disk-io.c 112 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #include "sysfs.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  60. struct btrfs_root *root);
  61. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  62. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  63. struct btrfs_root *root);
  64. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  65. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  66. struct extent_io_tree *dirty_pages,
  67. int mark);
  68. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  69. struct extent_io_tree *pinned_extents);
  70. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  71. static void btrfs_error_commit_super(struct btrfs_root *root);
  72. /*
  73. * end_io_wq structs are used to do processing in task context when an IO is
  74. * complete. This is used during reads to verify checksums, and it is used
  75. * by writes to insert metadata for new file extents after IO is complete.
  76. */
  77. struct end_io_wq {
  78. struct bio *bio;
  79. bio_end_io_t *end_io;
  80. void *private;
  81. struct btrfs_fs_info *info;
  82. int error;
  83. int metadata;
  84. struct list_head list;
  85. struct btrfs_work work;
  86. };
  87. /*
  88. * async submit bios are used to offload expensive checksumming
  89. * onto the worker threads. They checksum file and metadata bios
  90. * just before they are sent down the IO stack.
  91. */
  92. struct async_submit_bio {
  93. struct inode *inode;
  94. struct bio *bio;
  95. struct list_head list;
  96. extent_submit_bio_hook_t *submit_bio_start;
  97. extent_submit_bio_hook_t *submit_bio_done;
  98. int rw;
  99. int mirror_num;
  100. unsigned long bio_flags;
  101. /*
  102. * bio_offset is optional, can be used if the pages in the bio
  103. * can't tell us where in the file the bio should go
  104. */
  105. u64 bio_offset;
  106. struct btrfs_work work;
  107. int error;
  108. };
  109. /*
  110. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  111. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  112. * the level the eb occupies in the tree.
  113. *
  114. * Different roots are used for different purposes and may nest inside each
  115. * other and they require separate keysets. As lockdep keys should be
  116. * static, assign keysets according to the purpose of the root as indicated
  117. * by btrfs_root->objectid. This ensures that all special purpose roots
  118. * have separate keysets.
  119. *
  120. * Lock-nesting across peer nodes is always done with the immediate parent
  121. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  122. * subclass to avoid triggering lockdep warning in such cases.
  123. *
  124. * The key is set by the readpage_end_io_hook after the buffer has passed
  125. * csum validation but before the pages are unlocked. It is also set by
  126. * btrfs_init_new_buffer on freshly allocated blocks.
  127. *
  128. * We also add a check to make sure the highest level of the tree is the
  129. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  130. * needs update as well.
  131. */
  132. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  133. # if BTRFS_MAX_LEVEL != 8
  134. # error
  135. # endif
  136. static struct btrfs_lockdep_keyset {
  137. u64 id; /* root objectid */
  138. const char *name_stem; /* lock name stem */
  139. char names[BTRFS_MAX_LEVEL + 1][20];
  140. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  141. } btrfs_lockdep_keysets[] = {
  142. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  143. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  144. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  145. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  146. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  147. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  148. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  149. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  150. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  151. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  152. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  153. { .id = 0, .name_stem = "tree" },
  154. };
  155. void __init btrfs_init_lockdep(void)
  156. {
  157. int i, j;
  158. /* initialize lockdep class names */
  159. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  160. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  161. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  162. snprintf(ks->names[j], sizeof(ks->names[j]),
  163. "btrfs-%s-%02d", ks->name_stem, j);
  164. }
  165. }
  166. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  167. int level)
  168. {
  169. struct btrfs_lockdep_keyset *ks;
  170. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  171. /* find the matching keyset, id 0 is the default entry */
  172. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  173. if (ks->id == objectid)
  174. break;
  175. lockdep_set_class_and_name(&eb->lock,
  176. &ks->keys[level], ks->names[level]);
  177. }
  178. #endif
  179. /*
  180. * extents on the btree inode are pretty simple, there's one extent
  181. * that covers the entire device
  182. */
  183. static struct extent_map *btree_get_extent(struct inode *inode,
  184. struct page *page, size_t pg_offset, u64 start, u64 len,
  185. int create)
  186. {
  187. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  188. struct extent_map *em;
  189. int ret;
  190. read_lock(&em_tree->lock);
  191. em = lookup_extent_mapping(em_tree, start, len);
  192. if (em) {
  193. em->bdev =
  194. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  195. read_unlock(&em_tree->lock);
  196. goto out;
  197. }
  198. read_unlock(&em_tree->lock);
  199. em = alloc_extent_map();
  200. if (!em) {
  201. em = ERR_PTR(-ENOMEM);
  202. goto out;
  203. }
  204. em->start = 0;
  205. em->len = (u64)-1;
  206. em->block_len = (u64)-1;
  207. em->block_start = 0;
  208. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  209. write_lock(&em_tree->lock);
  210. ret = add_extent_mapping(em_tree, em, 0);
  211. if (ret == -EEXIST) {
  212. free_extent_map(em);
  213. em = lookup_extent_mapping(em_tree, start, len);
  214. if (!em)
  215. em = ERR_PTR(-EIO);
  216. } else if (ret) {
  217. free_extent_map(em);
  218. em = ERR_PTR(ret);
  219. }
  220. write_unlock(&em_tree->lock);
  221. out:
  222. return em;
  223. }
  224. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  225. {
  226. return btrfs_crc32c(seed, data, len);
  227. }
  228. void btrfs_csum_final(u32 crc, char *result)
  229. {
  230. put_unaligned_le32(~crc, result);
  231. }
  232. /*
  233. * compute the csum for a btree block, and either verify it or write it
  234. * into the csum field of the block.
  235. */
  236. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  237. int verify)
  238. {
  239. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  240. char *result = NULL;
  241. unsigned long len;
  242. unsigned long cur_len;
  243. unsigned long offset = BTRFS_CSUM_SIZE;
  244. char *kaddr;
  245. unsigned long map_start;
  246. unsigned long map_len;
  247. int err;
  248. u32 crc = ~(u32)0;
  249. unsigned long inline_result;
  250. len = buf->len - offset;
  251. while (len > 0) {
  252. err = map_private_extent_buffer(buf, offset, 32,
  253. &kaddr, &map_start, &map_len);
  254. if (err)
  255. return 1;
  256. cur_len = min(len, map_len - (offset - map_start));
  257. crc = btrfs_csum_data(kaddr + offset - map_start,
  258. crc, cur_len);
  259. len -= cur_len;
  260. offset += cur_len;
  261. }
  262. if (csum_size > sizeof(inline_result)) {
  263. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  264. if (!result)
  265. return 1;
  266. } else {
  267. result = (char *)&inline_result;
  268. }
  269. btrfs_csum_final(crc, result);
  270. if (verify) {
  271. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  272. u32 val;
  273. u32 found = 0;
  274. memcpy(&found, result, csum_size);
  275. read_extent_buffer(buf, &val, 0, csum_size);
  276. printk_ratelimited(KERN_INFO
  277. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  278. "level %d\n",
  279. root->fs_info->sb->s_id, buf->start,
  280. val, found, btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. bool need_lock = (current->journal_info ==
  305. (void *)BTRFS_SEND_TRANS_STUB);
  306. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  307. return 0;
  308. if (atomic)
  309. return -EAGAIN;
  310. if (need_lock) {
  311. btrfs_tree_read_lock(eb);
  312. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  313. }
  314. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  315. 0, &cached_state);
  316. if (extent_buffer_uptodate(eb) &&
  317. btrfs_header_generation(eb) == parent_transid) {
  318. ret = 0;
  319. goto out;
  320. }
  321. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  322. "found %llu\n",
  323. eb->start, parent_transid, btrfs_header_generation(eb));
  324. ret = 1;
  325. /*
  326. * Things reading via commit roots that don't have normal protection,
  327. * like send, can have a really old block in cache that may point at a
  328. * block that has been free'd and re-allocated. So don't clear uptodate
  329. * if we find an eb that is under IO (dirty/writeback) because we could
  330. * end up reading in the stale data and then writing it back out and
  331. * making everybody very sad.
  332. */
  333. if (!extent_buffer_under_io(eb))
  334. clear_extent_buffer_uptodate(eb);
  335. out:
  336. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  337. &cached_state, GFP_NOFS);
  338. btrfs_tree_read_unlock_blocking(eb);
  339. return ret;
  340. }
  341. /*
  342. * Return 0 if the superblock checksum type matches the checksum value of that
  343. * algorithm. Pass the raw disk superblock data.
  344. */
  345. static int btrfs_check_super_csum(char *raw_disk_sb)
  346. {
  347. struct btrfs_super_block *disk_sb =
  348. (struct btrfs_super_block *)raw_disk_sb;
  349. u16 csum_type = btrfs_super_csum_type(disk_sb);
  350. int ret = 0;
  351. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  352. u32 crc = ~(u32)0;
  353. const int csum_size = sizeof(crc);
  354. char result[csum_size];
  355. /*
  356. * The super_block structure does not span the whole
  357. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  358. * is filled with zeros and is included in the checkum.
  359. */
  360. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  361. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  362. btrfs_csum_final(crc, result);
  363. if (memcmp(raw_disk_sb, result, csum_size))
  364. ret = 1;
  365. if (ret && btrfs_super_generation(disk_sb) < 10) {
  366. printk(KERN_WARNING
  367. "BTRFS: super block crcs don't match, older mkfs detected\n");
  368. ret = 0;
  369. }
  370. }
  371. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  372. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  373. csum_type);
  374. ret = 1;
  375. }
  376. return ret;
  377. }
  378. /*
  379. * helper to read a given tree block, doing retries as required when
  380. * the checksums don't match and we have alternate mirrors to try.
  381. */
  382. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  383. struct extent_buffer *eb,
  384. u64 start, u64 parent_transid)
  385. {
  386. struct extent_io_tree *io_tree;
  387. int failed = 0;
  388. int ret;
  389. int num_copies = 0;
  390. int mirror_num = 0;
  391. int failed_mirror = 0;
  392. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  393. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  394. while (1) {
  395. ret = read_extent_buffer_pages(io_tree, eb, start,
  396. WAIT_COMPLETE,
  397. btree_get_extent, mirror_num);
  398. if (!ret) {
  399. if (!verify_parent_transid(io_tree, eb,
  400. parent_transid, 0))
  401. break;
  402. else
  403. ret = -EIO;
  404. }
  405. /*
  406. * This buffer's crc is fine, but its contents are corrupted, so
  407. * there is no reason to read the other copies, they won't be
  408. * any less wrong.
  409. */
  410. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  411. break;
  412. num_copies = btrfs_num_copies(root->fs_info,
  413. eb->start, eb->len);
  414. if (num_copies == 1)
  415. break;
  416. if (!failed_mirror) {
  417. failed = 1;
  418. failed_mirror = eb->read_mirror;
  419. }
  420. mirror_num++;
  421. if (mirror_num == failed_mirror)
  422. mirror_num++;
  423. if (mirror_num > num_copies)
  424. break;
  425. }
  426. if (failed && !ret && failed_mirror)
  427. repair_eb_io_failure(root, eb, failed_mirror);
  428. return ret;
  429. }
  430. /*
  431. * checksum a dirty tree block before IO. This has extra checks to make sure
  432. * we only fill in the checksum field in the first page of a multi-page block
  433. */
  434. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  435. {
  436. u64 start = page_offset(page);
  437. u64 found_start;
  438. struct extent_buffer *eb;
  439. eb = (struct extent_buffer *)page->private;
  440. if (page != eb->pages[0])
  441. return 0;
  442. found_start = btrfs_header_bytenr(eb);
  443. if (WARN_ON(found_start != start || !PageUptodate(page)))
  444. return 0;
  445. csum_tree_block(root, eb, 0);
  446. return 0;
  447. }
  448. static int check_tree_block_fsid(struct btrfs_root *root,
  449. struct extent_buffer *eb)
  450. {
  451. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  452. u8 fsid[BTRFS_UUID_SIZE];
  453. int ret = 1;
  454. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  455. while (fs_devices) {
  456. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  457. ret = 0;
  458. break;
  459. }
  460. fs_devices = fs_devices->seed;
  461. }
  462. return ret;
  463. }
  464. #define CORRUPT(reason, eb, root, slot) \
  465. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  466. "root=%llu, slot=%d", reason, \
  467. btrfs_header_bytenr(eb), root->objectid, slot)
  468. static noinline int check_leaf(struct btrfs_root *root,
  469. struct extent_buffer *leaf)
  470. {
  471. struct btrfs_key key;
  472. struct btrfs_key leaf_key;
  473. u32 nritems = btrfs_header_nritems(leaf);
  474. int slot;
  475. if (nritems == 0)
  476. return 0;
  477. /* Check the 0 item */
  478. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  479. BTRFS_LEAF_DATA_SIZE(root)) {
  480. CORRUPT("invalid item offset size pair", leaf, root, 0);
  481. return -EIO;
  482. }
  483. /*
  484. * Check to make sure each items keys are in the correct order and their
  485. * offsets make sense. We only have to loop through nritems-1 because
  486. * we check the current slot against the next slot, which verifies the
  487. * next slot's offset+size makes sense and that the current's slot
  488. * offset is correct.
  489. */
  490. for (slot = 0; slot < nritems - 1; slot++) {
  491. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  492. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  493. /* Make sure the keys are in the right order */
  494. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  495. CORRUPT("bad key order", leaf, root, slot);
  496. return -EIO;
  497. }
  498. /*
  499. * Make sure the offset and ends are right, remember that the
  500. * item data starts at the end of the leaf and grows towards the
  501. * front.
  502. */
  503. if (btrfs_item_offset_nr(leaf, slot) !=
  504. btrfs_item_end_nr(leaf, slot + 1)) {
  505. CORRUPT("slot offset bad", leaf, root, slot);
  506. return -EIO;
  507. }
  508. /*
  509. * Check to make sure that we don't point outside of the leaf,
  510. * just incase all the items are consistent to eachother, but
  511. * all point outside of the leaf.
  512. */
  513. if (btrfs_item_end_nr(leaf, slot) >
  514. BTRFS_LEAF_DATA_SIZE(root)) {
  515. CORRUPT("slot end outside of leaf", leaf, root, slot);
  516. return -EIO;
  517. }
  518. }
  519. return 0;
  520. }
  521. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  522. u64 phy_offset, struct page *page,
  523. u64 start, u64 end, int mirror)
  524. {
  525. u64 found_start;
  526. int found_level;
  527. struct extent_buffer *eb;
  528. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  529. int ret = 0;
  530. int reads_done;
  531. if (!page->private)
  532. goto out;
  533. eb = (struct extent_buffer *)page->private;
  534. /* the pending IO might have been the only thing that kept this buffer
  535. * in memory. Make sure we have a ref for all this other checks
  536. */
  537. extent_buffer_get(eb);
  538. reads_done = atomic_dec_and_test(&eb->io_pages);
  539. if (!reads_done)
  540. goto err;
  541. eb->read_mirror = mirror;
  542. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  543. ret = -EIO;
  544. goto err;
  545. }
  546. found_start = btrfs_header_bytenr(eb);
  547. if (found_start != eb->start) {
  548. printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
  549. "%llu %llu\n",
  550. found_start, eb->start);
  551. ret = -EIO;
  552. goto err;
  553. }
  554. if (check_tree_block_fsid(root, eb)) {
  555. printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
  556. eb->start);
  557. ret = -EIO;
  558. goto err;
  559. }
  560. found_level = btrfs_header_level(eb);
  561. if (found_level >= BTRFS_MAX_LEVEL) {
  562. btrfs_info(root->fs_info, "bad tree block level %d",
  563. (int)btrfs_header_level(eb));
  564. ret = -EIO;
  565. goto err;
  566. }
  567. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  568. eb, found_level);
  569. ret = csum_tree_block(root, eb, 1);
  570. if (ret) {
  571. ret = -EIO;
  572. goto err;
  573. }
  574. /*
  575. * If this is a leaf block and it is corrupt, set the corrupt bit so
  576. * that we don't try and read the other copies of this block, just
  577. * return -EIO.
  578. */
  579. if (found_level == 0 && check_leaf(root, eb)) {
  580. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  581. ret = -EIO;
  582. }
  583. if (!ret)
  584. set_extent_buffer_uptodate(eb);
  585. err:
  586. if (reads_done &&
  587. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  588. btree_readahead_hook(root, eb, eb->start, ret);
  589. if (ret) {
  590. /*
  591. * our io error hook is going to dec the io pages
  592. * again, we have to make sure it has something
  593. * to decrement
  594. */
  595. atomic_inc(&eb->io_pages);
  596. clear_extent_buffer_uptodate(eb);
  597. }
  598. free_extent_buffer(eb);
  599. out:
  600. return ret;
  601. }
  602. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  603. {
  604. struct extent_buffer *eb;
  605. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  606. eb = (struct extent_buffer *)page->private;
  607. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  608. eb->read_mirror = failed_mirror;
  609. atomic_dec(&eb->io_pages);
  610. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  611. btree_readahead_hook(root, eb, eb->start, -EIO);
  612. return -EIO; /* we fixed nothing */
  613. }
  614. static void end_workqueue_bio(struct bio *bio, int err)
  615. {
  616. struct end_io_wq *end_io_wq = bio->bi_private;
  617. struct btrfs_fs_info *fs_info;
  618. fs_info = end_io_wq->info;
  619. end_io_wq->error = err;
  620. btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
  621. if (bio->bi_rw & REQ_WRITE) {
  622. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  623. btrfs_queue_work(fs_info->endio_meta_write_workers,
  624. &end_io_wq->work);
  625. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  626. btrfs_queue_work(fs_info->endio_freespace_worker,
  627. &end_io_wq->work);
  628. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  629. btrfs_queue_work(fs_info->endio_raid56_workers,
  630. &end_io_wq->work);
  631. else
  632. btrfs_queue_work(fs_info->endio_write_workers,
  633. &end_io_wq->work);
  634. } else {
  635. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  636. btrfs_queue_work(fs_info->endio_raid56_workers,
  637. &end_io_wq->work);
  638. else if (end_io_wq->metadata)
  639. btrfs_queue_work(fs_info->endio_meta_workers,
  640. &end_io_wq->work);
  641. else
  642. btrfs_queue_work(fs_info->endio_workers,
  643. &end_io_wq->work);
  644. }
  645. }
  646. /*
  647. * For the metadata arg you want
  648. *
  649. * 0 - if data
  650. * 1 - if normal metadta
  651. * 2 - if writing to the free space cache area
  652. * 3 - raid parity work
  653. */
  654. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  655. int metadata)
  656. {
  657. struct end_io_wq *end_io_wq;
  658. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  659. if (!end_io_wq)
  660. return -ENOMEM;
  661. end_io_wq->private = bio->bi_private;
  662. end_io_wq->end_io = bio->bi_end_io;
  663. end_io_wq->info = info;
  664. end_io_wq->error = 0;
  665. end_io_wq->bio = bio;
  666. end_io_wq->metadata = metadata;
  667. bio->bi_private = end_io_wq;
  668. bio->bi_end_io = end_workqueue_bio;
  669. return 0;
  670. }
  671. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  672. {
  673. unsigned long limit = min_t(unsigned long,
  674. info->thread_pool_size,
  675. info->fs_devices->open_devices);
  676. return 256 * limit;
  677. }
  678. static void run_one_async_start(struct btrfs_work *work)
  679. {
  680. struct async_submit_bio *async;
  681. int ret;
  682. async = container_of(work, struct async_submit_bio, work);
  683. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  684. async->mirror_num, async->bio_flags,
  685. async->bio_offset);
  686. if (ret)
  687. async->error = ret;
  688. }
  689. static void run_one_async_done(struct btrfs_work *work)
  690. {
  691. struct btrfs_fs_info *fs_info;
  692. struct async_submit_bio *async;
  693. int limit;
  694. async = container_of(work, struct async_submit_bio, work);
  695. fs_info = BTRFS_I(async->inode)->root->fs_info;
  696. limit = btrfs_async_submit_limit(fs_info);
  697. limit = limit * 2 / 3;
  698. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  699. waitqueue_active(&fs_info->async_submit_wait))
  700. wake_up(&fs_info->async_submit_wait);
  701. /* If an error occured we just want to clean up the bio and move on */
  702. if (async->error) {
  703. bio_endio(async->bio, async->error);
  704. return;
  705. }
  706. async->submit_bio_done(async->inode, async->rw, async->bio,
  707. async->mirror_num, async->bio_flags,
  708. async->bio_offset);
  709. }
  710. static void run_one_async_free(struct btrfs_work *work)
  711. {
  712. struct async_submit_bio *async;
  713. async = container_of(work, struct async_submit_bio, work);
  714. kfree(async);
  715. }
  716. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  717. int rw, struct bio *bio, int mirror_num,
  718. unsigned long bio_flags,
  719. u64 bio_offset,
  720. extent_submit_bio_hook_t *submit_bio_start,
  721. extent_submit_bio_hook_t *submit_bio_done)
  722. {
  723. struct async_submit_bio *async;
  724. async = kmalloc(sizeof(*async), GFP_NOFS);
  725. if (!async)
  726. return -ENOMEM;
  727. async->inode = inode;
  728. async->rw = rw;
  729. async->bio = bio;
  730. async->mirror_num = mirror_num;
  731. async->submit_bio_start = submit_bio_start;
  732. async->submit_bio_done = submit_bio_done;
  733. btrfs_init_work(&async->work, run_one_async_start,
  734. run_one_async_done, run_one_async_free);
  735. async->bio_flags = bio_flags;
  736. async->bio_offset = bio_offset;
  737. async->error = 0;
  738. atomic_inc(&fs_info->nr_async_submits);
  739. if (rw & REQ_SYNC)
  740. btrfs_set_work_high_priority(&async->work);
  741. btrfs_queue_work(fs_info->workers, &async->work);
  742. while (atomic_read(&fs_info->async_submit_draining) &&
  743. atomic_read(&fs_info->nr_async_submits)) {
  744. wait_event(fs_info->async_submit_wait,
  745. (atomic_read(&fs_info->nr_async_submits) == 0));
  746. }
  747. return 0;
  748. }
  749. static int btree_csum_one_bio(struct bio *bio)
  750. {
  751. struct bio_vec *bvec;
  752. struct btrfs_root *root;
  753. int i, ret = 0;
  754. bio_for_each_segment_all(bvec, bio, i) {
  755. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  756. ret = csum_dirty_buffer(root, bvec->bv_page);
  757. if (ret)
  758. break;
  759. }
  760. return ret;
  761. }
  762. static int __btree_submit_bio_start(struct inode *inode, int rw,
  763. struct bio *bio, int mirror_num,
  764. unsigned long bio_flags,
  765. u64 bio_offset)
  766. {
  767. /*
  768. * when we're called for a write, we're already in the async
  769. * submission context. Just jump into btrfs_map_bio
  770. */
  771. return btree_csum_one_bio(bio);
  772. }
  773. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  774. int mirror_num, unsigned long bio_flags,
  775. u64 bio_offset)
  776. {
  777. int ret;
  778. /*
  779. * when we're called for a write, we're already in the async
  780. * submission context. Just jump into btrfs_map_bio
  781. */
  782. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  783. if (ret)
  784. bio_endio(bio, ret);
  785. return ret;
  786. }
  787. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  788. {
  789. if (bio_flags & EXTENT_BIO_TREE_LOG)
  790. return 0;
  791. #ifdef CONFIG_X86
  792. if (cpu_has_xmm4_2)
  793. return 0;
  794. #endif
  795. return 1;
  796. }
  797. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  798. int mirror_num, unsigned long bio_flags,
  799. u64 bio_offset)
  800. {
  801. int async = check_async_write(inode, bio_flags);
  802. int ret;
  803. if (!(rw & REQ_WRITE)) {
  804. /*
  805. * called for a read, do the setup so that checksum validation
  806. * can happen in the async kernel threads
  807. */
  808. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  809. bio, 1);
  810. if (ret)
  811. goto out_w_error;
  812. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  813. mirror_num, 0);
  814. } else if (!async) {
  815. ret = btree_csum_one_bio(bio);
  816. if (ret)
  817. goto out_w_error;
  818. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  819. mirror_num, 0);
  820. } else {
  821. /*
  822. * kthread helpers are used to submit writes so that
  823. * checksumming can happen in parallel across all CPUs
  824. */
  825. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  826. inode, rw, bio, mirror_num, 0,
  827. bio_offset,
  828. __btree_submit_bio_start,
  829. __btree_submit_bio_done);
  830. }
  831. if (ret) {
  832. out_w_error:
  833. bio_endio(bio, ret);
  834. }
  835. return ret;
  836. }
  837. #ifdef CONFIG_MIGRATION
  838. static int btree_migratepage(struct address_space *mapping,
  839. struct page *newpage, struct page *page,
  840. enum migrate_mode mode)
  841. {
  842. /*
  843. * we can't safely write a btree page from here,
  844. * we haven't done the locking hook
  845. */
  846. if (PageDirty(page))
  847. return -EAGAIN;
  848. /*
  849. * Buffers may be managed in a filesystem specific way.
  850. * We must have no buffers or drop them.
  851. */
  852. if (page_has_private(page) &&
  853. !try_to_release_page(page, GFP_KERNEL))
  854. return -EAGAIN;
  855. return migrate_page(mapping, newpage, page, mode);
  856. }
  857. #endif
  858. static int btree_writepages(struct address_space *mapping,
  859. struct writeback_control *wbc)
  860. {
  861. struct btrfs_fs_info *fs_info;
  862. int ret;
  863. if (wbc->sync_mode == WB_SYNC_NONE) {
  864. if (wbc->for_kupdate)
  865. return 0;
  866. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  867. /* this is a bit racy, but that's ok */
  868. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  869. BTRFS_DIRTY_METADATA_THRESH);
  870. if (ret < 0)
  871. return 0;
  872. }
  873. return btree_write_cache_pages(mapping, wbc);
  874. }
  875. static int btree_readpage(struct file *file, struct page *page)
  876. {
  877. struct extent_io_tree *tree;
  878. tree = &BTRFS_I(page->mapping->host)->io_tree;
  879. return extent_read_full_page(tree, page, btree_get_extent, 0);
  880. }
  881. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  882. {
  883. if (PageWriteback(page) || PageDirty(page))
  884. return 0;
  885. return try_release_extent_buffer(page);
  886. }
  887. static void btree_invalidatepage(struct page *page, unsigned int offset,
  888. unsigned int length)
  889. {
  890. struct extent_io_tree *tree;
  891. tree = &BTRFS_I(page->mapping->host)->io_tree;
  892. extent_invalidatepage(tree, page, offset);
  893. btree_releasepage(page, GFP_NOFS);
  894. if (PagePrivate(page)) {
  895. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  896. "page private not zero on page %llu",
  897. (unsigned long long)page_offset(page));
  898. ClearPagePrivate(page);
  899. set_page_private(page, 0);
  900. page_cache_release(page);
  901. }
  902. }
  903. static int btree_set_page_dirty(struct page *page)
  904. {
  905. #ifdef DEBUG
  906. struct extent_buffer *eb;
  907. BUG_ON(!PagePrivate(page));
  908. eb = (struct extent_buffer *)page->private;
  909. BUG_ON(!eb);
  910. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  911. BUG_ON(!atomic_read(&eb->refs));
  912. btrfs_assert_tree_locked(eb);
  913. #endif
  914. return __set_page_dirty_nobuffers(page);
  915. }
  916. static const struct address_space_operations btree_aops = {
  917. .readpage = btree_readpage,
  918. .writepages = btree_writepages,
  919. .releasepage = btree_releasepage,
  920. .invalidatepage = btree_invalidatepage,
  921. #ifdef CONFIG_MIGRATION
  922. .migratepage = btree_migratepage,
  923. #endif
  924. .set_page_dirty = btree_set_page_dirty,
  925. };
  926. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  927. u64 parent_transid)
  928. {
  929. struct extent_buffer *buf = NULL;
  930. struct inode *btree_inode = root->fs_info->btree_inode;
  931. int ret = 0;
  932. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  933. if (!buf)
  934. return 0;
  935. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  936. buf, 0, WAIT_NONE, btree_get_extent, 0);
  937. free_extent_buffer(buf);
  938. return ret;
  939. }
  940. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  941. int mirror_num, struct extent_buffer **eb)
  942. {
  943. struct extent_buffer *buf = NULL;
  944. struct inode *btree_inode = root->fs_info->btree_inode;
  945. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  946. int ret;
  947. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  948. if (!buf)
  949. return 0;
  950. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  951. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  952. btree_get_extent, mirror_num);
  953. if (ret) {
  954. free_extent_buffer(buf);
  955. return ret;
  956. }
  957. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  958. free_extent_buffer(buf);
  959. return -EIO;
  960. } else if (extent_buffer_uptodate(buf)) {
  961. *eb = buf;
  962. } else {
  963. free_extent_buffer(buf);
  964. }
  965. return 0;
  966. }
  967. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  968. u64 bytenr, u32 blocksize)
  969. {
  970. return find_extent_buffer(root->fs_info, bytenr);
  971. }
  972. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  973. u64 bytenr, u32 blocksize)
  974. {
  975. return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
  976. }
  977. int btrfs_write_tree_block(struct extent_buffer *buf)
  978. {
  979. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  980. buf->start + buf->len - 1);
  981. }
  982. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  983. {
  984. return filemap_fdatawait_range(buf->pages[0]->mapping,
  985. buf->start, buf->start + buf->len - 1);
  986. }
  987. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  988. u32 blocksize, u64 parent_transid)
  989. {
  990. struct extent_buffer *buf = NULL;
  991. int ret;
  992. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  993. if (!buf)
  994. return NULL;
  995. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  996. if (ret) {
  997. free_extent_buffer(buf);
  998. return NULL;
  999. }
  1000. return buf;
  1001. }
  1002. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1003. struct extent_buffer *buf)
  1004. {
  1005. struct btrfs_fs_info *fs_info = root->fs_info;
  1006. if (btrfs_header_generation(buf) ==
  1007. fs_info->running_transaction->transid) {
  1008. btrfs_assert_tree_locked(buf);
  1009. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1010. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1011. -buf->len,
  1012. fs_info->dirty_metadata_batch);
  1013. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1014. btrfs_set_lock_blocking(buf);
  1015. clear_extent_buffer_dirty(buf);
  1016. }
  1017. }
  1018. }
  1019. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1020. {
  1021. struct btrfs_subvolume_writers *writers;
  1022. int ret;
  1023. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1024. if (!writers)
  1025. return ERR_PTR(-ENOMEM);
  1026. ret = percpu_counter_init(&writers->counter, 0);
  1027. if (ret < 0) {
  1028. kfree(writers);
  1029. return ERR_PTR(ret);
  1030. }
  1031. init_waitqueue_head(&writers->wait);
  1032. return writers;
  1033. }
  1034. static void
  1035. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1036. {
  1037. percpu_counter_destroy(&writers->counter);
  1038. kfree(writers);
  1039. }
  1040. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1041. u32 stripesize, struct btrfs_root *root,
  1042. struct btrfs_fs_info *fs_info,
  1043. u64 objectid)
  1044. {
  1045. root->node = NULL;
  1046. root->commit_root = NULL;
  1047. root->sectorsize = sectorsize;
  1048. root->nodesize = nodesize;
  1049. root->leafsize = leafsize;
  1050. root->stripesize = stripesize;
  1051. root->state = 0;
  1052. root->orphan_cleanup_state = 0;
  1053. root->objectid = objectid;
  1054. root->last_trans = 0;
  1055. root->highest_objectid = 0;
  1056. root->nr_delalloc_inodes = 0;
  1057. root->nr_ordered_extents = 0;
  1058. root->name = NULL;
  1059. root->inode_tree = RB_ROOT;
  1060. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1061. root->block_rsv = NULL;
  1062. root->orphan_block_rsv = NULL;
  1063. INIT_LIST_HEAD(&root->dirty_list);
  1064. INIT_LIST_HEAD(&root->root_list);
  1065. INIT_LIST_HEAD(&root->delalloc_inodes);
  1066. INIT_LIST_HEAD(&root->delalloc_root);
  1067. INIT_LIST_HEAD(&root->ordered_extents);
  1068. INIT_LIST_HEAD(&root->ordered_root);
  1069. INIT_LIST_HEAD(&root->logged_list[0]);
  1070. INIT_LIST_HEAD(&root->logged_list[1]);
  1071. spin_lock_init(&root->orphan_lock);
  1072. spin_lock_init(&root->inode_lock);
  1073. spin_lock_init(&root->delalloc_lock);
  1074. spin_lock_init(&root->ordered_extent_lock);
  1075. spin_lock_init(&root->accounting_lock);
  1076. spin_lock_init(&root->log_extents_lock[0]);
  1077. spin_lock_init(&root->log_extents_lock[1]);
  1078. mutex_init(&root->objectid_mutex);
  1079. mutex_init(&root->log_mutex);
  1080. mutex_init(&root->ordered_extent_mutex);
  1081. mutex_init(&root->delalloc_mutex);
  1082. init_waitqueue_head(&root->log_writer_wait);
  1083. init_waitqueue_head(&root->log_commit_wait[0]);
  1084. init_waitqueue_head(&root->log_commit_wait[1]);
  1085. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1086. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1087. atomic_set(&root->log_commit[0], 0);
  1088. atomic_set(&root->log_commit[1], 0);
  1089. atomic_set(&root->log_writers, 0);
  1090. atomic_set(&root->log_batch, 0);
  1091. atomic_set(&root->orphan_inodes, 0);
  1092. atomic_set(&root->refs, 1);
  1093. atomic_set(&root->will_be_snapshoted, 0);
  1094. root->log_transid = 0;
  1095. root->log_transid_committed = -1;
  1096. root->last_log_commit = 0;
  1097. if (fs_info)
  1098. extent_io_tree_init(&root->dirty_log_pages,
  1099. fs_info->btree_inode->i_mapping);
  1100. memset(&root->root_key, 0, sizeof(root->root_key));
  1101. memset(&root->root_item, 0, sizeof(root->root_item));
  1102. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1103. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1104. if (fs_info)
  1105. root->defrag_trans_start = fs_info->generation;
  1106. else
  1107. root->defrag_trans_start = 0;
  1108. init_completion(&root->kobj_unregister);
  1109. root->root_key.objectid = objectid;
  1110. root->anon_dev = 0;
  1111. spin_lock_init(&root->root_item_lock);
  1112. }
  1113. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1114. {
  1115. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1116. if (root)
  1117. root->fs_info = fs_info;
  1118. return root;
  1119. }
  1120. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1121. /* Should only be used by the testing infrastructure */
  1122. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1123. {
  1124. struct btrfs_root *root;
  1125. root = btrfs_alloc_root(NULL);
  1126. if (!root)
  1127. return ERR_PTR(-ENOMEM);
  1128. __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
  1129. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1130. return root;
  1131. }
  1132. #endif
  1133. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1134. struct btrfs_fs_info *fs_info,
  1135. u64 objectid)
  1136. {
  1137. struct extent_buffer *leaf;
  1138. struct btrfs_root *tree_root = fs_info->tree_root;
  1139. struct btrfs_root *root;
  1140. struct btrfs_key key;
  1141. int ret = 0;
  1142. uuid_le uuid;
  1143. root = btrfs_alloc_root(fs_info);
  1144. if (!root)
  1145. return ERR_PTR(-ENOMEM);
  1146. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1147. tree_root->sectorsize, tree_root->stripesize,
  1148. root, fs_info, objectid);
  1149. root->root_key.objectid = objectid;
  1150. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1151. root->root_key.offset = 0;
  1152. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1153. 0, objectid, NULL, 0, 0, 0);
  1154. if (IS_ERR(leaf)) {
  1155. ret = PTR_ERR(leaf);
  1156. leaf = NULL;
  1157. goto fail;
  1158. }
  1159. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1160. btrfs_set_header_bytenr(leaf, leaf->start);
  1161. btrfs_set_header_generation(leaf, trans->transid);
  1162. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1163. btrfs_set_header_owner(leaf, objectid);
  1164. root->node = leaf;
  1165. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1166. BTRFS_FSID_SIZE);
  1167. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1168. btrfs_header_chunk_tree_uuid(leaf),
  1169. BTRFS_UUID_SIZE);
  1170. btrfs_mark_buffer_dirty(leaf);
  1171. root->commit_root = btrfs_root_node(root);
  1172. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1173. root->root_item.flags = 0;
  1174. root->root_item.byte_limit = 0;
  1175. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1176. btrfs_set_root_generation(&root->root_item, trans->transid);
  1177. btrfs_set_root_level(&root->root_item, 0);
  1178. btrfs_set_root_refs(&root->root_item, 1);
  1179. btrfs_set_root_used(&root->root_item, leaf->len);
  1180. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1181. btrfs_set_root_dirid(&root->root_item, 0);
  1182. uuid_le_gen(&uuid);
  1183. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1184. root->root_item.drop_level = 0;
  1185. key.objectid = objectid;
  1186. key.type = BTRFS_ROOT_ITEM_KEY;
  1187. key.offset = 0;
  1188. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1189. if (ret)
  1190. goto fail;
  1191. btrfs_tree_unlock(leaf);
  1192. return root;
  1193. fail:
  1194. if (leaf) {
  1195. btrfs_tree_unlock(leaf);
  1196. free_extent_buffer(root->commit_root);
  1197. free_extent_buffer(leaf);
  1198. }
  1199. kfree(root);
  1200. return ERR_PTR(ret);
  1201. }
  1202. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1203. struct btrfs_fs_info *fs_info)
  1204. {
  1205. struct btrfs_root *root;
  1206. struct btrfs_root *tree_root = fs_info->tree_root;
  1207. struct extent_buffer *leaf;
  1208. root = btrfs_alloc_root(fs_info);
  1209. if (!root)
  1210. return ERR_PTR(-ENOMEM);
  1211. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1212. tree_root->sectorsize, tree_root->stripesize,
  1213. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1214. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1215. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1216. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1217. /*
  1218. * DON'T set REF_COWS for log trees
  1219. *
  1220. * log trees do not get reference counted because they go away
  1221. * before a real commit is actually done. They do store pointers
  1222. * to file data extents, and those reference counts still get
  1223. * updated (along with back refs to the log tree).
  1224. */
  1225. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1226. BTRFS_TREE_LOG_OBJECTID, NULL,
  1227. 0, 0, 0);
  1228. if (IS_ERR(leaf)) {
  1229. kfree(root);
  1230. return ERR_CAST(leaf);
  1231. }
  1232. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1233. btrfs_set_header_bytenr(leaf, leaf->start);
  1234. btrfs_set_header_generation(leaf, trans->transid);
  1235. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1236. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1237. root->node = leaf;
  1238. write_extent_buffer(root->node, root->fs_info->fsid,
  1239. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1240. btrfs_mark_buffer_dirty(root->node);
  1241. btrfs_tree_unlock(root->node);
  1242. return root;
  1243. }
  1244. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1245. struct btrfs_fs_info *fs_info)
  1246. {
  1247. struct btrfs_root *log_root;
  1248. log_root = alloc_log_tree(trans, fs_info);
  1249. if (IS_ERR(log_root))
  1250. return PTR_ERR(log_root);
  1251. WARN_ON(fs_info->log_root_tree);
  1252. fs_info->log_root_tree = log_root;
  1253. return 0;
  1254. }
  1255. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1256. struct btrfs_root *root)
  1257. {
  1258. struct btrfs_root *log_root;
  1259. struct btrfs_inode_item *inode_item;
  1260. log_root = alloc_log_tree(trans, root->fs_info);
  1261. if (IS_ERR(log_root))
  1262. return PTR_ERR(log_root);
  1263. log_root->last_trans = trans->transid;
  1264. log_root->root_key.offset = root->root_key.objectid;
  1265. inode_item = &log_root->root_item.inode;
  1266. btrfs_set_stack_inode_generation(inode_item, 1);
  1267. btrfs_set_stack_inode_size(inode_item, 3);
  1268. btrfs_set_stack_inode_nlink(inode_item, 1);
  1269. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1270. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1271. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1272. WARN_ON(root->log_root);
  1273. root->log_root = log_root;
  1274. root->log_transid = 0;
  1275. root->log_transid_committed = -1;
  1276. root->last_log_commit = 0;
  1277. return 0;
  1278. }
  1279. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1280. struct btrfs_key *key)
  1281. {
  1282. struct btrfs_root *root;
  1283. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1284. struct btrfs_path *path;
  1285. u64 generation;
  1286. u32 blocksize;
  1287. int ret;
  1288. path = btrfs_alloc_path();
  1289. if (!path)
  1290. return ERR_PTR(-ENOMEM);
  1291. root = btrfs_alloc_root(fs_info);
  1292. if (!root) {
  1293. ret = -ENOMEM;
  1294. goto alloc_fail;
  1295. }
  1296. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1297. tree_root->sectorsize, tree_root->stripesize,
  1298. root, fs_info, key->objectid);
  1299. ret = btrfs_find_root(tree_root, key, path,
  1300. &root->root_item, &root->root_key);
  1301. if (ret) {
  1302. if (ret > 0)
  1303. ret = -ENOENT;
  1304. goto find_fail;
  1305. }
  1306. generation = btrfs_root_generation(&root->root_item);
  1307. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1308. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1309. blocksize, generation);
  1310. if (!root->node) {
  1311. ret = -ENOMEM;
  1312. goto find_fail;
  1313. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1314. ret = -EIO;
  1315. goto read_fail;
  1316. }
  1317. root->commit_root = btrfs_root_node(root);
  1318. out:
  1319. btrfs_free_path(path);
  1320. return root;
  1321. read_fail:
  1322. free_extent_buffer(root->node);
  1323. find_fail:
  1324. kfree(root);
  1325. alloc_fail:
  1326. root = ERR_PTR(ret);
  1327. goto out;
  1328. }
  1329. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1330. struct btrfs_key *location)
  1331. {
  1332. struct btrfs_root *root;
  1333. root = btrfs_read_tree_root(tree_root, location);
  1334. if (IS_ERR(root))
  1335. return root;
  1336. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1337. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1338. btrfs_check_and_init_root_item(&root->root_item);
  1339. }
  1340. return root;
  1341. }
  1342. int btrfs_init_fs_root(struct btrfs_root *root)
  1343. {
  1344. int ret;
  1345. struct btrfs_subvolume_writers *writers;
  1346. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1347. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1348. GFP_NOFS);
  1349. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1350. ret = -ENOMEM;
  1351. goto fail;
  1352. }
  1353. writers = btrfs_alloc_subvolume_writers();
  1354. if (IS_ERR(writers)) {
  1355. ret = PTR_ERR(writers);
  1356. goto fail;
  1357. }
  1358. root->subv_writers = writers;
  1359. btrfs_init_free_ino_ctl(root);
  1360. spin_lock_init(&root->cache_lock);
  1361. init_waitqueue_head(&root->cache_wait);
  1362. ret = get_anon_bdev(&root->anon_dev);
  1363. if (ret)
  1364. goto free_writers;
  1365. return 0;
  1366. free_writers:
  1367. btrfs_free_subvolume_writers(root->subv_writers);
  1368. fail:
  1369. kfree(root->free_ino_ctl);
  1370. kfree(root->free_ino_pinned);
  1371. return ret;
  1372. }
  1373. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1374. u64 root_id)
  1375. {
  1376. struct btrfs_root *root;
  1377. spin_lock(&fs_info->fs_roots_radix_lock);
  1378. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1379. (unsigned long)root_id);
  1380. spin_unlock(&fs_info->fs_roots_radix_lock);
  1381. return root;
  1382. }
  1383. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1384. struct btrfs_root *root)
  1385. {
  1386. int ret;
  1387. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1388. if (ret)
  1389. return ret;
  1390. spin_lock(&fs_info->fs_roots_radix_lock);
  1391. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1392. (unsigned long)root->root_key.objectid,
  1393. root);
  1394. if (ret == 0)
  1395. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1396. spin_unlock(&fs_info->fs_roots_radix_lock);
  1397. radix_tree_preload_end();
  1398. return ret;
  1399. }
  1400. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1401. struct btrfs_key *location,
  1402. bool check_ref)
  1403. {
  1404. struct btrfs_root *root;
  1405. int ret;
  1406. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1407. return fs_info->tree_root;
  1408. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1409. return fs_info->extent_root;
  1410. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1411. return fs_info->chunk_root;
  1412. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1413. return fs_info->dev_root;
  1414. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1415. return fs_info->csum_root;
  1416. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1417. return fs_info->quota_root ? fs_info->quota_root :
  1418. ERR_PTR(-ENOENT);
  1419. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1420. return fs_info->uuid_root ? fs_info->uuid_root :
  1421. ERR_PTR(-ENOENT);
  1422. again:
  1423. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1424. if (root) {
  1425. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1426. return ERR_PTR(-ENOENT);
  1427. return root;
  1428. }
  1429. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1430. if (IS_ERR(root))
  1431. return root;
  1432. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1433. ret = -ENOENT;
  1434. goto fail;
  1435. }
  1436. ret = btrfs_init_fs_root(root);
  1437. if (ret)
  1438. goto fail;
  1439. ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
  1440. location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
  1441. if (ret < 0)
  1442. goto fail;
  1443. if (ret == 0)
  1444. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1445. ret = btrfs_insert_fs_root(fs_info, root);
  1446. if (ret) {
  1447. if (ret == -EEXIST) {
  1448. free_fs_root(root);
  1449. goto again;
  1450. }
  1451. goto fail;
  1452. }
  1453. return root;
  1454. fail:
  1455. free_fs_root(root);
  1456. return ERR_PTR(ret);
  1457. }
  1458. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1459. {
  1460. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1461. int ret = 0;
  1462. struct btrfs_device *device;
  1463. struct backing_dev_info *bdi;
  1464. rcu_read_lock();
  1465. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1466. if (!device->bdev)
  1467. continue;
  1468. bdi = blk_get_backing_dev_info(device->bdev);
  1469. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1470. ret = 1;
  1471. break;
  1472. }
  1473. }
  1474. rcu_read_unlock();
  1475. return ret;
  1476. }
  1477. /*
  1478. * If this fails, caller must call bdi_destroy() to get rid of the
  1479. * bdi again.
  1480. */
  1481. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1482. {
  1483. int err;
  1484. bdi->capabilities = BDI_CAP_MAP_COPY;
  1485. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1486. if (err)
  1487. return err;
  1488. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1489. bdi->congested_fn = btrfs_congested_fn;
  1490. bdi->congested_data = info;
  1491. return 0;
  1492. }
  1493. /*
  1494. * called by the kthread helper functions to finally call the bio end_io
  1495. * functions. This is where read checksum verification actually happens
  1496. */
  1497. static void end_workqueue_fn(struct btrfs_work *work)
  1498. {
  1499. struct bio *bio;
  1500. struct end_io_wq *end_io_wq;
  1501. int error;
  1502. end_io_wq = container_of(work, struct end_io_wq, work);
  1503. bio = end_io_wq->bio;
  1504. error = end_io_wq->error;
  1505. bio->bi_private = end_io_wq->private;
  1506. bio->bi_end_io = end_io_wq->end_io;
  1507. kfree(end_io_wq);
  1508. bio_endio_nodec(bio, error);
  1509. }
  1510. static int cleaner_kthread(void *arg)
  1511. {
  1512. struct btrfs_root *root = arg;
  1513. int again;
  1514. do {
  1515. again = 0;
  1516. /* Make the cleaner go to sleep early. */
  1517. if (btrfs_need_cleaner_sleep(root))
  1518. goto sleep;
  1519. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1520. goto sleep;
  1521. /*
  1522. * Avoid the problem that we change the status of the fs
  1523. * during the above check and trylock.
  1524. */
  1525. if (btrfs_need_cleaner_sleep(root)) {
  1526. mutex_unlock(&root->fs_info->cleaner_mutex);
  1527. goto sleep;
  1528. }
  1529. btrfs_run_delayed_iputs(root);
  1530. again = btrfs_clean_one_deleted_snapshot(root);
  1531. mutex_unlock(&root->fs_info->cleaner_mutex);
  1532. /*
  1533. * The defragger has dealt with the R/O remount and umount,
  1534. * needn't do anything special here.
  1535. */
  1536. btrfs_run_defrag_inodes(root->fs_info);
  1537. sleep:
  1538. if (!try_to_freeze() && !again) {
  1539. set_current_state(TASK_INTERRUPTIBLE);
  1540. if (!kthread_should_stop())
  1541. schedule();
  1542. __set_current_state(TASK_RUNNING);
  1543. }
  1544. } while (!kthread_should_stop());
  1545. return 0;
  1546. }
  1547. static int transaction_kthread(void *arg)
  1548. {
  1549. struct btrfs_root *root = arg;
  1550. struct btrfs_trans_handle *trans;
  1551. struct btrfs_transaction *cur;
  1552. u64 transid;
  1553. unsigned long now;
  1554. unsigned long delay;
  1555. bool cannot_commit;
  1556. do {
  1557. cannot_commit = false;
  1558. delay = HZ * root->fs_info->commit_interval;
  1559. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1560. spin_lock(&root->fs_info->trans_lock);
  1561. cur = root->fs_info->running_transaction;
  1562. if (!cur) {
  1563. spin_unlock(&root->fs_info->trans_lock);
  1564. goto sleep;
  1565. }
  1566. now = get_seconds();
  1567. if (cur->state < TRANS_STATE_BLOCKED &&
  1568. (now < cur->start_time ||
  1569. now - cur->start_time < root->fs_info->commit_interval)) {
  1570. spin_unlock(&root->fs_info->trans_lock);
  1571. delay = HZ * 5;
  1572. goto sleep;
  1573. }
  1574. transid = cur->transid;
  1575. spin_unlock(&root->fs_info->trans_lock);
  1576. /* If the file system is aborted, this will always fail. */
  1577. trans = btrfs_attach_transaction(root);
  1578. if (IS_ERR(trans)) {
  1579. if (PTR_ERR(trans) != -ENOENT)
  1580. cannot_commit = true;
  1581. goto sleep;
  1582. }
  1583. if (transid == trans->transid) {
  1584. btrfs_commit_transaction(trans, root);
  1585. } else {
  1586. btrfs_end_transaction(trans, root);
  1587. }
  1588. sleep:
  1589. wake_up_process(root->fs_info->cleaner_kthread);
  1590. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1591. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1592. &root->fs_info->fs_state)))
  1593. btrfs_cleanup_transaction(root);
  1594. if (!try_to_freeze()) {
  1595. set_current_state(TASK_INTERRUPTIBLE);
  1596. if (!kthread_should_stop() &&
  1597. (!btrfs_transaction_blocked(root->fs_info) ||
  1598. cannot_commit))
  1599. schedule_timeout(delay);
  1600. __set_current_state(TASK_RUNNING);
  1601. }
  1602. } while (!kthread_should_stop());
  1603. return 0;
  1604. }
  1605. /*
  1606. * this will find the highest generation in the array of
  1607. * root backups. The index of the highest array is returned,
  1608. * or -1 if we can't find anything.
  1609. *
  1610. * We check to make sure the array is valid by comparing the
  1611. * generation of the latest root in the array with the generation
  1612. * in the super block. If they don't match we pitch it.
  1613. */
  1614. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1615. {
  1616. u64 cur;
  1617. int newest_index = -1;
  1618. struct btrfs_root_backup *root_backup;
  1619. int i;
  1620. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1621. root_backup = info->super_copy->super_roots + i;
  1622. cur = btrfs_backup_tree_root_gen(root_backup);
  1623. if (cur == newest_gen)
  1624. newest_index = i;
  1625. }
  1626. /* check to see if we actually wrapped around */
  1627. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1628. root_backup = info->super_copy->super_roots;
  1629. cur = btrfs_backup_tree_root_gen(root_backup);
  1630. if (cur == newest_gen)
  1631. newest_index = 0;
  1632. }
  1633. return newest_index;
  1634. }
  1635. /*
  1636. * find the oldest backup so we know where to store new entries
  1637. * in the backup array. This will set the backup_root_index
  1638. * field in the fs_info struct
  1639. */
  1640. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1641. u64 newest_gen)
  1642. {
  1643. int newest_index = -1;
  1644. newest_index = find_newest_super_backup(info, newest_gen);
  1645. /* if there was garbage in there, just move along */
  1646. if (newest_index == -1) {
  1647. info->backup_root_index = 0;
  1648. } else {
  1649. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1650. }
  1651. }
  1652. /*
  1653. * copy all the root pointers into the super backup array.
  1654. * this will bump the backup pointer by one when it is
  1655. * done
  1656. */
  1657. static void backup_super_roots(struct btrfs_fs_info *info)
  1658. {
  1659. int next_backup;
  1660. struct btrfs_root_backup *root_backup;
  1661. int last_backup;
  1662. next_backup = info->backup_root_index;
  1663. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1664. BTRFS_NUM_BACKUP_ROOTS;
  1665. /*
  1666. * just overwrite the last backup if we're at the same generation
  1667. * this happens only at umount
  1668. */
  1669. root_backup = info->super_for_commit->super_roots + last_backup;
  1670. if (btrfs_backup_tree_root_gen(root_backup) ==
  1671. btrfs_header_generation(info->tree_root->node))
  1672. next_backup = last_backup;
  1673. root_backup = info->super_for_commit->super_roots + next_backup;
  1674. /*
  1675. * make sure all of our padding and empty slots get zero filled
  1676. * regardless of which ones we use today
  1677. */
  1678. memset(root_backup, 0, sizeof(*root_backup));
  1679. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1680. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1681. btrfs_set_backup_tree_root_gen(root_backup,
  1682. btrfs_header_generation(info->tree_root->node));
  1683. btrfs_set_backup_tree_root_level(root_backup,
  1684. btrfs_header_level(info->tree_root->node));
  1685. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1686. btrfs_set_backup_chunk_root_gen(root_backup,
  1687. btrfs_header_generation(info->chunk_root->node));
  1688. btrfs_set_backup_chunk_root_level(root_backup,
  1689. btrfs_header_level(info->chunk_root->node));
  1690. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1691. btrfs_set_backup_extent_root_gen(root_backup,
  1692. btrfs_header_generation(info->extent_root->node));
  1693. btrfs_set_backup_extent_root_level(root_backup,
  1694. btrfs_header_level(info->extent_root->node));
  1695. /*
  1696. * we might commit during log recovery, which happens before we set
  1697. * the fs_root. Make sure it is valid before we fill it in.
  1698. */
  1699. if (info->fs_root && info->fs_root->node) {
  1700. btrfs_set_backup_fs_root(root_backup,
  1701. info->fs_root->node->start);
  1702. btrfs_set_backup_fs_root_gen(root_backup,
  1703. btrfs_header_generation(info->fs_root->node));
  1704. btrfs_set_backup_fs_root_level(root_backup,
  1705. btrfs_header_level(info->fs_root->node));
  1706. }
  1707. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1708. btrfs_set_backup_dev_root_gen(root_backup,
  1709. btrfs_header_generation(info->dev_root->node));
  1710. btrfs_set_backup_dev_root_level(root_backup,
  1711. btrfs_header_level(info->dev_root->node));
  1712. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1713. btrfs_set_backup_csum_root_gen(root_backup,
  1714. btrfs_header_generation(info->csum_root->node));
  1715. btrfs_set_backup_csum_root_level(root_backup,
  1716. btrfs_header_level(info->csum_root->node));
  1717. btrfs_set_backup_total_bytes(root_backup,
  1718. btrfs_super_total_bytes(info->super_copy));
  1719. btrfs_set_backup_bytes_used(root_backup,
  1720. btrfs_super_bytes_used(info->super_copy));
  1721. btrfs_set_backup_num_devices(root_backup,
  1722. btrfs_super_num_devices(info->super_copy));
  1723. /*
  1724. * if we don't copy this out to the super_copy, it won't get remembered
  1725. * for the next commit
  1726. */
  1727. memcpy(&info->super_copy->super_roots,
  1728. &info->super_for_commit->super_roots,
  1729. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1730. }
  1731. /*
  1732. * this copies info out of the root backup array and back into
  1733. * the in-memory super block. It is meant to help iterate through
  1734. * the array, so you send it the number of backups you've already
  1735. * tried and the last backup index you used.
  1736. *
  1737. * this returns -1 when it has tried all the backups
  1738. */
  1739. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1740. struct btrfs_super_block *super,
  1741. int *num_backups_tried, int *backup_index)
  1742. {
  1743. struct btrfs_root_backup *root_backup;
  1744. int newest = *backup_index;
  1745. if (*num_backups_tried == 0) {
  1746. u64 gen = btrfs_super_generation(super);
  1747. newest = find_newest_super_backup(info, gen);
  1748. if (newest == -1)
  1749. return -1;
  1750. *backup_index = newest;
  1751. *num_backups_tried = 1;
  1752. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1753. /* we've tried all the backups, all done */
  1754. return -1;
  1755. } else {
  1756. /* jump to the next oldest backup */
  1757. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1758. BTRFS_NUM_BACKUP_ROOTS;
  1759. *backup_index = newest;
  1760. *num_backups_tried += 1;
  1761. }
  1762. root_backup = super->super_roots + newest;
  1763. btrfs_set_super_generation(super,
  1764. btrfs_backup_tree_root_gen(root_backup));
  1765. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1766. btrfs_set_super_root_level(super,
  1767. btrfs_backup_tree_root_level(root_backup));
  1768. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1769. /*
  1770. * fixme: the total bytes and num_devices need to match or we should
  1771. * need a fsck
  1772. */
  1773. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1774. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1775. return 0;
  1776. }
  1777. /* helper to cleanup workers */
  1778. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1779. {
  1780. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1781. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1782. btrfs_destroy_workqueue(fs_info->workers);
  1783. btrfs_destroy_workqueue(fs_info->endio_workers);
  1784. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1785. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1786. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1787. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1788. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1789. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1790. btrfs_destroy_workqueue(fs_info->submit_workers);
  1791. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1792. btrfs_destroy_workqueue(fs_info->caching_workers);
  1793. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1794. btrfs_destroy_workqueue(fs_info->flush_workers);
  1795. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1796. }
  1797. static void free_root_extent_buffers(struct btrfs_root *root)
  1798. {
  1799. if (root) {
  1800. free_extent_buffer(root->node);
  1801. free_extent_buffer(root->commit_root);
  1802. root->node = NULL;
  1803. root->commit_root = NULL;
  1804. }
  1805. }
  1806. /* helper to cleanup tree roots */
  1807. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1808. {
  1809. free_root_extent_buffers(info->tree_root);
  1810. free_root_extent_buffers(info->dev_root);
  1811. free_root_extent_buffers(info->extent_root);
  1812. free_root_extent_buffers(info->csum_root);
  1813. free_root_extent_buffers(info->quota_root);
  1814. free_root_extent_buffers(info->uuid_root);
  1815. if (chunk_root)
  1816. free_root_extent_buffers(info->chunk_root);
  1817. }
  1818. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1819. {
  1820. int ret;
  1821. struct btrfs_root *gang[8];
  1822. int i;
  1823. while (!list_empty(&fs_info->dead_roots)) {
  1824. gang[0] = list_entry(fs_info->dead_roots.next,
  1825. struct btrfs_root, root_list);
  1826. list_del(&gang[0]->root_list);
  1827. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1828. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1829. } else {
  1830. free_extent_buffer(gang[0]->node);
  1831. free_extent_buffer(gang[0]->commit_root);
  1832. btrfs_put_fs_root(gang[0]);
  1833. }
  1834. }
  1835. while (1) {
  1836. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1837. (void **)gang, 0,
  1838. ARRAY_SIZE(gang));
  1839. if (!ret)
  1840. break;
  1841. for (i = 0; i < ret; i++)
  1842. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1843. }
  1844. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1845. btrfs_free_log_root_tree(NULL, fs_info);
  1846. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1847. fs_info->pinned_extents);
  1848. }
  1849. }
  1850. int open_ctree(struct super_block *sb,
  1851. struct btrfs_fs_devices *fs_devices,
  1852. char *options)
  1853. {
  1854. u32 sectorsize;
  1855. u32 nodesize;
  1856. u32 leafsize;
  1857. u32 blocksize;
  1858. u32 stripesize;
  1859. u64 generation;
  1860. u64 features;
  1861. struct btrfs_key location;
  1862. struct buffer_head *bh;
  1863. struct btrfs_super_block *disk_super;
  1864. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1865. struct btrfs_root *tree_root;
  1866. struct btrfs_root *extent_root;
  1867. struct btrfs_root *csum_root;
  1868. struct btrfs_root *chunk_root;
  1869. struct btrfs_root *dev_root;
  1870. struct btrfs_root *quota_root;
  1871. struct btrfs_root *uuid_root;
  1872. struct btrfs_root *log_tree_root;
  1873. int ret;
  1874. int err = -EINVAL;
  1875. int num_backups_tried = 0;
  1876. int backup_index = 0;
  1877. int max_active;
  1878. int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1879. bool create_uuid_tree;
  1880. bool check_uuid_tree;
  1881. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1882. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1883. if (!tree_root || !chunk_root) {
  1884. err = -ENOMEM;
  1885. goto fail;
  1886. }
  1887. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1888. if (ret) {
  1889. err = ret;
  1890. goto fail;
  1891. }
  1892. ret = setup_bdi(fs_info, &fs_info->bdi);
  1893. if (ret) {
  1894. err = ret;
  1895. goto fail_srcu;
  1896. }
  1897. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1898. if (ret) {
  1899. err = ret;
  1900. goto fail_bdi;
  1901. }
  1902. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1903. (1 + ilog2(nr_cpu_ids));
  1904. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1905. if (ret) {
  1906. err = ret;
  1907. goto fail_dirty_metadata_bytes;
  1908. }
  1909. ret = percpu_counter_init(&fs_info->bio_counter, 0);
  1910. if (ret) {
  1911. err = ret;
  1912. goto fail_delalloc_bytes;
  1913. }
  1914. fs_info->btree_inode = new_inode(sb);
  1915. if (!fs_info->btree_inode) {
  1916. err = -ENOMEM;
  1917. goto fail_bio_counter;
  1918. }
  1919. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1920. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1921. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  1922. INIT_LIST_HEAD(&fs_info->trans_list);
  1923. INIT_LIST_HEAD(&fs_info->dead_roots);
  1924. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1925. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1926. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1927. spin_lock_init(&fs_info->delalloc_root_lock);
  1928. spin_lock_init(&fs_info->trans_lock);
  1929. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1930. spin_lock_init(&fs_info->delayed_iput_lock);
  1931. spin_lock_init(&fs_info->defrag_inodes_lock);
  1932. spin_lock_init(&fs_info->free_chunk_lock);
  1933. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1934. spin_lock_init(&fs_info->super_lock);
  1935. spin_lock_init(&fs_info->buffer_lock);
  1936. rwlock_init(&fs_info->tree_mod_log_lock);
  1937. mutex_init(&fs_info->reloc_mutex);
  1938. mutex_init(&fs_info->delalloc_root_mutex);
  1939. seqlock_init(&fs_info->profiles_lock);
  1940. init_completion(&fs_info->kobj_unregister);
  1941. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1942. INIT_LIST_HEAD(&fs_info->space_info);
  1943. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1944. btrfs_mapping_init(&fs_info->mapping_tree);
  1945. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1946. BTRFS_BLOCK_RSV_GLOBAL);
  1947. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1948. BTRFS_BLOCK_RSV_DELALLOC);
  1949. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1950. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1951. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1952. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1953. BTRFS_BLOCK_RSV_DELOPS);
  1954. atomic_set(&fs_info->nr_async_submits, 0);
  1955. atomic_set(&fs_info->async_delalloc_pages, 0);
  1956. atomic_set(&fs_info->async_submit_draining, 0);
  1957. atomic_set(&fs_info->nr_async_bios, 0);
  1958. atomic_set(&fs_info->defrag_running, 0);
  1959. atomic64_set(&fs_info->tree_mod_seq, 0);
  1960. fs_info->sb = sb;
  1961. fs_info->max_inline = 8192 * 1024;
  1962. fs_info->metadata_ratio = 0;
  1963. fs_info->defrag_inodes = RB_ROOT;
  1964. fs_info->free_chunk_space = 0;
  1965. fs_info->tree_mod_log = RB_ROOT;
  1966. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1967. fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
  1968. /* readahead state */
  1969. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1970. spin_lock_init(&fs_info->reada_lock);
  1971. fs_info->thread_pool_size = min_t(unsigned long,
  1972. num_online_cpus() + 2, 8);
  1973. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1974. spin_lock_init(&fs_info->ordered_root_lock);
  1975. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1976. GFP_NOFS);
  1977. if (!fs_info->delayed_root) {
  1978. err = -ENOMEM;
  1979. goto fail_iput;
  1980. }
  1981. btrfs_init_delayed_root(fs_info->delayed_root);
  1982. mutex_init(&fs_info->scrub_lock);
  1983. atomic_set(&fs_info->scrubs_running, 0);
  1984. atomic_set(&fs_info->scrub_pause_req, 0);
  1985. atomic_set(&fs_info->scrubs_paused, 0);
  1986. atomic_set(&fs_info->scrub_cancel_req, 0);
  1987. init_waitqueue_head(&fs_info->replace_wait);
  1988. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1989. fs_info->scrub_workers_refcnt = 0;
  1990. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1991. fs_info->check_integrity_print_mask = 0;
  1992. #endif
  1993. spin_lock_init(&fs_info->balance_lock);
  1994. mutex_init(&fs_info->balance_mutex);
  1995. atomic_set(&fs_info->balance_running, 0);
  1996. atomic_set(&fs_info->balance_pause_req, 0);
  1997. atomic_set(&fs_info->balance_cancel_req, 0);
  1998. fs_info->balance_ctl = NULL;
  1999. init_waitqueue_head(&fs_info->balance_wait_q);
  2000. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2001. sb->s_blocksize = 4096;
  2002. sb->s_blocksize_bits = blksize_bits(4096);
  2003. sb->s_bdi = &fs_info->bdi;
  2004. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  2005. set_nlink(fs_info->btree_inode, 1);
  2006. /*
  2007. * we set the i_size on the btree inode to the max possible int.
  2008. * the real end of the address space is determined by all of
  2009. * the devices in the system
  2010. */
  2011. fs_info->btree_inode->i_size = OFFSET_MAX;
  2012. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  2013. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  2014. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  2015. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  2016. fs_info->btree_inode->i_mapping);
  2017. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  2018. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  2019. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  2020. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  2021. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  2022. sizeof(struct btrfs_key));
  2023. set_bit(BTRFS_INODE_DUMMY,
  2024. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  2025. btrfs_insert_inode_hash(fs_info->btree_inode);
  2026. spin_lock_init(&fs_info->block_group_cache_lock);
  2027. fs_info->block_group_cache_tree = RB_ROOT;
  2028. fs_info->first_logical_byte = (u64)-1;
  2029. extent_io_tree_init(&fs_info->freed_extents[0],
  2030. fs_info->btree_inode->i_mapping);
  2031. extent_io_tree_init(&fs_info->freed_extents[1],
  2032. fs_info->btree_inode->i_mapping);
  2033. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2034. fs_info->do_barriers = 1;
  2035. mutex_init(&fs_info->ordered_operations_mutex);
  2036. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2037. mutex_init(&fs_info->tree_log_mutex);
  2038. mutex_init(&fs_info->chunk_mutex);
  2039. mutex_init(&fs_info->transaction_kthread_mutex);
  2040. mutex_init(&fs_info->cleaner_mutex);
  2041. mutex_init(&fs_info->volume_mutex);
  2042. init_rwsem(&fs_info->commit_root_sem);
  2043. init_rwsem(&fs_info->cleanup_work_sem);
  2044. init_rwsem(&fs_info->subvol_sem);
  2045. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2046. fs_info->dev_replace.lock_owner = 0;
  2047. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2048. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2049. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2050. mutex_init(&fs_info->dev_replace.lock);
  2051. spin_lock_init(&fs_info->qgroup_lock);
  2052. mutex_init(&fs_info->qgroup_ioctl_lock);
  2053. fs_info->qgroup_tree = RB_ROOT;
  2054. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2055. fs_info->qgroup_seq = 1;
  2056. fs_info->quota_enabled = 0;
  2057. fs_info->pending_quota_state = 0;
  2058. fs_info->qgroup_ulist = NULL;
  2059. mutex_init(&fs_info->qgroup_rescan_lock);
  2060. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2061. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2062. init_waitqueue_head(&fs_info->transaction_throttle);
  2063. init_waitqueue_head(&fs_info->transaction_wait);
  2064. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2065. init_waitqueue_head(&fs_info->async_submit_wait);
  2066. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2067. if (ret) {
  2068. err = ret;
  2069. goto fail_alloc;
  2070. }
  2071. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2072. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2073. invalidate_bdev(fs_devices->latest_bdev);
  2074. /*
  2075. * Read super block and check the signature bytes only
  2076. */
  2077. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2078. if (!bh) {
  2079. err = -EINVAL;
  2080. goto fail_alloc;
  2081. }
  2082. /*
  2083. * We want to check superblock checksum, the type is stored inside.
  2084. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2085. */
  2086. if (btrfs_check_super_csum(bh->b_data)) {
  2087. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2088. err = -EINVAL;
  2089. goto fail_alloc;
  2090. }
  2091. /*
  2092. * super_copy is zeroed at allocation time and we never touch the
  2093. * following bytes up to INFO_SIZE, the checksum is calculated from
  2094. * the whole block of INFO_SIZE
  2095. */
  2096. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2097. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2098. sizeof(*fs_info->super_for_commit));
  2099. brelse(bh);
  2100. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2101. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2102. if (ret) {
  2103. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2104. err = -EINVAL;
  2105. goto fail_alloc;
  2106. }
  2107. disk_super = fs_info->super_copy;
  2108. if (!btrfs_super_root(disk_super))
  2109. goto fail_alloc;
  2110. /* check FS state, whether FS is broken. */
  2111. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2112. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2113. /*
  2114. * run through our array of backup supers and setup
  2115. * our ring pointer to the oldest one
  2116. */
  2117. generation = btrfs_super_generation(disk_super);
  2118. find_oldest_super_backup(fs_info, generation);
  2119. /*
  2120. * In the long term, we'll store the compression type in the super
  2121. * block, and it'll be used for per file compression control.
  2122. */
  2123. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2124. ret = btrfs_parse_options(tree_root, options);
  2125. if (ret) {
  2126. err = ret;
  2127. goto fail_alloc;
  2128. }
  2129. features = btrfs_super_incompat_flags(disk_super) &
  2130. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2131. if (features) {
  2132. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2133. "unsupported optional features (%Lx).\n",
  2134. features);
  2135. err = -EINVAL;
  2136. goto fail_alloc;
  2137. }
  2138. if (btrfs_super_leafsize(disk_super) !=
  2139. btrfs_super_nodesize(disk_super)) {
  2140. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2141. "blocksizes don't match. node %d leaf %d\n",
  2142. btrfs_super_nodesize(disk_super),
  2143. btrfs_super_leafsize(disk_super));
  2144. err = -EINVAL;
  2145. goto fail_alloc;
  2146. }
  2147. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2148. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2149. "blocksize (%d) was too large\n",
  2150. btrfs_super_leafsize(disk_super));
  2151. err = -EINVAL;
  2152. goto fail_alloc;
  2153. }
  2154. features = btrfs_super_incompat_flags(disk_super);
  2155. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2156. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2157. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2158. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2159. printk(KERN_ERR "BTRFS: has skinny extents\n");
  2160. /*
  2161. * flag our filesystem as having big metadata blocks if
  2162. * they are bigger than the page size
  2163. */
  2164. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2165. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2166. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2167. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2168. }
  2169. nodesize = btrfs_super_nodesize(disk_super);
  2170. leafsize = btrfs_super_leafsize(disk_super);
  2171. sectorsize = btrfs_super_sectorsize(disk_super);
  2172. stripesize = btrfs_super_stripesize(disk_super);
  2173. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2174. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2175. /*
  2176. * mixed block groups end up with duplicate but slightly offset
  2177. * extent buffers for the same range. It leads to corruptions
  2178. */
  2179. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2180. (sectorsize != leafsize)) {
  2181. printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
  2182. "are not allowed for mixed block groups on %s\n",
  2183. sb->s_id);
  2184. goto fail_alloc;
  2185. }
  2186. /*
  2187. * Needn't use the lock because there is no other task which will
  2188. * update the flag.
  2189. */
  2190. btrfs_set_super_incompat_flags(disk_super, features);
  2191. features = btrfs_super_compat_ro_flags(disk_super) &
  2192. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2193. if (!(sb->s_flags & MS_RDONLY) && features) {
  2194. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2195. "unsupported option features (%Lx).\n",
  2196. features);
  2197. err = -EINVAL;
  2198. goto fail_alloc;
  2199. }
  2200. max_active = fs_info->thread_pool_size;
  2201. fs_info->workers =
  2202. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  2203. max_active, 16);
  2204. fs_info->delalloc_workers =
  2205. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  2206. fs_info->flush_workers =
  2207. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  2208. fs_info->caching_workers =
  2209. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  2210. /*
  2211. * a higher idle thresh on the submit workers makes it much more
  2212. * likely that bios will be send down in a sane order to the
  2213. * devices
  2214. */
  2215. fs_info->submit_workers =
  2216. btrfs_alloc_workqueue("submit", flags,
  2217. min_t(u64, fs_devices->num_devices,
  2218. max_active), 64);
  2219. fs_info->fixup_workers =
  2220. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  2221. /*
  2222. * endios are largely parallel and should have a very
  2223. * low idle thresh
  2224. */
  2225. fs_info->endio_workers =
  2226. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2227. fs_info->endio_meta_workers =
  2228. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2229. fs_info->endio_meta_write_workers =
  2230. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2231. fs_info->endio_raid56_workers =
  2232. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2233. fs_info->rmw_workers =
  2234. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2235. fs_info->endio_write_workers =
  2236. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2237. fs_info->endio_freespace_worker =
  2238. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2239. fs_info->delayed_workers =
  2240. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2241. fs_info->readahead_workers =
  2242. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2243. fs_info->qgroup_rescan_workers =
  2244. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2245. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2246. fs_info->submit_workers && fs_info->flush_workers &&
  2247. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2248. fs_info->endio_meta_write_workers &&
  2249. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2250. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2251. fs_info->caching_workers && fs_info->readahead_workers &&
  2252. fs_info->fixup_workers && fs_info->delayed_workers &&
  2253. fs_info->qgroup_rescan_workers)) {
  2254. err = -ENOMEM;
  2255. goto fail_sb_buffer;
  2256. }
  2257. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2258. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2259. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2260. tree_root->nodesize = nodesize;
  2261. tree_root->leafsize = leafsize;
  2262. tree_root->sectorsize = sectorsize;
  2263. tree_root->stripesize = stripesize;
  2264. sb->s_blocksize = sectorsize;
  2265. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2266. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2267. printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
  2268. goto fail_sb_buffer;
  2269. }
  2270. if (sectorsize != PAGE_SIZE) {
  2271. printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
  2272. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2273. goto fail_sb_buffer;
  2274. }
  2275. mutex_lock(&fs_info->chunk_mutex);
  2276. ret = btrfs_read_sys_array(tree_root);
  2277. mutex_unlock(&fs_info->chunk_mutex);
  2278. if (ret) {
  2279. printk(KERN_WARNING "BTRFS: failed to read the system "
  2280. "array on %s\n", sb->s_id);
  2281. goto fail_sb_buffer;
  2282. }
  2283. blocksize = btrfs_level_size(tree_root,
  2284. btrfs_super_chunk_root_level(disk_super));
  2285. generation = btrfs_super_chunk_root_generation(disk_super);
  2286. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2287. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2288. chunk_root->node = read_tree_block(chunk_root,
  2289. btrfs_super_chunk_root(disk_super),
  2290. blocksize, generation);
  2291. if (!chunk_root->node ||
  2292. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2293. printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
  2294. sb->s_id);
  2295. goto fail_tree_roots;
  2296. }
  2297. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2298. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2299. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2300. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2301. ret = btrfs_read_chunk_tree(chunk_root);
  2302. if (ret) {
  2303. printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
  2304. sb->s_id);
  2305. goto fail_tree_roots;
  2306. }
  2307. /*
  2308. * keep the device that is marked to be the target device for the
  2309. * dev_replace procedure
  2310. */
  2311. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2312. if (!fs_devices->latest_bdev) {
  2313. printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
  2314. sb->s_id);
  2315. goto fail_tree_roots;
  2316. }
  2317. retry_root_backup:
  2318. blocksize = btrfs_level_size(tree_root,
  2319. btrfs_super_root_level(disk_super));
  2320. generation = btrfs_super_generation(disk_super);
  2321. tree_root->node = read_tree_block(tree_root,
  2322. btrfs_super_root(disk_super),
  2323. blocksize, generation);
  2324. if (!tree_root->node ||
  2325. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2326. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2327. sb->s_id);
  2328. goto recovery_tree_root;
  2329. }
  2330. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2331. tree_root->commit_root = btrfs_root_node(tree_root);
  2332. btrfs_set_root_refs(&tree_root->root_item, 1);
  2333. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2334. location.type = BTRFS_ROOT_ITEM_KEY;
  2335. location.offset = 0;
  2336. extent_root = btrfs_read_tree_root(tree_root, &location);
  2337. if (IS_ERR(extent_root)) {
  2338. ret = PTR_ERR(extent_root);
  2339. goto recovery_tree_root;
  2340. }
  2341. set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
  2342. fs_info->extent_root = extent_root;
  2343. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2344. dev_root = btrfs_read_tree_root(tree_root, &location);
  2345. if (IS_ERR(dev_root)) {
  2346. ret = PTR_ERR(dev_root);
  2347. goto recovery_tree_root;
  2348. }
  2349. set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
  2350. fs_info->dev_root = dev_root;
  2351. btrfs_init_devices_late(fs_info);
  2352. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2353. csum_root = btrfs_read_tree_root(tree_root, &location);
  2354. if (IS_ERR(csum_root)) {
  2355. ret = PTR_ERR(csum_root);
  2356. goto recovery_tree_root;
  2357. }
  2358. set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
  2359. fs_info->csum_root = csum_root;
  2360. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2361. quota_root = btrfs_read_tree_root(tree_root, &location);
  2362. if (!IS_ERR(quota_root)) {
  2363. set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
  2364. fs_info->quota_enabled = 1;
  2365. fs_info->pending_quota_state = 1;
  2366. fs_info->quota_root = quota_root;
  2367. }
  2368. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2369. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2370. if (IS_ERR(uuid_root)) {
  2371. ret = PTR_ERR(uuid_root);
  2372. if (ret != -ENOENT)
  2373. goto recovery_tree_root;
  2374. create_uuid_tree = true;
  2375. check_uuid_tree = false;
  2376. } else {
  2377. set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
  2378. fs_info->uuid_root = uuid_root;
  2379. create_uuid_tree = false;
  2380. check_uuid_tree =
  2381. generation != btrfs_super_uuid_tree_generation(disk_super);
  2382. }
  2383. fs_info->generation = generation;
  2384. fs_info->last_trans_committed = generation;
  2385. ret = btrfs_recover_balance(fs_info);
  2386. if (ret) {
  2387. printk(KERN_WARNING "BTRFS: failed to recover balance\n");
  2388. goto fail_block_groups;
  2389. }
  2390. ret = btrfs_init_dev_stats(fs_info);
  2391. if (ret) {
  2392. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2393. ret);
  2394. goto fail_block_groups;
  2395. }
  2396. ret = btrfs_init_dev_replace(fs_info);
  2397. if (ret) {
  2398. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2399. goto fail_block_groups;
  2400. }
  2401. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2402. ret = btrfs_sysfs_add_one(fs_info);
  2403. if (ret) {
  2404. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2405. goto fail_block_groups;
  2406. }
  2407. ret = btrfs_init_space_info(fs_info);
  2408. if (ret) {
  2409. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2410. goto fail_sysfs;
  2411. }
  2412. ret = btrfs_read_block_groups(extent_root);
  2413. if (ret) {
  2414. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2415. goto fail_sysfs;
  2416. }
  2417. fs_info->num_tolerated_disk_barrier_failures =
  2418. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2419. if (fs_info->fs_devices->missing_devices >
  2420. fs_info->num_tolerated_disk_barrier_failures &&
  2421. !(sb->s_flags & MS_RDONLY)) {
  2422. printk(KERN_WARNING "BTRFS: "
  2423. "too many missing devices, writeable mount is not allowed\n");
  2424. goto fail_sysfs;
  2425. }
  2426. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2427. "btrfs-cleaner");
  2428. if (IS_ERR(fs_info->cleaner_kthread))
  2429. goto fail_sysfs;
  2430. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2431. tree_root,
  2432. "btrfs-transaction");
  2433. if (IS_ERR(fs_info->transaction_kthread))
  2434. goto fail_cleaner;
  2435. if (!btrfs_test_opt(tree_root, SSD) &&
  2436. !btrfs_test_opt(tree_root, NOSSD) &&
  2437. !fs_info->fs_devices->rotating) {
  2438. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2439. "mode\n");
  2440. btrfs_set_opt(fs_info->mount_opt, SSD);
  2441. }
  2442. /* Set the real inode map cache flag */
  2443. if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
  2444. btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
  2445. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2446. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2447. ret = btrfsic_mount(tree_root, fs_devices,
  2448. btrfs_test_opt(tree_root,
  2449. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2450. 1 : 0,
  2451. fs_info->check_integrity_print_mask);
  2452. if (ret)
  2453. printk(KERN_WARNING "BTRFS: failed to initialize"
  2454. " integrity check module %s\n", sb->s_id);
  2455. }
  2456. #endif
  2457. ret = btrfs_read_qgroup_config(fs_info);
  2458. if (ret)
  2459. goto fail_trans_kthread;
  2460. /* do not make disk changes in broken FS */
  2461. if (btrfs_super_log_root(disk_super) != 0) {
  2462. u64 bytenr = btrfs_super_log_root(disk_super);
  2463. if (fs_devices->rw_devices == 0) {
  2464. printk(KERN_WARNING "BTRFS: log replay required "
  2465. "on RO media\n");
  2466. err = -EIO;
  2467. goto fail_qgroup;
  2468. }
  2469. blocksize =
  2470. btrfs_level_size(tree_root,
  2471. btrfs_super_log_root_level(disk_super));
  2472. log_tree_root = btrfs_alloc_root(fs_info);
  2473. if (!log_tree_root) {
  2474. err = -ENOMEM;
  2475. goto fail_qgroup;
  2476. }
  2477. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2478. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2479. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2480. blocksize,
  2481. generation + 1);
  2482. if (!log_tree_root->node ||
  2483. !extent_buffer_uptodate(log_tree_root->node)) {
  2484. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2485. free_extent_buffer(log_tree_root->node);
  2486. kfree(log_tree_root);
  2487. goto fail_qgroup;
  2488. }
  2489. /* returns with log_tree_root freed on success */
  2490. ret = btrfs_recover_log_trees(log_tree_root);
  2491. if (ret) {
  2492. btrfs_error(tree_root->fs_info, ret,
  2493. "Failed to recover log tree");
  2494. free_extent_buffer(log_tree_root->node);
  2495. kfree(log_tree_root);
  2496. goto fail_qgroup;
  2497. }
  2498. if (sb->s_flags & MS_RDONLY) {
  2499. ret = btrfs_commit_super(tree_root);
  2500. if (ret)
  2501. goto fail_qgroup;
  2502. }
  2503. }
  2504. ret = btrfs_find_orphan_roots(tree_root);
  2505. if (ret)
  2506. goto fail_qgroup;
  2507. if (!(sb->s_flags & MS_RDONLY)) {
  2508. ret = btrfs_cleanup_fs_roots(fs_info);
  2509. if (ret)
  2510. goto fail_qgroup;
  2511. ret = btrfs_recover_relocation(tree_root);
  2512. if (ret < 0) {
  2513. printk(KERN_WARNING
  2514. "BTRFS: failed to recover relocation\n");
  2515. err = -EINVAL;
  2516. goto fail_qgroup;
  2517. }
  2518. }
  2519. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2520. location.type = BTRFS_ROOT_ITEM_KEY;
  2521. location.offset = 0;
  2522. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2523. if (IS_ERR(fs_info->fs_root)) {
  2524. err = PTR_ERR(fs_info->fs_root);
  2525. goto fail_qgroup;
  2526. }
  2527. if (sb->s_flags & MS_RDONLY)
  2528. return 0;
  2529. down_read(&fs_info->cleanup_work_sem);
  2530. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2531. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2532. up_read(&fs_info->cleanup_work_sem);
  2533. close_ctree(tree_root);
  2534. return ret;
  2535. }
  2536. up_read(&fs_info->cleanup_work_sem);
  2537. ret = btrfs_resume_balance_async(fs_info);
  2538. if (ret) {
  2539. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2540. close_ctree(tree_root);
  2541. return ret;
  2542. }
  2543. ret = btrfs_resume_dev_replace_async(fs_info);
  2544. if (ret) {
  2545. pr_warn("BTRFS: failed to resume dev_replace\n");
  2546. close_ctree(tree_root);
  2547. return ret;
  2548. }
  2549. btrfs_qgroup_rescan_resume(fs_info);
  2550. if (create_uuid_tree) {
  2551. pr_info("BTRFS: creating UUID tree\n");
  2552. ret = btrfs_create_uuid_tree(fs_info);
  2553. if (ret) {
  2554. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2555. ret);
  2556. close_ctree(tree_root);
  2557. return ret;
  2558. }
  2559. } else if (check_uuid_tree ||
  2560. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2561. pr_info("BTRFS: checking UUID tree\n");
  2562. ret = btrfs_check_uuid_tree(fs_info);
  2563. if (ret) {
  2564. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2565. ret);
  2566. close_ctree(tree_root);
  2567. return ret;
  2568. }
  2569. } else {
  2570. fs_info->update_uuid_tree_gen = 1;
  2571. }
  2572. return 0;
  2573. fail_qgroup:
  2574. btrfs_free_qgroup_config(fs_info);
  2575. fail_trans_kthread:
  2576. kthread_stop(fs_info->transaction_kthread);
  2577. btrfs_cleanup_transaction(fs_info->tree_root);
  2578. del_fs_roots(fs_info);
  2579. fail_cleaner:
  2580. kthread_stop(fs_info->cleaner_kthread);
  2581. /*
  2582. * make sure we're done with the btree inode before we stop our
  2583. * kthreads
  2584. */
  2585. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2586. fail_sysfs:
  2587. btrfs_sysfs_remove_one(fs_info);
  2588. fail_block_groups:
  2589. btrfs_put_block_group_cache(fs_info);
  2590. btrfs_free_block_groups(fs_info);
  2591. fail_tree_roots:
  2592. free_root_pointers(fs_info, 1);
  2593. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2594. fail_sb_buffer:
  2595. btrfs_stop_all_workers(fs_info);
  2596. fail_alloc:
  2597. fail_iput:
  2598. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2599. iput(fs_info->btree_inode);
  2600. fail_bio_counter:
  2601. percpu_counter_destroy(&fs_info->bio_counter);
  2602. fail_delalloc_bytes:
  2603. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2604. fail_dirty_metadata_bytes:
  2605. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2606. fail_bdi:
  2607. bdi_destroy(&fs_info->bdi);
  2608. fail_srcu:
  2609. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2610. fail:
  2611. btrfs_free_stripe_hash_table(fs_info);
  2612. btrfs_close_devices(fs_info->fs_devices);
  2613. return err;
  2614. recovery_tree_root:
  2615. if (!btrfs_test_opt(tree_root, RECOVERY))
  2616. goto fail_tree_roots;
  2617. free_root_pointers(fs_info, 0);
  2618. /* don't use the log in recovery mode, it won't be valid */
  2619. btrfs_set_super_log_root(disk_super, 0);
  2620. /* we can't trust the free space cache either */
  2621. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2622. ret = next_root_backup(fs_info, fs_info->super_copy,
  2623. &num_backups_tried, &backup_index);
  2624. if (ret == -1)
  2625. goto fail_block_groups;
  2626. goto retry_root_backup;
  2627. }
  2628. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2629. {
  2630. if (uptodate) {
  2631. set_buffer_uptodate(bh);
  2632. } else {
  2633. struct btrfs_device *device = (struct btrfs_device *)
  2634. bh->b_private;
  2635. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2636. "I/O error on %s\n",
  2637. rcu_str_deref(device->name));
  2638. /* note, we dont' set_buffer_write_io_error because we have
  2639. * our own ways of dealing with the IO errors
  2640. */
  2641. clear_buffer_uptodate(bh);
  2642. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2643. }
  2644. unlock_buffer(bh);
  2645. put_bh(bh);
  2646. }
  2647. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2648. {
  2649. struct buffer_head *bh;
  2650. struct buffer_head *latest = NULL;
  2651. struct btrfs_super_block *super;
  2652. int i;
  2653. u64 transid = 0;
  2654. u64 bytenr;
  2655. /* we would like to check all the supers, but that would make
  2656. * a btrfs mount succeed after a mkfs from a different FS.
  2657. * So, we need to add a special mount option to scan for
  2658. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2659. */
  2660. for (i = 0; i < 1; i++) {
  2661. bytenr = btrfs_sb_offset(i);
  2662. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2663. i_size_read(bdev->bd_inode))
  2664. break;
  2665. bh = __bread(bdev, bytenr / 4096,
  2666. BTRFS_SUPER_INFO_SIZE);
  2667. if (!bh)
  2668. continue;
  2669. super = (struct btrfs_super_block *)bh->b_data;
  2670. if (btrfs_super_bytenr(super) != bytenr ||
  2671. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2672. brelse(bh);
  2673. continue;
  2674. }
  2675. if (!latest || btrfs_super_generation(super) > transid) {
  2676. brelse(latest);
  2677. latest = bh;
  2678. transid = btrfs_super_generation(super);
  2679. } else {
  2680. brelse(bh);
  2681. }
  2682. }
  2683. return latest;
  2684. }
  2685. /*
  2686. * this should be called twice, once with wait == 0 and
  2687. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2688. * we write are pinned.
  2689. *
  2690. * They are released when wait == 1 is done.
  2691. * max_mirrors must be the same for both runs, and it indicates how
  2692. * many supers on this one device should be written.
  2693. *
  2694. * max_mirrors == 0 means to write them all.
  2695. */
  2696. static int write_dev_supers(struct btrfs_device *device,
  2697. struct btrfs_super_block *sb,
  2698. int do_barriers, int wait, int max_mirrors)
  2699. {
  2700. struct buffer_head *bh;
  2701. int i;
  2702. int ret;
  2703. int errors = 0;
  2704. u32 crc;
  2705. u64 bytenr;
  2706. if (max_mirrors == 0)
  2707. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2708. for (i = 0; i < max_mirrors; i++) {
  2709. bytenr = btrfs_sb_offset(i);
  2710. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2711. break;
  2712. if (wait) {
  2713. bh = __find_get_block(device->bdev, bytenr / 4096,
  2714. BTRFS_SUPER_INFO_SIZE);
  2715. if (!bh) {
  2716. errors++;
  2717. continue;
  2718. }
  2719. wait_on_buffer(bh);
  2720. if (!buffer_uptodate(bh))
  2721. errors++;
  2722. /* drop our reference */
  2723. brelse(bh);
  2724. /* drop the reference from the wait == 0 run */
  2725. brelse(bh);
  2726. continue;
  2727. } else {
  2728. btrfs_set_super_bytenr(sb, bytenr);
  2729. crc = ~(u32)0;
  2730. crc = btrfs_csum_data((char *)sb +
  2731. BTRFS_CSUM_SIZE, crc,
  2732. BTRFS_SUPER_INFO_SIZE -
  2733. BTRFS_CSUM_SIZE);
  2734. btrfs_csum_final(crc, sb->csum);
  2735. /*
  2736. * one reference for us, and we leave it for the
  2737. * caller
  2738. */
  2739. bh = __getblk(device->bdev, bytenr / 4096,
  2740. BTRFS_SUPER_INFO_SIZE);
  2741. if (!bh) {
  2742. printk(KERN_ERR "BTRFS: couldn't get super "
  2743. "buffer head for bytenr %Lu\n", bytenr);
  2744. errors++;
  2745. continue;
  2746. }
  2747. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2748. /* one reference for submit_bh */
  2749. get_bh(bh);
  2750. set_buffer_uptodate(bh);
  2751. lock_buffer(bh);
  2752. bh->b_end_io = btrfs_end_buffer_write_sync;
  2753. bh->b_private = device;
  2754. }
  2755. /*
  2756. * we fua the first super. The others we allow
  2757. * to go down lazy.
  2758. */
  2759. if (i == 0)
  2760. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2761. else
  2762. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2763. if (ret)
  2764. errors++;
  2765. }
  2766. return errors < i ? 0 : -1;
  2767. }
  2768. /*
  2769. * endio for the write_dev_flush, this will wake anyone waiting
  2770. * for the barrier when it is done
  2771. */
  2772. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2773. {
  2774. if (err) {
  2775. if (err == -EOPNOTSUPP)
  2776. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2777. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2778. }
  2779. if (bio->bi_private)
  2780. complete(bio->bi_private);
  2781. bio_put(bio);
  2782. }
  2783. /*
  2784. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2785. * sent down. With wait == 1, it waits for the previous flush.
  2786. *
  2787. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2788. * capable
  2789. */
  2790. static int write_dev_flush(struct btrfs_device *device, int wait)
  2791. {
  2792. struct bio *bio;
  2793. int ret = 0;
  2794. if (device->nobarriers)
  2795. return 0;
  2796. if (wait) {
  2797. bio = device->flush_bio;
  2798. if (!bio)
  2799. return 0;
  2800. wait_for_completion(&device->flush_wait);
  2801. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2802. printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
  2803. rcu_str_deref(device->name));
  2804. device->nobarriers = 1;
  2805. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2806. ret = -EIO;
  2807. btrfs_dev_stat_inc_and_print(device,
  2808. BTRFS_DEV_STAT_FLUSH_ERRS);
  2809. }
  2810. /* drop the reference from the wait == 0 run */
  2811. bio_put(bio);
  2812. device->flush_bio = NULL;
  2813. return ret;
  2814. }
  2815. /*
  2816. * one reference for us, and we leave it for the
  2817. * caller
  2818. */
  2819. device->flush_bio = NULL;
  2820. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2821. if (!bio)
  2822. return -ENOMEM;
  2823. bio->bi_end_io = btrfs_end_empty_barrier;
  2824. bio->bi_bdev = device->bdev;
  2825. init_completion(&device->flush_wait);
  2826. bio->bi_private = &device->flush_wait;
  2827. device->flush_bio = bio;
  2828. bio_get(bio);
  2829. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2830. return 0;
  2831. }
  2832. /*
  2833. * send an empty flush down to each device in parallel,
  2834. * then wait for them
  2835. */
  2836. static int barrier_all_devices(struct btrfs_fs_info *info)
  2837. {
  2838. struct list_head *head;
  2839. struct btrfs_device *dev;
  2840. int errors_send = 0;
  2841. int errors_wait = 0;
  2842. int ret;
  2843. /* send down all the barriers */
  2844. head = &info->fs_devices->devices;
  2845. list_for_each_entry_rcu(dev, head, dev_list) {
  2846. if (dev->missing)
  2847. continue;
  2848. if (!dev->bdev) {
  2849. errors_send++;
  2850. continue;
  2851. }
  2852. if (!dev->in_fs_metadata || !dev->writeable)
  2853. continue;
  2854. ret = write_dev_flush(dev, 0);
  2855. if (ret)
  2856. errors_send++;
  2857. }
  2858. /* wait for all the barriers */
  2859. list_for_each_entry_rcu(dev, head, dev_list) {
  2860. if (dev->missing)
  2861. continue;
  2862. if (!dev->bdev) {
  2863. errors_wait++;
  2864. continue;
  2865. }
  2866. if (!dev->in_fs_metadata || !dev->writeable)
  2867. continue;
  2868. ret = write_dev_flush(dev, 1);
  2869. if (ret)
  2870. errors_wait++;
  2871. }
  2872. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2873. errors_wait > info->num_tolerated_disk_barrier_failures)
  2874. return -EIO;
  2875. return 0;
  2876. }
  2877. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2878. struct btrfs_fs_info *fs_info)
  2879. {
  2880. struct btrfs_ioctl_space_info space;
  2881. struct btrfs_space_info *sinfo;
  2882. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2883. BTRFS_BLOCK_GROUP_SYSTEM,
  2884. BTRFS_BLOCK_GROUP_METADATA,
  2885. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2886. int num_types = 4;
  2887. int i;
  2888. int c;
  2889. int num_tolerated_disk_barrier_failures =
  2890. (int)fs_info->fs_devices->num_devices;
  2891. for (i = 0; i < num_types; i++) {
  2892. struct btrfs_space_info *tmp;
  2893. sinfo = NULL;
  2894. rcu_read_lock();
  2895. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2896. if (tmp->flags == types[i]) {
  2897. sinfo = tmp;
  2898. break;
  2899. }
  2900. }
  2901. rcu_read_unlock();
  2902. if (!sinfo)
  2903. continue;
  2904. down_read(&sinfo->groups_sem);
  2905. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2906. if (!list_empty(&sinfo->block_groups[c])) {
  2907. u64 flags;
  2908. btrfs_get_block_group_info(
  2909. &sinfo->block_groups[c], &space);
  2910. if (space.total_bytes == 0 ||
  2911. space.used_bytes == 0)
  2912. continue;
  2913. flags = space.flags;
  2914. /*
  2915. * return
  2916. * 0: if dup, single or RAID0 is configured for
  2917. * any of metadata, system or data, else
  2918. * 1: if RAID5 is configured, or if RAID1 or
  2919. * RAID10 is configured and only two mirrors
  2920. * are used, else
  2921. * 2: if RAID6 is configured, else
  2922. * num_mirrors - 1: if RAID1 or RAID10 is
  2923. * configured and more than
  2924. * 2 mirrors are used.
  2925. */
  2926. if (num_tolerated_disk_barrier_failures > 0 &&
  2927. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2928. BTRFS_BLOCK_GROUP_RAID0)) ||
  2929. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2930. == 0)))
  2931. num_tolerated_disk_barrier_failures = 0;
  2932. else if (num_tolerated_disk_barrier_failures > 1) {
  2933. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2934. BTRFS_BLOCK_GROUP_RAID5 |
  2935. BTRFS_BLOCK_GROUP_RAID10)) {
  2936. num_tolerated_disk_barrier_failures = 1;
  2937. } else if (flags &
  2938. BTRFS_BLOCK_GROUP_RAID6) {
  2939. num_tolerated_disk_barrier_failures = 2;
  2940. }
  2941. }
  2942. }
  2943. }
  2944. up_read(&sinfo->groups_sem);
  2945. }
  2946. return num_tolerated_disk_barrier_failures;
  2947. }
  2948. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2949. {
  2950. struct list_head *head;
  2951. struct btrfs_device *dev;
  2952. struct btrfs_super_block *sb;
  2953. struct btrfs_dev_item *dev_item;
  2954. int ret;
  2955. int do_barriers;
  2956. int max_errors;
  2957. int total_errors = 0;
  2958. u64 flags;
  2959. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2960. backup_super_roots(root->fs_info);
  2961. sb = root->fs_info->super_for_commit;
  2962. dev_item = &sb->dev_item;
  2963. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2964. head = &root->fs_info->fs_devices->devices;
  2965. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2966. if (do_barriers) {
  2967. ret = barrier_all_devices(root->fs_info);
  2968. if (ret) {
  2969. mutex_unlock(
  2970. &root->fs_info->fs_devices->device_list_mutex);
  2971. btrfs_error(root->fs_info, ret,
  2972. "errors while submitting device barriers.");
  2973. return ret;
  2974. }
  2975. }
  2976. list_for_each_entry_rcu(dev, head, dev_list) {
  2977. if (!dev->bdev) {
  2978. total_errors++;
  2979. continue;
  2980. }
  2981. if (!dev->in_fs_metadata || !dev->writeable)
  2982. continue;
  2983. btrfs_set_stack_device_generation(dev_item, 0);
  2984. btrfs_set_stack_device_type(dev_item, dev->type);
  2985. btrfs_set_stack_device_id(dev_item, dev->devid);
  2986. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2987. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2988. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2989. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2990. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2991. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2992. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2993. flags = btrfs_super_flags(sb);
  2994. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2995. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2996. if (ret)
  2997. total_errors++;
  2998. }
  2999. if (total_errors > max_errors) {
  3000. btrfs_err(root->fs_info, "%d errors while writing supers",
  3001. total_errors);
  3002. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3003. /* FUA is masked off if unsupported and can't be the reason */
  3004. btrfs_error(root->fs_info, -EIO,
  3005. "%d errors while writing supers", total_errors);
  3006. return -EIO;
  3007. }
  3008. total_errors = 0;
  3009. list_for_each_entry_rcu(dev, head, dev_list) {
  3010. if (!dev->bdev)
  3011. continue;
  3012. if (!dev->in_fs_metadata || !dev->writeable)
  3013. continue;
  3014. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3015. if (ret)
  3016. total_errors++;
  3017. }
  3018. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3019. if (total_errors > max_errors) {
  3020. btrfs_error(root->fs_info, -EIO,
  3021. "%d errors while writing supers", total_errors);
  3022. return -EIO;
  3023. }
  3024. return 0;
  3025. }
  3026. int write_ctree_super(struct btrfs_trans_handle *trans,
  3027. struct btrfs_root *root, int max_mirrors)
  3028. {
  3029. return write_all_supers(root, max_mirrors);
  3030. }
  3031. /* Drop a fs root from the radix tree and free it. */
  3032. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3033. struct btrfs_root *root)
  3034. {
  3035. spin_lock(&fs_info->fs_roots_radix_lock);
  3036. radix_tree_delete(&fs_info->fs_roots_radix,
  3037. (unsigned long)root->root_key.objectid);
  3038. spin_unlock(&fs_info->fs_roots_radix_lock);
  3039. if (btrfs_root_refs(&root->root_item) == 0)
  3040. synchronize_srcu(&fs_info->subvol_srcu);
  3041. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3042. btrfs_free_log(NULL, root);
  3043. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3044. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3045. free_fs_root(root);
  3046. }
  3047. static void free_fs_root(struct btrfs_root *root)
  3048. {
  3049. iput(root->cache_inode);
  3050. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3051. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3052. root->orphan_block_rsv = NULL;
  3053. if (root->anon_dev)
  3054. free_anon_bdev(root->anon_dev);
  3055. if (root->subv_writers)
  3056. btrfs_free_subvolume_writers(root->subv_writers);
  3057. free_extent_buffer(root->node);
  3058. free_extent_buffer(root->commit_root);
  3059. kfree(root->free_ino_ctl);
  3060. kfree(root->free_ino_pinned);
  3061. kfree(root->name);
  3062. btrfs_put_fs_root(root);
  3063. }
  3064. void btrfs_free_fs_root(struct btrfs_root *root)
  3065. {
  3066. free_fs_root(root);
  3067. }
  3068. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3069. {
  3070. u64 root_objectid = 0;
  3071. struct btrfs_root *gang[8];
  3072. int i = 0;
  3073. int err = 0;
  3074. unsigned int ret = 0;
  3075. int index;
  3076. while (1) {
  3077. index = srcu_read_lock(&fs_info->subvol_srcu);
  3078. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3079. (void **)gang, root_objectid,
  3080. ARRAY_SIZE(gang));
  3081. if (!ret) {
  3082. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3083. break;
  3084. }
  3085. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3086. for (i = 0; i < ret; i++) {
  3087. /* Avoid to grab roots in dead_roots */
  3088. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3089. gang[i] = NULL;
  3090. continue;
  3091. }
  3092. /* grab all the search result for later use */
  3093. gang[i] = btrfs_grab_fs_root(gang[i]);
  3094. }
  3095. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3096. for (i = 0; i < ret; i++) {
  3097. if (!gang[i])
  3098. continue;
  3099. root_objectid = gang[i]->root_key.objectid;
  3100. err = btrfs_orphan_cleanup(gang[i]);
  3101. if (err)
  3102. break;
  3103. btrfs_put_fs_root(gang[i]);
  3104. }
  3105. root_objectid++;
  3106. }
  3107. /* release the uncleaned roots due to error */
  3108. for (; i < ret; i++) {
  3109. if (gang[i])
  3110. btrfs_put_fs_root(gang[i]);
  3111. }
  3112. return err;
  3113. }
  3114. int btrfs_commit_super(struct btrfs_root *root)
  3115. {
  3116. struct btrfs_trans_handle *trans;
  3117. mutex_lock(&root->fs_info->cleaner_mutex);
  3118. btrfs_run_delayed_iputs(root);
  3119. mutex_unlock(&root->fs_info->cleaner_mutex);
  3120. wake_up_process(root->fs_info->cleaner_kthread);
  3121. /* wait until ongoing cleanup work done */
  3122. down_write(&root->fs_info->cleanup_work_sem);
  3123. up_write(&root->fs_info->cleanup_work_sem);
  3124. trans = btrfs_join_transaction(root);
  3125. if (IS_ERR(trans))
  3126. return PTR_ERR(trans);
  3127. return btrfs_commit_transaction(trans, root);
  3128. }
  3129. int close_ctree(struct btrfs_root *root)
  3130. {
  3131. struct btrfs_fs_info *fs_info = root->fs_info;
  3132. int ret;
  3133. fs_info->closing = 1;
  3134. smp_mb();
  3135. /* wait for the uuid_scan task to finish */
  3136. down(&fs_info->uuid_tree_rescan_sem);
  3137. /* avoid complains from lockdep et al., set sem back to initial state */
  3138. up(&fs_info->uuid_tree_rescan_sem);
  3139. /* pause restriper - we want to resume on mount */
  3140. btrfs_pause_balance(fs_info);
  3141. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3142. btrfs_scrub_cancel(fs_info);
  3143. /* wait for any defraggers to finish */
  3144. wait_event(fs_info->transaction_wait,
  3145. (atomic_read(&fs_info->defrag_running) == 0));
  3146. /* clear out the rbtree of defraggable inodes */
  3147. btrfs_cleanup_defrag_inodes(fs_info);
  3148. cancel_work_sync(&fs_info->async_reclaim_work);
  3149. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3150. ret = btrfs_commit_super(root);
  3151. if (ret)
  3152. btrfs_err(root->fs_info, "commit super ret %d", ret);
  3153. }
  3154. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3155. btrfs_error_commit_super(root);
  3156. kthread_stop(fs_info->transaction_kthread);
  3157. kthread_stop(fs_info->cleaner_kthread);
  3158. fs_info->closing = 2;
  3159. smp_mb();
  3160. btrfs_free_qgroup_config(root->fs_info);
  3161. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3162. btrfs_info(root->fs_info, "at unmount delalloc count %lld",
  3163. percpu_counter_sum(&fs_info->delalloc_bytes));
  3164. }
  3165. btrfs_sysfs_remove_one(fs_info);
  3166. del_fs_roots(fs_info);
  3167. btrfs_put_block_group_cache(fs_info);
  3168. btrfs_free_block_groups(fs_info);
  3169. /*
  3170. * we must make sure there is not any read request to
  3171. * submit after we stopping all workers.
  3172. */
  3173. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3174. btrfs_stop_all_workers(fs_info);
  3175. free_root_pointers(fs_info, 1);
  3176. iput(fs_info->btree_inode);
  3177. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3178. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3179. btrfsic_unmount(root, fs_info->fs_devices);
  3180. #endif
  3181. btrfs_close_devices(fs_info->fs_devices);
  3182. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3183. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3184. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3185. percpu_counter_destroy(&fs_info->bio_counter);
  3186. bdi_destroy(&fs_info->bdi);
  3187. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3188. btrfs_free_stripe_hash_table(fs_info);
  3189. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3190. root->orphan_block_rsv = NULL;
  3191. return 0;
  3192. }
  3193. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3194. int atomic)
  3195. {
  3196. int ret;
  3197. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3198. ret = extent_buffer_uptodate(buf);
  3199. if (!ret)
  3200. return ret;
  3201. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3202. parent_transid, atomic);
  3203. if (ret == -EAGAIN)
  3204. return ret;
  3205. return !ret;
  3206. }
  3207. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3208. {
  3209. return set_extent_buffer_uptodate(buf);
  3210. }
  3211. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3212. {
  3213. struct btrfs_root *root;
  3214. u64 transid = btrfs_header_generation(buf);
  3215. int was_dirty;
  3216. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3217. /*
  3218. * This is a fast path so only do this check if we have sanity tests
  3219. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3220. * outside of the sanity tests.
  3221. */
  3222. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3223. return;
  3224. #endif
  3225. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3226. btrfs_assert_tree_locked(buf);
  3227. if (transid != root->fs_info->generation)
  3228. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3229. "found %llu running %llu\n",
  3230. buf->start, transid, root->fs_info->generation);
  3231. was_dirty = set_extent_buffer_dirty(buf);
  3232. if (!was_dirty)
  3233. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3234. buf->len,
  3235. root->fs_info->dirty_metadata_batch);
  3236. }
  3237. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3238. int flush_delayed)
  3239. {
  3240. /*
  3241. * looks as though older kernels can get into trouble with
  3242. * this code, they end up stuck in balance_dirty_pages forever
  3243. */
  3244. int ret;
  3245. if (current->flags & PF_MEMALLOC)
  3246. return;
  3247. if (flush_delayed)
  3248. btrfs_balance_delayed_items(root);
  3249. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3250. BTRFS_DIRTY_METADATA_THRESH);
  3251. if (ret > 0) {
  3252. balance_dirty_pages_ratelimited(
  3253. root->fs_info->btree_inode->i_mapping);
  3254. }
  3255. return;
  3256. }
  3257. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3258. {
  3259. __btrfs_btree_balance_dirty(root, 1);
  3260. }
  3261. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3262. {
  3263. __btrfs_btree_balance_dirty(root, 0);
  3264. }
  3265. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3266. {
  3267. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3268. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3269. }
  3270. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3271. int read_only)
  3272. {
  3273. /*
  3274. * Placeholder for checks
  3275. */
  3276. return 0;
  3277. }
  3278. static void btrfs_error_commit_super(struct btrfs_root *root)
  3279. {
  3280. mutex_lock(&root->fs_info->cleaner_mutex);
  3281. btrfs_run_delayed_iputs(root);
  3282. mutex_unlock(&root->fs_info->cleaner_mutex);
  3283. down_write(&root->fs_info->cleanup_work_sem);
  3284. up_write(&root->fs_info->cleanup_work_sem);
  3285. /* cleanup FS via transaction */
  3286. btrfs_cleanup_transaction(root);
  3287. }
  3288. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3289. struct btrfs_root *root)
  3290. {
  3291. struct btrfs_inode *btrfs_inode;
  3292. struct list_head splice;
  3293. INIT_LIST_HEAD(&splice);
  3294. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3295. spin_lock(&root->fs_info->ordered_root_lock);
  3296. list_splice_init(&t->ordered_operations, &splice);
  3297. while (!list_empty(&splice)) {
  3298. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3299. ordered_operations);
  3300. list_del_init(&btrfs_inode->ordered_operations);
  3301. spin_unlock(&root->fs_info->ordered_root_lock);
  3302. btrfs_invalidate_inodes(btrfs_inode->root);
  3303. spin_lock(&root->fs_info->ordered_root_lock);
  3304. }
  3305. spin_unlock(&root->fs_info->ordered_root_lock);
  3306. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3307. }
  3308. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3309. {
  3310. struct btrfs_ordered_extent *ordered;
  3311. spin_lock(&root->ordered_extent_lock);
  3312. /*
  3313. * This will just short circuit the ordered completion stuff which will
  3314. * make sure the ordered extent gets properly cleaned up.
  3315. */
  3316. list_for_each_entry(ordered, &root->ordered_extents,
  3317. root_extent_list)
  3318. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3319. spin_unlock(&root->ordered_extent_lock);
  3320. }
  3321. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3322. {
  3323. struct btrfs_root *root;
  3324. struct list_head splice;
  3325. INIT_LIST_HEAD(&splice);
  3326. spin_lock(&fs_info->ordered_root_lock);
  3327. list_splice_init(&fs_info->ordered_roots, &splice);
  3328. while (!list_empty(&splice)) {
  3329. root = list_first_entry(&splice, struct btrfs_root,
  3330. ordered_root);
  3331. list_move_tail(&root->ordered_root,
  3332. &fs_info->ordered_roots);
  3333. spin_unlock(&fs_info->ordered_root_lock);
  3334. btrfs_destroy_ordered_extents(root);
  3335. cond_resched();
  3336. spin_lock(&fs_info->ordered_root_lock);
  3337. }
  3338. spin_unlock(&fs_info->ordered_root_lock);
  3339. }
  3340. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3341. struct btrfs_root *root)
  3342. {
  3343. struct rb_node *node;
  3344. struct btrfs_delayed_ref_root *delayed_refs;
  3345. struct btrfs_delayed_ref_node *ref;
  3346. int ret = 0;
  3347. delayed_refs = &trans->delayed_refs;
  3348. spin_lock(&delayed_refs->lock);
  3349. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3350. spin_unlock(&delayed_refs->lock);
  3351. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3352. return ret;
  3353. }
  3354. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3355. struct btrfs_delayed_ref_head *head;
  3356. bool pin_bytes = false;
  3357. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3358. href_node);
  3359. if (!mutex_trylock(&head->mutex)) {
  3360. atomic_inc(&head->node.refs);
  3361. spin_unlock(&delayed_refs->lock);
  3362. mutex_lock(&head->mutex);
  3363. mutex_unlock(&head->mutex);
  3364. btrfs_put_delayed_ref(&head->node);
  3365. spin_lock(&delayed_refs->lock);
  3366. continue;
  3367. }
  3368. spin_lock(&head->lock);
  3369. while ((node = rb_first(&head->ref_root)) != NULL) {
  3370. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  3371. rb_node);
  3372. ref->in_tree = 0;
  3373. rb_erase(&ref->rb_node, &head->ref_root);
  3374. atomic_dec(&delayed_refs->num_entries);
  3375. btrfs_put_delayed_ref(ref);
  3376. }
  3377. if (head->must_insert_reserved)
  3378. pin_bytes = true;
  3379. btrfs_free_delayed_extent_op(head->extent_op);
  3380. delayed_refs->num_heads--;
  3381. if (head->processing == 0)
  3382. delayed_refs->num_heads_ready--;
  3383. atomic_dec(&delayed_refs->num_entries);
  3384. head->node.in_tree = 0;
  3385. rb_erase(&head->href_node, &delayed_refs->href_root);
  3386. spin_unlock(&head->lock);
  3387. spin_unlock(&delayed_refs->lock);
  3388. mutex_unlock(&head->mutex);
  3389. if (pin_bytes)
  3390. btrfs_pin_extent(root, head->node.bytenr,
  3391. head->node.num_bytes, 1);
  3392. btrfs_put_delayed_ref(&head->node);
  3393. cond_resched();
  3394. spin_lock(&delayed_refs->lock);
  3395. }
  3396. spin_unlock(&delayed_refs->lock);
  3397. return ret;
  3398. }
  3399. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3400. {
  3401. struct btrfs_inode *btrfs_inode;
  3402. struct list_head splice;
  3403. INIT_LIST_HEAD(&splice);
  3404. spin_lock(&root->delalloc_lock);
  3405. list_splice_init(&root->delalloc_inodes, &splice);
  3406. while (!list_empty(&splice)) {
  3407. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3408. delalloc_inodes);
  3409. list_del_init(&btrfs_inode->delalloc_inodes);
  3410. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3411. &btrfs_inode->runtime_flags);
  3412. spin_unlock(&root->delalloc_lock);
  3413. btrfs_invalidate_inodes(btrfs_inode->root);
  3414. spin_lock(&root->delalloc_lock);
  3415. }
  3416. spin_unlock(&root->delalloc_lock);
  3417. }
  3418. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3419. {
  3420. struct btrfs_root *root;
  3421. struct list_head splice;
  3422. INIT_LIST_HEAD(&splice);
  3423. spin_lock(&fs_info->delalloc_root_lock);
  3424. list_splice_init(&fs_info->delalloc_roots, &splice);
  3425. while (!list_empty(&splice)) {
  3426. root = list_first_entry(&splice, struct btrfs_root,
  3427. delalloc_root);
  3428. list_del_init(&root->delalloc_root);
  3429. root = btrfs_grab_fs_root(root);
  3430. BUG_ON(!root);
  3431. spin_unlock(&fs_info->delalloc_root_lock);
  3432. btrfs_destroy_delalloc_inodes(root);
  3433. btrfs_put_fs_root(root);
  3434. spin_lock(&fs_info->delalloc_root_lock);
  3435. }
  3436. spin_unlock(&fs_info->delalloc_root_lock);
  3437. }
  3438. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3439. struct extent_io_tree *dirty_pages,
  3440. int mark)
  3441. {
  3442. int ret;
  3443. struct extent_buffer *eb;
  3444. u64 start = 0;
  3445. u64 end;
  3446. while (1) {
  3447. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3448. mark, NULL);
  3449. if (ret)
  3450. break;
  3451. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3452. while (start <= end) {
  3453. eb = btrfs_find_tree_block(root, start,
  3454. root->leafsize);
  3455. start += root->leafsize;
  3456. if (!eb)
  3457. continue;
  3458. wait_on_extent_buffer_writeback(eb);
  3459. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3460. &eb->bflags))
  3461. clear_extent_buffer_dirty(eb);
  3462. free_extent_buffer_stale(eb);
  3463. }
  3464. }
  3465. return ret;
  3466. }
  3467. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3468. struct extent_io_tree *pinned_extents)
  3469. {
  3470. struct extent_io_tree *unpin;
  3471. u64 start;
  3472. u64 end;
  3473. int ret;
  3474. bool loop = true;
  3475. unpin = pinned_extents;
  3476. again:
  3477. while (1) {
  3478. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3479. EXTENT_DIRTY, NULL);
  3480. if (ret)
  3481. break;
  3482. /* opt_discard */
  3483. if (btrfs_test_opt(root, DISCARD))
  3484. ret = btrfs_error_discard_extent(root, start,
  3485. end + 1 - start,
  3486. NULL);
  3487. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3488. btrfs_error_unpin_extent_range(root, start, end);
  3489. cond_resched();
  3490. }
  3491. if (loop) {
  3492. if (unpin == &root->fs_info->freed_extents[0])
  3493. unpin = &root->fs_info->freed_extents[1];
  3494. else
  3495. unpin = &root->fs_info->freed_extents[0];
  3496. loop = false;
  3497. goto again;
  3498. }
  3499. return 0;
  3500. }
  3501. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3502. struct btrfs_root *root)
  3503. {
  3504. btrfs_destroy_ordered_operations(cur_trans, root);
  3505. btrfs_destroy_delayed_refs(cur_trans, root);
  3506. cur_trans->state = TRANS_STATE_COMMIT_START;
  3507. wake_up(&root->fs_info->transaction_blocked_wait);
  3508. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3509. wake_up(&root->fs_info->transaction_wait);
  3510. btrfs_destroy_delayed_inodes(root);
  3511. btrfs_assert_delayed_root_empty(root);
  3512. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3513. EXTENT_DIRTY);
  3514. btrfs_destroy_pinned_extent(root,
  3515. root->fs_info->pinned_extents);
  3516. cur_trans->state =TRANS_STATE_COMPLETED;
  3517. wake_up(&cur_trans->commit_wait);
  3518. /*
  3519. memset(cur_trans, 0, sizeof(*cur_trans));
  3520. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3521. */
  3522. }
  3523. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3524. {
  3525. struct btrfs_transaction *t;
  3526. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3527. spin_lock(&root->fs_info->trans_lock);
  3528. while (!list_empty(&root->fs_info->trans_list)) {
  3529. t = list_first_entry(&root->fs_info->trans_list,
  3530. struct btrfs_transaction, list);
  3531. if (t->state >= TRANS_STATE_COMMIT_START) {
  3532. atomic_inc(&t->use_count);
  3533. spin_unlock(&root->fs_info->trans_lock);
  3534. btrfs_wait_for_commit(root, t->transid);
  3535. btrfs_put_transaction(t);
  3536. spin_lock(&root->fs_info->trans_lock);
  3537. continue;
  3538. }
  3539. if (t == root->fs_info->running_transaction) {
  3540. t->state = TRANS_STATE_COMMIT_DOING;
  3541. spin_unlock(&root->fs_info->trans_lock);
  3542. /*
  3543. * We wait for 0 num_writers since we don't hold a trans
  3544. * handle open currently for this transaction.
  3545. */
  3546. wait_event(t->writer_wait,
  3547. atomic_read(&t->num_writers) == 0);
  3548. } else {
  3549. spin_unlock(&root->fs_info->trans_lock);
  3550. }
  3551. btrfs_cleanup_one_transaction(t, root);
  3552. spin_lock(&root->fs_info->trans_lock);
  3553. if (t == root->fs_info->running_transaction)
  3554. root->fs_info->running_transaction = NULL;
  3555. list_del_init(&t->list);
  3556. spin_unlock(&root->fs_info->trans_lock);
  3557. btrfs_put_transaction(t);
  3558. trace_btrfs_transaction_commit(root);
  3559. spin_lock(&root->fs_info->trans_lock);
  3560. }
  3561. spin_unlock(&root->fs_info->trans_lock);
  3562. btrfs_destroy_all_ordered_extents(root->fs_info);
  3563. btrfs_destroy_delayed_inodes(root);
  3564. btrfs_assert_delayed_root_empty(root);
  3565. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3566. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3567. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3568. return 0;
  3569. }
  3570. static struct extent_io_ops btree_extent_io_ops = {
  3571. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3572. .readpage_io_failed_hook = btree_io_failed_hook,
  3573. .submit_bio_hook = btree_submit_bio_hook,
  3574. /* note we're sharing with inode.c for the merge bio hook */
  3575. .merge_bio_hook = btrfs_merge_bio_hook,
  3576. };