits *ftrp;
  408. for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
  409. s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
  410. s64 ftr_new = arm64_ftr_value(ftrp, new);
  411. if (ftr_cur == ftr_new)
  412. continue;
  413. /* Find a safe value */
  414. ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
  415. reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
  416. }
  417. }
  418. static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
  419. {
  420. struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
  421. BUG_ON(!regp);
  422. update_cpu_ftr_reg(regp, val);
  423. if ((boot & regp->strict_mask) == (val & regp->strict_mask))
  424. return 0;
  425. pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
  426. regp->name, boot, cpu, val);
  427. return 1;
  428. }
  429. /*
  430. * Update system wide CPU feature registers with the values from a
  431. * non-boot CPU. Also performs SANITY checks to make sure that there
  432. * aren't any insane variations from that of the boot CPU.
  433. */
  434. void update_cpu_features(int cpu,
  435. struct cpuinfo_arm64 *info,
  436. struct cpuinfo_arm64 *boot)
  437. {
  438. int taint = 0;
  439. /*
  440. * The kernel can handle differing I-cache policies, but otherwise
  441. * caches should look identical. Userspace JITs will make use of
  442. * *minLine.
  443. */
  444. taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
  445. info->reg_ctr, boot->reg_ctr);
  446. /*
  447. * Userspace may perform DC ZVA instructions. Mismatched block sizes
  448. * could result in too much or too little memory being zeroed if a
  449. * process is preempted and migrated between CPUs.
  450. */
  451. taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
  452. info->reg_dczid, boot->reg_dczid);
  453. /* If different, timekeeping will be broken (especially with KVM) */
  454. taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
  455. info->reg_cntfrq, boot->reg_cntfrq);
  456. /*
  457. * The kernel uses self-hosted debug features and expects CPUs to
  458. * support identical debug features. We presently need CTX_CMPs, WRPs,
  459. * and BRPs to be identical.
  460. * ID_AA64DFR1 is currently RES0.
  461. */
  462. taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
  463. info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
  464. taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
  465. info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
  466. /*
  467. * Even in big.LITTLE, processors should be identical instruction-set
  468. * wise.
  469. */
  470. taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
  471. info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
  472. taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
  473. info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
  474. /*
  475. * Differing PARange support is fine as long as all peripherals and
  476. * memory are mapped within the minimum PARange of all CPUs.
  477. * Linux should not care about secure memory.
  478. */
  479. taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
  480. info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
  481. taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
  482. info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
  483. taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
  484. info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
  485. /*
  486. * EL3 is not our concern.
  487. * ID_AA64PFR1 is currently RES0.
  488. */
  489. taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
  490. info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
  491. taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
  492. info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
  493. /*
  494. * If we have AArch32, we care about 32-bit features for compat.
  495. * If the system doesn't support AArch32, don't update them.
  496. */
  497. if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
  498. id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
  499. taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
  500. info->reg_id_dfr0, boot->reg_id_dfr0);
  501. taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
  502. info->reg_id_isar0, boot->reg_id_isar0);
  503. taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
  504. info->reg_id_isar1, boot->reg_id_isar1);
  505. taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
  506. info->reg_id_isar2, boot->reg_id_isar2);
  507. taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
  508. info->reg_id_isar3, boot->reg_id_isar3);
  509. taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
  510. info->reg_id_isar4, boot->reg_id_isar4);
  511. taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
  512. info->reg_id_isar5, boot->reg_id_isar5);
  513. /*
  514. * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
  515. * ACTLR formats could differ across CPUs and therefore would have to
  516. * be trapped for virtualization anyway.
  517. */
  518. taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
  519. info->reg_id_mmfr0, boot->reg_id_mmfr0);
  520. taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
  521. info->reg_id_mmfr1, boot->reg_id_mmfr1);
  522. taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
  523. info->reg_id_mmfr2, boot->reg_id_mmfr2);
  524. taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
  525. info->reg_id_mmfr3, boot->reg_id_mmfr3);
  526. taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
  527. info->reg_id_pfr0, boot->reg_id_pfr0);
  528. taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
  529. info->reg_id_pfr1, boot->reg_id_pfr1);
  530. taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
  531. info->reg_mvfr0, boot->reg_mvfr0);
  532. taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
  533. info->reg_mvfr1, boot->reg_mvfr1);
  534. taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
  535. info->reg_mvfr2, boot->reg_mvfr2);
  536. }
  537. /*
  538. * Mismatched CPU features are a recipe for disaster. Don't even
  539. * pretend to support them.
  540. */
  541. WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
  542. "Unsupported CPU feature variation.\n");
  543. }
  544. u64 read_system_reg(u32 id)
  545. {
  546. struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
  547. /* We shouldn't get a request for an unsupported register */
  548. BUG_ON(!regp);
  549. return regp->sys_val;
  550. }
  551. /*
  552. * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
  553. * Read the system register on the current CPU
  554. */
  555. static u64 __raw_read_system_reg(u32 sys_id)
  556. {
  557. switch (sys_id) {
  558. case SYS_ID_PFR0_EL1: return read_cpuid(ID_PFR0_EL1);
  559. case SYS_ID_PFR1_EL1: return read_cpuid(ID_PFR1_EL1);
  560. case SYS_ID_DFR0_EL1: return read_cpuid(ID_DFR0_EL1);
  561. case SYS_ID_MMFR0_EL1: return read_cpuid(ID_MMFR0_EL1);
  562. case SYS_ID_MMFR1_EL1: return read_cpuid(ID_MMFR1_EL1);
  563. case SYS_ID_MMFR2_EL1: return read_cpuid(ID_MMFR2_EL1);
  564. case SYS_ID_MMFR3_EL1: return read_cpuid(ID_MMFR3_EL1);
  565. case SYS_ID_ISAR0_EL1: return read_cpuid(ID_ISAR0_EL1);
  566. case SYS_ID_ISAR1_EL1: return read_cpuid(ID_ISAR1_EL1);
  567. case SYS_ID_ISAR2_EL1: return read_cpuid(ID_ISAR2_EL1);
  568. case SYS_ID_ISAR3_EL1: return read_cpuid(ID_ISAR3_EL1);
  569. case SYS_ID_ISAR4_EL1: return read_cpuid(ID_ISAR4_EL1);
  570. case SYS_ID_ISAR5_EL1: return read_cpuid(ID_ISAR4_EL1);
  571. case SYS_MVFR0_EL1: return read_cpuid(MVFR0_EL1);
  572. case SYS_MVFR1_EL1: return read_cpuid(MVFR1_EL1);
  573. case SYS_MVFR2_EL1: return read_cpuid(MVFR2_EL1);
  574. case SYS_ID_AA64PFR0_EL1: return read_cpuid(ID_AA64PFR0_EL1);
  575. case SYS_ID_AA64PFR1_EL1: return read_cpuid(ID_AA64PFR0_EL1);
  576. case SYS_ID_AA64DFR0_EL1: return read_cpuid(ID_AA64DFR0_EL1);
  577. case SYS_ID_AA64DFR1_EL1: return read_cpuid(ID_AA64DFR0_EL1);
  578. case SYS_ID_AA64MMFR0_EL1: return read_cpuid(ID_AA64MMFR0_EL1);
  579. case SYS_ID_AA64MMFR1_EL1: return read_cpuid(ID_AA64MMFR1_EL1);
  580. case SYS_ID_AA64MMFR2_EL1: return read_cpuid(ID_AA64MMFR2_EL1);
  581. case SYS_ID_AA64ISAR0_EL1: return read_cpuid(ID_AA64ISAR0_EL1);
  582. case SYS_ID_AA64ISAR1_EL1: return read_cpuid(ID_AA64ISAR1_EL1);
  583. case SYS_CNTFRQ_EL0: return read_cpuid(CNTFRQ_EL0);
  584. case SYS_CTR_EL0: return read_cpuid(CTR_EL0);
  585. case SYS_DCZID_EL0: return read_cpuid(DCZID_EL0);
  586. default:
  587. BUG();
  588. return 0;
  589. }
  590. }
  591. #include <linux/irqchip/arm-gic-v3.h>
  592. static bool
  593. feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
  594. {
  595. int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
  596. return val >= entry->min_field_value;
  597. }
  598. static bool
  599. has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
  600. {
  601. u64 val;
  602. WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
  603. if (scope == SCOPE_SYSTEM)
  604. val = read_system_reg(entry->sys_reg);
  605. else
  606. val = __raw_read_system_reg(entry->sys_reg);
  607. return feature_matches(val, entry);
  608. }
  609. static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
  610. {
  611. bool has_sre;
  612. if (!has_cpuid_feature(entry, scope))
  613. return false;
  614. has_sre = gic_enable_sre();
  615. if (!has_sre)
  616. pr_warn_once("%s present but disabled by higher exception level\n",
  617. entry->desc);
  618. return has_sre;
  619. }
  620. static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
  621. {
  622. u32 midr = read_cpuid_id();
  623. u32 rv_min, rv_max;
  624. /* Cavium ThunderX pass 1.x and 2.x */
  625. rv_min = 0;
  626. rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
  627. return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
  628. }
  629. static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
  630. {
  631. return is_kernel_in_hyp_mode();
  632. }
  633. static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
  634. int __unused)
  635. {
  636. phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
  637. /*
  638. * Activate the lower HYP offset only if:
  639. * - the idmap doesn't clash with it,
  640. * - the kernel is not running at EL2.
  641. */
  642. return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
  643. }
  644. static const struct arm64_cpu_capabilities arm64_features[] = {
  645. {
  646. .desc = "GIC system register CPU interface",
  647. .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
  648. .def_scope = SCOPE_SYSTEM,
  649. .matches = has_useable_gicv3_cpuif,
  650. .sys_reg = SYS_ID_AA64PFR0_EL1,
  651. .field_pos = ID_AA64PFR0_GIC_SHIFT,
  652. .sign = FTR_UNSIGNED,
  653. .min_field_value = 1,
  654. },
  655. #ifdef CONFIG_ARM64_PAN
  656. {
  657. .desc = "Privileged Access Never",
  658. .capability = ARM64_HAS_PAN,
  659. .def_scope = SCOPE_SYSTEM,
  660. .matches = has_cpuid_feature,
  661. .sys_reg = SYS_ID_AA64MMFR1_EL1,
  662. .field_pos = ID_AA64MMFR1_PAN_SHIFT,
  663. .sign = FTR_UNSIGNED,
  664. .min_field_value = 1,
  665. .enable = cpu_enable_pan,
  666. },
  667. #endif /* CONFIG_ARM64_PAN */
  668. #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
  669. {
  670. .desc = "LSE atomic instructions",
  671. .capability = ARM64_HAS_LSE_ATOMICS,
  672. .def_scope = SCOPE_SYSTEM,
  673. .matches = has_cpuid_feature,
  674. .sys_reg = SYS_ID_AA64ISAR0_EL1,
  675. .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
  676. .sign = FTR_UNSIGNED,
  677. .min_field_value = 2,
  678. },
  679. #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
  680. {
  681. .desc = "Software prefetching using PRFM",
  682. .capability = ARM64_HAS_NO_HW_PREFETCH,
  683. .def_scope = SCOPE_SYSTEM,
  684. .matches = has_no_hw_prefetch,
  685. },
  686. #ifdef CONFIG_ARM64_UAO
  687. {
  688. .desc = "User Access Override",
  689. .capability = ARM64_HAS_UAO,
  690. .def_scope = SCOPE_SYSTEM,
  691. .matches = has_cpuid_feature,
  692. .sys_reg = SYS_ID_AA64MMFR2_EL1,
  693. .field_pos = ID_AA64MMFR2_UAO_SHIFT,
  694. .min_field_value = 1,
  695. .enable = cpu_enable_uao,
  696. },
  697. #endif /* CONFIG_ARM64_UAO */
  698. #ifdef CONFIG_ARM64_PAN
  699. {
  700. .capability = ARM64_ALT_PAN_NOT_UAO,
  701. .def_scope = SCOPE_SYSTEM,
  702. .matches = cpufeature_pan_not_uao,
  703. },
  704. #endif /* CONFIG_ARM64_PAN */
  705. {
  706. .desc = "Virtualization Host Extensions",
  707. .capability = ARM64_HAS_VIRT_HOST_EXTN,
  708. .def_scope = SCOPE_SYSTEM,
  709. .matches = runs_at_el2,
  710. },
  711. {
  712. .desc = "32-bit EL0 Support",
  713. .capability = ARM64_HAS_32BIT_EL0,
  714. .def_scope = SCOPE_SYSTEM,
  715. .matches = has_cpuid_feature,
  716. .sys_reg = SYS_ID_AA64PFR0_EL1,
  717. .sign = FTR_UNSIGNED,
  718. .field_pos = ID_AA64PFR0_EL0_SHIFT,
  719. .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
  720. },
  721. {
  722. .desc = "Reduced HYP mapping offset",
  723. .capability = ARM64_HYP_OFFSET_LOW,
  724. .def_scope = SCOPE_SYSTEM,
  725. .matches = hyp_offset_low,
  726. },
  727. {},
  728. };
  729. #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
  730. { \
  731. .desc = #cap, \
  732. .def_scope = SCOPE_SYSTEM, \
  733. .matches = has_cpuid_feature, \
  734. .sys_reg = reg, \
  735. .field_pos = field, \
  736. .sign = s, \
  737. .min_field_value = min_value, \
  738. .hwcap_type = type, \
  739. .hwcap = cap, \
  740. }
  741. static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
  742. HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
  743. HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
  744. HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
  745. HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
  746. HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
  747. HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
  748. HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
  749. HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
  750. HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
  751. HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
  752. {},
  753. };
  754. static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
  755. #ifdef CONFIG_COMPAT
  756. HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
  757. HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
  758. HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
  759. HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
  760. HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
  761. #endif
  762. {},
  763. };
  764. static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
  765. {
  766. switch (cap->hwcap_type) {
  767. case CAP_HWCAP:
  768. elf_hwcap |= cap->hwcap;
  769. break;
  770. #ifdef CONFIG_COMPAT
  771. case CAP_COMPAT_HWCAP:
  772. compat_elf_hwcap |= (u32)cap->hwcap;
  773. break;
  774. case CAP_COMPAT_HWCAP2:
  775. compat_elf_hwcap2 |= (u32)cap->hwcap;
  776. break;
  777. #endif
  778. default:
  779. WARN_ON(1);
  780. break;
  781. }
  782. }
  783. /* Check if we have a particular HWCAP enabled */
  784. static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
  785. {
  786. bool rc;
  787. switch (cap->hwcap_type) {
  788. case CAP_HWCAP:
  789. rc = (elf_hwcap & cap->hwcap) != 0;
  790. break;
  791. #ifdef CONFIG_COMPAT
  792. case CAP_COMPAT_HWCAP:
  793. rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
  794. break;
  795. case CAP_COMPAT_HWCAP2:
  796. rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
  797. break;
  798. #endif
  799. default:
  800. WARN_ON(1);
  801. rc = false;
  802. }
  803. return rc;
  804. }
  805. static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
  806. {
  807. for (; hwcaps->matches; hwcaps++)
  808. if (hwcaps->matches(hwcaps, hwcaps->def_scope))
  809. cap_set_elf_hwcap(hwcaps);
  810. }
  811. void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
  812. const char *info)
  813. {
  814. for (; caps->matches; caps++) {
  815. if (!caps->matches(caps, caps->def_scope))
  816. continue;
  817. if (!cpus_have_cap(caps->capability) && caps->desc)
  818. pr_info("%s %s\n", info, caps->desc);
  819. cpus_set_cap(caps->capability);
  820. }
  821. }
  822. /*
  823. * Run through the enabled capabilities and enable() it on all active
  824. * CPUs
  825. */
  826. void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
  827. {
  828. for (; caps->matches; caps++)
  829. if (caps->enable && cpus_have_cap(caps->capability))
  830. on_each_cpu(caps->enable, NULL, true);
  831. }
  832. /*
  833. * Flag to indicate if we have computed the system wide
  834. * capabilities based on the boot time active CPUs. This
  835. * will be used to determine if a new booting CPU should
  836. * go through the verification process to make sure that it
  837. * supports the system capabilities, without using a hotplug
  838. * notifier.
  839. */
  840. static bool sys_caps_initialised;
  841. static inline void set_sys_caps_initialised(void)
  842. {
  843. sys_caps_initialised = true;
  844. }
  845. /*
  846. * Check for CPU features that are used in early boot
  847. * based on the Boot CPU value.
  848. */
  849. static void check_early_cpu_features(void)
  850. {
  851. verify_cpu_run_el();
  852. verify_cpu_asid_bits();
  853. }
  854. static void
  855. verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
  856. {
  857. for (; caps->matches; caps++)
  858. if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
  859. pr_crit("CPU%d: missing HWCAP: %s\n",
  860. smp_processor_id(), caps->desc);
  861. cpu_die_early();
  862. }
  863. }
  864. static void
  865. verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
  866. {
  867. for (; caps->matches; caps++) {
  868. if (!cpus_have_cap(caps->capability))
  869. continue;
  870. /*
  871. * If the new CPU misses an advertised feature, we cannot proceed
  872. * further, park the cpu.
  873. */
  874. if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
  875. pr_crit("CPU%d: missing feature: %s\n",
  876. smp_processor_id(), caps->desc);
  877. cpu_die_early();
  878. }
  879. if (caps->enable)
  880. caps->enable(NULL);
  881. }
  882. }
  883. /*
  884. * Run through the enabled system capabilities and enable() it on this CPU.
  885. * The capabilities were decided based on the available CPUs at the boot time.
  886. * Any new CPU should match the system wide status of the capability. If the
  887. * new CPU doesn't have a capability which the system now has enabled, we
  888. * cannot do anything to fix it up and could cause unexpected failures. So
  889. * we park the CPU.
  890. */
  891. void verify_local_cpu_capabilities(void)
  892. {
  893. check_early_cpu_features();
  894. /*
  895. * If we haven't computed the system capabilities, there is nothing
  896. * to verify.
  897. */
  898. if (!sys_caps_initialised)
  899. return;
  900. verify_local_cpu_errata();
  901. verify_local_cpu_features(arm64_features);
  902. verify_local_elf_hwcaps(arm64_elf_hwcaps);
  903. if (system_supports_32bit_el0())
  904. verify_local_elf_hwcaps(compat_elf_hwcaps);
  905. }
  906. static void __init setup_feature_capabilities(void)
  907. {
  908. update_cpu_capabilities(arm64_features, "detected feature:");
  909. enable_cpu_capabilities(arm64_features);
  910. }
  911. /*
  912. * Check if the current CPU has a given feature capability.
  913. * Should be called from non-preemptible context.
  914. */
  915. bool this_cpu_has_cap(unsigned int cap)
  916. {
  917. const struct arm64_cpu_capabilities *caps;
  918. if (WARN_ON(preemptible()))
  919. return false;
  920. for (caps = arm64_features; caps->desc; caps++)
  921. if (caps->capability == cap && caps->matches)
  922. return caps->matches(caps, SCOPE_LOCAL_CPU);
  923. return false;
  924. }
  925. void __init setup_cpu_features(void)
  926. {
  927. u32 cwg;
  928. int cls;
  929. /* Set the CPU feature capabilies */
  930. setup_feature_capabilities();
  931. enable_errata_workarounds();
  932. setup_elf_hwcaps(arm64_elf_hwcaps);
  933. if (system_supports_32bit_el0())
  934. setup_elf_hwcaps(compat_elf_hwcaps);
  935. /* Advertise that we have computed the system capabilities */
  936. set_sys_caps_initialised();
  937. /*
  938. * Check for sane CTR_EL0.CWG value.
  939. */
  940. cwg = cache_type_cwg();
  941. cls = cache_line_size();
  942. if (!cwg)
  943. pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
  944. cls);
  945. if (L1_CACHE_BYTES < cls)
  946. pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
  947. L1_CACHE_BYTES, cls);
  948. }
  949. static bool __maybe_unused
  950. cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
  951. {
  952. return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
  953. }