i915_irq.c 132 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763
  1. /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
  2. */
  3. /*
  4. * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
  5. * All Rights Reserved.
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a
  8. * copy of this software and associated documentation files (the
  9. * "Software"), to deal in the Software without restriction, including
  10. * without limitation the rights to use, copy, modify, merge, publish,
  11. * distribute, sub license, and/or sell copies of the Software, and to
  12. * permit persons to whom the Software is furnished to do so, subject to
  13. * the following conditions:
  14. *
  15. * The above copyright notice and this permission notice (including the
  16. * next paragraph) shall be included in all copies or substantial portions
  17. * of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20. * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23. * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24. * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25. * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26. *
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/sysrq.h>
  30. #include <linux/slab.h>
  31. #include <linux/circ_buf.h>
  32. #include <drm/drmP.h>
  33. #include <drm/i915_drm.h>
  34. #include "i915_drv.h"
  35. #include "i915_trace.h"
  36. #include "intel_drv.h"
  37. /**
  38. * DOC: interrupt handling
  39. *
  40. * These functions provide the basic support for enabling and disabling the
  41. * interrupt handling support. There's a lot more functionality in i915_irq.c
  42. * and related files, but that will be described in separate chapters.
  43. */
  44. static const u32 hpd_ilk[HPD_NUM_PINS] = {
  45. [HPD_PORT_A] = DE_DP_A_HOTPLUG,
  46. };
  47. static const u32 hpd_ivb[HPD_NUM_PINS] = {
  48. [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  49. };
  50. static const u32 hpd_bdw[HPD_NUM_PINS] = {
  51. [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  52. };
  53. static const u32 hpd_ibx[HPD_NUM_PINS] = {
  54. [HPD_CRT] = SDE_CRT_HOTPLUG,
  55. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  56. [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  57. [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  58. [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  59. };
  60. static const u32 hpd_cpt[HPD_NUM_PINS] = {
  61. [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  62. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  63. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  64. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  65. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  66. };
  67. static const u32 hpd_spt[HPD_NUM_PINS] = {
  68. [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  69. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  70. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  71. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  72. [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  73. };
  74. static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  75. [HPD_CRT] = CRT_HOTPLUG_INT_EN,
  76. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  77. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  78. [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  79. [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  80. [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  81. };
  82. static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  83. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  84. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  85. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  86. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  87. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  88. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  89. };
  90. static const u32 hpd_status_i915[HPD_NUM_PINS] = {
  91. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  92. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
  93. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
  94. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  95. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  96. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  97. };
  98. /* BXT hpd list */
  99. static const u32 hpd_bxt[HPD_NUM_PINS] = {
  100. [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
  101. [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
  102. [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
  103. };
  104. /* IIR can theoretically queue up two events. Be paranoid. */
  105. #define GEN8_IRQ_RESET_NDX(type, which) do { \
  106. I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
  107. POSTING_READ(GEN8_##type##_IMR(which)); \
  108. I915_WRITE(GEN8_##type##_IER(which), 0); \
  109. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  110. POSTING_READ(GEN8_##type##_IIR(which)); \
  111. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  112. POSTING_READ(GEN8_##type##_IIR(which)); \
  113. } while (0)
  114. #define GEN5_IRQ_RESET(type) do { \
  115. I915_WRITE(type##IMR, 0xffffffff); \
  116. POSTING_READ(type##IMR); \
  117. I915_WRITE(type##IER, 0); \
  118. I915_WRITE(type##IIR, 0xffffffff); \
  119. POSTING_READ(type##IIR); \
  120. I915_WRITE(type##IIR, 0xffffffff); \
  121. POSTING_READ(type##IIR); \
  122. } while (0)
  123. /*
  124. * We should clear IMR at preinstall/uninstall, and just check at postinstall.
  125. */
  126. static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
  127. i915_reg_t reg)
  128. {
  129. u32 val = I915_READ(reg);
  130. if (val == 0)
  131. return;
  132. WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
  133. i915_mmio_reg_offset(reg), val);
  134. I915_WRITE(reg, 0xffffffff);
  135. POSTING_READ(reg);
  136. I915_WRITE(reg, 0xffffffff);
  137. POSTING_READ(reg);
  138. }
  139. #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
  140. gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
  141. I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
  142. I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
  143. POSTING_READ(GEN8_##type##_IMR(which)); \
  144. } while (0)
  145. #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
  146. gen5_assert_iir_is_zero(dev_priv, type##IIR); \
  147. I915_WRITE(type##IER, (ier_val)); \
  148. I915_WRITE(type##IMR, (imr_val)); \
  149. POSTING_READ(type##IMR); \
  150. } while (0)
  151. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  152. /* For display hotplug interrupt */
  153. static inline void
  154. i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
  155. uint32_t mask,
  156. uint32_t bits)
  157. {
  158. uint32_t val;
  159. assert_spin_locked(&dev_priv->irq_lock);
  160. WARN_ON(bits & ~mask);
  161. val = I915_READ(PORT_HOTPLUG_EN);
  162. val &= ~mask;
  163. val |= bits;
  164. I915_WRITE(PORT_HOTPLUG_EN, val);
  165. }
  166. /**
  167. * i915_hotplug_interrupt_update - update hotplug interrupt enable
  168. * @dev_priv: driver private
  169. * @mask: bits to update
  170. * @bits: bits to enable
  171. * NOTE: the HPD enable bits are modified both inside and outside
  172. * of an interrupt context. To avoid that read-modify-write cycles
  173. * interfer, these bits are protected by a spinlock. Since this
  174. * function is usually not called from a context where the lock is
  175. * held already, this function acquires the lock itself. A non-locking
  176. * version is also available.
  177. */
  178. void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
  179. uint32_t mask,
  180. uint32_t bits)
  181. {
  182. spin_lock_irq(&dev_priv->irq_lock);
  183. i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
  184. spin_unlock_irq(&dev_priv->irq_lock);
  185. }
  186. /**
  187. * ilk_update_display_irq - update DEIMR
  188. * @dev_priv: driver private
  189. * @interrupt_mask: mask of interrupt bits to update
  190. * @enabled_irq_mask: mask of interrupt bits to enable
  191. */
  192. void ilk_update_display_irq(struct drm_i915_private *dev_priv,
  193. uint32_t interrupt_mask,
  194. uint32_t enabled_irq_mask)
  195. {
  196. uint32_t new_val;
  197. assert_spin_locked(&dev_priv->irq_lock);
  198. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  199. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  200. return;
  201. new_val = dev_priv->irq_mask;
  202. new_val &= ~interrupt_mask;
  203. new_val |= (~enabled_irq_mask & interrupt_mask);
  204. if (new_val != dev_priv->irq_mask) {
  205. dev_priv->irq_mask = new_val;
  206. I915_WRITE(DEIMR, dev_priv->irq_mask);
  207. POSTING_READ(DEIMR);
  208. }
  209. }
  210. /**
  211. * ilk_update_gt_irq - update GTIMR
  212. * @dev_priv: driver private
  213. * @interrupt_mask: mask of interrupt bits to update
  214. * @enabled_irq_mask: mask of interrupt bits to enable
  215. */
  216. static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
  217. uint32_t interrupt_mask,
  218. uint32_t enabled_irq_mask)
  219. {
  220. assert_spin_locked(&dev_priv->irq_lock);
  221. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  222. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  223. return;
  224. dev_priv->gt_irq_mask &= ~interrupt_mask;
  225. dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
  226. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  227. POSTING_READ(GTIMR);
  228. }
  229. void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  230. {
  231. ilk_update_gt_irq(dev_priv, mask, mask);
  232. }
  233. void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  234. {
  235. ilk_update_gt_irq(dev_priv, mask, 0);
  236. }
  237. static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
  238. {
  239. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
  240. }
  241. static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
  242. {
  243. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
  244. }
  245. static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
  246. {
  247. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
  248. }
  249. /**
  250. * snb_update_pm_irq - update GEN6_PMIMR
  251. * @dev_priv: driver private
  252. * @interrupt_mask: mask of interrupt bits to update
  253. * @enabled_irq_mask: mask of interrupt bits to enable
  254. */
  255. static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
  256. uint32_t interrupt_mask,
  257. uint32_t enabled_irq_mask)
  258. {
  259. uint32_t new_val;
  260. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  261. assert_spin_locked(&dev_priv->irq_lock);
  262. new_val = dev_priv->pm_irq_mask;
  263. new_val &= ~interrupt_mask;
  264. new_val |= (~enabled_irq_mask & interrupt_mask);
  265. if (new_val != dev_priv->pm_irq_mask) {
  266. dev_priv->pm_irq_mask = new_val;
  267. I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
  268. POSTING_READ(gen6_pm_imr(dev_priv));
  269. }
  270. }
  271. void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  272. {
  273. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  274. return;
  275. snb_update_pm_irq(dev_priv, mask, mask);
  276. }
  277. static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
  278. uint32_t mask)
  279. {
  280. snb_update_pm_irq(dev_priv, mask, 0);
  281. }
  282. void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  283. {
  284. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  285. return;
  286. __gen6_disable_pm_irq(dev_priv, mask);
  287. }
  288. void gen6_reset_rps_interrupts(struct drm_device *dev)
  289. {
  290. struct drm_i915_private *dev_priv = dev->dev_private;
  291. i915_reg_t reg = gen6_pm_iir(dev_priv);
  292. spin_lock_irq(&dev_priv->irq_lock);
  293. I915_WRITE(reg, dev_priv->pm_rps_events);
  294. I915_WRITE(reg, dev_priv->pm_rps_events);
  295. POSTING_READ(reg);
  296. dev_priv->rps.pm_iir = 0;
  297. spin_unlock_irq(&dev_priv->irq_lock);
  298. }
  299. void gen6_enable_rps_interrupts(struct drm_device *dev)
  300. {
  301. struct drm_i915_private *dev_priv = dev->dev_private;
  302. spin_lock_irq(&dev_priv->irq_lock);
  303. WARN_ON(dev_priv->rps.pm_iir);
  304. WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
  305. dev_priv->rps.interrupts_enabled = true;
  306. I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
  307. dev_priv->pm_rps_events);
  308. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  309. spin_unlock_irq(&dev_priv->irq_lock);
  310. }
  311. u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
  312. {
  313. /*
  314. * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
  315. * if GEN6_PM_UP_EI_EXPIRED is masked.
  316. *
  317. * TODO: verify if this can be reproduced on VLV,CHV.
  318. */
  319. if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
  320. mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
  321. if (INTEL_INFO(dev_priv)->gen >= 8)
  322. mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  323. return mask;
  324. }
  325. void gen6_disable_rps_interrupts(struct drm_device *dev)
  326. {
  327. struct drm_i915_private *dev_priv = dev->dev_private;
  328. spin_lock_irq(&dev_priv->irq_lock);
  329. dev_priv->rps.interrupts_enabled = false;
  330. spin_unlock_irq(&dev_priv->irq_lock);
  331. cancel_work_sync(&dev_priv->rps.work);
  332. spin_lock_irq(&dev_priv->irq_lock);
  333. I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  334. __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  335. I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
  336. ~dev_priv->pm_rps_events);
  337. spin_unlock_irq(&dev_priv->irq_lock);
  338. synchronize_irq(dev->irq);
  339. }
  340. /**
  341. * bdw_update_port_irq - update DE port interrupt
  342. * @dev_priv: driver private
  343. * @interrupt_mask: mask of interrupt bits to update
  344. * @enabled_irq_mask: mask of interrupt bits to enable
  345. */
  346. static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
  347. uint32_t interrupt_mask,
  348. uint32_t enabled_irq_mask)
  349. {
  350. uint32_t new_val;
  351. uint32_t old_val;
  352. assert_spin_locked(&dev_priv->irq_lock);
  353. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  354. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  355. return;
  356. old_val = I915_READ(GEN8_DE_PORT_IMR);
  357. new_val = old_val;
  358. new_val &= ~interrupt_mask;
  359. new_val |= (~enabled_irq_mask & interrupt_mask);
  360. if (new_val != old_val) {
  361. I915_WRITE(GEN8_DE_PORT_IMR, new_val);
  362. POSTING_READ(GEN8_DE_PORT_IMR);
  363. }
  364. }
  365. /**
  366. * bdw_update_pipe_irq - update DE pipe interrupt
  367. * @dev_priv: driver private
  368. * @pipe: pipe whose interrupt to update
  369. * @interrupt_mask: mask of interrupt bits to update
  370. * @enabled_irq_mask: mask of interrupt bits to enable
  371. */
  372. void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
  373. enum pipe pipe,
  374. uint32_t interrupt_mask,
  375. uint32_t enabled_irq_mask)
  376. {
  377. uint32_t new_val;
  378. assert_spin_locked(&dev_priv->irq_lock);
  379. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  380. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  381. return;
  382. new_val = dev_priv->de_irq_mask[pipe];
  383. new_val &= ~interrupt_mask;
  384. new_val |= (~enabled_irq_mask & interrupt_mask);
  385. if (new_val != dev_priv->de_irq_mask[pipe]) {
  386. dev_priv->de_irq_mask[pipe] = new_val;
  387. I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  388. POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  389. }
  390. }
  391. /**
  392. * ibx_display_interrupt_update - update SDEIMR
  393. * @dev_priv: driver private
  394. * @interrupt_mask: mask of interrupt bits to update
  395. * @enabled_irq_mask: mask of interrupt bits to enable
  396. */
  397. void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
  398. uint32_t interrupt_mask,
  399. uint32_t enabled_irq_mask)
  400. {
  401. uint32_t sdeimr = I915_READ(SDEIMR);
  402. sdeimr &= ~interrupt_mask;
  403. sdeimr |= (~enabled_irq_mask & interrupt_mask);
  404. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  405. assert_spin_locked(&dev_priv->irq_lock);
  406. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  407. return;
  408. I915_WRITE(SDEIMR, sdeimr);
  409. POSTING_READ(SDEIMR);
  410. }
  411. static void
  412. __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  413. u32 enable_mask, u32 status_mask)
  414. {
  415. i915_reg_t reg = PIPESTAT(pipe);
  416. u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  417. assert_spin_locked(&dev_priv->irq_lock);
  418. WARN_ON(!intel_irqs_enabled(dev_priv));
  419. if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  420. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  421. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  422. pipe_name(pipe), enable_mask, status_mask))
  423. return;
  424. if ((pipestat & enable_mask) == enable_mask)
  425. return;
  426. dev_priv->pipestat_irq_mask[pipe] |= status_mask;
  427. /* Enable the interrupt, clear any pending status */
  428. pipestat |= enable_mask | status_mask;
  429. I915_WRITE(reg, pipestat);
  430. POSTING_READ(reg);
  431. }
  432. static void
  433. __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  434. u32 enable_mask, u32 status_mask)
  435. {
  436. i915_reg_t reg = PIPESTAT(pipe);
  437. u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  438. assert_spin_locked(&dev_priv->irq_lock);
  439. WARN_ON(!intel_irqs_enabled(dev_priv));
  440. if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  441. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  442. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  443. pipe_name(pipe), enable_mask, status_mask))
  444. return;
  445. if ((pipestat & enable_mask) == 0)
  446. return;
  447. dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
  448. pipestat &= ~enable_mask;
  449. I915_WRITE(reg, pipestat);
  450. POSTING_READ(reg);
  451. }
  452. static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
  453. {
  454. u32 enable_mask = status_mask << 16;
  455. /*
  456. * On pipe A we don't support the PSR interrupt yet,
  457. * on pipe B and C the same bit MBZ.
  458. */
  459. if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
  460. return 0;
  461. /*
  462. * On pipe B and C we don't support the PSR interrupt yet, on pipe
  463. * A the same bit is for perf counters which we don't use either.
  464. */
  465. if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
  466. return 0;
  467. enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
  468. SPRITE0_FLIP_DONE_INT_EN_VLV |
  469. SPRITE1_FLIP_DONE_INT_EN_VLV);
  470. if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
  471. enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
  472. if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
  473. enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
  474. return enable_mask;
  475. }
  476. void
  477. i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  478. u32 status_mask)
  479. {
  480. u32 enable_mask;
  481. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  482. enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
  483. status_mask);
  484. else
  485. enable_mask = status_mask << 16;
  486. __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  487. }
  488. void
  489. i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  490. u32 status_mask)
  491. {
  492. u32 enable_mask;
  493. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  494. enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
  495. status_mask);
  496. else
  497. enable_mask = status_mask << 16;
  498. __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  499. }
  500. /**
  501. * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
  502. * @dev: drm device
  503. */
  504. static void i915_enable_asle_pipestat(struct drm_device *dev)
  505. {
  506. struct drm_i915_private *dev_priv = dev->dev_private;
  507. if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
  508. return;
  509. spin_lock_irq(&dev_priv->irq_lock);
  510. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
  511. if (INTEL_INFO(dev)->gen >= 4)
  512. i915_enable_pipestat(dev_priv, PIPE_A,
  513. PIPE_LEGACY_BLC_EVENT_STATUS);
  514. spin_unlock_irq(&dev_priv->irq_lock);
  515. }
  516. /*
  517. * This timing diagram depicts the video signal in and
  518. * around the vertical blanking period.
  519. *
  520. * Assumptions about the fictitious mode used in this example:
  521. * vblank_start >= 3
  522. * vsync_start = vblank_start + 1
  523. * vsync_end = vblank_start + 2
  524. * vtotal = vblank_start + 3
  525. *
  526. * start of vblank:
  527. * latch double buffered registers
  528. * increment frame counter (ctg+)
  529. * generate start of vblank interrupt (gen4+)
  530. * |
  531. * | frame start:
  532. * | generate frame start interrupt (aka. vblank interrupt) (gmch)
  533. * | may be shifted forward 1-3 extra lines via PIPECONF
  534. * | |
  535. * | | start of vsync:
  536. * | | generate vsync interrupt
  537. * | | |
  538. * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
  539. * . \hs/ . \hs/ \hs/ \hs/ . \hs/
  540. * ----va---> <-----------------vb--------------------> <--------va-------------
  541. * | | <----vs-----> |
  542. * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
  543. * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
  544. * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
  545. * | | |
  546. * last visible pixel first visible pixel
  547. * | increment frame counter (gen3/4)
  548. * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
  549. *
  550. * x = horizontal active
  551. * _ = horizontal blanking
  552. * hs = horizontal sync
  553. * va = vertical active
  554. * vb = vertical blanking
  555. * vs = vertical sync
  556. * vbs = vblank_start (number)
  557. *
  558. * Summary:
  559. * - most events happen at the start of horizontal sync
  560. * - frame start happens at the start of horizontal blank, 1-4 lines
  561. * (depending on PIPECONF settings) after the start of vblank
  562. * - gen3/4 pixel and frame counter are synchronized with the start
  563. * of horizontal active on the first line of vertical active
  564. */
  565. static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  566. {
  567. /* Gen2 doesn't have a hardware frame counter */
  568. return 0;
  569. }
  570. /* Called from drm generic code, passed a 'crtc', which
  571. * we use as a pipe index
  572. */
  573. static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  574. {
  575. struct drm_i915_private *dev_priv = dev->dev_private;
  576. i915_reg_t high_frame, low_frame;
  577. u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
  578. struct intel_crtc *intel_crtc =
  579. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  580. const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
  581. htotal = mode->crtc_htotal;
  582. hsync_start = mode->crtc_hsync_start;
  583. vbl_start = mode->crtc_vblank_start;
  584. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  585. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  586. /* Convert to pixel count */
  587. vbl_start *= htotal;
  588. /* Start of vblank event occurs at start of hsync */
  589. vbl_start -= htotal - hsync_start;
  590. high_frame = PIPEFRAME(pipe);
  591. low_frame = PIPEFRAMEPIXEL(pipe);
  592. /*
  593. * High & low register fields aren't synchronized, so make sure
  594. * we get a low value that's stable across two reads of the high
  595. * register.
  596. */
  597. do {
  598. high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  599. low = I915_READ(low_frame);
  600. high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  601. } while (high1 != high2);
  602. high1 >>= PIPE_FRAME_HIGH_SHIFT;
  603. pixel = low & PIPE_PIXEL_MASK;
  604. low >>= PIPE_FRAME_LOW_SHIFT;
  605. /*
  606. * The frame counter increments at beginning of active.
  607. * Cook up a vblank counter by also checking the pixel
  608. * counter against vblank start.
  609. */
  610. return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
  611. }
  612. static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  613. {
  614. struct drm_i915_private *dev_priv = dev->dev_private;
  615. return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
  616. }
  617. /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
  618. static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
  619. {
  620. struct drm_device *dev = crtc->base.dev;
  621. struct drm_i915_private *dev_priv = dev->dev_private;
  622. const struct drm_display_mode *mode = &crtc->base.hwmode;
  623. enum pipe pipe = crtc->pipe;
  624. int position, vtotal;
  625. vtotal = mode->crtc_vtotal;
  626. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  627. vtotal /= 2;
  628. if (IS_GEN2(dev))
  629. position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
  630. else
  631. position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  632. /*
  633. * On HSW, the DSL reg (0x70000) appears to return 0 if we
  634. * read it just before the start of vblank. So try it again
  635. * so we don't accidentally end up spanning a vblank frame
  636. * increment, causing the pipe_update_end() code to squak at us.
  637. *
  638. * The nature of this problem means we can't simply check the ISR
  639. * bit and return the vblank start value; nor can we use the scanline
  640. * debug register in the transcoder as it appears to have the same
  641. * problem. We may need to extend this to include other platforms,
  642. * but so far testing only shows the problem on HSW.
  643. */
  644. if (HAS_DDI(dev) && !position) {
  645. int i, temp;
  646. for (i = 0; i < 100; i++) {
  647. udelay(1);
  648. temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
  649. DSL_LINEMASK_GEN3;
  650. if (temp != position) {
  651. position = temp;
  652. break;
  653. }
  654. }
  655. }
  656. /*
  657. * See update_scanline_offset() for the details on the
  658. * scanline_offset adjustment.
  659. */
  660. return (position + crtc->scanline_offset) % vtotal;
  661. }
  662. static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
  663. unsigned int flags, int *vpos, int *hpos,
  664. ktime_t *stime, ktime_t *etime,
  665. const struct drm_display_mode *mode)
  666. {
  667. struct drm_i915_private *dev_priv = dev->dev_private;
  668. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  669. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  670. int position;
  671. int vbl_start, vbl_end, hsync_start, htotal, vtotal;
  672. bool in_vbl = true;
  673. int ret = 0;
  674. unsigned long irqflags;
  675. if (WARN_ON(!mode->crtc_clock)) {
  676. DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
  677. "pipe %c\n", pipe_name(pipe));
  678. return 0;
  679. }
  680. htotal = mode->crtc_htotal;
  681. hsync_start = mode->crtc_hsync_start;
  682. vtotal = mode->crtc_vtotal;
  683. vbl_start = mode->crtc_vblank_start;
  684. vbl_end = mode->crtc_vblank_end;
  685. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  686. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  687. vbl_end /= 2;
  688. vtotal /= 2;
  689. }
  690. ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
  691. /*
  692. * Lock uncore.lock, as we will do multiple timing critical raw
  693. * register reads, potentially with preemption disabled, so the
  694. * following code must not block on uncore.lock.
  695. */
  696. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  697. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  698. /* Get optional system timestamp before query. */
  699. if (stime)
  700. *stime = ktime_get();
  701. if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  702. /* No obvious pixelcount register. Only query vertical
  703. * scanout position from Display scan line register.
  704. */
  705. position = __intel_get_crtc_scanline(intel_crtc);
  706. } else {
  707. /* Have access to pixelcount since start of frame.
  708. * We can split this into vertical and horizontal
  709. * scanout position.
  710. */
  711. position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
  712. /* convert to pixel counts */
  713. vbl_start *= htotal;
  714. vbl_end *= htotal;
  715. vtotal *= htotal;
  716. /*
  717. * In interlaced modes, the pixel counter counts all pixels,
  718. * so one field will have htotal more pixels. In order to avoid
  719. * the reported position from jumping backwards when the pixel
  720. * counter is beyond the length of the shorter field, just
  721. * clamp the position the length of the shorter field. This
  722. * matches how the scanline counter based position works since
  723. * the scanline counter doesn't count the two half lines.
  724. */
  725. if (position >= vtotal)
  726. position = vtotal - 1;
  727. /*
  728. * Start of vblank interrupt is triggered at start of hsync,
  729. * just prior to the first active line of vblank. However we
  730. * consider lines to start at the leading edge of horizontal
  731. * active. So, should we get here before we've crossed into
  732. * the horizontal active of the first line in vblank, we would
  733. * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
  734. * always add htotal-hsync_start to the current pixel position.
  735. */
  736. position = (position + htotal - hsync_start) % vtotal;
  737. }
  738. /* Get optional system timestamp after query. */
  739. if (etime)
  740. *etime = ktime_get();
  741. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  742. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  743. in_vbl = position >= vbl_start && position < vbl_end;
  744. /*
  745. * While in vblank, position will be negative
  746. * counting up towards 0 at vbl_end. And outside
  747. * vblank, position will be positive counting
  748. * up since vbl_end.
  749. */
  750. if (position >= vbl_start)
  751. position -= vbl_end;
  752. else
  753. position += vtotal - vbl_end;
  754. if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  755. *vpos = position;
  756. *hpos = 0;
  757. } else {
  758. *vpos = position / htotal;
  759. *hpos = position - (*vpos * htotal);
  760. }
  761. /* In vblank? */
  762. if (in_vbl)
  763. ret |= DRM_SCANOUTPOS_IN_VBLANK;
  764. return ret;
  765. }
  766. int intel_get_crtc_scanline(struct intel_crtc *crtc)
  767. {
  768. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  769. unsigned long irqflags;
  770. int position;
  771. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  772. position = __intel_get_crtc_scanline(crtc);
  773. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  774. return position;
  775. }
  776. static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
  777. int *max_error,
  778. struct timeval *vblank_time,
  779. unsigned flags)
  780. {
  781. struct drm_crtc *crtc;
  782. if (pipe >= INTEL_INFO(dev)->num_pipes) {
  783. DRM_ERROR("Invalid crtc %u\n", pipe);
  784. return -EINVAL;
  785. }
  786. /* Get drm_crtc to timestamp: */
  787. crtc = intel_get_crtc_for_pipe(dev, pipe);
  788. if (crtc == NULL) {
  789. DRM_ERROR("Invalid crtc %u\n", pipe);
  790. return -EINVAL;
  791. }
  792. if (!crtc->hwmode.crtc_clock) {
  793. DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
  794. return -EBUSY;
  795. }
  796. /* Helper routine in DRM core does all the work: */
  797. return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
  798. vblank_time, flags,
  799. &crtc->hwmode);
  800. }
  801. static void ironlake_rps_change_irq_handler(struct drm_device *dev)
  802. {
  803. struct drm_i915_private *dev_priv = dev->dev_private;
  804. u32 busy_up, busy_down, max_avg, min_avg;
  805. u8 new_delay;
  806. spin_lock(&mchdev_lock);
  807. I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
  808. new_delay = dev_priv->ips.cur_delay;
  809. I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
  810. busy_up = I915_READ(RCPREVBSYTUPAVG);
  811. busy_down = I915_READ(RCPREVBSYTDNAVG);
  812. max_avg = I915_READ(RCBMAXAVG);
  813. min_avg = I915_READ(RCBMINAVG);
  814. /* Handle RCS change request from hw */
  815. if (busy_up > max_avg) {
  816. if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
  817. new_delay = dev_priv->ips.cur_delay - 1;
  818. if (new_delay < dev_priv->ips.max_delay)
  819. new_delay = dev_priv->ips.max_delay;
  820. } else if (busy_down < min_avg) {
  821. if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
  822. new_delay = dev_priv->ips.cur_delay + 1;
  823. if (new_delay > dev_priv->ips.min_delay)
  824. new_delay = dev_priv->ips.min_delay;
  825. }
  826. if (ironlake_set_drps(dev, new_delay))
  827. dev_priv->ips.cur_delay = new_delay;
  828. spin_unlock(&mchdev_lock);
  829. return;
  830. }
  831. static void notify_ring(struct intel_engine_cs *engine)
  832. {
  833. if (!intel_engine_initialized(engine))
  834. return;
  835. trace_i915_gem_request_notify(engine);
  836. engine->user_interrupts++;
  837. wake_up_all(&engine->irq_queue);
  838. }
  839. static void vlv_c0_read(struct drm_i915_private *dev_priv,
  840. struct intel_rps_ei *ei)
  841. {
  842. ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
  843. ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
  844. ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
  845. }
  846. static bool vlv_c0_above(struct drm_i915_private *dev_priv,
  847. const struct intel_rps_ei *old,
  848. const struct intel_rps_ei *now,
  849. int threshold)
  850. {
  851. u64 time, c0;
  852. unsigned int mul = 100;
  853. if (old->cz_clock == 0)
  854. return false;
  855. if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
  856. mul <<= 8;
  857. time = now->cz_clock - old->cz_clock;
  858. time *= threshold * dev_priv->czclk_freq;
  859. /* Workload can be split between render + media, e.g. SwapBuffers
  860. * being blitted in X after being rendered in mesa. To account for
  861. * this we need to combine both engines into our activity counter.
  862. */
  863. c0 = now->render_c0 - old->render_c0;
  864. c0 += now->media_c0 - old->media_c0;
  865. c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
  866. return c0 >= time;
  867. }
  868. void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
  869. {
  870. vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
  871. dev_priv->rps.up_ei = dev_priv->rps.down_ei;
  872. }
  873. static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
  874. {
  875. struct intel_rps_ei now;
  876. u32 events = 0;
  877. if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
  878. return 0;
  879. vlv_c0_read(dev_priv, &now);
  880. if (now.cz_clock == 0)
  881. return 0;
  882. if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
  883. if (!vlv_c0_above(dev_priv,
  884. &dev_priv->rps.down_ei, &now,
  885. dev_priv->rps.down_threshold))
  886. events |= GEN6_PM_RP_DOWN_THRESHOLD;
  887. dev_priv->rps.down_ei = now;
  888. }
  889. if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
  890. if (vlv_c0_above(dev_priv,
  891. &dev_priv->rps.up_ei, &now,
  892. dev_priv->rps.up_threshold))
  893. events |= GEN6_PM_RP_UP_THRESHOLD;
  894. dev_priv->rps.up_ei = now;
  895. }
  896. return events;
  897. }
  898. static bool any_waiters(struct drm_i915_private *dev_priv)
  899. {
  900. struct intel_engine_cs *engine;
  901. for_each_engine(engine, dev_priv)
  902. if (engine->irq_refcount)
  903. return true;
  904. return false;
  905. }
  906. static void gen6_pm_rps_work(struct work_struct *work)
  907. {
  908. struct drm_i915_private *dev_priv =
  909. container_of(work, struct drm_i915_private, rps.work);
  910. bool client_boost;
  911. int new_delay, adj, min, max;
  912. u32 pm_iir;
  913. spin_lock_irq(&dev_priv->irq_lock);
  914. /* Speed up work cancelation during disabling rps interrupts. */
  915. if (!dev_priv->rps.interrupts_enabled) {
  916. spin_unlock_irq(&dev_priv->irq_lock);
  917. return;
  918. }
  919. /*
  920. * The RPS work is synced during runtime suspend, we don't require a
  921. * wakeref. TODO: instead of disabling the asserts make sure that we
  922. * always hold an RPM reference while the work is running.
  923. */
  924. DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
  925. pm_iir = dev_priv->rps.pm_iir;
  926. dev_priv->rps.pm_iir = 0;
  927. /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
  928. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  929. client_boost = dev_priv->rps.client_boost;
  930. dev_priv->rps.client_boost = false;
  931. spin_unlock_irq(&dev_priv->irq_lock);
  932. /* Make sure we didn't queue anything we're not going to process. */
  933. WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
  934. if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
  935. goto out;
  936. mutex_lock(&dev_priv->rps.hw_lock);
  937. pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
  938. adj = dev_priv->rps.last_adj;
  939. new_delay = dev_priv->rps.cur_freq;
  940. min = dev_priv->rps.min_freq_softlimit;
  941. max = dev_priv->rps.max_freq_softlimit;
  942. if (client_boost) {
  943. new_delay = dev_priv->rps.max_freq_softlimit;
  944. adj = 0;
  945. } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
  946. if (adj > 0)
  947. adj *= 2;
  948. else /* CHV needs even encode values */
  949. adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
  950. /*
  951. * For better performance, jump directly
  952. * to RPe if we're below it.
  953. */
  954. if (new_delay < dev_priv->rps.efficient_freq - adj) {
  955. new_delay = dev_priv->rps.efficient_freq;
  956. adj = 0;
  957. }
  958. } else if (any_waiters(dev_priv)) {
  959. adj = 0;
  960. } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
  961. if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
  962. new_delay = dev_priv->rps.efficient_freq;
  963. else
  964. new_delay = dev_priv->rps.min_freq_softlimit;
  965. adj = 0;
  966. } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
  967. if (adj < 0)
  968. adj *= 2;
  969. else /* CHV needs even encode values */
  970. adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
  971. } else { /* unknown event */
  972. adj = 0;
  973. }
  974. dev_priv->rps.last_adj = adj;
  975. /* sysfs frequency interfaces may have snuck in while servicing the
  976. * interrupt
  977. */
  978. new_delay += adj;
  979. new_delay = clamp_t(int, new_delay, min, max);
  980. intel_set_rps(dev_priv->dev, new_delay);
  981. mutex_unlock(&dev_priv->rps.hw_lock);
  982. out:
  983. ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
  984. }
  985. /**
  986. * ivybridge_parity_work - Workqueue called when a parity error interrupt
  987. * occurred.
  988. * @work: workqueue struct
  989. *
  990. * Doesn't actually do anything except notify userspace. As a consequence of
  991. * this event, userspace should try to remap the bad rows since statistically
  992. * it is likely the same row is more likely to go bad again.
  993. */
  994. static void ivybridge_parity_work(struct work_struct *work)
  995. {
  996. struct drm_i915_private *dev_priv =
  997. container_of(work, struct drm_i915_private, l3_parity.error_work);
  998. u32 error_status, row, bank, subbank;
  999. char *parity_event[6];
  1000. uint32_t misccpctl;
  1001. uint8_t slice = 0;
  1002. /* We must turn off DOP level clock gating to access the L3 registers.
  1003. * In order to prevent a get/put style interface, acquire struct mutex
  1004. * any time we access those registers.
  1005. */
  1006. mutex_lock(&dev_priv->dev->struct_mutex);
  1007. /* If we've screwed up tracking, just let the interrupt fire again */
  1008. if (WARN_ON(!dev_priv->l3_parity.which_slice))
  1009. goto out;
  1010. misccpctl = I915_READ(GEN7_MISCCPCTL);
  1011. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  1012. POSTING_READ(GEN7_MISCCPCTL);
  1013. while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
  1014. i915_reg_t reg;
  1015. slice--;
  1016. if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
  1017. break;
  1018. dev_priv->l3_parity.which_slice &= ~(1<<slice);
  1019. reg = GEN7_L3CDERRST1(slice);
  1020. error_status = I915_READ(reg);
  1021. row = GEN7_PARITY_ERROR_ROW(error_status);
  1022. bank = GEN7_PARITY_ERROR_BANK(error_status);
  1023. subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
  1024. I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
  1025. POSTING_READ(reg);
  1026. parity_event[0] = I915_L3_PARITY_UEVENT "=1";
  1027. parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
  1028. parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
  1029. parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
  1030. parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
  1031. parity_event[5] = NULL;
  1032. kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
  1033. KOBJ_CHANGE, parity_event);
  1034. DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
  1035. slice, row, bank, subbank);
  1036. kfree(parity_event[4]);
  1037. kfree(parity_event[3]);
  1038. kfree(parity_event[2]);
  1039. kfree(parity_event[1]);
  1040. }
  1041. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  1042. out:
  1043. WARN_ON(dev_priv->l3_parity.which_slice);
  1044. spin_lock_irq(&dev_priv->irq_lock);
  1045. gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
  1046. spin_unlock_irq(&dev_priv->irq_lock);
  1047. mutex_unlock(&dev_priv->dev->struct_mutex);
  1048. }
  1049. static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
  1050. u32 iir)
  1051. {
  1052. if (!HAS_L3_DPF(dev_priv))
  1053. return;
  1054. spin_lock(&dev_priv->irq_lock);
  1055. gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
  1056. spin_unlock(&dev_priv->irq_lock);
  1057. iir &= GT_PARITY_ERROR(dev_priv);
  1058. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
  1059. dev_priv->l3_parity.which_slice |= 1 << 1;
  1060. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
  1061. dev_priv->l3_parity.which_slice |= 1 << 0;
  1062. queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
  1063. }
  1064. static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
  1065. u32 gt_iir)
  1066. {
  1067. if (gt_iir &
  1068. (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
  1069. notify_ring(&dev_priv->engine[RCS]);
  1070. if (gt_iir & ILK_BSD_USER_INTERRUPT)
  1071. notify_ring(&dev_priv->engine[VCS]);
  1072. }
  1073. static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
  1074. u32 gt_iir)
  1075. {
  1076. if (gt_iir &
  1077. (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
  1078. notify_ring(&dev_priv->engine[RCS]);
  1079. if (gt_iir & GT_BSD_USER_INTERRUPT)
  1080. notify_ring(&dev_priv->engine[VCS]);
  1081. if (gt_iir & GT_BLT_USER_INTERRUPT)
  1082. notify_ring(&dev_priv->engine[BCS]);
  1083. if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
  1084. GT_BSD_CS_ERROR_INTERRUPT |
  1085. GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
  1086. DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
  1087. if (gt_iir & GT_PARITY_ERROR(dev_priv))
  1088. ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
  1089. }
  1090. static __always_inline void
  1091. gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
  1092. {
  1093. if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
  1094. notify_ring(engine);
  1095. if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
  1096. tasklet_schedule(&engine->irq_tasklet);
  1097. }
  1098. static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
  1099. u32 master_ctl,
  1100. u32 gt_iir[4])
  1101. {
  1102. irqreturn_t ret = IRQ_NONE;
  1103. if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
  1104. gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
  1105. if (gt_iir[0]) {
  1106. I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
  1107. ret = IRQ_HANDLED;
  1108. } else
  1109. DRM_ERROR("The master control interrupt lied (GT0)!\n");
  1110. }
  1111. if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
  1112. gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
  1113. if (gt_iir[1]) {
  1114. I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
  1115. ret = IRQ_HANDLED;
  1116. } else
  1117. DRM_ERROR("The master control interrupt lied (GT1)!\n");
  1118. }
  1119. if (master_ctl & GEN8_GT_VECS_IRQ) {
  1120. gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
  1121. if (gt_iir[3]) {
  1122. I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
  1123. ret = IRQ_HANDLED;
  1124. } else
  1125. DRM_ERROR("The master control interrupt lied (GT3)!\n");
  1126. }
  1127. if (master_ctl & GEN8_GT_PM_IRQ) {
  1128. gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
  1129. if (gt_iir[2] & dev_priv->pm_rps_events) {
  1130. I915_WRITE_FW(GEN8_GT_IIR(2),
  1131. gt_iir[2] & dev_priv->pm_rps_events);
  1132. ret = IRQ_HANDLED;
  1133. } else
  1134. DRM_ERROR("The master control interrupt lied (PM)!\n");
  1135. }
  1136. return ret;
  1137. }
  1138. static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
  1139. u32 gt_iir[4])
  1140. {
  1141. if (gt_iir[0]) {
  1142. gen8_cs_irq_handler(&dev_priv->engine[RCS],
  1143. gt_iir[0], GEN8_RCS_IRQ_SHIFT);
  1144. gen8_cs_irq_handler(&dev_priv->engine[BCS],
  1145. gt_iir[0], GEN8_BCS_IRQ_SHIFT);
  1146. }
  1147. if (gt_iir[1]) {
  1148. gen8_cs_irq_handler(&dev_priv->engine[VCS],
  1149. gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
  1150. gen8_cs_irq_handler(&dev_priv->engine[VCS2],
  1151. gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
  1152. }
  1153. if (gt_iir[3])
  1154. gen8_cs_irq_handler(&dev_priv->engine[VECS],
  1155. gt_iir[3], GEN8_VECS_IRQ_SHIFT);
  1156. if (gt_iir[2] & dev_priv->pm_rps_events)
  1157. gen6_rps_irq_handler(dev_priv, gt_iir[2]);
  1158. }
  1159. static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
  1160. {
  1161. switch (port) {
  1162. case PORT_A:
  1163. return val & PORTA_HOTPLUG_LONG_DETECT;
  1164. case PORT_B:
  1165. return val & PORTB_HOTPLUG_LONG_DETECT;
  1166. case PORT_C:
  1167. return val & PORTC_HOTPLUG_LONG_DETECT;
  1168. default:
  1169. return false;
  1170. }
  1171. }
  1172. static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
  1173. {
  1174. switch (port) {
  1175. case PORT_E:
  1176. return val & PORTE_HOTPLUG_LONG_DETECT;
  1177. default:
  1178. return false;
  1179. }
  1180. }
  1181. static bool spt_port_hotplug_long_detect(enum port port, u32 val)
  1182. {
  1183. switch (port) {
  1184. case PORT_A:
  1185. return val & PORTA_HOTPLUG_LONG_DETECT;
  1186. case PORT_B:
  1187. return val & PORTB_HOTPLUG_LONG_DETECT;
  1188. case PORT_C:
  1189. return val & PORTC_HOTPLUG_LONG_DETECT;
  1190. case PORT_D:
  1191. return val & PORTD_HOTPLUG_LONG_DETECT;
  1192. default:
  1193. return false;
  1194. }
  1195. }
  1196. static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
  1197. {
  1198. switch (port) {
  1199. case PORT_A:
  1200. return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
  1201. default:
  1202. return false;
  1203. }
  1204. }
  1205. static bool pch_port_hotplug_long_detect(enum port port, u32 val)
  1206. {
  1207. switch (port) {
  1208. case PORT_B:
  1209. return val & PORTB_HOTPLUG_LONG_DETECT;
  1210. case PORT_C:
  1211. return val & PORTC_HOTPLUG_LONG_DETECT;
  1212. case PORT_D:
  1213. return val & PORTD_HOTPLUG_LONG_DETECT;
  1214. default:
  1215. return false;
  1216. }
  1217. }
  1218. static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
  1219. {
  1220. switch (port) {
  1221. case PORT_B:
  1222. return val & PORTB_HOTPLUG_INT_LONG_PULSE;
  1223. case PORT_C:
  1224. return val & PORTC_HOTPLUG_INT_LONG_PULSE;
  1225. case PORT_D:
  1226. return val & PORTD_HOTPLUG_INT_LONG_PULSE;
  1227. default:
  1228. return false;
  1229. }
  1230. }
  1231. /*
  1232. * Get a bit mask of pins that have triggered, and which ones may be long.
  1233. * This can be called multiple times with the same masks to accumulate
  1234. * hotplug detection results from several registers.
  1235. *
  1236. * Note that the caller is expected to zero out the masks initially.
  1237. */
  1238. static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
  1239. u32 hotplug_trigger, u32 dig_hotplug_reg,
  1240. const u32 hpd[HPD_NUM_PINS],
  1241. bool long_pulse_detect(enum port port, u32 val))
  1242. {
  1243. enum port port;
  1244. int i;
  1245. for_each_hpd_pin(i) {
  1246. if ((hpd[i] & hotplug_trigger) == 0)
  1247. continue;
  1248. *pin_mask |= BIT(i);
  1249. if (!intel_hpd_pin_to_port(i, &port))
  1250. continue;
  1251. if (long_pulse_detect(port, dig_hotplug_reg))
  1252. *long_mask |= BIT(i);
  1253. }
  1254. DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
  1255. hotplug_trigger, dig_hotplug_reg, *pin_mask);
  1256. }
  1257. static void gmbus_irq_handler(struct drm_device *dev)
  1258. {
  1259. struct drm_i915_private *dev_priv = dev->dev_private;
  1260. wake_up_all(&dev_priv->gmbus_wait_queue);
  1261. }
  1262. static void dp_aux_irq_handler(struct drm_device *dev)
  1263. {
  1264. struct drm_i915_private *dev_priv = dev->dev_private;
  1265. wake_up_all(&dev_priv->gmbus_wait_queue);
  1266. }
  1267. #if defined(CONFIG_DEBUG_FS)
  1268. static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
  1269. uint32_t crc0, uint32_t crc1,
  1270. uint32_t crc2, uint32_t crc3,
  1271. uint32_t crc4)
  1272. {
  1273. struct drm_i915_private *dev_priv = dev->dev_private;
  1274. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  1275. struct intel_pipe_crc_entry *entry;
  1276. int head, tail;
  1277. spin_lock(&pipe_crc->lock);
  1278. if (!pipe_crc->entries) {
  1279. spin_unlock(&pipe_crc->lock);
  1280. DRM_DEBUG_KMS("spurious interrupt\n");
  1281. return;
  1282. }
  1283. head = pipe_crc->head;
  1284. tail = pipe_crc->tail;
  1285. if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
  1286. spin_unlock(&pipe_crc->lock);
  1287. DRM_ERROR("CRC buffer overflowing\n");
  1288. return;
  1289. }
  1290. entry = &pipe_crc->entries[head];
  1291. entry->frame = dev->driver->get_vblank_counter(dev, pipe);
  1292. entry->crc[0] = crc0;
  1293. entry->crc[1] = crc1;
  1294. entry->crc[2] = crc2;
  1295. entry->crc[3] = crc3;
  1296. entry->crc[4] = crc4;
  1297. head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  1298. pipe_crc->head = head;
  1299. spin_unlock(&pipe_crc->lock);
  1300. wake_up_interruptible(&pipe_crc->wq);
  1301. }
  1302. #else
  1303. static inline void
  1304. display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
  1305. uint32_t crc0, uint32_t crc1,
  1306. uint32_t crc2, uint32_t crc3,
  1307. uint32_t crc4) {}
  1308. #endif
  1309. static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1310. {
  1311. struct drm_i915_private *dev_priv = dev->dev_private;
  1312. display_pipe_crc_irq_handler(dev, pipe,
  1313. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1314. 0, 0, 0, 0);
  1315. }
  1316. static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1317. {
  1318. struct drm_i915_private *dev_priv = dev->dev_private;
  1319. display_pipe_crc_irq_handler(dev, pipe,
  1320. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1321. I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
  1322. I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
  1323. I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
  1324. I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
  1325. }
  1326. static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1327. {
  1328. struct drm_i915_private *dev_priv = dev->dev_private;
  1329. uint32_t res1, res2;
  1330. if (INTEL_INFO(dev)->gen >= 3)
  1331. res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
  1332. else
  1333. res1 = 0;
  1334. if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  1335. res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
  1336. else
  1337. res2 = 0;
  1338. display_pipe_crc_irq_handler(dev, pipe,
  1339. I915_READ(PIPE_CRC_RES_RED(pipe)),
  1340. I915_READ(PIPE_CRC_RES_GREEN(pipe)),
  1341. I915_READ(PIPE_CRC_RES_BLUE(pipe)),
  1342. res1, res2);
  1343. }
  1344. /* The RPS events need forcewake, so we add them to a work queue and mask their
  1345. * IMR bits until the work is done. Other interrupts can be processed without
  1346. * the work queue. */
  1347. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
  1348. {
  1349. if (pm_iir & dev_priv->pm_rps_events) {
  1350. spin_lock(&dev_priv->irq_lock);
  1351. gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
  1352. if (dev_priv->rps.interrupts_enabled) {
  1353. dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
  1354. queue_work(dev_priv->wq, &dev_priv->rps.work);
  1355. }
  1356. spin_unlock(&dev_priv->irq_lock);
  1357. }
  1358. if (INTEL_INFO(dev_priv)->gen >= 8)
  1359. return;
  1360. if (HAS_VEBOX(dev_priv)) {
  1361. if (pm_iir & PM_VEBOX_USER_INTERRUPT)
  1362. notify_ring(&dev_priv->engine[VECS]);
  1363. if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
  1364. DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
  1365. }
  1366. }
  1367. static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
  1368. {
  1369. if (!drm_handle_vblank(dev, pipe))
  1370. return false;
  1371. return true;
  1372. }
  1373. static void valleyview_pipestat_irq_ack(struct drm_device *dev, u32 iir,
  1374. u32 pipe_stats[I915_MAX_PIPES])
  1375. {
  1376. struct drm_i915_private *dev_priv = dev->dev_private;
  1377. int pipe;
  1378. spin_lock(&dev_priv->irq_lock);
  1379. if (!dev_priv->display_irqs_enabled) {
  1380. spin_unlock(&dev_priv->irq_lock);
  1381. return;
  1382. }
  1383. for_each_pipe(dev_priv, pipe) {
  1384. i915_reg_t reg;
  1385. u32 mask, iir_bit = 0;
  1386. /*
  1387. * PIPESTAT bits get signalled even when the interrupt is
  1388. * disabled with the mask bits, and some of the status bits do
  1389. * not generate interrupts at all (like the underrun bit). Hence
  1390. * we need to be careful that we only handle what we want to
  1391. * handle.
  1392. */
  1393. /* fifo underruns are filterered in the underrun handler. */
  1394. mask = PIPE_FIFO_UNDERRUN_STATUS;
  1395. switch (pipe) {
  1396. case PIPE_A:
  1397. iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
  1398. break;
  1399. case PIPE_B:
  1400. iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  1401. break;
  1402. case PIPE_C:
  1403. iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  1404. break;
  1405. }
  1406. if (iir & iir_bit)
  1407. mask |= dev_priv->pipestat_irq_mask[pipe];
  1408. if (!mask)
  1409. continue;
  1410. reg = PIPESTAT(pipe);
  1411. mask |= PIPESTAT_INT_ENABLE_MASK;
  1412. pipe_stats[pipe] = I915_READ(reg) & mask;
  1413. /*
  1414. * Clear the PIPE*STAT regs before the IIR
  1415. */
  1416. if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
  1417. PIPESTAT_INT_STATUS_MASK))
  1418. I915_WRITE(reg, pipe_stats[pipe]);
  1419. }
  1420. spin_unlock(&dev_priv->irq_lock);
  1421. }
  1422. static void valleyview_pipestat_irq_handler(struct drm_device *dev,
  1423. u32 pipe_stats[I915_MAX_PIPES])
  1424. {
  1425. struct drm_i915_private *dev_priv = to_i915(dev);
  1426. enum pipe pipe;
  1427. for_each_pipe(dev_priv, pipe) {
  1428. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  1429. intel_pipe_handle_vblank(dev, pipe))
  1430. intel_check_page_flip(dev, pipe);
  1431. if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
  1432. intel_prepare_page_flip(dev, pipe);
  1433. intel_finish_page_flip(dev, pipe);
  1434. }
  1435. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1436. i9xx_pipe_crc_irq_handler(dev, pipe);
  1437. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1438. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1439. }
  1440. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1441. gmbus_irq_handler(dev);
  1442. }
  1443. static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
  1444. {
  1445. u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
  1446. if (hotplug_status)
  1447. I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
  1448. return hotplug_status;
  1449. }
  1450. static void i9xx_hpd_irq_handler(struct drm_device *dev,
  1451. u32 hotplug_status)
  1452. {
  1453. u32 pin_mask = 0, long_mask = 0;
  1454. if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  1455. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
  1456. if (hotplug_trigger) {
  1457. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1458. hotplug_trigger, hpd_status_g4x,
  1459. i9xx_port_hotplug_long_detect);
  1460. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1461. }
  1462. if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
  1463. dp_aux_irq_handler(dev);
  1464. } else {
  1465. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
  1466. if (hotplug_trigger) {
  1467. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1468. hotplug_trigger, hpd_status_i915,
  1469. i9xx_port_hotplug_long_detect);
  1470. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1471. }
  1472. }
  1473. }
  1474. static irqreturn_t valleyview_irq_handler(int irq, void *arg)
  1475. {
  1476. struct drm_device *dev = arg;
  1477. struct drm_i915_private *dev_priv = dev->dev_private;
  1478. irqreturn_t ret = IRQ_NONE;
  1479. if (!intel_irqs_enabled(dev_priv))
  1480. return IRQ_NONE;
  1481. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1482. disable_rpm_wakeref_asserts(dev_priv);
  1483. do {
  1484. u32 iir, gt_iir, pm_iir;
  1485. u32 pipe_stats[I915_MAX_PIPES] = {};
  1486. u32 hotplug_status = 0;
  1487. u32 ier = 0;
  1488. gt_iir = I915_READ(GTIIR);
  1489. pm_iir = I915_READ(GEN6_PMIIR);
  1490. iir = I915_READ(VLV_IIR);
  1491. if (gt_iir == 0 && pm_iir == 0 && iir == 0)
  1492. break;
  1493. ret = IRQ_HANDLED;
  1494. /*
  1495. * Theory on interrupt generation, based on empirical evidence:
  1496. *
  1497. * x = ((VLV_IIR & VLV_IER) ||
  1498. * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
  1499. * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
  1500. *
  1501. * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
  1502. * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
  1503. * guarantee the CPU interrupt will be raised again even if we
  1504. * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
  1505. * bits this time around.
  1506. */
  1507. I915_WRITE(VLV_MASTER_IER, 0);
  1508. ier = I915_READ(VLV_IER);
  1509. I915_WRITE(VLV_IER, 0);
  1510. if (gt_iir)
  1511. I915_WRITE(GTIIR, gt_iir);
  1512. if (pm_iir)
  1513. I915_WRITE(GEN6_PMIIR, pm_iir);
  1514. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1515. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  1516. /* Call regardless, as some status bits might not be
  1517. * signalled in iir */
  1518. valleyview_pipestat_irq_ack(dev, iir, pipe_stats);
  1519. /*
  1520. * VLV_IIR is single buffered, and reflects the level
  1521. * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
  1522. */
  1523. if (iir)
  1524. I915_WRITE(VLV_IIR, iir);
  1525. I915_WRITE(VLV_IER, ier);
  1526. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  1527. POSTING_READ(VLV_MASTER_IER);
  1528. if (gt_iir)
  1529. snb_gt_irq_handler(dev_priv, gt_iir);
  1530. if (pm_iir)
  1531. gen6_rps_irq_handler(dev_priv, pm_iir);
  1532. if (hotplug_status)
  1533. i9xx_hpd_irq_handler(dev, hotplug_status);
  1534. valleyview_pipestat_irq_handler(dev, pipe_stats);
  1535. } while (0);
  1536. enable_rpm_wakeref_asserts(dev_priv);
  1537. return ret;
  1538. }
  1539. static irqreturn_t cherryview_irq_handler(int irq, void *arg)
  1540. {
  1541. struct drm_device *dev = arg;
  1542. struct drm_i915_private *dev_priv = dev->dev_private;
  1543. irqreturn_t ret = IRQ_NONE;
  1544. if (!intel_irqs_enabled(dev_priv))
  1545. return IRQ_NONE;
  1546. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1547. disable_rpm_wakeref_asserts(dev_priv);
  1548. do {
  1549. u32 master_ctl, iir;
  1550. u32 gt_iir[4] = {};
  1551. u32 pipe_stats[I915_MAX_PIPES] = {};
  1552. u32 hotplug_status = 0;
  1553. u32 ier = 0;
  1554. master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
  1555. iir = I915_READ(VLV_IIR);
  1556. if (master_ctl == 0 && iir == 0)
  1557. break;
  1558. ret = IRQ_HANDLED;
  1559. /*
  1560. * Theory on interrupt generation, based on empirical evidence:
  1561. *
  1562. * x = ((VLV_IIR & VLV_IER) ||
  1563. * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
  1564. * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
  1565. *
  1566. * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
  1567. * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
  1568. * guarantee the CPU interrupt will be raised again even if we
  1569. * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
  1570. * bits this time around.
  1571. */
  1572. I915_WRITE(GEN8_MASTER_IRQ, 0);
  1573. ier = I915_READ(VLV_IER);
  1574. I915_WRITE(VLV_IER, 0);
  1575. gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
  1576. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1577. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  1578. /* Call regardless, as some status bits might not be
  1579. * signalled in iir */
  1580. valleyview_pipestat_irq_ack(dev, iir, pipe_stats);
  1581. /*
  1582. * VLV_IIR is single buffered, and reflects the level
  1583. * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
  1584. */
  1585. if (iir)
  1586. I915_WRITE(VLV_IIR, iir);
  1587. I915_WRITE(VLV_IER, ier);
  1588. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  1589. POSTING_READ(GEN8_MASTER_IRQ);
  1590. gen8_gt_irq_handler(dev_priv, gt_iir);
  1591. if (hotplug_status)
  1592. i9xx_hpd_irq_handler(dev, hotplug_status);
  1593. valleyview_pipestat_irq_handler(dev, pipe_stats);
  1594. } while (0);
  1595. enable_rpm_wakeref_asserts(dev_priv);
  1596. return ret;
  1597. }
  1598. static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
  1599. const u32 hpd[HPD_NUM_PINS])
  1600. {
  1601. struct drm_i915_private *dev_priv = to_i915(dev);
  1602. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1603. /*
  1604. * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
  1605. * unless we touch the hotplug register, even if hotplug_trigger is
  1606. * zero. Not acking leads to "The master control interrupt lied (SDE)!"
  1607. * errors.
  1608. */
  1609. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1610. if (!hotplug_trigger) {
  1611. u32 mask = PORTA_HOTPLUG_STATUS_MASK |
  1612. PORTD_HOTPLUG_STATUS_MASK |
  1613. PORTC_HOTPLUG_STATUS_MASK |
  1614. PORTB_HOTPLUG_STATUS_MASK;
  1615. dig_hotplug_reg &= ~mask;
  1616. }
  1617. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1618. if (!hotplug_trigger)
  1619. return;
  1620. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1621. dig_hotplug_reg, hpd,
  1622. pch_port_hotplug_long_detect);
  1623. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1624. }
  1625. static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
  1626. {
  1627. struct drm_i915_private *dev_priv = dev->dev_private;
  1628. int pipe;
  1629. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
  1630. ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
  1631. if (pch_iir & SDE_AUDIO_POWER_MASK) {
  1632. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
  1633. SDE_AUDIO_POWER_SHIFT);
  1634. DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
  1635. port_name(port));
  1636. }
  1637. if (pch_iir & SDE_AUX_MASK)
  1638. dp_aux_irq_handler(dev);
  1639. if (pch_iir & SDE_GMBUS)
  1640. gmbus_irq_handler(dev);
  1641. if (pch_iir & SDE_AUDIO_HDCP_MASK)
  1642. DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
  1643. if (pch_iir & SDE_AUDIO_TRANS_MASK)
  1644. DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
  1645. if (pch_iir & SDE_POISON)
  1646. DRM_ERROR("PCH poison interrupt\n");
  1647. if (pch_iir & SDE_FDI_MASK)
  1648. for_each_pipe(dev_priv, pipe)
  1649. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1650. pipe_name(pipe),
  1651. I915_READ(FDI_RX_IIR(pipe)));
  1652. if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
  1653. DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
  1654. if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
  1655. DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
  1656. if (pch_iir & SDE_TRANSA_FIFO_UNDER)
  1657. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1658. if (pch_iir & SDE_TRANSB_FIFO_UNDER)
  1659. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1660. }
  1661. static void ivb_err_int_handler(struct drm_device *dev)
  1662. {
  1663. struct drm_i915_private *dev_priv = dev->dev_private;
  1664. u32 err_int = I915_READ(GEN7_ERR_INT);
  1665. enum pipe pipe;
  1666. if (err_int & ERR_INT_POISON)
  1667. DRM_ERROR("Poison interrupt\n");
  1668. for_each_pipe(dev_priv, pipe) {
  1669. if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
  1670. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1671. if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
  1672. if (IS_IVYBRIDGE(dev))
  1673. ivb_pipe_crc_irq_handler(dev, pipe);
  1674. else
  1675. hsw_pipe_crc_irq_handler(dev, pipe);
  1676. }
  1677. }
  1678. I915_WRITE(GEN7_ERR_INT, err_int);
  1679. }
  1680. static void cpt_serr_int_handler(struct drm_device *dev)
  1681. {
  1682. struct drm_i915_private *dev_priv = dev->dev_private;
  1683. u32 serr_int = I915_READ(SERR_INT);
  1684. if (serr_int & SERR_INT_POISON)
  1685. DRM_ERROR("PCH poison interrupt\n");
  1686. if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
  1687. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1688. if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
  1689. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1690. if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
  1691. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
  1692. I915_WRITE(SERR_INT, serr_int);
  1693. }
  1694. static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
  1695. {
  1696. struct drm_i915_private *dev_priv = dev->dev_private;
  1697. int pipe;
  1698. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
  1699. ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
  1700. if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
  1701. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
  1702. SDE_AUDIO_POWER_SHIFT_CPT);
  1703. DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
  1704. port_name(port));
  1705. }
  1706. if (pch_iir & SDE_AUX_MASK_CPT)
  1707. dp_aux_irq_handler(dev);
  1708. if (pch_iir & SDE_GMBUS_CPT)
  1709. gmbus_irq_handler(dev);
  1710. if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
  1711. DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
  1712. if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
  1713. DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
  1714. if (pch_iir & SDE_FDI_MASK_CPT)
  1715. for_each_pipe(dev_priv, pipe)
  1716. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1717. pipe_name(pipe),
  1718. I915_READ(FDI_RX_IIR(pipe)));
  1719. if (pch_iir & SDE_ERROR_CPT)
  1720. cpt_serr_int_handler(dev);
  1721. }
  1722. static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
  1723. {
  1724. struct drm_i915_private *dev_priv = dev->dev_private;
  1725. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
  1726. ~SDE_PORTE_HOTPLUG_SPT;
  1727. u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
  1728. u32 pin_mask = 0, long_mask = 0;
  1729. if (hotplug_trigger) {
  1730. u32 dig_hotplug_reg;
  1731. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1732. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1733. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1734. dig_hotplug_reg, hpd_spt,
  1735. spt_port_hotplug_long_detect);
  1736. }
  1737. if (hotplug2_trigger) {
  1738. u32 dig_hotplug_reg;
  1739. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
  1740. I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
  1741. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
  1742. dig_hotplug_reg, hpd_spt,
  1743. spt_port_hotplug2_long_detect);
  1744. }
  1745. if (pin_mask)
  1746. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1747. if (pch_iir & SDE_GMBUS_CPT)
  1748. gmbus_irq_handler(dev);
  1749. }
  1750. static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
  1751. const u32 hpd[HPD_NUM_PINS])
  1752. {
  1753. struct drm_i915_private *dev_priv = to_i915(dev);
  1754. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1755. dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  1756. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
  1757. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1758. dig_hotplug_reg, hpd,
  1759. ilk_port_hotplug_long_detect);
  1760. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1761. }
  1762. static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
  1763. {
  1764. struct drm_i915_private *dev_priv = dev->dev_private;
  1765. enum pipe pipe;
  1766. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
  1767. if (hotplug_trigger)
  1768. ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
  1769. if (de_iir & DE_AUX_CHANNEL_A)
  1770. dp_aux_irq_handler(dev);
  1771. if (de_iir & DE_GSE)
  1772. intel_opregion_asle_intr(dev);
  1773. if (de_iir & DE_POISON)
  1774. DRM_ERROR("Poison interrupt\n");
  1775. for_each_pipe(dev_priv, pipe) {
  1776. if (de_iir & DE_PIPE_VBLANK(pipe) &&
  1777. intel_pipe_handle_vblank(dev, pipe))
  1778. intel_check_page_flip(dev, pipe);
  1779. if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
  1780. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1781. if (de_iir & DE_PIPE_CRC_DONE(pipe))
  1782. i9xx_pipe_crc_irq_handler(dev, pipe);
  1783. /* plane/pipes map 1:1 on ilk+ */
  1784. if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
  1785. intel_prepare_page_flip(dev, pipe);
  1786. intel_finish_page_flip_plane(dev, pipe);
  1787. }
  1788. }
  1789. /* check event from PCH */
  1790. if (de_iir & DE_PCH_EVENT) {
  1791. u32 pch_iir = I915_READ(SDEIIR);
  1792. if (HAS_PCH_CPT(dev))
  1793. cpt_irq_handler(dev, pch_iir);
  1794. else
  1795. ibx_irq_handler(dev, pch_iir);
  1796. /* should clear PCH hotplug event before clear CPU irq */
  1797. I915_WRITE(SDEIIR, pch_iir);
  1798. }
  1799. if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
  1800. ironlake_rps_change_irq_handler(dev);
  1801. }
  1802. static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
  1803. {
  1804. struct drm_i915_private *dev_priv = dev->dev_private;
  1805. enum pipe pipe;
  1806. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
  1807. if (hotplug_trigger)
  1808. ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
  1809. if (de_iir & DE_ERR_INT_IVB)
  1810. ivb_err_int_handler(dev);
  1811. if (de_iir & DE_AUX_CHANNEL_A_IVB)
  1812. dp_aux_irq_handler(dev);
  1813. if (de_iir & DE_GSE_IVB)
  1814. intel_opregion_asle_intr(dev);
  1815. for_each_pipe(dev_priv, pipe) {
  1816. if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
  1817. intel_pipe_handle_vblank(dev, pipe))
  1818. intel_check_page_flip(dev, pipe);
  1819. /* plane/pipes map 1:1 on ilk+ */
  1820. if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
  1821. intel_prepare_page_flip(dev, pipe);
  1822. intel_finish_page_flip_plane(dev, pipe);
  1823. }
  1824. }
  1825. /* check event from PCH */
  1826. if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
  1827. u32 pch_iir = I915_READ(SDEIIR);
  1828. cpt_irq_handler(dev, pch_iir);
  1829. /* clear PCH hotplug event before clear CPU irq */
  1830. I915_WRITE(SDEIIR, pch_iir);
  1831. }
  1832. }
  1833. /*
  1834. * To handle irqs with the minimum potential races with fresh interrupts, we:
  1835. * 1 - Disable Master Interrupt Control.
  1836. * 2 - Find the source(s) of the interrupt.
  1837. * 3 - Clear the Interrupt Identity bits (IIR).
  1838. * 4 - Process the interrupt(s) that had bits set in the IIRs.
  1839. * 5 - Re-enable Master Interrupt Control.
  1840. */
  1841. static irqreturn_t ironlake_irq_handler(int irq, void *arg)
  1842. {
  1843. struct drm_device *dev = arg;
  1844. struct drm_i915_private *dev_priv = dev->dev_private;
  1845. u32 de_iir, gt_iir, de_ier, sde_ier = 0;
  1846. irqreturn_t ret = IRQ_NONE;
  1847. if (!intel_irqs_enabled(dev_priv))
  1848. return IRQ_NONE;
  1849. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1850. disable_rpm_wakeref_asserts(dev_priv);
  1851. /* disable master interrupt before clearing iir */
  1852. de_ier = I915_READ(DEIER);
  1853. I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
  1854. POSTING_READ(DEIER);
  1855. /* Disable south interrupts. We'll only write to SDEIIR once, so further
  1856. * interrupts will will be stored on its back queue, and then we'll be
  1857. * able to process them after we restore SDEIER (as soon as we restore
  1858. * it, we'll get an interrupt if SDEIIR still has something to process
  1859. * due to its back queue). */
  1860. if (!HAS_PCH_NOP(dev)) {
  1861. sde_ier = I915_READ(SDEIER);
  1862. I915_WRITE(SDEIER, 0);
  1863. POSTING_READ(SDEIER);
  1864. }
  1865. /* Find, clear, then process each source of interrupt */
  1866. gt_iir = I915_READ(GTIIR);
  1867. if (gt_iir) {
  1868. I915_WRITE(GTIIR, gt_iir);
  1869. ret = IRQ_HANDLED;
  1870. if (INTEL_INFO(dev)->gen >= 6)
  1871. snb_gt_irq_handler(dev_priv, gt_iir);
  1872. else
  1873. ilk_gt_irq_handler(dev_priv, gt_iir);
  1874. }
  1875. de_iir = I915_READ(DEIIR);
  1876. if (de_iir) {
  1877. I915_WRITE(DEIIR, de_iir);
  1878. ret = IRQ_HANDLED;
  1879. if (INTEL_INFO(dev)->gen >= 7)
  1880. ivb_display_irq_handler(dev, de_iir);
  1881. else
  1882. ilk_display_irq_handler(dev, de_iir);
  1883. }
  1884. if (INTEL_INFO(dev)->gen >= 6) {
  1885. u32 pm_iir = I915_READ(GEN6_PMIIR);
  1886. if (pm_iir) {
  1887. I915_WRITE(GEN6_PMIIR, pm_iir);
  1888. ret = IRQ_HANDLED;
  1889. gen6_rps_irq_handler(dev_priv, pm_iir);
  1890. }
  1891. }
  1892. I915_WRITE(DEIER, de_ier);
  1893. POSTING_READ(DEIER);
  1894. if (!HAS_PCH_NOP(dev)) {
  1895. I915_WRITE(SDEIER, sde_ier);
  1896. POSTING_READ(SDEIER);
  1897. }
  1898. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1899. enable_rpm_wakeref_asserts(dev_priv);
  1900. return ret;
  1901. }
  1902. static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
  1903. const u32 hpd[HPD_NUM_PINS])
  1904. {
  1905. struct drm_i915_private *dev_priv = to_i915(dev);
  1906. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1907. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1908. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1909. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1910. dig_hotplug_reg, hpd,
  1911. bxt_port_hotplug_long_detect);
  1912. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1913. }
  1914. static irqreturn_t
  1915. gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
  1916. {
  1917. struct drm_device *dev = dev_priv->dev;
  1918. irqreturn_t ret = IRQ_NONE;
  1919. u32 iir;
  1920. enum pipe pipe;
  1921. if (master_ctl & GEN8_DE_MISC_IRQ) {
  1922. iir = I915_READ(GEN8_DE_MISC_IIR);
  1923. if (iir) {
  1924. I915_WRITE(GEN8_DE_MISC_IIR, iir);
  1925. ret = IRQ_HANDLED;
  1926. if (iir & GEN8_DE_MISC_GSE)
  1927. intel_opregion_asle_intr(dev);
  1928. else
  1929. DRM_ERROR("Unexpected DE Misc interrupt\n");
  1930. }
  1931. else
  1932. DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
  1933. }
  1934. if (master_ctl & GEN8_DE_PORT_IRQ) {
  1935. iir = I915_READ(GEN8_DE_PORT_IIR);
  1936. if (iir) {
  1937. u32 tmp_mask;
  1938. bool found = false;
  1939. I915_WRITE(GEN8_DE_PORT_IIR, iir);
  1940. ret = IRQ_HANDLED;
  1941. tmp_mask = GEN8_AUX_CHANNEL_A;
  1942. if (INTEL_INFO(dev_priv)->gen >= 9)
  1943. tmp_mask |= GEN9_AUX_CHANNEL_B |
  1944. GEN9_AUX_CHANNEL_C |
  1945. GEN9_AUX_CHANNEL_D;
  1946. if (iir & tmp_mask) {
  1947. dp_aux_irq_handler(dev);
  1948. found = true;
  1949. }
  1950. if (IS_BROXTON(dev_priv)) {
  1951. tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
  1952. if (tmp_mask) {
  1953. bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
  1954. found = true;
  1955. }
  1956. } else if (IS_BROADWELL(dev_priv)) {
  1957. tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
  1958. if (tmp_mask) {
  1959. ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
  1960. found = true;
  1961. }
  1962. }
  1963. if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
  1964. gmbus_irq_handler(dev);
  1965. found = true;
  1966. }
  1967. if (!found)
  1968. DRM_ERROR("Unexpected DE Port interrupt\n");
  1969. }
  1970. else
  1971. DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
  1972. }
  1973. for_each_pipe(dev_priv, pipe) {
  1974. u32 flip_done, fault_errors;
  1975. if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
  1976. continue;
  1977. iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
  1978. if (!iir) {
  1979. DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
  1980. continue;
  1981. }
  1982. ret = IRQ_HANDLED;
  1983. I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
  1984. if (iir & GEN8_PIPE_VBLANK &&
  1985. intel_pipe_handle_vblank(dev, pipe))
  1986. intel_check_page_flip(dev, pipe);
  1987. flip_done = iir;
  1988. if (INTEL_INFO(dev_priv)->gen >= 9)
  1989. flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
  1990. else
  1991. flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
  1992. if (flip_done) {
  1993. intel_prepare_page_flip(dev, pipe);
  1994. intel_finish_page_flip_plane(dev, pipe);
  1995. }
  1996. if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
  1997. hsw_pipe_crc_irq_handler(dev, pipe);
  1998. if (iir & GEN8_PIPE_FIFO_UNDERRUN)
  1999. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  2000. fault_errors = iir;
  2001. if (INTEL_INFO(dev_priv)->gen >= 9)
  2002. fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  2003. else
  2004. fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  2005. if (fault_errors)
  2006. DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
  2007. pipe_name(pipe),
  2008. fault_errors);
  2009. }
  2010. if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
  2011. master_ctl & GEN8_DE_PCH_IRQ) {
  2012. /*
  2013. * FIXME(BDW): Assume for now that the new interrupt handling
  2014. * scheme also closed the SDE interrupt handling race we've seen
  2015. * on older pch-split platforms. But this needs testing.
  2016. */
  2017. iir = I915_READ(SDEIIR);
  2018. if (iir) {
  2019. I915_WRITE(SDEIIR, iir);
  2020. ret = IRQ_HANDLED;
  2021. if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
  2022. spt_irq_handler(dev, iir);
  2023. else
  2024. cpt_irq_handler(dev, iir);
  2025. } else {
  2026. /*
  2027. * Like on previous PCH there seems to be something
  2028. * fishy going on with forwarding PCH interrupts.
  2029. */
  2030. DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
  2031. }
  2032. }
  2033. return ret;
  2034. }
  2035. static irqreturn_t gen8_irq_handler(int irq, void *arg)
  2036. {
  2037. struct drm_device *dev = arg;
  2038. struct drm_i915_private *dev_priv = dev->dev_private;
  2039. u32 master_ctl;
  2040. u32 gt_iir[4] = {};
  2041. irqreturn_t ret;
  2042. if (!intel_irqs_enabled(dev_priv))
  2043. return IRQ_NONE;
  2044. master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
  2045. master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
  2046. if (!master_ctl)
  2047. return IRQ_NONE;
  2048. I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
  2049. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2050. disable_rpm_wakeref_asserts(dev_priv);
  2051. /* Find, clear, then process each source of interrupt */
  2052. ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
  2053. gen8_gt_irq_handler(dev_priv, gt_iir);
  2054. ret |= gen8_de_irq_handler(dev_priv, master_ctl);
  2055. I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  2056. POSTING_READ_FW(GEN8_MASTER_IRQ);
  2057. enable_rpm_wakeref_asserts(dev_priv);
  2058. return ret;
  2059. }
  2060. static void i915_error_wake_up(struct drm_i915_private *dev_priv,
  2061. bool reset_completed)
  2062. {
  2063. struct intel_engine_cs *engine;
  2064. /*
  2065. * Notify all waiters for GPU completion events that reset state has
  2066. * been changed, and that they need to restart their wait after
  2067. * checking for potential errors (and bail out to drop locks if there is
  2068. * a gpu reset pending so that i915_error_work_func can acquire them).
  2069. */
  2070. /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
  2071. for_each_engine(engine, dev_priv)
  2072. wake_up_all(&engine->irq_queue);
  2073. /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
  2074. wake_up_all(&dev_priv->pending_flip_queue);
  2075. /*
  2076. * Signal tasks blocked in i915_gem_wait_for_error that the pending
  2077. * reset state is cleared.
  2078. */
  2079. if (reset_completed)
  2080. wake_up_all(&dev_priv->gpu_error.reset_queue);
  2081. }
  2082. /**
  2083. * i915_reset_and_wakeup - do process context error handling work
  2084. * @dev: drm device
  2085. *
  2086. * Fire an error uevent so userspace can see that a hang or error
  2087. * was detected.
  2088. */
  2089. static void i915_reset_and_wakeup(struct drm_device *dev)
  2090. {
  2091. struct drm_i915_private *dev_priv = to_i915(dev);
  2092. char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
  2093. char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
  2094. char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
  2095. int ret;
  2096. kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
  2097. /*
  2098. * Note that there's only one work item which does gpu resets, so we
  2099. * need not worry about concurrent gpu resets potentially incrementing
  2100. * error->reset_counter twice. We only need to take care of another
  2101. * racing irq/hangcheck declaring the gpu dead for a second time. A
  2102. * quick check for that is good enough: schedule_work ensures the
  2103. * correct ordering between hang detection and this work item, and since
  2104. * the reset in-progress bit is only ever set by code outside of this
  2105. * work we don't need to worry about any other races.
  2106. */
  2107. if (i915_reset_in_progress(&dev_priv->gpu_error)) {
  2108. DRM_DEBUG_DRIVER("resetting chip\n");
  2109. kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
  2110. reset_event);
  2111. /*
  2112. * In most cases it's guaranteed that we get here with an RPM
  2113. * reference held, for example because there is a pending GPU
  2114. * request that won't finish until the reset is done. This
  2115. * isn't the case at least when we get here by doing a
  2116. * simulated reset via debugs, so get an RPM reference.
  2117. */
  2118. intel_runtime_pm_get(dev_priv);
  2119. intel_prepare_reset(dev);
  2120. /*
  2121. * All state reset _must_ be completed before we update the
  2122. * reset counter, for otherwise waiters might miss the reset
  2123. * pending state and not properly drop locks, resulting in
  2124. * deadlocks with the reset work.
  2125. */
  2126. ret = i915_reset(dev);
  2127. intel_finish_reset(dev);
  2128. intel_runtime_pm_put(dev_priv);
  2129. if (ret == 0)
  2130. kobject_uevent_env(&dev->primary->kdev->kobj,
  2131. KOBJ_CHANGE, reset_done_event);
  2132. /*
  2133. * Note: The wake_up also serves as a memory barrier so that
  2134. * waiters see the update value of the reset counter atomic_t.
  2135. */
  2136. i915_error_wake_up(dev_priv, true);
  2137. }
  2138. }
  2139. static void i915_report_and_clear_eir(struct drm_device *dev)
  2140. {
  2141. struct drm_i915_private *dev_priv = dev->dev_private;
  2142. uint32_t instdone[I915_NUM_INSTDONE_REG];
  2143. u32 eir = I915_READ(EIR);
  2144. int pipe, i;
  2145. if (!eir)
  2146. return;
  2147. pr_err("render error detected, EIR: 0x%08x\n", eir);
  2148. i915_get_extra_instdone(dev, instdone);
  2149. if (IS_G4X(dev)) {
  2150. if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
  2151. u32 ipeir = I915_READ(IPEIR_I965);
  2152. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  2153. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  2154. for (i = 0; i < ARRAY_SIZE(instdone); i++)
  2155. pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  2156. pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
  2157. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  2158. I915_WRITE(IPEIR_I965, ipeir);
  2159. POSTING_READ(IPEIR_I965);
  2160. }
  2161. if (eir & GM45_ERROR_PAGE_TABLE) {
  2162. u32 pgtbl_err = I915_READ(PGTBL_ER);
  2163. pr_err("page table error\n");
  2164. pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
  2165. I915_WRITE(PGTBL_ER, pgtbl_err);
  2166. POSTING_READ(PGTBL_ER);
  2167. }
  2168. }
  2169. if (!IS_GEN2(dev)) {
  2170. if (eir & I915_ERROR_PAGE_TABLE) {
  2171. u32 pgtbl_err = I915_READ(PGTBL_ER);
  2172. pr_err("page table error\n");
  2173. pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
  2174. I915_WRITE(PGTBL_ER, pgtbl_err);
  2175. POSTING_READ(PGTBL_ER);
  2176. }
  2177. }
  2178. if (eir & I915_ERROR_MEMORY_REFRESH) {
  2179. pr_err("memory refresh error:\n");
  2180. for_each_pipe(dev_priv, pipe)
  2181. pr_err("pipe %c stat: 0x%08x\n",
  2182. pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
  2183. /* pipestat has already been acked */
  2184. }
  2185. if (eir & I915_ERROR_INSTRUCTION) {
  2186. pr_err("instruction error\n");
  2187. pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
  2188. for (i = 0; i < ARRAY_SIZE(instdone); i++)
  2189. pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  2190. if (INTEL_INFO(dev)->gen < 4) {
  2191. u32 ipeir = I915_READ(IPEIR);
  2192. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
  2193. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
  2194. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
  2195. I915_WRITE(IPEIR, ipeir);
  2196. POSTING_READ(IPEIR);
  2197. } else {
  2198. u32 ipeir = I915_READ(IPEIR_I965);
  2199. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  2200. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  2201. pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
  2202. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  2203. I915_WRITE(IPEIR_I965, ipeir);
  2204. POSTING_READ(IPEIR_I965);
  2205. }
  2206. }
  2207. I915_WRITE(EIR, eir);
  2208. POSTING_READ(EIR);
  2209. eir = I915_READ(EIR);
  2210. if (eir) {
  2211. /*
  2212. * some errors might have become stuck,
  2213. * mask them.
  2214. */
  2215. DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
  2216. I915_WRITE(EMR, I915_READ(EMR) | eir);
  2217. I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  2218. }
  2219. }
  2220. /**
  2221. * i915_handle_error - handle a gpu error
  2222. * @dev: drm device
  2223. * @engine_mask: mask representing engines that are hung
  2224. * Do some basic checking of register state at error time and
  2225. * dump it to the syslog. Also call i915_capture_error_state() to make
  2226. * sure we get a record and make it available in debugfs. Fire a uevent
  2227. * so userspace knows something bad happened (should trigger collection
  2228. * of a ring dump etc.).
  2229. */
  2230. void i915_handle_error(struct drm_device *dev, u32 engine_mask,
  2231. const char *fmt, ...)
  2232. {
  2233. struct drm_i915_private *dev_priv = dev->dev_private;
  2234. va_list args;
  2235. char error_msg[80];
  2236. va_start(args, fmt);
  2237. vscnprintf(error_msg, sizeof(error_msg), fmt, args);
  2238. va_end(args);
  2239. i915_capture_error_state(dev, engine_mask, error_msg);
  2240. i915_report_and_clear_eir(dev);
  2241. if (engine_mask) {
  2242. atomic_or(I915_RESET_IN_PROGRESS_FLAG,
  2243. &dev_priv->gpu_error.reset_counter);
  2244. /*
  2245. * Wakeup waiting processes so that the reset function
  2246. * i915_reset_and_wakeup doesn't deadlock trying to grab
  2247. * various locks. By bumping the reset counter first, the woken
  2248. * processes will see a reset in progress and back off,
  2249. * releasing their locks and then wait for the reset completion.
  2250. * We must do this for _all_ gpu waiters that might hold locks
  2251. * that the reset work needs to acquire.
  2252. *
  2253. * Note: The wake_up serves as the required memory barrier to
  2254. * ensure that the waiters see the updated value of the reset
  2255. * counter atomic_t.
  2256. */
  2257. i915_error_wake_up(dev_priv, false);
  2258. }
  2259. i915_reset_and_wakeup(dev);
  2260. }
  2261. /* Called from drm generic code, passed 'crtc' which
  2262. * we use as a pipe index
  2263. */
  2264. static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2265. {
  2266. struct drm_i915_private *dev_priv = dev->dev_private;
  2267. unsigned long irqflags;
  2268. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2269. if (INTEL_INFO(dev)->gen >= 4)
  2270. i915_enable_pipestat(dev_priv, pipe,
  2271. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2272. else
  2273. i915_enable_pipestat(dev_priv, pipe,
  2274. PIPE_VBLANK_INTERRUPT_STATUS);
  2275. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2276. return 0;
  2277. }
  2278. static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2279. {
  2280. struct drm_i915_private *dev_priv = dev->dev_private;
  2281. unsigned long irqflags;
  2282. uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2283. DE_PIPE_VBLANK(pipe);
  2284. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2285. ilk_enable_display_irq(dev_priv, bit);
  2286. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2287. return 0;
  2288. }
  2289. static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2290. {
  2291. struct drm_i915_private *dev_priv = dev->dev_private;
  2292. unsigned long irqflags;
  2293. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2294. i915_enable_pipestat(dev_priv, pipe,
  2295. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2296. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2297. return 0;
  2298. }
  2299. static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2300. {
  2301. struct drm_i915_private *dev_priv = dev->dev_private;
  2302. unsigned long irqflags;
  2303. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2304. bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
  2305. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2306. return 0;
  2307. }
  2308. /* Called from drm generic code, passed 'crtc' which
  2309. * we use as a pipe index
  2310. */
  2311. static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2312. {
  2313. struct drm_i915_private *dev_priv = dev->dev_private;
  2314. unsigned long irqflags;
  2315. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2316. i915_disable_pipestat(dev_priv, pipe,
  2317. PIPE_VBLANK_INTERRUPT_STATUS |
  2318. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2319. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2320. }
  2321. static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2322. {
  2323. struct drm_i915_private *dev_priv = dev->dev_private;
  2324. unsigned long irqflags;
  2325. uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2326. DE_PIPE_VBLANK(pipe);
  2327. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2328. ilk_disable_display_irq(dev_priv, bit);
  2329. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2330. }
  2331. static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2332. {
  2333. struct drm_i915_private *dev_priv = dev->dev_private;
  2334. unsigned long irqflags;
  2335. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2336. i915_disable_pipestat(dev_priv, pipe,
  2337. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2338. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2339. }
  2340. static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2341. {
  2342. struct drm_i915_private *dev_priv = dev->dev_private;
  2343. unsigned long irqflags;
  2344. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2345. bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
  2346. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2347. }
  2348. static bool
  2349. ring_idle(struct intel_engine_cs *engine, u32 seqno)
  2350. {
  2351. return i915_seqno_passed(seqno,
  2352. READ_ONCE(engine->last_submitted_seqno));
  2353. }
  2354. static bool
  2355. ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
  2356. {
  2357. if (INTEL_INFO(dev)->gen >= 8) {
  2358. return (ipehr >> 23) == 0x1c;
  2359. } else {
  2360. ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
  2361. return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
  2362. MI_SEMAPHORE_REGISTER);
  2363. }
  2364. }
  2365. static struct intel_engine_cs *
  2366. semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
  2367. u64 offset)
  2368. {
  2369. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  2370. struct intel_engine_cs *signaller;
  2371. if (INTEL_INFO(dev_priv)->gen >= 8) {
  2372. for_each_engine(signaller, dev_priv) {
  2373. if (engine == signaller)
  2374. continue;
  2375. if (offset == signaller->semaphore.signal_ggtt[engine->id])
  2376. return signaller;
  2377. }
  2378. } else {
  2379. u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
  2380. for_each_engine(signaller, dev_priv) {
  2381. if(engine == signaller)
  2382. continue;
  2383. if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
  2384. return signaller;
  2385. }
  2386. }
  2387. DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
  2388. engine->id, ipehr, offset);
  2389. return NULL;
  2390. }
  2391. static struct intel_engine_cs *
  2392. semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
  2393. {
  2394. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  2395. u32 cmd, ipehr, head;
  2396. u64 offset = 0;
  2397. int i, backwards;
  2398. /*
  2399. * This function does not support execlist mode - any attempt to
  2400. * proceed further into this function will result in a kernel panic
  2401. * when dereferencing ring->buffer, which is not set up in execlist
  2402. * mode.
  2403. *
  2404. * The correct way of doing it would be to derive the currently
  2405. * executing ring buffer from the current context, which is derived
  2406. * from the currently running request. Unfortunately, to get the
  2407. * current request we would have to grab the struct_mutex before doing
  2408. * anything else, which would be ill-advised since some other thread
  2409. * might have grabbed it already and managed to hang itself, causing
  2410. * the hang checker to deadlock.
  2411. *
  2412. * Therefore, this function does not support execlist mode in its
  2413. * current form. Just return NULL and move on.
  2414. */
  2415. if (engine->buffer == NULL)
  2416. return NULL;
  2417. ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
  2418. if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
  2419. return NULL;
  2420. /*
  2421. * HEAD is likely pointing to the dword after the actual command,
  2422. * so scan backwards until we find the MBOX. But limit it to just 3
  2423. * or 4 dwords depending on the semaphore wait command size.
  2424. * Note that we don't care about ACTHD here since that might
  2425. * point at at batch, and semaphores are always emitted into the
  2426. * ringbuffer itself.
  2427. */
  2428. head = I915_READ_HEAD(engine) & HEAD_ADDR;
  2429. backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
  2430. for (i = backwards; i; --i) {
  2431. /*
  2432. * Be paranoid and presume the hw has gone off into the wild -
  2433. * our ring is smaller than what the hardware (and hence
  2434. * HEAD_ADDR) allows. Also handles wrap-around.
  2435. */
  2436. head &= engine->buffer->size - 1;
  2437. /* This here seems to blow up */
  2438. cmd = ioread32(engine->buffer->virtual_start + head);
  2439. if (cmd == ipehr)
  2440. break;
  2441. head -= 4;
  2442. }
  2443. if (!i)
  2444. return NULL;
  2445. *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
  2446. if (INTEL_INFO(engine->dev)->gen >= 8) {
  2447. offset = ioread32(engine->buffer->virtual_start + head + 12);
  2448. offset <<= 32;
  2449. offset = ioread32(engine->buffer->virtual_start + head + 8);
  2450. }
  2451. return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
  2452. }
  2453. static int semaphore_passed(struct intel_engine_cs *engine)
  2454. {
  2455. struct drm_i915_private *dev_priv = engine->dev->dev_private;
  2456. struct intel_engine_cs *signaller;
  2457. u32 seqno;
  2458. engine->hangcheck.deadlock++;
  2459. signaller = semaphore_waits_for(engine, &seqno);
  2460. if (signaller == NULL)
  2461. return -1;
  2462. /* Prevent pathological recursion due to driver bugs */
  2463. if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
  2464. return -1;
  2465. if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
  2466. return 1;
  2467. /* cursory check for an unkickable deadlock */
  2468. if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
  2469. semaphore_passed(signaller) < 0)
  2470. return -1;
  2471. return 0;
  2472. }
  2473. static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
  2474. {
  2475. struct intel_engine_cs *engine;
  2476. for_each_engine(engine, dev_priv)
  2477. engine->hangcheck.deadlock = 0;
  2478. }
  2479. static bool subunits_stuck(struct intel_engine_cs *engine)
  2480. {
  2481. u32 instdone[I915_NUM_INSTDONE_REG];
  2482. bool stuck;
  2483. int i;
  2484. if (engine->id != RCS)
  2485. return true;
  2486. i915_get_extra_instdone(engine->dev, instdone);
  2487. /* There might be unstable subunit states even when
  2488. * actual head is not moving. Filter out the unstable ones by
  2489. * accumulating the undone -> done transitions and only
  2490. * consider those as progress.
  2491. */
  2492. stuck = true;
  2493. for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
  2494. const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
  2495. if (tmp != engine->hangcheck.instdone[i])
  2496. stuck = false;
  2497. engine->hangcheck.instdone[i] |= tmp;
  2498. }
  2499. return stuck;
  2500. }
  2501. static enum intel_ring_hangcheck_action
  2502. head_stuck(struct intel_engine_cs *engine, u64 acthd)
  2503. {
  2504. if (acthd != engine->hangcheck.acthd) {
  2505. /* Clear subunit states on head movement */
  2506. memset(engine->hangcheck.instdone, 0,
  2507. sizeof(engine->hangcheck.instdone));
  2508. return HANGCHECK_ACTIVE;
  2509. }
  2510. if (!subunits_stuck(engine))
  2511. return HANGCHECK_ACTIVE;
  2512. return HANGCHECK_HUNG;
  2513. }
  2514. static enum intel_ring_hangcheck_action
  2515. ring_stuck(struct intel_engine_cs *engine, u64 acthd)
  2516. {
  2517. struct drm_device *dev = engine->dev;
  2518. struct drm_i915_private *dev_priv = dev->dev_private;
  2519. enum intel_ring_hangcheck_action ha;
  2520. u32 tmp;
  2521. ha = head_stuck(engine, acthd);
  2522. if (ha != HANGCHECK_HUNG)
  2523. return ha;
  2524. if (IS_GEN2(dev))
  2525. return HANGCHECK_HUNG;
  2526. /* Is the chip hanging on a WAIT_FOR_EVENT?
  2527. * If so we can simply poke the RB_WAIT bit
  2528. * and break the hang. This should work on
  2529. * all but the second generation chipsets.
  2530. */
  2531. tmp = I915_READ_CTL(engine);
  2532. if (tmp & RING_WAIT) {
  2533. i915_handle_error(dev, 0,
  2534. "Kicking stuck wait on %s",
  2535. engine->name);
  2536. I915_WRITE_CTL(engine, tmp);
  2537. return HANGCHECK_KICK;
  2538. }
  2539. if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
  2540. switch (semaphore_passed(engine)) {
  2541. default:
  2542. return HANGCHECK_HUNG;
  2543. case 1:
  2544. i915_handle_error(dev, 0,
  2545. "Kicking stuck semaphore on %s",
  2546. engine->name);
  2547. I915_WRITE_CTL(engine, tmp);
  2548. return HANGCHECK_KICK;
  2549. case 0:
  2550. return HANGCHECK_WAIT;
  2551. }
  2552. }
  2553. return HANGCHECK_HUNG;
  2554. }
  2555. static unsigned kick_waiters(struct intel_engine_cs *engine)
  2556. {
  2557. struct drm_i915_private *i915 = to_i915(engine->dev);
  2558. unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
  2559. if (engine->hangcheck.user_interrupts == user_interrupts &&
  2560. !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
  2561. if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
  2562. DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
  2563. engine->name);
  2564. else
  2565. DRM_INFO("Fake missed irq on %s\n",
  2566. engine->name);
  2567. wake_up_all(&engine->irq_queue);
  2568. }
  2569. return user_interrupts;
  2570. }
  2571. /*
  2572. * This is called when the chip hasn't reported back with completed
  2573. * batchbuffers in a long time. We keep track per ring seqno progress and
  2574. * if there are no progress, hangcheck score for that ring is increased.
  2575. * Further, acthd is inspected to see if the ring is stuck. On stuck case
  2576. * we kick the ring. If we see no progress on three subsequent calls
  2577. * we assume chip is wedged and try to fix it by resetting the chip.
  2578. */
  2579. static void i915_hangcheck_elapsed(struct work_struct *work)
  2580. {
  2581. struct drm_i915_private *dev_priv =
  2582. container_of(work, typeof(*dev_priv),
  2583. gpu_error.hangcheck_work.work);
  2584. struct drm_device *dev = dev_priv->dev;
  2585. struct intel_engine_cs *engine;
  2586. enum intel_engine_id id;
  2587. int busy_count = 0, rings_hung = 0;
  2588. bool stuck[I915_NUM_ENGINES] = { 0 };
  2589. #define BUSY 1
  2590. #define KICK 5
  2591. #define HUNG 20
  2592. #define ACTIVE_DECAY 15
  2593. if (!i915.enable_hangcheck)
  2594. return;
  2595. /*
  2596. * The hangcheck work is synced during runtime suspend, we don't
  2597. * require a wakeref. TODO: instead of disabling the asserts make
  2598. * sure that we hold a reference when this work is running.
  2599. */
  2600. DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
  2601. /* As enabling the GPU requires fairly extensive mmio access,
  2602. * periodically arm the mmio checker to see if we are triggering
  2603. * any invalid access.
  2604. */
  2605. intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
  2606. for_each_engine_id(engine, dev_priv, id) {
  2607. u64 acthd;
  2608. u32 seqno;
  2609. unsigned user_interrupts;
  2610. bool busy = true;
  2611. semaphore_clear_deadlocks(dev_priv);
  2612. /* We don't strictly need an irq-barrier here, as we are not
  2613. * serving an interrupt request, be paranoid in case the
  2614. * barrier has side-effects (such as preventing a broken
  2615. * cacheline snoop) and so be sure that we can see the seqno
  2616. * advance. If the seqno should stick, due to a stale
  2617. * cacheline, we would erroneously declare the GPU hung.
  2618. */
  2619. if (engine->irq_seqno_barrier)
  2620. engine->irq_seqno_barrier(engine);
  2621. acthd = intel_ring_get_active_head(engine);
  2622. seqno = engine->get_seqno(engine);
  2623. /* Reset stuck interrupts between batch advances */
  2624. user_interrupts = 0;
  2625. if (engine->hangcheck.seqno == seqno) {
  2626. if (ring_idle(engine, seqno)) {
  2627. engine->hangcheck.action = HANGCHECK_IDLE;
  2628. if (waitqueue_active(&engine->irq_queue)) {
  2629. /* Safeguard against driver failure */
  2630. user_interrupts = kick_waiters(engine);
  2631. engine->hangcheck.score += BUSY;
  2632. } else
  2633. busy = false;
  2634. } else {
  2635. /* We always increment the hangcheck score
  2636. * if the ring is busy and still processing
  2637. * the same request, so that no single request
  2638. * can run indefinitely (such as a chain of
  2639. * batches). The only time we do not increment
  2640. * the hangcheck score on this ring, if this
  2641. * ring is in a legitimate wait for another
  2642. * ring. In that case the waiting ring is a
  2643. * victim and we want to be sure we catch the
  2644. * right culprit. Then every time we do kick
  2645. * the ring, add a small increment to the
  2646. * score so that we can catch a batch that is
  2647. * being repeatedly kicked and so responsible
  2648. * for stalling the machine.
  2649. */
  2650. engine->hangcheck.action = ring_stuck(engine,
  2651. acthd);
  2652. switch (engine->hangcheck.action) {
  2653. case HANGCHECK_IDLE:
  2654. case HANGCHECK_WAIT:
  2655. break;
  2656. case HANGCHECK_ACTIVE:
  2657. engine->hangcheck.score += BUSY;
  2658. break;
  2659. case HANGCHECK_KICK:
  2660. engine->hangcheck.score += KICK;
  2661. break;
  2662. case HANGCHECK_HUNG:
  2663. engine->hangcheck.score += HUNG;
  2664. stuck[id] = true;
  2665. break;
  2666. }
  2667. }
  2668. } else {
  2669. engine->hangcheck.action = HANGCHECK_ACTIVE;
  2670. /* Gradually reduce the count so that we catch DoS
  2671. * attempts across multiple batches.
  2672. */
  2673. if (engine->hangcheck.score > 0)
  2674. engine->hangcheck.score -= ACTIVE_DECAY;
  2675. if (engine->hangcheck.score < 0)
  2676. engine->hangcheck.score = 0;
  2677. /* Clear head and subunit states on seqno movement */
  2678. acthd = 0;
  2679. memset(engine->hangcheck.instdone, 0,
  2680. sizeof(engine->hangcheck.instdone));
  2681. }
  2682. engine->hangcheck.seqno = seqno;
  2683. engine->hangcheck.acthd = acthd;
  2684. engine->hangcheck.user_interrupts = user_interrupts;
  2685. busy_count += busy;
  2686. }
  2687. for_each_engine_id(engine, dev_priv, id) {
  2688. if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
  2689. DRM_INFO("%s on %s\n",
  2690. stuck[id] ? "stuck" : "no progress",
  2691. engine->name);
  2692. rings_hung |= intel_engine_flag(engine);
  2693. }
  2694. }
  2695. if (rings_hung) {
  2696. i915_handle_error(dev, rings_hung, "Engine(s) hung");
  2697. goto out;
  2698. }
  2699. if (busy_count)
  2700. /* Reset timer case chip hangs without another request
  2701. * being added */
  2702. i915_queue_hangcheck(dev);
  2703. out:
  2704. ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
  2705. }
  2706. void i915_queue_hangcheck(struct drm_device *dev)
  2707. {
  2708. struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
  2709. if (!i915.enable_hangcheck)
  2710. return;
  2711. /* Don't continually defer the hangcheck so that it is always run at
  2712. * least once after work has been scheduled on any ring. Otherwise,
  2713. * we will ignore a hung ring if a second ring is kept busy.
  2714. */
  2715. queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
  2716. round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
  2717. }
  2718. static void ibx_irq_reset(struct drm_device *dev)
  2719. {
  2720. struct drm_i915_private *dev_priv = dev->dev_private;
  2721. if (HAS_PCH_NOP(dev))
  2722. return;
  2723. GEN5_IRQ_RESET(SDE);
  2724. if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
  2725. I915_WRITE(SERR_INT, 0xffffffff);
  2726. }
  2727. /*
  2728. * SDEIER is also touched by the interrupt handler to work around missed PCH
  2729. * interrupts. Hence we can't update it after the interrupt handler is enabled -
  2730. * instead we unconditionally enable all PCH interrupt sources here, but then
  2731. * only unmask them as needed with SDEIMR.
  2732. *
  2733. * This function needs to be called before interrupts are enabled.
  2734. */
  2735. static void ibx_irq_pre_postinstall(struct drm_device *dev)
  2736. {
  2737. struct drm_i915_private *dev_priv = dev->dev_private;
  2738. if (HAS_PCH_NOP(dev))
  2739. return;
  2740. WARN_ON(I915_READ(SDEIER) != 0);
  2741. I915_WRITE(SDEIER, 0xffffffff);
  2742. POSTING_READ(SDEIER);
  2743. }
  2744. static void gen5_gt_irq_reset(struct drm_device *dev)
  2745. {
  2746. struct drm_i915_private *dev_priv = dev->dev_private;
  2747. GEN5_IRQ_RESET(GT);
  2748. if (INTEL_INFO(dev)->gen >= 6)
  2749. GEN5_IRQ_RESET(GEN6_PM);
  2750. }
  2751. static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
  2752. {
  2753. enum pipe pipe;
  2754. if (IS_CHERRYVIEW(dev_priv))
  2755. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
  2756. else
  2757. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  2758. i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
  2759. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  2760. for_each_pipe(dev_priv, pipe) {
  2761. I915_WRITE(PIPESTAT(pipe),
  2762. PIPE_FIFO_UNDERRUN_STATUS |
  2763. PIPESTAT_INT_STATUS_MASK);
  2764. dev_priv->pipestat_irq_mask[pipe] = 0;
  2765. }
  2766. GEN5_IRQ_RESET(VLV_);
  2767. dev_priv->irq_mask = ~0;
  2768. }
  2769. static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
  2770. {
  2771. u32 pipestat_mask;
  2772. u32 enable_mask;
  2773. enum pipe pipe;
  2774. pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
  2775. PIPE_CRC_DONE_INTERRUPT_STATUS;
  2776. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  2777. for_each_pipe(dev_priv, pipe)
  2778. i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
  2779. enable_mask = I915_DISPLAY_PORT_INTERRUPT |
  2780. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2781. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  2782. if (IS_CHERRYVIEW(dev_priv))
  2783. enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  2784. WARN_ON(dev_priv->irq_mask != ~0);
  2785. dev_priv->irq_mask = ~enable_mask;
  2786. GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
  2787. }
  2788. /* drm_dma.h hooks
  2789. */
  2790. static void ironlake_irq_reset(struct drm_device *dev)
  2791. {
  2792. struct drm_i915_private *dev_priv = dev->dev_private;
  2793. I915_WRITE(HWSTAM, 0xffffffff);
  2794. GEN5_IRQ_RESET(DE);
  2795. if (IS_GEN7(dev))
  2796. I915_WRITE(GEN7_ERR_INT, 0xffffffff);
  2797. gen5_gt_irq_reset(dev);
  2798. ibx_irq_reset(dev);
  2799. }
  2800. static void valleyview_irq_preinstall(struct drm_device *dev)
  2801. {
  2802. struct drm_i915_private *dev_priv = dev->dev_private;
  2803. I915_WRITE(VLV_MASTER_IER, 0);
  2804. POSTING_READ(VLV_MASTER_IER);
  2805. gen5_gt_irq_reset(dev);
  2806. spin_lock_irq(&dev_priv->irq_lock);
  2807. if (dev_priv->display_irqs_enabled)
  2808. vlv_display_irq_reset(dev_priv);
  2809. spin_unlock_irq(&dev_priv->irq_lock);
  2810. }
  2811. static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
  2812. {
  2813. GEN8_IRQ_RESET_NDX(GT, 0);
  2814. GEN8_IRQ_RESET_NDX(GT, 1);
  2815. GEN8_IRQ_RESET_NDX(GT, 2);
  2816. GEN8_IRQ_RESET_NDX(GT, 3);
  2817. }
  2818. static void gen8_irq_reset(struct drm_device *dev)
  2819. {
  2820. struct drm_i915_private *dev_priv = dev->dev_private;
  2821. int pipe;
  2822. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2823. POSTING_READ(GEN8_MASTER_IRQ);
  2824. gen8_gt_irq_reset(dev_priv);
  2825. for_each_pipe(dev_priv, pipe)
  2826. if (intel_display_power_is_enabled(dev_priv,
  2827. POWER_DOMAIN_PIPE(pipe)))
  2828. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2829. GEN5_IRQ_RESET(GEN8_DE_PORT_);
  2830. GEN5_IRQ_RESET(GEN8_DE_MISC_);
  2831. GEN5_IRQ_RESET(GEN8_PCU_);
  2832. if (HAS_PCH_SPLIT(dev))
  2833. ibx_irq_reset(dev);
  2834. }
  2835. void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
  2836. unsigned int pipe_mask)
  2837. {
  2838. uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
  2839. enum pipe pipe;
  2840. spin_lock_irq(&dev_priv->irq_lock);
  2841. for_each_pipe_masked(dev_priv, pipe, pipe_mask)
  2842. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  2843. dev_priv->de_irq_mask[pipe],
  2844. ~dev_priv->de_irq_mask[pipe] | extra_ier);
  2845. spin_unlock_irq(&dev_priv->irq_lock);
  2846. }
  2847. void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
  2848. unsigned int pipe_mask)
  2849. {
  2850. enum pipe pipe;
  2851. spin_lock_irq(&dev_priv->irq_lock);
  2852. for_each_pipe_masked(dev_priv, pipe, pipe_mask)
  2853. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2854. spin_unlock_irq(&dev_priv->irq_lock);
  2855. /* make sure we're done processing display irqs */
  2856. synchronize_irq(dev_priv->dev->irq);
  2857. }
  2858. static void cherryview_irq_preinstall(struct drm_device *dev)
  2859. {
  2860. struct drm_i915_private *dev_priv = dev->dev_private;
  2861. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2862. POSTING_READ(GEN8_MASTER_IRQ);
  2863. gen8_gt_irq_reset(dev_priv);
  2864. GEN5_IRQ_RESET(GEN8_PCU_);
  2865. spin_lock_irq(&dev_priv->irq_lock);
  2866. if (dev_priv->display_irqs_enabled)
  2867. vlv_display_irq_reset(dev_priv);
  2868. spin_unlock_irq(&dev_priv->irq_lock);
  2869. }
  2870. static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
  2871. const u32 hpd[HPD_NUM_PINS])
  2872. {
  2873. struct drm_i915_private *dev_priv = to_i915(dev);
  2874. struct intel_encoder *encoder;
  2875. u32 enabled_irqs = 0;
  2876. for_each_intel_encoder(dev, encoder)
  2877. if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
  2878. enabled_irqs |= hpd[encoder->hpd_pin];
  2879. return enabled_irqs;
  2880. }
  2881. static void ibx_hpd_irq_setup(struct drm_device *dev)
  2882. {
  2883. struct drm_i915_private *dev_priv = dev->dev_private;
  2884. u32 hotplug_irqs, hotplug, enabled_irqs;
  2885. if (HAS_PCH_IBX(dev)) {
  2886. hotplug_irqs = SDE_HOTPLUG_MASK;
  2887. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
  2888. } else {
  2889. hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
  2890. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
  2891. }
  2892. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2893. /*
  2894. * Enable digital hotplug on the PCH, and configure the DP short pulse
  2895. * duration to 2ms (which is the minimum in the Display Port spec).
  2896. * The pulse duration bits are reserved on LPT+.
  2897. */
  2898. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2899. hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
  2900. hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
  2901. hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
  2902. hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
  2903. /*
  2904. * When CPU and PCH are on the same package, port A
  2905. * HPD must be enabled in both north and south.
  2906. */
  2907. if (HAS_PCH_LPT_LP(dev))
  2908. hotplug |= PORTA_HOTPLUG_ENABLE;
  2909. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2910. }
  2911. static void spt_hpd_irq_setup(struct drm_device *dev)
  2912. {
  2913. struct drm_i915_private *dev_priv = dev->dev_private;
  2914. u32 hotplug_irqs, hotplug, enabled_irqs;
  2915. hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
  2916. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
  2917. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2918. /* Enable digital hotplug on the PCH */
  2919. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2920. hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
  2921. PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
  2922. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2923. hotplug = I915_READ(PCH_PORT_HOTPLUG2);
  2924. hotplug |= PORTE_HOTPLUG_ENABLE;
  2925. I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
  2926. }
  2927. static void ilk_hpd_irq_setup(struct drm_device *dev)
  2928. {
  2929. struct drm_i915_private *dev_priv = dev->dev_private;
  2930. u32 hotplug_irqs, hotplug, enabled_irqs;
  2931. if (INTEL_INFO(dev)->gen >= 8) {
  2932. hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
  2933. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
  2934. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2935. } else if (INTEL_INFO(dev)->gen >= 7) {
  2936. hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
  2937. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
  2938. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2939. } else {
  2940. hotplug_irqs = DE_DP_A_HOTPLUG;
  2941. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
  2942. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2943. }
  2944. /*
  2945. * Enable digital hotplug on the CPU, and configure the DP short pulse
  2946. * duration to 2ms (which is the minimum in the Display Port spec)
  2947. * The pulse duration bits are reserved on HSW+.
  2948. */
  2949. hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  2950. hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
  2951. hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
  2952. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
  2953. ibx_hpd_irq_setup(dev);
  2954. }
  2955. static void bxt_hpd_irq_setup(struct drm_device *dev)
  2956. {
  2957. struct drm_i915_private *dev_priv = dev->dev_private;
  2958. u32 hotplug_irqs, hotplug, enabled_irqs;
  2959. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
  2960. hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
  2961. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2962. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2963. hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
  2964. PORTA_HOTPLUG_ENABLE;
  2965. DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
  2966. hotplug, enabled_irqs);
  2967. hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
  2968. /*
  2969. * For BXT invert bit has to be set based on AOB design
  2970. * for HPD detection logic, update it based on VBT fields.
  2971. */
  2972. if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
  2973. intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
  2974. hotplug |= BXT_DDIA_HPD_INVERT;
  2975. if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
  2976. intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
  2977. hotplug |= BXT_DDIB_HPD_INVERT;
  2978. if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
  2979. intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
  2980. hotplug |= BXT_DDIC_HPD_INVERT;
  2981. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2982. }
  2983. static void ibx_irq_postinstall(struct drm_device *dev)
  2984. {
  2985. struct drm_i915_private *dev_priv = dev->dev_private;
  2986. u32 mask;
  2987. if (HAS_PCH_NOP(dev))
  2988. return;
  2989. if (HAS_PCH_IBX(dev))
  2990. mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
  2991. else
  2992. mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
  2993. gen5_assert_iir_is_zero(dev_priv, SDEIIR);
  2994. I915_WRITE(SDEIMR, ~mask);
  2995. }
  2996. static void gen5_gt_irq_postinstall(struct drm_device *dev)
  2997. {
  2998. struct drm_i915_private *dev_priv = dev->dev_private;
  2999. u32 pm_irqs, gt_irqs;
  3000. pm_irqs = gt_irqs = 0;
  3001. dev_priv->gt_irq_mask = ~0;
  3002. if (HAS_L3_DPF(dev)) {
  3003. /* L3 parity interrupt is always unmasked. */
  3004. dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
  3005. gt_irqs |= GT_PARITY_ERROR(dev);
  3006. }
  3007. gt_irqs |= GT_RENDER_USER_INTERRUPT;
  3008. if (IS_GEN5(dev)) {
  3009. gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
  3010. ILK_BSD_USER_INTERRUPT;
  3011. } else {
  3012. gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
  3013. }
  3014. GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
  3015. if (INTEL_INFO(dev)->gen >= 6) {
  3016. /*
  3017. * RPS interrupts will get enabled/disabled on demand when RPS
  3018. * itself is enabled/disabled.
  3019. */
  3020. if (HAS_VEBOX(dev))
  3021. pm_irqs |= PM_VEBOX_USER_INTERRUPT;
  3022. dev_priv->pm_irq_mask = 0xffffffff;
  3023. GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
  3024. }
  3025. }
  3026. static int ironlake_irq_postinstall(struct drm_device *dev)
  3027. {
  3028. struct drm_i915_private *dev_priv = dev->dev_private;
  3029. u32 display_mask, extra_mask;
  3030. if (INTEL_INFO(dev)->gen >= 7) {
  3031. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
  3032. DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
  3033. DE_PLANEB_FLIP_DONE_IVB |
  3034. DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
  3035. extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
  3036. DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
  3037. DE_DP_A_HOTPLUG_IVB);
  3038. } else {
  3039. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
  3040. DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
  3041. DE_AUX_CHANNEL_A |
  3042. DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
  3043. DE_POISON);
  3044. extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
  3045. DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
  3046. DE_DP_A_HOTPLUG);
  3047. }
  3048. dev_priv->irq_mask = ~display_mask;
  3049. I915_WRITE(HWSTAM, 0xeffe);
  3050. ibx_irq_pre_postinstall(dev);
  3051. GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
  3052. gen5_gt_irq_postinstall(dev);
  3053. ibx_irq_postinstall(dev);
  3054. if (IS_IRONLAKE_M(dev)) {
  3055. /* Enable PCU event interrupts
  3056. *
  3057. * spinlocking not required here for correctness since interrupt
  3058. * setup is guaranteed to run in single-threaded context. But we
  3059. * need it to make the assert_spin_locked happy. */
  3060. spin_lock_irq(&dev_priv->irq_lock);
  3061. ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
  3062. spin_unlock_irq(&dev_priv->irq_lock);
  3063. }
  3064. return 0;
  3065. }
  3066. void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
  3067. {
  3068. assert_spin_locked(&dev_priv->irq_lock);
  3069. if (dev_priv->display_irqs_enabled)
  3070. return;
  3071. dev_priv->display_irqs_enabled = true;
  3072. if (intel_irqs_enabled(dev_priv)) {
  3073. vlv_display_irq_reset(dev_priv);
  3074. vlv_display_irq_postinstall(dev_priv);
  3075. }
  3076. }
  3077. void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
  3078. {
  3079. assert_spin_locked(&dev_priv->irq_lock);
  3080. if (!dev_priv->display_irqs_enabled)
  3081. return;
  3082. dev_priv->display_irqs_enabled = false;
  3083. if (intel_irqs_enabled(dev_priv))
  3084. vlv_display_irq_reset(dev_priv);
  3085. }
  3086. static int valleyview_irq_postinstall(struct drm_device *dev)
  3087. {
  3088. struct drm_i915_private *dev_priv = dev->dev_private;
  3089. gen5_gt_irq_postinstall(dev);
  3090. spin_lock_irq(&dev_priv->irq_lock);
  3091. if (dev_priv->display_irqs_enabled)
  3092. vlv_display_irq_postinstall(dev_priv);
  3093. spin_unlock_irq(&dev_priv->irq_lock);
  3094. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  3095. POSTING_READ(VLV_MASTER_IER);
  3096. return 0;
  3097. }
  3098. static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
  3099. {
  3100. /* These are interrupts we'll toggle with the ring mask register */
  3101. uint32_t gt_interrupts[] = {
  3102. GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  3103. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  3104. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
  3105. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
  3106. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  3107. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  3108. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
  3109. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
  3110. 0,
  3111. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
  3112. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
  3113. };
  3114. if (HAS_L3_DPF(dev_priv))
  3115. gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  3116. dev_priv->pm_irq_mask = 0xffffffff;
  3117. GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
  3118. GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
  3119. /*
  3120. * RPS interrupts will get enabled/disabled on demand when RPS itself
  3121. * is enabled/disabled.
  3122. */
  3123. GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
  3124. GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
  3125. }
  3126. static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
  3127. {
  3128. uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
  3129. uint32_t de_pipe_enables;
  3130. u32 de_port_masked = GEN8_AUX_CHANNEL_A;
  3131. u32 de_port_enables;
  3132. enum pipe pipe;
  3133. if (INTEL_INFO(dev_priv)->gen >= 9) {
  3134. de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
  3135. GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  3136. de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  3137. GEN9_AUX_CHANNEL_D;
  3138. if (IS_BROXTON(dev_priv))
  3139. de_port_masked |= BXT_DE_PORT_GMBUS;
  3140. } else {
  3141. de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
  3142. GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  3143. }
  3144. de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
  3145. GEN8_PIPE_FIFO_UNDERRUN;
  3146. de_port_enables = de_port_masked;
  3147. if (IS_BROXTON(dev_priv))
  3148. de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
  3149. else if (IS_BROADWELL(dev_priv))
  3150. de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
  3151. dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
  3152. dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
  3153. dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
  3154. for_each_pipe(dev_priv, pipe)
  3155. if (intel_display_power_is_enabled(dev_priv,
  3156. POWER_DOMAIN_PIPE(pipe)))
  3157. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  3158. dev_priv->de_irq_mask[pipe],
  3159. de_pipe_enables);
  3160. GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
  3161. }
  3162. static int gen8_irq_postinstall(struct drm_device *dev)
  3163. {
  3164. struct drm_i915_private *dev_priv = dev->dev_private;
  3165. if (HAS_PCH_SPLIT(dev))
  3166. ibx_irq_pre_postinstall(dev);
  3167. gen8_gt_irq_postinstall(dev_priv);
  3168. gen8_de_irq_postinstall(dev_priv);
  3169. if (HAS_PCH_SPLIT(dev))
  3170. ibx_irq_postinstall(dev);
  3171. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  3172. POSTING_READ(GEN8_MASTER_IRQ);
  3173. return 0;
  3174. }
  3175. static int cherryview_irq_postinstall(struct drm_device *dev)
  3176. {
  3177. struct drm_i915_private *dev_priv = dev->dev_private;
  3178. gen8_gt_irq_postinstall(dev_priv);
  3179. spin_lock_irq(&dev_priv->irq_lock);
  3180. if (dev_priv->display_irqs_enabled)
  3181. vlv_display_irq_postinstall(dev_priv);
  3182. spin_unlock_irq(&dev_priv->irq_lock);
  3183. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  3184. POSTING_READ(GEN8_MASTER_IRQ);
  3185. return 0;
  3186. }
  3187. static void gen8_irq_uninstall(struct drm_device *dev)
  3188. {
  3189. struct drm_i915_private *dev_priv = dev->dev_private;
  3190. if (!dev_priv)
  3191. return;
  3192. gen8_irq_reset(dev);
  3193. }
  3194. static void valleyview_irq_uninstall(struct drm_device *dev)
  3195. {
  3196. struct drm_i915_private *dev_priv = dev->dev_private;
  3197. if (!dev_priv)
  3198. return;
  3199. I915_WRITE(VLV_MASTER_IER, 0);
  3200. POSTING_READ(VLV_MASTER_IER);
  3201. gen5_gt_irq_reset(dev);
  3202. I915_WRITE(HWSTAM, 0xffffffff);
  3203. spin_lock_irq(&dev_priv->irq_lock);
  3204. if (dev_priv->display_irqs_enabled)
  3205. vlv_display_irq_reset(dev_priv);
  3206. spin_unlock_irq(&dev_priv->irq_lock);
  3207. }
  3208. static void cherryview_irq_uninstall(struct drm_device *dev)
  3209. {
  3210. struct drm_i915_private *dev_priv = dev->dev_private;
  3211. if (!dev_priv)
  3212. return;
  3213. I915_WRITE(GEN8_MASTER_IRQ, 0);
  3214. POSTING_READ(GEN8_MASTER_IRQ);
  3215. gen8_gt_irq_reset(dev_priv);
  3216. GEN5_IRQ_RESET(GEN8_PCU_);
  3217. spin_lock_irq(&dev_priv->irq_lock);
  3218. if (dev_priv->display_irqs_enabled)
  3219. vlv_display_irq_reset(dev_priv);
  3220. spin_unlock_irq(&dev_priv->irq_lock);
  3221. }
  3222. static void ironlake_irq_uninstall(struct drm_device *dev)
  3223. {
  3224. struct drm_i915_private *dev_priv = dev->dev_private;
  3225. if (!dev_priv)
  3226. return;
  3227. ironlake_irq_reset(dev);
  3228. }
  3229. static void i8xx_irq_preinstall(struct drm_device * dev)
  3230. {
  3231. struct drm_i915_private *dev_priv = dev->dev_private;
  3232. int pipe;
  3233. for_each_pipe(dev_priv, pipe)
  3234. I915_WRITE(PIPESTAT(pipe), 0);
  3235. I915_WRITE16(IMR, 0xffff);
  3236. I915_WRITE16(IER, 0x0);
  3237. POSTING_READ16(IER);
  3238. }
  3239. static int i8xx_irq_postinstall(struct drm_device *dev)
  3240. {
  3241. struct drm_i915_private *dev_priv = dev->dev_private;
  3242. I915_WRITE16(EMR,
  3243. ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  3244. /* Unmask the interrupts that we always want on. */
  3245. dev_priv->irq_mask =
  3246. ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3247. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3248. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3249. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3250. I915_WRITE16(IMR, dev_priv->irq_mask);
  3251. I915_WRITE16(IER,
  3252. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3253. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3254. I915_USER_INTERRUPT);
  3255. POSTING_READ16(IER);
  3256. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3257. * just to make the assert_spin_locked check happy. */
  3258. spin_lock_irq(&dev_priv->irq_lock);
  3259. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3260. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3261. spin_unlock_irq(&dev_priv->irq_lock);
  3262. return 0;
  3263. }
  3264. /*
  3265. * Returns true when a page flip has completed.
  3266. */
  3267. static bool i8xx_handle_vblank(struct drm_device *dev,
  3268. int plane, int pipe, u32 iir)
  3269. {
  3270. struct drm_i915_private *dev_priv = dev->dev_private;
  3271. u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  3272. if (!intel_pipe_handle_vblank(dev, pipe))
  3273. return false;
  3274. if ((iir & flip_pending) == 0)
  3275. goto check_page_flip;
  3276. /* We detect FlipDone by looking for the change in PendingFlip from '1'
  3277. * to '0' on the following vblank, i.e. IIR has the Pendingflip
  3278. * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  3279. * the flip is completed (no longer pending). Since this doesn't raise
  3280. * an interrupt per se, we watch for the change at vblank.
  3281. */
  3282. if (I915_READ16(ISR) & flip_pending)
  3283. goto check_page_flip;
  3284. intel_prepare_page_flip(dev, plane);
  3285. intel_finish_page_flip(dev, pipe);
  3286. return true;
  3287. check_page_flip:
  3288. intel_check_page_flip(dev, pipe);
  3289. return false;
  3290. }
  3291. static irqreturn_t i8xx_irq_handler(int irq, void *arg)
  3292. {
  3293. struct drm_device *dev = arg;
  3294. struct drm_i915_private *dev_priv = dev->dev_private;
  3295. u16 iir, new_iir;
  3296. u32 pipe_stats[2];
  3297. int pipe;
  3298. u16 flip_mask =
  3299. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3300. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3301. irqreturn_t ret;
  3302. if (!intel_irqs_enabled(dev_priv))
  3303. return IRQ_NONE;
  3304. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3305. disable_rpm_wakeref_asserts(dev_priv);
  3306. ret = IRQ_NONE;
  3307. iir = I915_READ16(IIR);
  3308. if (iir == 0)
  3309. goto out;
  3310. while (iir & ~flip_mask) {
  3311. /* Can't rely on pipestat interrupt bit in iir as it might
  3312. * have been cleared after the pipestat interrupt was received.
  3313. * It doesn't set the bit in iir again, but it still produces
  3314. * interrupts (for non-MSI).
  3315. */
  3316. spin_lock(&dev_priv->irq_lock);
  3317. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3318. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3319. for_each_pipe(dev_priv, pipe) {
  3320. i915_reg_t reg = PIPESTAT(pipe);
  3321. pipe_stats[pipe] = I915_READ(reg);
  3322. /*
  3323. * Clear the PIPE*STAT regs before the IIR
  3324. */
  3325. if (pipe_stats[pipe] & 0x8000ffff)
  3326. I915_WRITE(reg, pipe_stats[pipe]);
  3327. }
  3328. spin_unlock(&dev_priv->irq_lock);
  3329. I915_WRITE16(IIR, iir & ~flip_mask);
  3330. new_iir = I915_READ16(IIR); /* Flush posted writes */
  3331. if (iir & I915_USER_INTERRUPT)
  3332. notify_ring(&dev_priv->engine[RCS]);
  3333. for_each_pipe(dev_priv, pipe) {
  3334. int plane = pipe;
  3335. if (HAS_FBC(dev))
  3336. plane = !plane;
  3337. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  3338. i8xx_handle_vblank(dev, plane, pipe, iir))
  3339. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  3340. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3341. i9xx_pipe_crc_irq_handler(dev, pipe);
  3342. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3343. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  3344. pipe);
  3345. }
  3346. iir = new_iir;
  3347. }
  3348. ret = IRQ_HANDLED;
  3349. out:
  3350. enable_rpm_wakeref_asserts(dev_priv);
  3351. return ret;
  3352. }
  3353. static void i8xx_irq_uninstall(struct drm_device * dev)
  3354. {
  3355. struct drm_i915_private *dev_priv = dev->dev_private;
  3356. int pipe;
  3357. for_each_pipe(dev_priv, pipe) {
  3358. /* Clear enable bits; then clear status bits */
  3359. I915_WRITE(PIPESTAT(pipe), 0);
  3360. I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  3361. }
  3362. I915_WRITE16(IMR, 0xffff);
  3363. I915_WRITE16(IER, 0x0);
  3364. I915_WRITE16(IIR, I915_READ16(IIR));
  3365. }
  3366. static void i915_irq_preinstall(struct drm_device * dev)
  3367. {
  3368. struct drm_i915_private *dev_priv = dev->dev_private;
  3369. int pipe;
  3370. if (I915_HAS_HOTPLUG(dev)) {
  3371. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3372. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3373. }
  3374. I915_WRITE16(HWSTAM, 0xeffe);
  3375. for_each_pipe(dev_priv, pipe)
  3376. I915_WRITE(PIPESTAT(pipe), 0);
  3377. I915_WRITE(IMR, 0xffffffff);
  3378. I915_WRITE(IER, 0x0);
  3379. POSTING_READ(IER);
  3380. }
  3381. static int i915_irq_postinstall(struct drm_device *dev)
  3382. {
  3383. struct drm_i915_private *dev_priv = dev->dev_private;
  3384. u32 enable_mask;
  3385. I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  3386. /* Unmask the interrupts that we always want on. */
  3387. dev_priv->irq_mask =
  3388. ~(I915_ASLE_INTERRUPT |
  3389. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3390. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3391. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3392. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3393. enable_mask =
  3394. I915_ASLE_INTERRUPT |
  3395. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3396. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3397. I915_USER_INTERRUPT;
  3398. if (I915_HAS_HOTPLUG(dev)) {
  3399. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3400. POSTING_READ(PORT_HOTPLUG_EN);
  3401. /* Enable in IER... */
  3402. enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
  3403. /* and unmask in IMR */
  3404. dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
  3405. }
  3406. I915_WRITE(IMR, dev_priv->irq_mask);
  3407. I915_WRITE(IER, enable_mask);
  3408. POSTING_READ(IER);
  3409. i915_enable_asle_pipestat(dev);
  3410. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3411. * just to make the assert_spin_locked check happy. */
  3412. spin_lock_irq(&dev_priv->irq_lock);
  3413. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3414. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3415. spin_unlock_irq(&dev_priv->irq_lock);
  3416. return 0;
  3417. }
  3418. /*
  3419. * Returns true when a page flip has completed.
  3420. */
  3421. static bool i915_handle_vblank(struct drm_device *dev,
  3422. int plane, int pipe, u32 iir)
  3423. {
  3424. struct drm_i915_private *dev_priv = dev->dev_private;
  3425. u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  3426. if (!intel_pipe_handle_vblank(dev, pipe))
  3427. return false;
  3428. if ((iir & flip_pending) == 0)
  3429. goto check_page_flip;
  3430. /* We detect FlipDone by looking for the change in PendingFlip from '1'
  3431. * to '0' on the following vblank, i.e. IIR has the Pendingflip
  3432. * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  3433. * the flip is completed (no longer pending). Since this doesn't raise
  3434. * an interrupt per se, we watch for the change at vblank.
  3435. */
  3436. if (I915_READ(ISR) & flip_pending)
  3437. goto check_page_flip;
  3438. intel_prepare_page_flip(dev, plane);
  3439. intel_finish_page_flip(dev, pipe);
  3440. return true;
  3441. check_page_flip:
  3442. intel_check_page_flip(dev, pipe);
  3443. return false;
  3444. }
  3445. static irqreturn_t i915_irq_handler(int irq, void *arg)
  3446. {
  3447. struct drm_device *dev = arg;
  3448. struct drm_i915_private *dev_priv = dev->dev_private;
  3449. u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
  3450. u32 flip_mask =
  3451. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3452. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3453. int pipe, ret = IRQ_NONE;
  3454. if (!intel_irqs_enabled(dev_priv))
  3455. return IRQ_NONE;
  3456. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3457. disable_rpm_wakeref_asserts(dev_priv);
  3458. iir = I915_READ(IIR);
  3459. do {
  3460. bool irq_received = (iir & ~flip_mask) != 0;
  3461. bool blc_event = false;
  3462. /* Can't rely on pipestat interrupt bit in iir as it might
  3463. * have been cleared after the pipestat interrupt was received.
  3464. * It doesn't set the bit in iir again, but it still produces
  3465. * interrupts (for non-MSI).
  3466. */
  3467. spin_lock(&dev_priv->irq_lock);
  3468. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3469. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3470. for_each_pipe(dev_priv, pipe) {
  3471. i915_reg_t reg = PIPESTAT(pipe);
  3472. pipe_stats[pipe] = I915_READ(reg);
  3473. /* Clear the PIPE*STAT regs before the IIR */
  3474. if (pipe_stats[pipe] & 0x8000ffff) {
  3475. I915_WRITE(reg, pipe_stats[pipe]);
  3476. irq_received = true;
  3477. }
  3478. }
  3479. spin_unlock(&dev_priv->irq_lock);
  3480. if (!irq_received)
  3481. break;
  3482. /* Consume port. Then clear IIR or we'll miss events */
  3483. if (I915_HAS_HOTPLUG(dev) &&
  3484. iir & I915_DISPLAY_PORT_INTERRUPT) {
  3485. u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  3486. if (hotplug_status)
  3487. i9xx_hpd_irq_handler(dev, hotplug_status);
  3488. }
  3489. I915_WRITE(IIR, iir & ~flip_mask);
  3490. new_iir = I915_READ(IIR); /* Flush posted writes */
  3491. if (iir & I915_USER_INTERRUPT)
  3492. notify_ring(&dev_priv->engine[RCS]);
  3493. for_each_pipe(dev_priv, pipe) {
  3494. int plane = pipe;
  3495. if (HAS_FBC(dev))
  3496. plane = !plane;
  3497. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  3498. i915_handle_vblank(dev, plane, pipe, iir))
  3499. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  3500. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  3501. blc_event = true;
  3502. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3503. i9xx_pipe_crc_irq_handler(dev, pipe);
  3504. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3505. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  3506. pipe);
  3507. }
  3508. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  3509. intel_opregion_asle_intr(dev);
  3510. /* With MSI, interrupts are only generated when iir
  3511. * transitions from zero to nonzero. If another bit got
  3512. * set while we were handling the existing iir bits, then
  3513. * we would never get another interrupt.
  3514. *
  3515. * This is fine on non-MSI as well, as if we hit this path
  3516. * we avoid exiting the interrupt handler only to generate
  3517. * another one.
  3518. *
  3519. * Note that for MSI this could cause a stray interrupt report
  3520. * if an interrupt landed in the time between writing IIR and
  3521. * the posting read. This should be rare enough to never
  3522. * trigger the 99% of 100,000 interrupts test for disabling
  3523. * stray interrupts.
  3524. */
  3525. ret = IRQ_HANDLED;
  3526. iir = new_iir;
  3527. } while (iir & ~flip_mask);
  3528. enable_rpm_wakeref_asserts(dev_priv);
  3529. return ret;
  3530. }
  3531. static void i915_irq_uninstall(struct drm_device * dev)
  3532. {
  3533. struct drm_i915_private *dev_priv = dev->dev_private;
  3534. int pipe;
  3535. if (I915_HAS_HOTPLUG(dev)) {
  3536. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3537. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3538. }
  3539. I915_WRITE16(HWSTAM, 0xffff);
  3540. for_each_pipe(dev_priv, pipe) {
  3541. /* Clear enable bits; then clear status bits */
  3542. I915_WRITE(PIPESTAT(pipe), 0);
  3543. I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  3544. }
  3545. I915_WRITE(IMR, 0xffffffff);
  3546. I915_WRITE(IER, 0x0);
  3547. I915_WRITE(IIR, I915_READ(IIR));
  3548. }
  3549. static void i965_irq_preinstall(struct drm_device * dev)
  3550. {
  3551. struct drm_i915_private *dev_priv = dev->dev_private;
  3552. int pipe;
  3553. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3554. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3555. I915_WRITE(HWSTAM, 0xeffe);
  3556. for_each_pipe(dev_priv, pipe)
  3557. I915_WRITE(PIPESTAT(pipe), 0);
  3558. I915_WRITE(IMR, 0xffffffff);
  3559. I915_WRITE(IER, 0x0);
  3560. POSTING_READ(IER);
  3561. }
  3562. static int i965_irq_postinstall(struct drm_device *dev)
  3563. {
  3564. struct drm_i915_private *dev_priv = dev->dev_private;
  3565. u32 enable_mask;
  3566. u32 error_mask;
  3567. /* Unmask the interrupts that we always want on. */
  3568. dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
  3569. I915_DISPLAY_PORT_INTERRUPT |
  3570. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3571. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3572. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3573. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
  3574. I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  3575. enable_mask = ~dev_priv->irq_mask;
  3576. enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3577. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3578. enable_mask |= I915_USER_INTERRUPT;
  3579. if (IS_G4X(dev))
  3580. enable_mask |= I915_BSD_USER_INTERRUPT;
  3581. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3582. * just to make the assert_spin_locked check happy. */
  3583. spin_lock_irq(&dev_priv->irq_lock);
  3584. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  3585. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3586. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3587. spin_unlock_irq(&dev_priv->irq_lock);
  3588. /*
  3589. * Enable some error detection, note the instruction error mask
  3590. * bit is reserved, so we leave it masked.
  3591. */
  3592. if (IS_G4X(dev)) {
  3593. error_mask = ~(GM45_ERROR_PAGE_TABLE |
  3594. GM45_ERROR_MEM_PRIV |
  3595. GM45_ERROR_CP_PRIV |
  3596. I915_ERROR_MEMORY_REFRESH);
  3597. } else {
  3598. error_mask = ~(I915_ERROR_PAGE_TABLE |
  3599. I915_ERROR_MEMORY_REFRESH);
  3600. }
  3601. I915_WRITE(EMR, error_mask);
  3602. I915_WRITE(IMR, dev_priv->irq_mask);
  3603. I915_WRITE(IER, enable_mask);
  3604. POSTING_READ(IER);
  3605. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3606. POSTING_READ(PORT_HOTPLUG_EN);
  3607. i915_enable_asle_pipestat(dev);
  3608. return 0;
  3609. }
  3610. static void i915_hpd_irq_setup(struct drm_device *dev)
  3611. {
  3612. struct drm_i915_private *dev_priv = dev->dev_private;
  3613. u32 hotplug_en;
  3614. assert_spin_locked(&dev_priv->irq_lock);
  3615. /* Note HDMI and DP share hotplug bits */
  3616. /* enable bits are the same for all generations */
  3617. hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
  3618. /* Programming the CRT detection parameters tends
  3619. to generate a spurious hotplug event about three
  3620. seconds later. So just do it once.
  3621. */
  3622. if (IS_G4X(dev))
  3623. hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
  3624. hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
  3625. /* Ignore TV since it's buggy */
  3626. i915_hotplug_interrupt_update_locked(dev_priv,
  3627. HOTPLUG_INT_EN_MASK |
  3628. CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
  3629. CRT_HOTPLUG_ACTIVATION_PERIOD_64,
  3630. hotplug_en);
  3631. }
  3632. static irqreturn_t i965_irq_handler(int irq, void *arg)
  3633. {
  3634. struct drm_device *dev = arg;
  3635. struct drm_i915_private *dev_priv = dev->dev_private;
  3636. u32 iir, new_iir;
  3637. u32 pipe_stats[I915_MAX_PIPES];
  3638. int ret = IRQ_NONE, pipe;
  3639. u32 flip_mask =
  3640. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3641. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3642. if (!intel_irqs_enabled(dev_priv))
  3643. return IRQ_NONE;
  3644. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3645. disable_rpm_wakeref_asserts(dev_priv);
  3646. iir = I915_READ(IIR);
  3647. for (;;) {
  3648. bool irq_received = (iir & ~flip_mask) != 0;
  3649. bool blc_event = false;
  3650. /* Can't rely on pipestat interrupt bit in iir as it might
  3651. * have been cleared after the pipestat interrupt was received.
  3652. * It doesn't set the bit in iir again, but it still produces
  3653. * interrupts (for non-MSI).
  3654. */
  3655. spin_lock(&dev_priv->irq_lock);
  3656. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3657. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3658. for_each_pipe(dev_priv, pipe) {
  3659. i915_reg_t reg = PIPESTAT(pipe);
  3660. pipe_stats[pipe] = I915_READ(reg);
  3661. /*
  3662. * Clear the PIPE*STAT regs before the IIR
  3663. */
  3664. if (pipe_stats[pipe] & 0x8000ffff) {
  3665. I915_WRITE(reg, pipe_stats[pipe]);
  3666. irq_received = true;
  3667. }
  3668. }
  3669. spin_unlock(&dev_priv->irq_lock);
  3670. if (!irq_received)
  3671. break;
  3672. ret = IRQ_HANDLED;
  3673. /* Consume port. Then clear IIR or we'll miss events */
  3674. if (iir & I915_DISPLAY_PORT_INTERRUPT) {
  3675. u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  3676. if (hotplug_status)
  3677. i9xx_hpd_irq_handler(dev, hotplug_status);
  3678. }
  3679. I915_WRITE(IIR, iir & ~flip_mask);
  3680. new_iir = I915_READ(IIR); /* Flush posted writes */
  3681. if (iir & I915_USER_INTERRUPT)
  3682. notify_ring(&dev_priv->engine[RCS]);
  3683. if (iir & I915_BSD_USER_INTERRUPT)
  3684. notify_ring(&dev_priv->engine[VCS]);
  3685. for_each_pipe(dev_priv, pipe) {
  3686. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  3687. i915_handle_vblank(dev, pipe, pipe, iir))
  3688. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
  3689. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  3690. blc_event = true;
  3691. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3692. i9xx_pipe_crc_irq_handler(dev, pipe);
  3693. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3694. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  3695. }
  3696. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  3697. intel_opregion_asle_intr(dev);
  3698. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  3699. gmbus_irq_handler(dev);
  3700. /* With MSI, interrupts are only generated when iir
  3701. * transitions from zero to nonzero. If another bit got
  3702. * set while we were handling the existing iir bits, then
  3703. * we would never get another interrupt.
  3704. *
  3705. * This is fine on non-MSI as well, as if we hit this path
  3706. * we avoid exiting the interrupt handler only to generate
  3707. * another one.
  3708. *
  3709. * Note that for MSI this could cause a stray interrupt report
  3710. * if an interrupt landed in the time between writing IIR and
  3711. * the posting read. This should be rare enough to never
  3712. * trigger the 99% of 100,000 interrupts test for disabling
  3713. * stray interrupts.
  3714. */
  3715. iir = new_iir;
  3716. }
  3717. enable_rpm_wakeref_asserts(dev_priv);
  3718. return ret;
  3719. }
  3720. static void i965_irq_uninstall(struct drm_device * dev)
  3721. {
  3722. struct drm_i915_private *dev_priv = dev->dev_private;
  3723. int pipe;
  3724. if (!dev_priv)
  3725. return;
  3726. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3727. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3728. I915_WRITE(HWSTAM, 0xffffffff);
  3729. for_each_pipe(dev_priv, pipe)
  3730. I915_WRITE(PIPESTAT(pipe), 0);
  3731. I915_WRITE(IMR, 0xffffffff);
  3732. I915_WRITE(IER, 0x0);
  3733. for_each_pipe(dev_priv, pipe)
  3734. I915_WRITE(PIPESTAT(pipe),
  3735. I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
  3736. I915_WRITE(IIR, I915_READ(IIR));
  3737. }
  3738. /**
  3739. * intel_irq_init - initializes irq support
  3740. * @dev_priv: i915 device instance
  3741. *
  3742. * This function initializes all the irq support including work items, timers
  3743. * and all the vtables. It does not setup the interrupt itself though.
  3744. */
  3745. void intel_irq_init(struct drm_i915_private *dev_priv)
  3746. {
  3747. struct drm_device *dev = dev_priv->dev;
  3748. intel_hpd_init_work(dev_priv);
  3749. INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
  3750. INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
  3751. /* Let's track the enabled rps events */
  3752. if (IS_VALLEYVIEW(dev_priv))
  3753. /* WaGsvRC0ResidencyMethod:vlv */
  3754. dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
  3755. else
  3756. dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
  3757. INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
  3758. i915_hangcheck_elapsed);
  3759. if (IS_GEN2(dev_priv)) {
  3760. dev->max_vblank_count = 0;
  3761. dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
  3762. } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
  3763. dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
  3764. dev->driver->get_vblank_counter = g4x_get_vblank_counter;
  3765. } else {
  3766. dev->driver->get_vblank_counter = i915_get_vblank_counter;
  3767. dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
  3768. }
  3769. /*
  3770. * Opt out of the vblank disable timer on everything except gen2.
  3771. * Gen2 doesn't have a hardware frame counter and so depends on
  3772. * vblank interrupts to produce sane vblank seuquence numbers.
  3773. */
  3774. if (!IS_GEN2(dev_priv))
  3775. dev->vblank_disable_immediate = true;
  3776. dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
  3777. dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
  3778. if (IS_CHERRYVIEW(dev_priv)) {
  3779. dev->driver->irq_handler = cherryview_irq_handler;
  3780. dev->driver->irq_preinstall = cherryview_irq_preinstall;
  3781. dev->driver->irq_postinstall = cherryview_irq_postinstall;
  3782. dev->driver->irq_uninstall = cherryview_irq_uninstall;
  3783. dev->driver->enable_vblank = valleyview_enable_vblank;
  3784. dev->driver->disable_vblank = valleyview_disable_vblank;
  3785. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3786. } else if (IS_VALLEYVIEW(dev_priv)) {
  3787. dev->driver->irq_handler = valleyview_irq_handler;
  3788. dev->driver->irq_preinstall = valleyview_irq_preinstall;
  3789. dev->driver->irq_postinstall = valleyview_irq_postinstall;
  3790. dev->driver->irq_uninstall = valleyview_irq_uninstall;
  3791. dev->driver->enable_vblank = valleyview_enable_vblank;
  3792. dev->driver->disable_vblank = valleyview_disable_vblank;
  3793. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3794. } else if (INTEL_INFO(dev_priv)->gen >= 8) {
  3795. dev->driver->irq_handler = gen8_irq_handler;
  3796. dev->driver->irq_preinstall = gen8_irq_reset;
  3797. dev->driver->irq_postinstall = gen8_irq_postinstall;
  3798. dev->driver->irq_uninstall = gen8_irq_uninstall;
  3799. dev->driver->enable_vblank = gen8_enable_vblank;
  3800. dev->driver->disable_vblank = gen8_disable_vblank;
  3801. if (IS_BROXTON(dev))
  3802. dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
  3803. else if (HAS_PCH_SPT(dev) || HAS_PCH_KBP(dev))
  3804. dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
  3805. else
  3806. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3807. } else if (HAS_PCH_SPLIT(dev)) {
  3808. dev->driver->irq_handler = ironlake_irq_handler;
  3809. dev->driver->irq_preinstall = ironlake_irq_reset;
  3810. dev->driver->irq_postinstall = ironlake_irq_postinstall;
  3811. dev->driver->irq_uninstall = ironlake_irq_uninstall;
  3812. dev->driver->enable_vblank = ironlake_enable_vblank;
  3813. dev->driver->disable_vblank = ironlake_disable_vblank;
  3814. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3815. } else {
  3816. if (INTEL_INFO(dev_priv)->gen == 2) {
  3817. dev->driver->irq_preinstall = i8xx_irq_preinstall;
  3818. dev->driver->irq_postinstall = i8xx_irq_postinstall;
  3819. dev->driver->irq_handler = i8xx_irq_handler;
  3820. dev->driver->irq_uninstall = i8xx_irq_uninstall;
  3821. } else if (INTEL_INFO(dev_priv)->gen == 3) {
  3822. dev->driver->irq_preinstall = i915_irq_preinstall;
  3823. dev->driver->irq_postinstall = i915_irq_postinstall;
  3824. dev->driver->irq_uninstall = i915_irq_uninstall;
  3825. dev->driver->irq_handler = i915_irq_handler;
  3826. } else {
  3827. dev->driver->irq_preinstall = i965_irq_preinstall;
  3828. dev->driver->irq_postinstall = i965_irq_postinstall;
  3829. dev->driver->irq_uninstall = i965_irq_uninstall;
  3830. dev->driver->irq_handler = i965_irq_handler;
  3831. }
  3832. if (I915_HAS_HOTPLUG(dev_priv))
  3833. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3834. dev->driver->enable_vblank = i915_enable_vblank;
  3835. dev->driver->disable_vblank = i915_disable_vblank;
  3836. }
  3837. }
  3838. /**
  3839. * intel_irq_install - enables the hardware interrupt
  3840. * @dev_priv: i915 device instance
  3841. *
  3842. * This function enables the hardware interrupt handling, but leaves the hotplug
  3843. * handling still disabled. It is called after intel_irq_init().
  3844. *
  3845. * In the driver load and resume code we need working interrupts in a few places
  3846. * but don't want to deal with the hassle of concurrent probe and hotplug
  3847. * workers. Hence the split into this two-stage approach.
  3848. */
  3849. int intel_irq_install(struct drm_i915_private *dev_priv)
  3850. {
  3851. /*
  3852. * We enable some interrupt sources in our postinstall hooks, so mark
  3853. * interrupts as enabled _before_ actually enabling them to avoid
  3854. * special cases in our ordering checks.
  3855. */
  3856. dev_priv->pm.irqs_enabled = true;
  3857. return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
  3858. }
  3859. /**
  3860. * intel_irq_uninstall - finilizes all irq handling
  3861. * @dev_priv: i915 device instance
  3862. *
  3863. * This stops interrupt and hotplug handling and unregisters and frees all
  3864. * resources acquired in the init functions.
  3865. */
  3866. void intel_irq_uninstall(struct drm_i915_private *dev_priv)
  3867. {
  3868. drm_irq_uninstall(dev_priv->dev);
  3869. intel_hpd_cancel_work(dev_priv);
  3870. dev_priv->pm.irqs_enabled = false;
  3871. }
  3872. /**
  3873. * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
  3874. * @dev_priv: i915 device instance
  3875. *
  3876. * This function is used to disable interrupts at runtime, both in the runtime
  3877. * pm and the system suspend/resume code.
  3878. */
  3879. void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
  3880. {
  3881. dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
  3882. dev_priv->pm.irqs_enabled = false;
  3883. synchronize_irq(dev_priv->dev->irq);
  3884. }
  3885. /**
  3886. * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
  3887. * @dev_priv: i915 device instance
  3888. *
  3889. * This function is used to enable interrupts at runtime, both in the runtime
  3890. * pm and the system suspend/resume code.
  3891. */
  3892. void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
  3893. {
  3894. dev_priv->pm.irqs_enabled = true;
  3895. dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
  3896. dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
  3897. }