core.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986
  1. /*
  2. * Per core/cpu state
  3. *
  4. * Used to coordinate shared registers between HT threads or
  5. * among events on a single PMU.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/stddef.h>
  9. #include <linux/types.h>
  10. #include <linux/init.h>
  11. #include <linux/slab.h>
  12. #include <linux/export.h>
  13. #include <linux/nmi.h>
  14. #include <asm/cpufeature.h>
  15. #include <asm/hardirq.h>
  16. #include <asm/apic.h>
  17. #include "../perf_event.h"
  18. /*
  19. * Intel PerfMon, used on Core and later.
  20. */
  21. static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  22. {
  23. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  24. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  25. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  26. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  27. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  28. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  29. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  30. [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
  31. };
  32. static struct event_constraint intel_core_event_constraints[] __read_mostly =
  33. {
  34. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  35. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  36. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  37. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  38. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  39. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  40. EVENT_CONSTRAINT_END
  41. };
  42. static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  43. {
  44. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  45. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  46. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  47. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  48. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  49. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  50. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  51. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  52. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  53. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  54. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  55. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  56. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  57. EVENT_CONSTRAINT_END
  58. };
  59. static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  60. {
  61. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  62. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  63. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  64. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  65. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  66. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  67. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  68. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  69. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  70. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  71. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  72. EVENT_CONSTRAINT_END
  73. };
  74. static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  75. {
  76. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  77. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  78. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  79. EVENT_EXTRA_END
  80. };
  81. static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  82. {
  83. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  84. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  85. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  86. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  87. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  88. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  89. INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  90. EVENT_CONSTRAINT_END
  91. };
  92. static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  93. {
  94. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  95. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  96. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  97. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
  98. INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
  99. INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  100. INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
  101. INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
  102. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  103. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  104. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
  105. INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  106. /*
  107. * When HT is off these events can only run on the bottom 4 counters
  108. * When HT is on, they are impacted by the HT bug and require EXCL access
  109. */
  110. INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
  111. INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  112. INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  113. INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  114. EVENT_CONSTRAINT_END
  115. };
  116. static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
  117. {
  118. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  119. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  120. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  121. INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
  122. INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
  123. INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
  124. INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
  125. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
  126. INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
  127. INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
  128. INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  129. INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
  130. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  131. /*
  132. * When HT is off these events can only run on the bottom 4 counters
  133. * When HT is on, they are impacted by the HT bug and require EXCL access
  134. */
  135. INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
  136. INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  137. INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  138. INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  139. EVENT_CONSTRAINT_END
  140. };
  141. static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
  142. {
  143. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  144. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  145. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
  146. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  147. EVENT_EXTRA_END
  148. };
  149. static struct event_constraint intel_v1_event_constraints[] __read_mostly =
  150. {
  151. EVENT_CONSTRAINT_END
  152. };
  153. static struct event_constraint intel_gen_event_constraints[] __read_mostly =
  154. {
  155. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  156. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  157. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  158. EVENT_CONSTRAINT_END
  159. };
  160. static struct event_constraint intel_slm_event_constraints[] __read_mostly =
  161. {
  162. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  163. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  164. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
  165. EVENT_CONSTRAINT_END
  166. };
  167. struct event_constraint intel_skl_event_constraints[] = {
  168. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  169. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  170. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  171. INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
  172. /*
  173. * when HT is off, these can only run on the bottom 4 counters
  174. */
  175. INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
  176. INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
  177. INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
  178. INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
  179. INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
  180. EVENT_CONSTRAINT_END
  181. };
  182. static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
  183. INTEL_UEVENT_EXTRA_REG(0x01b7,
  184. MSR_OFFCORE_RSP_0, 0x7f9ffbffffull, RSP_0),
  185. INTEL_UEVENT_EXTRA_REG(0x02b7,
  186. MSR_OFFCORE_RSP_1, 0x3f9ffbffffull, RSP_1),
  187. EVENT_EXTRA_END
  188. };
  189. static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
  190. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  191. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
  192. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
  193. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
  194. EVENT_EXTRA_END
  195. };
  196. static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
  197. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  198. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
  199. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
  200. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
  201. EVENT_EXTRA_END
  202. };
  203. static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
  204. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
  205. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
  206. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
  207. /*
  208. * Note the low 8 bits eventsel code is not a continuous field, containing
  209. * some #GPing bits. These are masked out.
  210. */
  211. INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
  212. EVENT_EXTRA_END
  213. };
  214. EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
  215. EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
  216. EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
  217. struct attribute *nhm_events_attrs[] = {
  218. EVENT_PTR(mem_ld_nhm),
  219. NULL,
  220. };
  221. struct attribute *snb_events_attrs[] = {
  222. EVENT_PTR(mem_ld_snb),
  223. EVENT_PTR(mem_st_snb),
  224. NULL,
  225. };
  226. static struct event_constraint intel_hsw_event_constraints[] = {
  227. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  228. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  229. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  230. INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
  231. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  232. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  233. /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  234. INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
  235. /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
  236. INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
  237. /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
  238. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
  239. /*
  240. * When HT is off these events can only run on the bottom 4 counters
  241. * When HT is on, they are impacted by the HT bug and require EXCL access
  242. */
  243. INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
  244. INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  245. INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  246. INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  247. EVENT_CONSTRAINT_END
  248. };
  249. struct event_constraint intel_bdw_event_constraints[] = {
  250. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  251. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  252. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  253. INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
  254. INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
  255. /*
  256. * when HT is off, these can only run on the bottom 4 counters
  257. */
  258. INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
  259. INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
  260. INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
  261. INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
  262. EVENT_CONSTRAINT_END
  263. };
  264. static u64 intel_pmu_event_map(int hw_event)
  265. {
  266. return intel_perfmon_event_map[hw_event];
  267. }
  268. /*
  269. * Notes on the events:
  270. * - data reads do not include code reads (comparable to earlier tables)
  271. * - data counts include speculative execution (except L1 write, dtlb, bpu)
  272. * - remote node access includes remote memory, remote cache, remote mmio.
  273. * - prefetches are not included in the counts.
  274. * - icache miss does not include decoded icache
  275. */
  276. #define SKL_DEMAND_DATA_RD BIT_ULL(0)
  277. #define SKL_DEMAND_RFO BIT_ULL(1)
  278. #define SKL_ANY_RESPONSE BIT_ULL(16)
  279. #define SKL_SUPPLIER_NONE BIT_ULL(17)
  280. #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
  281. #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
  282. #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
  283. #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
  284. #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
  285. SKL_L3_MISS_REMOTE_HOP0_DRAM| \
  286. SKL_L3_MISS_REMOTE_HOP1_DRAM| \
  287. SKL_L3_MISS_REMOTE_HOP2P_DRAM)
  288. #define SKL_SPL_HIT BIT_ULL(30)
  289. #define SKL_SNOOP_NONE BIT_ULL(31)
  290. #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
  291. #define SKL_SNOOP_MISS BIT_ULL(33)
  292. #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
  293. #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
  294. #define SKL_SNOOP_HITM BIT_ULL(36)
  295. #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
  296. #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
  297. SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
  298. SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
  299. SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
  300. #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
  301. #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
  302. SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
  303. SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
  304. SKL_SNOOP_HITM|SKL_SPL_HIT)
  305. #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
  306. #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
  307. #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
  308. SKL_L3_MISS_REMOTE_HOP1_DRAM| \
  309. SKL_L3_MISS_REMOTE_HOP2P_DRAM)
  310. static __initconst const u64 skl_hw_cache_event_ids
  311. [PERF_COUNT_HW_CACHE_MAX]
  312. [PERF_COUNT_HW_CACHE_OP_MAX]
  313. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  314. {
  315. [ C(L1D ) ] = {
  316. [ C(OP_READ) ] = {
  317. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
  318. [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
  319. },
  320. [ C(OP_WRITE) ] = {
  321. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
  322. [ C(RESULT_MISS) ] = 0x0,
  323. },
  324. [ C(OP_PREFETCH) ] = {
  325. [ C(RESULT_ACCESS) ] = 0x0,
  326. [ C(RESULT_MISS) ] = 0x0,
  327. },
  328. },
  329. [ C(L1I ) ] = {
  330. [ C(OP_READ) ] = {
  331. [ C(RESULT_ACCESS) ] = 0x0,
  332. [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
  333. },
  334. [ C(OP_WRITE) ] = {
  335. [ C(RESULT_ACCESS) ] = -1,
  336. [ C(RESULT_MISS) ] = -1,
  337. },
  338. [ C(OP_PREFETCH) ] = {
  339. [ C(RESULT_ACCESS) ] = 0x0,
  340. [ C(RESULT_MISS) ] = 0x0,
  341. },
  342. },
  343. [ C(LL ) ] = {
  344. [ C(OP_READ) ] = {
  345. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  346. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  347. },
  348. [ C(OP_WRITE) ] = {
  349. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  350. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  351. },
  352. [ C(OP_PREFETCH) ] = {
  353. [ C(RESULT_ACCESS) ] = 0x0,
  354. [ C(RESULT_MISS) ] = 0x0,
  355. },
  356. },
  357. [ C(DTLB) ] = {
  358. [ C(OP_READ) ] = {
  359. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
  360. [ C(RESULT_MISS) ] = 0x608, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
  361. },
  362. [ C(OP_WRITE) ] = {
  363. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
  364. [ C(RESULT_MISS) ] = 0x649, /* DTLB_STORE_MISSES.WALK_COMPLETED */
  365. },
  366. [ C(OP_PREFETCH) ] = {
  367. [ C(RESULT_ACCESS) ] = 0x0,
  368. [ C(RESULT_MISS) ] = 0x0,
  369. },
  370. },
  371. [ C(ITLB) ] = {
  372. [ C(OP_READ) ] = {
  373. [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
  374. [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
  375. },
  376. [ C(OP_WRITE) ] = {
  377. [ C(RESULT_ACCESS) ] = -1,
  378. [ C(RESULT_MISS) ] = -1,
  379. },
  380. [ C(OP_PREFETCH) ] = {
  381. [ C(RESULT_ACCESS) ] = -1,
  382. [ C(RESULT_MISS) ] = -1,
  383. },
  384. },
  385. [ C(BPU ) ] = {
  386. [ C(OP_READ) ] = {
  387. [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
  388. [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  389. },
  390. [ C(OP_WRITE) ] = {
  391. [ C(RESULT_ACCESS) ] = -1,
  392. [ C(RESULT_MISS) ] = -1,
  393. },
  394. [ C(OP_PREFETCH) ] = {
  395. [ C(RESULT_ACCESS) ] = -1,
  396. [ C(RESULT_MISS) ] = -1,
  397. },
  398. },
  399. [ C(NODE) ] = {
  400. [ C(OP_READ) ] = {
  401. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  402. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  403. },
  404. [ C(OP_WRITE) ] = {
  405. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  406. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  407. },
  408. [ C(OP_PREFETCH) ] = {
  409. [ C(RESULT_ACCESS) ] = 0x0,
  410. [ C(RESULT_MISS) ] = 0x0,
  411. },
  412. },
  413. };
  414. static __initconst const u64 skl_hw_cache_extra_regs
  415. [PERF_COUNT_HW_CACHE_MAX]
  416. [PERF_COUNT_HW_CACHE_OP_MAX]
  417. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  418. {
  419. [ C(LL ) ] = {
  420. [ C(OP_READ) ] = {
  421. [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
  422. SKL_LLC_ACCESS|SKL_ANY_SNOOP,
  423. [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
  424. SKL_L3_MISS|SKL_ANY_SNOOP|
  425. SKL_SUPPLIER_NONE,
  426. },
  427. [ C(OP_WRITE) ] = {
  428. [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
  429. SKL_LLC_ACCESS|SKL_ANY_SNOOP,
  430. [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
  431. SKL_L3_MISS|SKL_ANY_SNOOP|
  432. SKL_SUPPLIER_NONE,
  433. },
  434. [ C(OP_PREFETCH) ] = {
  435. [ C(RESULT_ACCESS) ] = 0x0,
  436. [ C(RESULT_MISS) ] = 0x0,
  437. },
  438. },
  439. [ C(NODE) ] = {
  440. [ C(OP_READ) ] = {
  441. [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
  442. SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
  443. [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
  444. SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
  445. },
  446. [ C(OP_WRITE) ] = {
  447. [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
  448. SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
  449. [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
  450. SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
  451. },
  452. [ C(OP_PREFETCH) ] = {
  453. [ C(RESULT_ACCESS) ] = 0x0,
  454. [ C(RESULT_MISS) ] = 0x0,
  455. },
  456. },
  457. };
  458. #define SNB_DMND_DATA_RD (1ULL << 0)
  459. #define SNB_DMND_RFO (1ULL << 1)
  460. #define SNB_DMND_IFETCH (1ULL << 2)
  461. #define SNB_DMND_WB (1ULL << 3)
  462. #define SNB_PF_DATA_RD (1ULL << 4)
  463. #define SNB_PF_RFO (1ULL << 5)
  464. #define SNB_PF_IFETCH (1ULL << 6)
  465. #define SNB_LLC_DATA_RD (1ULL << 7)
  466. #define SNB_LLC_RFO (1ULL << 8)
  467. #define SNB_LLC_IFETCH (1ULL << 9)
  468. #define SNB_BUS_LOCKS (1ULL << 10)
  469. #define SNB_STRM_ST (1ULL << 11)
  470. #define SNB_OTHER (1ULL << 15)
  471. #define SNB_RESP_ANY (1ULL << 16)
  472. #define SNB_NO_SUPP (1ULL << 17)
  473. #define SNB_LLC_HITM (1ULL << 18)
  474. #define SNB_LLC_HITE (1ULL << 19)
  475. #define SNB_LLC_HITS (1ULL << 20)
  476. #define SNB_LLC_HITF (1ULL << 21)
  477. #define SNB_LOCAL (1ULL << 22)
  478. #define SNB_REMOTE (0xffULL << 23)
  479. #define SNB_SNP_NONE (1ULL << 31)
  480. #define SNB_SNP_NOT_NEEDED (1ULL << 32)
  481. #define SNB_SNP_MISS (1ULL << 33)
  482. #define SNB_NO_FWD (1ULL << 34)
  483. #define SNB_SNP_FWD (1ULL << 35)
  484. #define SNB_HITM (1ULL << 36)
  485. #define SNB_NON_DRAM (1ULL << 37)
  486. #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
  487. #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
  488. #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
  489. #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
  490. SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
  491. SNB_HITM)
  492. #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
  493. #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
  494. #define SNB_L3_ACCESS SNB_RESP_ANY
  495. #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
  496. static __initconst const u64 snb_hw_cache_extra_regs
  497. [PERF_COUNT_HW_CACHE_MAX]
  498. [PERF_COUNT_HW_CACHE_OP_MAX]
  499. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  500. {
  501. [ C(LL ) ] = {
  502. [ C(OP_READ) ] = {
  503. [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
  504. [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
  505. },
  506. [ C(OP_WRITE) ] = {
  507. [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
  508. [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
  509. },
  510. [ C(OP_PREFETCH) ] = {
  511. [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
  512. [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
  513. },
  514. },
  515. [ C(NODE) ] = {
  516. [ C(OP_READ) ] = {
  517. [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
  518. [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
  519. },
  520. [ C(OP_WRITE) ] = {
  521. [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
  522. [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
  523. },
  524. [ C(OP_PREFETCH) ] = {
  525. [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
  526. [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
  527. },
  528. },
  529. };
  530. static __initconst const u64 snb_hw_cache_event_ids
  531. [PERF_COUNT_HW_CACHE_MAX]
  532. [PERF_COUNT_HW_CACHE_OP_MAX]
  533. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  534. {
  535. [ C(L1D) ] = {
  536. [ C(OP_READ) ] = {
  537. [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
  538. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
  539. },
  540. [ C(OP_WRITE) ] = {
  541. [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
  542. [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
  543. },
  544. [ C(OP_PREFETCH) ] = {
  545. [ C(RESULT_ACCESS) ] = 0x0,
  546. [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
  547. },
  548. },
  549. [ C(L1I ) ] = {
  550. [ C(OP_READ) ] = {
  551. [ C(RESULT_ACCESS) ] = 0x0,
  552. [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
  553. },
  554. [ C(OP_WRITE) ] = {
  555. [ C(RESULT_ACCESS) ] = -1,
  556. [ C(RESULT_MISS) ] = -1,
  557. },
  558. [ C(OP_PREFETCH) ] = {
  559. [ C(RESULT_ACCESS) ] = 0x0,
  560. [ C(RESULT_MISS) ] = 0x0,
  561. },
  562. },
  563. [ C(LL ) ] = {
  564. [ C(OP_READ) ] = {
  565. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  566. [ C(RESULT_ACCESS) ] = 0x01b7,
  567. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  568. [ C(RESULT_MISS) ] = 0x01b7,
  569. },
  570. [ C(OP_WRITE) ] = {
  571. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  572. [ C(RESULT_ACCESS) ] = 0x01b7,
  573. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  574. [ C(RESULT_MISS) ] = 0x01b7,
  575. },
  576. [ C(OP_PREFETCH) ] = {
  577. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  578. [ C(RESULT_ACCESS) ] = 0x01b7,
  579. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  580. [ C(RESULT_MISS) ] = 0x01b7,
  581. },
  582. },
  583. [ C(DTLB) ] = {
  584. [ C(OP_READ) ] = {
  585. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
  586. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
  587. },
  588. [ C(OP_WRITE) ] = {
  589. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
  590. [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  591. },
  592. [ C(OP_PREFETCH) ] = {
  593. [ C(RESULT_ACCESS) ] = 0x0,
  594. [ C(RESULT_MISS) ] = 0x0,
  595. },
  596. },
  597. [ C(ITLB) ] = {
  598. [ C(OP_READ) ] = {
  599. [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
  600. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
  601. },
  602. [ C(OP_WRITE) ] = {
  603. [ C(RESULT_ACCESS) ] = -1,
  604. [ C(RESULT_MISS) ] = -1,
  605. },
  606. [ C(OP_PREFETCH) ] = {
  607. [ C(RESULT_ACCESS) ] = -1,
  608. [ C(RESULT_MISS) ] = -1,
  609. },
  610. },
  611. [ C(BPU ) ] = {
  612. [ C(OP_READ) ] = {
  613. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  614. [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  615. },
  616. [ C(OP_WRITE) ] = {
  617. [ C(RESULT_ACCESS) ] = -1,
  618. [ C(RESULT_MISS) ] = -1,
  619. },
  620. [ C(OP_PREFETCH) ] = {
  621. [ C(RESULT_ACCESS) ] = -1,
  622. [ C(RESULT_MISS) ] = -1,
  623. },
  624. },
  625. [ C(NODE) ] = {
  626. [ C(OP_READ) ] = {
  627. [ C(RESULT_ACCESS) ] = 0x01b7,
  628. [ C(RESULT_MISS) ] = 0x01b7,
  629. },
  630. [ C(OP_WRITE) ] = {
  631. [ C(RESULT_ACCESS) ] = 0x01b7,
  632. [ C(RESULT_MISS) ] = 0x01b7,
  633. },
  634. [ C(OP_PREFETCH) ] = {
  635. [ C(RESULT_ACCESS) ] = 0x01b7,
  636. [ C(RESULT_MISS) ] = 0x01b7,
  637. },
  638. },
  639. };
  640. /*
  641. * Notes on the events:
  642. * - data reads do not include code reads (comparable to earlier tables)
  643. * - data counts include speculative execution (except L1 write, dtlb, bpu)
  644. * - remote node access includes remote memory, remote cache, remote mmio.
  645. * - prefetches are not included in the counts because they are not
  646. * reliably counted.
  647. */
  648. #define HSW_DEMAND_DATA_RD BIT_ULL(0)
  649. #define HSW_DEMAND_RFO BIT_ULL(1)
  650. #define HSW_ANY_RESPONSE BIT_ULL(16)
  651. #define HSW_SUPPLIER_NONE BIT_ULL(17)
  652. #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
  653. #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
  654. #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
  655. #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
  656. #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
  657. HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
  658. HSW_L3_MISS_REMOTE_HOP2P)
  659. #define HSW_SNOOP_NONE BIT_ULL(31)
  660. #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
  661. #define HSW_SNOOP_MISS BIT_ULL(33)
  662. #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
  663. #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
  664. #define HSW_SNOOP_HITM BIT_ULL(36)
  665. #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
  666. #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
  667. HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
  668. HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
  669. HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
  670. #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
  671. #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
  672. #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
  673. #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
  674. HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
  675. #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
  676. #define BDW_L3_MISS_LOCAL BIT(26)
  677. #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
  678. HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
  679. HSW_L3_MISS_REMOTE_HOP2P)
  680. static __initconst const u64 hsw_hw_cache_event_ids
  681. [PERF_COUNT_HW_CACHE_MAX]
  682. [PERF_COUNT_HW_CACHE_OP_MAX]
  683. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  684. {
  685. [ C(L1D ) ] = {
  686. [ C(OP_READ) ] = {
  687. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  688. [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
  689. },
  690. [ C(OP_WRITE) ] = {
  691. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  692. [ C(RESULT_MISS) ] = 0x0,
  693. },
  694. [ C(OP_PREFETCH) ] = {
  695. [ C(RESULT_ACCESS) ] = 0x0,
  696. [ C(RESULT_MISS) ] = 0x0,
  697. },
  698. },
  699. [ C(L1I ) ] = {
  700. [ C(OP_READ) ] = {
  701. [ C(RESULT_ACCESS) ] = 0x0,
  702. [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
  703. },
  704. [ C(OP_WRITE) ] = {
  705. [ C(RESULT_ACCESS) ] = -1,
  706. [ C(RESULT_MISS) ] = -1,
  707. },
  708. [ C(OP_PREFETCH) ] = {
  709. [ C(RESULT_ACCESS) ] = 0x0,
  710. [ C(RESULT_MISS) ] = 0x0,
  711. },
  712. },
  713. [ C(LL ) ] = {
  714. [ C(OP_READ) ] = {
  715. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  716. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  717. },
  718. [ C(OP_WRITE) ] = {
  719. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  720. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  721. },
  722. [ C(OP_PREFETCH) ] = {
  723. [ C(RESULT_ACCESS) ] = 0x0,
  724. [ C(RESULT_MISS) ] = 0x0,
  725. },
  726. },
  727. [ C(DTLB) ] = {
  728. [ C(OP_READ) ] = {
  729. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  730. [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
  731. },
  732. [ C(OP_WRITE) ] = {
  733. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  734. [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  735. },
  736. [ C(OP_PREFETCH) ] = {
  737. [ C(RESULT_ACCESS) ] = 0x0,
  738. [ C(RESULT_MISS) ] = 0x0,
  739. },
  740. },
  741. [ C(ITLB) ] = {
  742. [ C(OP_READ) ] = {
  743. [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
  744. [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
  745. },
  746. [ C(OP_WRITE) ] = {
  747. [ C(RESULT_ACCESS) ] = -1,
  748. [ C(RESULT_MISS) ] = -1,
  749. },
  750. [ C(OP_PREFETCH) ] = {
  751. [ C(RESULT_ACCESS) ] = -1,
  752. [ C(RESULT_MISS) ] = -1,
  753. },
  754. },
  755. [ C(BPU ) ] = {
  756. [ C(OP_READ) ] = {
  757. [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
  758. [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  759. },
  760. [ C(OP_WRITE) ] = {
  761. [ C(RESULT_ACCESS) ] = -1,
  762. [ C(RESULT_MISS) ] = -1,
  763. },
  764. [ C(OP_PREFETCH) ] = {
  765. [ C(RESULT_ACCESS) ] = -1,
  766. [ C(RESULT_MISS) ] = -1,
  767. },
  768. },
  769. [ C(NODE) ] = {
  770. [ C(OP_READ) ] = {
  771. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  772. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  773. },
  774. [ C(OP_WRITE) ] = {
  775. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  776. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  777. },
  778. [ C(OP_PREFETCH) ] = {
  779. [ C(RESULT_ACCESS) ] = 0x0,
  780. [ C(RESULT_MISS) ] = 0x0,
  781. },
  782. },
  783. };
  784. static __initconst const u64 hsw_hw_cache_extra_regs
  785. [PERF_COUNT_HW_CACHE_MAX]
  786. [PERF_COUNT_HW_CACHE_OP_MAX]
  787. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  788. {
  789. [ C(LL ) ] = {
  790. [ C(OP_READ) ] = {
  791. [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
  792. HSW_LLC_ACCESS,
  793. [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
  794. HSW_L3_MISS|HSW_ANY_SNOOP,
  795. },
  796. [ C(OP_WRITE) ] = {
  797. [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
  798. HSW_LLC_ACCESS,
  799. [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
  800. HSW_L3_MISS|HSW_ANY_SNOOP,
  801. },
  802. [ C(OP_PREFETCH) ] = {
  803. [ C(RESULT_ACCESS) ] = 0x0,
  804. [ C(RESULT_MISS) ] = 0x0,
  805. },
  806. },
  807. [ C(NODE) ] = {
  808. [ C(OP_READ) ] = {
  809. [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
  810. HSW_L3_MISS_LOCAL_DRAM|
  811. HSW_SNOOP_DRAM,
  812. [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
  813. HSW_L3_MISS_REMOTE|
  814. HSW_SNOOP_DRAM,
  815. },
  816. [ C(OP_WRITE) ] = {
  817. [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
  818. HSW_L3_MISS_LOCAL_DRAM|
  819. HSW_SNOOP_DRAM,
  820. [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
  821. HSW_L3_MISS_REMOTE|
  822. HSW_SNOOP_DRAM,
  823. },
  824. [ C(OP_PREFETCH) ] = {
  825. [ C(RESULT_ACCESS) ] = 0x0,
  826. [ C(RESULT_MISS) ] = 0x0,
  827. },
  828. },
  829. };
  830. static __initconst const u64 westmere_hw_cache_event_ids
  831. [PERF_COUNT_HW_CACHE_MAX]
  832. [PERF_COUNT_HW_CACHE_OP_MAX]
  833. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  834. {
  835. [ C(L1D) ] = {
  836. [ C(OP_READ) ] = {
  837. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  838. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  839. },
  840. [ C(OP_WRITE) ] = {
  841. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  842. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  843. },
  844. [ C(OP_PREFETCH) ] = {
  845. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  846. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  847. },
  848. },
  849. [ C(L1I ) ] = {
  850. [ C(OP_READ) ] = {
  851. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  852. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  853. },
  854. [ C(OP_WRITE) ] = {
  855. [ C(RESULT_ACCESS) ] = -1,
  856. [ C(RESULT_MISS) ] = -1,
  857. },
  858. [ C(OP_PREFETCH) ] = {
  859. [ C(RESULT_ACCESS) ] = 0x0,
  860. [ C(RESULT_MISS) ] = 0x0,
  861. },
  862. },
  863. [ C(LL ) ] = {
  864. [ C(OP_READ) ] = {
  865. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  866. [ C(RESULT_ACCESS) ] = 0x01b7,
  867. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  868. [ C(RESULT_MISS) ] = 0x01b7,
  869. },
  870. /*
  871. * Use RFO, not WRITEBACK, because a write miss would typically occur
  872. * on RFO.
  873. */
  874. [ C(OP_WRITE) ] = {
  875. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  876. [ C(RESULT_ACCESS) ] = 0x01b7,
  877. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  878. [ C(RESULT_MISS) ] = 0x01b7,
  879. },
  880. [ C(OP_PREFETCH) ] = {
  881. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  882. [ C(RESULT_ACCESS) ] = 0x01b7,
  883. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  884. [ C(RESULT_MISS) ] = 0x01b7,
  885. },
  886. },
  887. [ C(DTLB) ] = {
  888. [ C(OP_READ) ] = {
  889. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  890. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  891. },
  892. [ C(OP_WRITE) ] = {
  893. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  894. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  895. },
  896. [ C(OP_PREFETCH) ] = {
  897. [ C(RESULT_ACCESS) ] = 0x0,
  898. [ C(RESULT_MISS) ] = 0x0,
  899. },
  900. },
  901. [ C(ITLB) ] = {
  902. [ C(OP_READ) ] = {
  903. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  904. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  905. },
  906. [ C(OP_WRITE) ] = {
  907. [ C(RESULT_ACCESS) ] = -1,
  908. [ C(RESULT_MISS) ] = -1,
  909. },
  910. [ C(OP_PREFETCH) ] = {
  911. [ C(RESULT_ACCESS) ] = -1,
  912. [ C(RESULT_MISS) ] = -1,
  913. },
  914. },
  915. [ C(BPU ) ] = {
  916. [ C(OP_READ) ] = {
  917. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  918. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  919. },
  920. [ C(OP_WRITE) ] = {
  921. [ C(RESULT_ACCESS) ] = -1,
  922. [ C(RESULT_MISS) ] = -1,
  923. },
  924. [ C(OP_PREFETCH) ] = {
  925. [ C(RESULT_ACCESS) ] = -1,
  926. [ C(RESULT_MISS) ] = -1,
  927. },
  928. },
  929. [ C(NODE) ] = {
  930. [ C(OP_READ) ] = {
  931. [ C(RESULT_ACCESS) ] = 0x01b7,
  932. [ C(RESULT_MISS) ] = 0x01b7,
  933. },
  934. [ C(OP_WRITE) ] = {
  935. [ C(RESULT_ACCESS) ] = 0x01b7,
  936. [ C(RESULT_MISS) ] = 0x01b7,
  937. },
  938. [ C(OP_PREFETCH) ] = {
  939. [ C(RESULT_ACCESS) ] = 0x01b7,
  940. [ C(RESULT_MISS) ] = 0x01b7,
  941. },
  942. },
  943. };
  944. /*
  945. * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
  946. * See IA32 SDM Vol 3B 30.6.1.3
  947. */
  948. #define NHM_DMND_DATA_RD (1 << 0)
  949. #define NHM_DMND_RFO (1 << 1)
  950. #define NHM_DMND_IFETCH (1 << 2)
  951. #define NHM_DMND_WB (1 << 3)
  952. #define NHM_PF_DATA_RD (1 << 4)
  953. #define NHM_PF_DATA_RFO (1 << 5)
  954. #define NHM_PF_IFETCH (1 << 6)
  955. #define NHM_OFFCORE_OTHER (1 << 7)
  956. #define NHM_UNCORE_HIT (1 << 8)
  957. #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
  958. #define NHM_OTHER_CORE_HITM (1 << 10)
  959. /* reserved */
  960. #define NHM_REMOTE_CACHE_FWD (1 << 12)
  961. #define NHM_REMOTE_DRAM (1 << 13)
  962. #define NHM_LOCAL_DRAM (1 << 14)
  963. #define NHM_NON_DRAM (1 << 15)
  964. #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
  965. #define NHM_REMOTE (NHM_REMOTE_DRAM)
  966. #define NHM_DMND_READ (NHM_DMND_DATA_RD)
  967. #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
  968. #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
  969. #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
  970. #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
  971. #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
  972. static __initconst const u64 nehalem_hw_cache_extra_regs
  973. [PERF_COUNT_HW_CACHE_MAX]
  974. [PERF_COUNT_HW_CACHE_OP_MAX]
  975. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  976. {
  977. [ C(LL ) ] = {
  978. [ C(OP_READ) ] = {
  979. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
  980. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
  981. },
  982. [ C(OP_WRITE) ] = {
  983. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
  984. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
  985. },
  986. [ C(OP_PREFETCH) ] = {
  987. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
  988. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
  989. },
  990. },
  991. [ C(NODE) ] = {
  992. [ C(OP_READ) ] = {
  993. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
  994. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
  995. },
  996. [ C(OP_WRITE) ] = {
  997. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
  998. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
  999. },
  1000. [ C(OP_PREFETCH) ] = {
  1001. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
  1002. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
  1003. },
  1004. },
  1005. };
  1006. static __initconst const u64 nehalem_hw_cache_event_ids
  1007. [PERF_COUNT_HW_CACHE_MAX]
  1008. [PERF_COUNT_HW_CACHE_OP_MAX]
  1009. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1010. {
  1011. [ C(L1D) ] = {
  1012. [ C(OP_READ) ] = {
  1013. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  1014. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  1015. },
  1016. [ C(OP_WRITE) ] = {
  1017. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  1018. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  1019. },
  1020. [ C(OP_PREFETCH) ] = {
  1021. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  1022. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  1023. },
  1024. },
  1025. [ C(L1I ) ] = {
  1026. [ C(OP_READ) ] = {
  1027. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  1028. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  1029. },
  1030. [ C(OP_WRITE) ] = {
  1031. [ C(RESULT_ACCESS) ] = -1,
  1032. [ C(RESULT_MISS) ] = -1,
  1033. },
  1034. [ C(OP_PREFETCH) ] = {
  1035. [ C(RESULT_ACCESS) ] = 0x0,
  1036. [ C(RESULT_MISS) ] = 0x0,
  1037. },
  1038. },
  1039. [ C(LL ) ] = {
  1040. [ C(OP_READ) ] = {
  1041. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  1042. [ C(RESULT_ACCESS) ] = 0x01b7,
  1043. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  1044. [ C(RESULT_MISS) ] = 0x01b7,
  1045. },
  1046. /*
  1047. * Use RFO, not WRITEBACK, because a write miss would typically occur
  1048. * on RFO.
  1049. */
  1050. [ C(OP_WRITE) ] = {
  1051. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  1052. [ C(RESULT_ACCESS) ] = 0x01b7,
  1053. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  1054. [ C(RESULT_MISS) ] = 0x01b7,
  1055. },
  1056. [ C(OP_PREFETCH) ] = {
  1057. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  1058. [ C(RESULT_ACCESS) ] = 0x01b7,
  1059. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  1060. [ C(RESULT_MISS) ] = 0x01b7,
  1061. },
  1062. },
  1063. [ C(DTLB) ] = {
  1064. [ C(OP_READ) ] = {
  1065. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  1066. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  1067. },
  1068. [ C(OP_WRITE) ] = {
  1069. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  1070. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  1071. },
  1072. [ C(OP_PREFETCH) ] = {
  1073. [ C(RESULT_ACCESS) ] = 0x0,
  1074. [ C(RESULT_MISS) ] = 0x0,
  1075. },
  1076. },
  1077. [ C(ITLB) ] = {
  1078. [ C(OP_READ) ] = {
  1079. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  1080. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  1081. },
  1082. [ C(OP_WRITE) ] = {
  1083. [ C(RESULT_ACCESS) ] = -1,
  1084. [ C(RESULT_MISS) ] = -1,
  1085. },
  1086. [ C(OP_PREFETCH) ] = {
  1087. [ C(RESULT_ACCESS) ] = -1,
  1088. [ C(RESULT_MISS) ] = -1,
  1089. },
  1090. },
  1091. [ C(BPU ) ] = {
  1092. [ C(OP_READ) ] = {
  1093. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  1094. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  1095. },
  1096. [ C(OP_WRITE) ] = {
  1097. [ C(RESULT_ACCESS) ] = -1,
  1098. [ C(RESULT_MISS) ] = -1,
  1099. },
  1100. [ C(OP_PREFETCH) ] = {
  1101. [ C(RESULT_ACCESS) ] = -1,
  1102. [ C(RESULT_MISS) ] = -1,
  1103. },
  1104. },
  1105. [ C(NODE) ] = {
  1106. [ C(OP_READ) ] = {
  1107. [ C(RESULT_ACCESS) ] = 0x01b7,
  1108. [ C(RESULT_MISS) ] = 0x01b7,
  1109. },
  1110. [ C(OP_WRITE) ] = {
  1111. [ C(RESULT_ACCESS) ] = 0x01b7,
  1112. [ C(RESULT_MISS) ] = 0x01b7,
  1113. },
  1114. [ C(OP_PREFETCH) ] = {
  1115. [ C(RESULT_ACCESS) ] = 0x01b7,
  1116. [ C(RESULT_MISS) ] = 0x01b7,
  1117. },
  1118. },
  1119. };
  1120. static __initconst const u64 core2_hw_cache_event_ids
  1121. [PERF_COUNT_HW_CACHE_MAX]
  1122. [PERF_COUNT_HW_CACHE_OP_MAX]
  1123. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1124. {
  1125. [ C(L1D) ] = {
  1126. [ C(OP_READ) ] = {
  1127. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  1128. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  1129. },
  1130. [ C(OP_WRITE) ] = {
  1131. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  1132. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  1133. },
  1134. [ C(OP_PREFETCH) ] = {
  1135. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  1136. [ C(RESULT_MISS) ] = 0,
  1137. },
  1138. },
  1139. [ C(L1I ) ] = {
  1140. [ C(OP_READ) ] = {
  1141. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  1142. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  1143. },
  1144. [ C(OP_WRITE) ] = {
  1145. [ C(RESULT_ACCESS) ] = -1,
  1146. [ C(RESULT_MISS) ] = -1,
  1147. },
  1148. [ C(OP_PREFETCH) ] = {
  1149. [ C(RESULT_ACCESS) ] = 0,
  1150. [ C(RESULT_MISS) ] = 0,
  1151. },
  1152. },
  1153. [ C(LL ) ] = {
  1154. [ C(OP_READ) ] = {
  1155. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  1156. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  1157. },
  1158. [ C(OP_WRITE) ] = {
  1159. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  1160. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  1161. },
  1162. [ C(OP_PREFETCH) ] = {
  1163. [ C(RESULT_ACCESS) ] = 0,
  1164. [ C(RESULT_MISS) ] = 0,
  1165. },
  1166. },
  1167. [ C(DTLB) ] = {
  1168. [ C(OP_READ) ] = {
  1169. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  1170. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  1171. },
  1172. [ C(OP_WRITE) ] = {
  1173. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  1174. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  1175. },
  1176. [ C(OP_PREFETCH) ] = {
  1177. [ C(RESULT_ACCESS) ] = 0,
  1178. [ C(RESULT_MISS) ] = 0,
  1179. },
  1180. },
  1181. [ C(ITLB) ] = {
  1182. [ C(OP_READ) ] = {
  1183. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  1184. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  1185. },
  1186. [ C(OP_WRITE) ] = {
  1187. [ C(RESULT_ACCESS) ] = -1,
  1188. [ C(RESULT_MISS) ] = -1,
  1189. },
  1190. [ C(OP_PREFETCH) ] = {
  1191. [ C(RESULT_ACCESS) ] = -1,
  1192. [ C(RESULT_MISS) ] = -1,
  1193. },
  1194. },
  1195. [ C(BPU ) ] = {
  1196. [ C(OP_READ) ] = {
  1197. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  1198. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  1199. },
  1200. [ C(OP_WRITE) ] = {
  1201. [ C(RESULT_ACCESS) ] = -1,
  1202. [ C(RESULT_MISS) ] = -1,
  1203. },
  1204. [ C(OP_PREFETCH) ] = {
  1205. [ C(RESULT_ACCESS) ] = -1,
  1206. [ C(RESULT_MISS) ] = -1,
  1207. },
  1208. },
  1209. };
  1210. static __initconst const u64 atom_hw_cache_event_ids
  1211. [PERF_COUNT_HW_CACHE_MAX]
  1212. [PERF_COUNT_HW_CACHE_OP_MAX]
  1213. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1214. {
  1215. [ C(L1D) ] = {
  1216. [ C(OP_READ) ] = {
  1217. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  1218. [ C(RESULT_MISS) ] = 0,
  1219. },
  1220. [ C(OP_WRITE) ] = {
  1221. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  1222. [ C(RESULT_MISS) ] = 0,
  1223. },
  1224. [ C(OP_PREFETCH) ] = {
  1225. [ C(RESULT_ACCESS) ] = 0x0,
  1226. [ C(RESULT_MISS) ] = 0,
  1227. },
  1228. },
  1229. [ C(L1I ) ] = {
  1230. [ C(OP_READ) ] = {
  1231. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  1232. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  1233. },
  1234. [ C(OP_WRITE) ] = {
  1235. [ C(RESULT_ACCESS) ] = -1,
  1236. [ C(RESULT_MISS) ] = -1,
  1237. },
  1238. [ C(OP_PREFETCH) ] = {
  1239. [ C(RESULT_ACCESS) ] = 0,
  1240. [ C(RESULT_MISS) ] = 0,
  1241. },
  1242. },
  1243. [ C(LL ) ] = {
  1244. [ C(OP_READ) ] = {
  1245. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  1246. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  1247. },
  1248. [ C(OP_WRITE) ] = {
  1249. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  1250. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  1251. },
  1252. [ C(OP_PREFETCH) ] = {
  1253. [ C(RESULT_ACCESS) ] = 0,
  1254. [ C(RESULT_MISS) ] = 0,
  1255. },
  1256. },
  1257. [ C(DTLB) ] = {
  1258. [ C(OP_READ) ] = {
  1259. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  1260. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  1261. },
  1262. [ C(OP_WRITE) ] = {
  1263. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  1264. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  1265. },
  1266. [ C(OP_PREFETCH) ] = {
  1267. [ C(RESULT_ACCESS) ] = 0,
  1268. [ C(RESULT_MISS) ] = 0,
  1269. },
  1270. },
  1271. [ C(ITLB) ] = {
  1272. [ C(OP_READ) ] = {
  1273. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  1274. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  1275. },
  1276. [ C(OP_WRITE) ] = {
  1277. [ C(RESULT_ACCESS) ] = -1,
  1278. [ C(RESULT_MISS) ] = -1,
  1279. },
  1280. [ C(OP_PREFETCH) ] = {
  1281. [ C(RESULT_ACCESS) ] = -1,
  1282. [ C(RESULT_MISS) ] = -1,
  1283. },
  1284. },
  1285. [ C(BPU ) ] = {
  1286. [ C(OP_READ) ] = {
  1287. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  1288. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  1289. },
  1290. [ C(OP_WRITE) ] = {
  1291. [ C(RESULT_ACCESS) ] = -1,
  1292. [ C(RESULT_MISS) ] = -1,
  1293. },
  1294. [ C(OP_PREFETCH) ] = {
  1295. [ C(RESULT_ACCESS) ] = -1,
  1296. [ C(RESULT_MISS) ] = -1,
  1297. },
  1298. },
  1299. };
  1300. static struct extra_reg intel_slm_extra_regs[] __read_mostly =
  1301. {
  1302. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  1303. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
  1304. INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
  1305. EVENT_EXTRA_END
  1306. };
  1307. #define SLM_DMND_READ SNB_DMND_DATA_RD
  1308. #define SLM_DMND_WRITE SNB_DMND_RFO
  1309. #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
  1310. #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
  1311. #define SLM_LLC_ACCESS SNB_RESP_ANY
  1312. #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
  1313. static __initconst const u64 slm_hw_cache_extra_regs
  1314. [PERF_COUNT_HW_CACHE_MAX]
  1315. [PERF_COUNT_HW_CACHE_OP_MAX]
  1316. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1317. {
  1318. [ C(LL ) ] = {
  1319. [ C(OP_READ) ] = {
  1320. [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
  1321. [ C(RESULT_MISS) ] = 0,
  1322. },
  1323. [ C(OP_WRITE) ] = {
  1324. [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
  1325. [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
  1326. },
  1327. [ C(OP_PREFETCH) ] = {
  1328. [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
  1329. [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
  1330. },
  1331. },
  1332. };
  1333. static __initconst const u64 slm_hw_cache_event_ids
  1334. [PERF_COUNT_HW_CACHE_MAX]
  1335. [PERF_COUNT_HW_CACHE_OP_MAX]
  1336. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1337. {
  1338. [ C(L1D) ] = {
  1339. [ C(OP_READ) ] = {
  1340. [ C(RESULT_ACCESS) ] = 0,
  1341. [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
  1342. },
  1343. [ C(OP_WRITE) ] = {
  1344. [ C(RESULT_ACCESS) ] = 0,
  1345. [ C(RESULT_MISS) ] = 0,
  1346. },
  1347. [ C(OP_PREFETCH) ] = {
  1348. [ C(RESULT_ACCESS) ] = 0,
  1349. [ C(RESULT_MISS) ] = 0,
  1350. },
  1351. },
  1352. [ C(L1I ) ] = {
  1353. [ C(OP_READ) ] = {
  1354. [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
  1355. [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
  1356. },
  1357. [ C(OP_WRITE) ] = {
  1358. [ C(RESULT_ACCESS) ] = -1,
  1359. [ C(RESULT_MISS) ] = -1,
  1360. },
  1361. [ C(OP_PREFETCH) ] = {
  1362. [ C(RESULT_ACCESS) ] = 0,
  1363. [ C(RESULT_MISS) ] = 0,
  1364. },
  1365. },
  1366. [ C(LL ) ] = {
  1367. [ C(OP_READ) ] = {
  1368. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  1369. [ C(RESULT_ACCESS) ] = 0x01b7,
  1370. [ C(RESULT_MISS) ] = 0,
  1371. },
  1372. [ C(OP_WRITE) ] = {
  1373. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  1374. [ C(RESULT_ACCESS) ] = 0x01b7,
  1375. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  1376. [ C(RESULT_MISS) ] = 0x01b7,
  1377. },
  1378. [ C(OP_PREFETCH) ] = {
  1379. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  1380. [ C(RESULT_ACCESS) ] = 0x01b7,
  1381. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  1382. [ C(RESULT_MISS) ] = 0x01b7,
  1383. },
  1384. },
  1385. [ C(DTLB) ] = {
  1386. [ C(OP_READ) ] = {
  1387. [ C(RESULT_ACCESS) ] = 0,
  1388. [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
  1389. },
  1390. [ C(OP_WRITE) ] = {
  1391. [ C(RESULT_ACCESS) ] = 0,
  1392. [ C(RESULT_MISS) ] = 0,
  1393. },
  1394. [ C(OP_PREFETCH) ] = {
  1395. [ C(RESULT_ACCESS) ] = 0,
  1396. [ C(RESULT_MISS) ] = 0,
  1397. },
  1398. },
  1399. [ C(ITLB) ] = {
  1400. [ C(OP_READ) ] = {
  1401. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  1402. [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
  1403. },
  1404. [ C(OP_WRITE) ] = {
  1405. [ C(RESULT_ACCESS) ] = -1,
  1406. [ C(RESULT_MISS) ] = -1,
  1407. },
  1408. [ C(OP_PREFETCH) ] = {
  1409. [ C(RESULT_ACCESS) ] = -1,
  1410. [ C(RESULT_MISS) ] = -1,
  1411. },
  1412. },
  1413. [ C(BPU ) ] = {
  1414. [ C(OP_READ) ] = {
  1415. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  1416. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  1417. },
  1418. [ C(OP_WRITE) ] = {
  1419. [ C(RESULT_ACCESS) ] = -1,
  1420. [ C(RESULT_MISS) ] = -1,
  1421. },
  1422. [ C(OP_PREFETCH) ] = {
  1423. [ C(RESULT_ACCESS) ] = -1,
  1424. [ C(RESULT_MISS) ] = -1,
  1425. },
  1426. },
  1427. };
  1428. static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
  1429. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  1430. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
  1431. INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
  1432. EVENT_EXTRA_END
  1433. };
  1434. #define GLM_DEMAND_DATA_RD BIT_ULL(0)
  1435. #define GLM_DEMAND_RFO BIT_ULL(1)
  1436. #define GLM_ANY_RESPONSE BIT_ULL(16)
  1437. #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
  1438. #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
  1439. #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
  1440. #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
  1441. #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
  1442. #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
  1443. #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
  1444. static __initconst const u64 glm_hw_cache_event_ids
  1445. [PERF_COUNT_HW_CACHE_MAX]
  1446. [PERF_COUNT_HW_CACHE_OP_MAX]
  1447. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1448. [C(L1D)] = {
  1449. [C(OP_READ)] = {
  1450. [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  1451. [C(RESULT_MISS)] = 0x0,
  1452. },
  1453. [C(OP_WRITE)] = {
  1454. [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  1455. [C(RESULT_MISS)] = 0x0,
  1456. },
  1457. [C(OP_PREFETCH)] = {
  1458. [C(RESULT_ACCESS)] = 0x0,
  1459. [C(RESULT_MISS)] = 0x0,
  1460. },
  1461. },
  1462. [C(L1I)] = {
  1463. [C(OP_READ)] = {
  1464. [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
  1465. [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
  1466. },
  1467. [C(OP_WRITE)] = {
  1468. [C(RESULT_ACCESS)] = -1,
  1469. [C(RESULT_MISS)] = -1,
  1470. },
  1471. [C(OP_PREFETCH)] = {
  1472. [C(RESULT_ACCESS)] = 0x0,
  1473. [C(RESULT_MISS)] = 0x0,
  1474. },
  1475. },
  1476. [C(LL)] = {
  1477. [C(OP_READ)] = {
  1478. [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1479. [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1480. },
  1481. [C(OP_WRITE)] = {
  1482. [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1483. [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1484. },
  1485. [C(OP_PREFETCH)] = {
  1486. [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1487. [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1488. },
  1489. },
  1490. [C(DTLB)] = {
  1491. [C(OP_READ)] = {
  1492. [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  1493. [C(RESULT_MISS)] = 0x0,
  1494. },
  1495. [C(OP_WRITE)] = {
  1496. [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  1497. [C(RESULT_MISS)] = 0x0,
  1498. },
  1499. [C(OP_PREFETCH)] = {
  1500. [C(RESULT_ACCESS)] = 0x0,
  1501. [C(RESULT_MISS)] = 0x0,
  1502. },
  1503. },
  1504. [C(ITLB)] = {
  1505. [C(OP_READ)] = {
  1506. [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
  1507. [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
  1508. },
  1509. [C(OP_WRITE)] = {
  1510. [C(RESULT_ACCESS)] = -1,
  1511. [C(RESULT_MISS)] = -1,
  1512. },
  1513. [C(OP_PREFETCH)] = {
  1514. [C(RESULT_ACCESS)] = -1,
  1515. [C(RESULT_MISS)] = -1,
  1516. },
  1517. },
  1518. [C(BPU)] = {
  1519. [C(OP_READ)] = {
  1520. [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  1521. [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  1522. },
  1523. [C(OP_WRITE)] = {
  1524. [C(RESULT_ACCESS)] = -1,
  1525. [C(RESULT_MISS)] = -1,
  1526. },
  1527. [C(OP_PREFETCH)] = {
  1528. [C(RESULT_ACCESS)] = -1,
  1529. [C(RESULT_MISS)] = -1,
  1530. },
  1531. },
  1532. };
  1533. static __initconst const u64 glm_hw_cache_extra_regs
  1534. [PERF_COUNT_HW_CACHE_MAX]
  1535. [PERF_COUNT_HW_CACHE_OP_MAX]
  1536. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1537. [C(LL)] = {
  1538. [C(OP_READ)] = {
  1539. [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
  1540. GLM_LLC_ACCESS,
  1541. [C(RESULT_MISS)] = GLM_DEMAND_READ|
  1542. GLM_LLC_MISS,
  1543. },
  1544. [C(OP_WRITE)] = {
  1545. [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
  1546. GLM_LLC_ACCESS,
  1547. [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
  1548. GLM_LLC_MISS,
  1549. },
  1550. [C(OP_PREFETCH)] = {
  1551. [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
  1552. GLM_LLC_ACCESS,
  1553. [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
  1554. GLM_LLC_MISS,
  1555. },
  1556. },
  1557. };
  1558. #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
  1559. #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
  1560. #define KNL_MCDRAM_LOCAL BIT_ULL(21)
  1561. #define KNL_MCDRAM_FAR BIT_ULL(22)
  1562. #define KNL_DDR_LOCAL BIT_ULL(23)
  1563. #define KNL_DDR_FAR BIT_ULL(24)
  1564. #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
  1565. KNL_DDR_LOCAL | KNL_DDR_FAR)
  1566. #define KNL_L2_READ SLM_DMND_READ
  1567. #define KNL_L2_WRITE SLM_DMND_WRITE
  1568. #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
  1569. #define KNL_L2_ACCESS SLM_LLC_ACCESS
  1570. #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
  1571. KNL_DRAM_ANY | SNB_SNP_ANY | \
  1572. SNB_NON_DRAM)
  1573. static __initconst const u64 knl_hw_cache_extra_regs
  1574. [PERF_COUNT_HW_CACHE_MAX]
  1575. [PERF_COUNT_HW_CACHE_OP_MAX]
  1576. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1577. [C(LL)] = {
  1578. [C(OP_READ)] = {
  1579. [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
  1580. [C(RESULT_MISS)] = 0,
  1581. },
  1582. [C(OP_WRITE)] = {
  1583. [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
  1584. [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
  1585. },
  1586. [C(OP_PREFETCH)] = {
  1587. [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
  1588. [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
  1589. },
  1590. },
  1591. };
  1592. /*
  1593. * Used from PMIs where the LBRs are already disabled.
  1594. *
  1595. * This function could be called consecutively. It is required to remain in
  1596. * disabled state if called consecutively.
  1597. *
  1598. * During consecutive calls, the same disable value will be written to related
  1599. * registers, so the PMU state remains unchanged. hw.state in
  1600. * intel_bts_disable_local will remain PERF_HES_STOPPED too in consecutive
  1601. * calls.
  1602. */
  1603. static void __intel_pmu_disable_all(void)
  1604. {
  1605. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1606. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  1607. if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  1608. intel_pmu_disable_bts();
  1609. else
  1610. intel_bts_disable_local();
  1611. intel_pmu_pebs_disable_all();
  1612. }
  1613. static void intel_pmu_disable_all(void)
  1614. {
  1615. __intel_pmu_disable_all();
  1616. intel_pmu_lbr_disable_all();
  1617. }
  1618. static void __intel_pmu_enable_all(int added, bool pmi)
  1619. {
  1620. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1621. intel_pmu_pebs_enable_all();
  1622. intel_pmu_lbr_enable_all(pmi);
  1623. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
  1624. x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
  1625. if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  1626. struct perf_event *event =
  1627. cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
  1628. if (WARN_ON_ONCE(!event))
  1629. return;
  1630. intel_pmu_enable_bts(event->hw.config);
  1631. } else
  1632. intel_bts_enable_local();
  1633. }
  1634. static void intel_pmu_enable_all(int added)
  1635. {
  1636. __intel_pmu_enable_all(added, false);
  1637. }
  1638. /*
  1639. * Workaround for:
  1640. * Intel Errata AAK100 (model 26)
  1641. * Intel Errata AAP53 (model 30)
  1642. * Intel Errata BD53 (model 44)
  1643. *
  1644. * The official story:
  1645. * These chips need to be 'reset' when adding counters by programming the
  1646. * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
  1647. * in sequence on the same PMC or on different PMCs.
  1648. *
  1649. * In practise it appears some of these events do in fact count, and
  1650. * we need to programm all 4 events.
  1651. */
  1652. static void intel_pmu_nhm_workaround(void)
  1653. {
  1654. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1655. static const unsigned long nhm_magic[4] = {
  1656. 0x4300B5,
  1657. 0x4300D2,
  1658. 0x4300B1,
  1659. 0x4300B1
  1660. };
  1661. struct perf_event *event;
  1662. int i;
  1663. /*
  1664. * The Errata requires below steps:
  1665. * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
  1666. * 2) Configure 4 PERFEVTSELx with the magic events and clear
  1667. * the corresponding PMCx;
  1668. * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
  1669. * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
  1670. * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
  1671. */
  1672. /*
  1673. * The real steps we choose are a little different from above.
  1674. * A) To reduce MSR operations, we don't run step 1) as they
  1675. * are already cleared before this function is called;
  1676. * B) Call x86_perf_event_update to save PMCx before configuring
  1677. * PERFEVTSELx with magic number;
  1678. * C) With step 5), we do clear only when the PERFEVTSELx is
  1679. * not used currently.
  1680. * D) Call x86_perf_event_set_period to restore PMCx;
  1681. */
  1682. /* We always operate 4 pairs of PERF Counters */
  1683. for (i = 0; i < 4; i++) {
  1684. event = cpuc->events[i];
  1685. if (event)
  1686. x86_perf_event_update(event);
  1687. }
  1688. for (i = 0; i < 4; i++) {
  1689. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
  1690. wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
  1691. }
  1692. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
  1693. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  1694. for (i = 0; i < 4; i++) {
  1695. event = cpuc->events[i];
  1696. if (event) {
  1697. x86_perf_event_set_period(event);
  1698. __x86_pmu_enable_event(&event->hw,
  1699. ARCH_PERFMON_EVENTSEL_ENABLE);
  1700. } else
  1701. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
  1702. }
  1703. }
  1704. static void intel_pmu_nhm_enable_all(int added)
  1705. {
  1706. if (added)
  1707. intel_pmu_nhm_workaround();
  1708. intel_pmu_enable_all(added);
  1709. }
  1710. static inline u64 intel_pmu_get_status(void)
  1711. {
  1712. u64 status;
  1713. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  1714. return status;
  1715. }
  1716. static inline void intel_pmu_ack_status(u64 ack)
  1717. {
  1718. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  1719. }
  1720. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  1721. {
  1722. int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
  1723. u64 ctrl_val, mask;
  1724. mask = 0xfULL << (idx * 4);
  1725. rdmsrl(hwc->config_base, ctrl_val);
  1726. ctrl_val &= ~mask;
  1727. wrmsrl(hwc->config_base, ctrl_val);
  1728. }
  1729. static inline bool event_is_checkpointed(struct perf_event *event)
  1730. {
  1731. return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
  1732. }
  1733. static void intel_pmu_disable_event(struct perf_event *event)
  1734. {
  1735. struct hw_perf_event *hwc = &event->hw;
  1736. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1737. if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
  1738. intel_pmu_disable_bts();
  1739. intel_pmu_drain_bts_buffer();
  1740. return;
  1741. }
  1742. cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
  1743. cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
  1744. cpuc->intel_cp_status &= ~(1ull << hwc->idx);
  1745. /*
  1746. * must disable before any actual event
  1747. * because any event may be combined with LBR
  1748. */
  1749. if (needs_branch_stack(event))
  1750. intel_pmu_lbr_disable(event);
  1751. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  1752. intel_pmu_disable_fixed(hwc);
  1753. return;
  1754. }
  1755. x86_pmu_disable_event(event);
  1756. if (unlikely(event->attr.precise_ip))
  1757. intel_pmu_pebs_disable(event);
  1758. }
  1759. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  1760. {
  1761. int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
  1762. u64 ctrl_val, bits, mask;
  1763. /*
  1764. * Enable IRQ generation (0x8),
  1765. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  1766. * if requested:
  1767. */
  1768. bits = 0x8ULL;
  1769. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  1770. bits |= 0x2;
  1771. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  1772. bits |= 0x1;
  1773. /*
  1774. * ANY bit is supported in v3 and up
  1775. */
  1776. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  1777. bits |= 0x4;
  1778. bits <<= (idx * 4);
  1779. mask = 0xfULL << (idx * 4);
  1780. rdmsrl(hwc->config_base, ctrl_val);
  1781. ctrl_val &= ~mask;
  1782. ctrl_val |= bits;
  1783. wrmsrl(hwc->config_base, ctrl_val);
  1784. }
  1785. static void intel_pmu_enable_event(struct perf_event *event)
  1786. {
  1787. struct hw_perf_event *hwc = &event->hw;
  1788. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1789. if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
  1790. if (!__this_cpu_read(cpu_hw_events.enabled))
  1791. return;
  1792. intel_pmu_enable_bts(hwc->config);
  1793. return;
  1794. }
  1795. /*
  1796. * must enabled before any actual event
  1797. * because any event may be combined with LBR
  1798. */
  1799. if (needs_branch_stack(event))
  1800. intel_pmu_lbr_enable(event);
  1801. if (event->attr.exclude_host)
  1802. cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
  1803. if (event->attr.exclude_guest)
  1804. cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
  1805. if (unlikely(event_is_checkpointed(event)))
  1806. cpuc->intel_cp_status |= (1ull << hwc->idx);
  1807. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  1808. intel_pmu_enable_fixed(hwc);
  1809. return;
  1810. }
  1811. if (unlikely(event->attr.precise_ip))
  1812. intel_pmu_pebs_enable(event);
  1813. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  1814. }
  1815. /*
  1816. * Save and restart an expired event. Called by NMI contexts,
  1817. * so it has to be careful about preempting normal event ops:
  1818. */
  1819. int intel_pmu_save_and_restart(struct perf_event *event)
  1820. {
  1821. x86_perf_event_update(event);
  1822. /*
  1823. * For a checkpointed counter always reset back to 0. This
  1824. * avoids a situation where the counter overflows, aborts the
  1825. * transaction and is then set back to shortly before the
  1826. * overflow, and overflows and aborts again.
  1827. */
  1828. if (unlikely(event_is_checkpointed(event))) {
  1829. /* No race with NMIs because the counter should not be armed */
  1830. wrmsrl(event->hw.event_base, 0);
  1831. local64_set(&event->hw.prev_count, 0);
  1832. }
  1833. return x86_perf_event_set_period(event);
  1834. }
  1835. static void intel_pmu_reset(void)
  1836. {
  1837. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  1838. unsigned long flags;
  1839. int idx;
  1840. if (!x86_pmu.num_counters)
  1841. return;
  1842. local_irq_save(flags);
  1843. pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
  1844. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1845. wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
  1846. wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
  1847. }
  1848. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  1849. wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  1850. if (ds)
  1851. ds->bts_index = ds->bts_buffer_base;
  1852. /* Ack all overflows and disable fixed counters */
  1853. if (x86_pmu.version >= 2) {
  1854. intel_pmu_ack_status(intel_pmu_get_status());
  1855. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  1856. }
  1857. /* Reset LBRs and LBR freezing */
  1858. if (x86_pmu.lbr_nr) {
  1859. update_debugctlmsr(get_debugctlmsr() &
  1860. ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
  1861. }
  1862. local_irq_restore(flags);
  1863. }
  1864. /*
  1865. * This handler is triggered by the local APIC, so the APIC IRQ handling
  1866. * rules apply:
  1867. */
  1868. static int intel_pmu_handle_irq(struct pt_regs *regs)
  1869. {
  1870. struct perf_sample_data data;
  1871. struct cpu_hw_events *cpuc;
  1872. int bit, loops;
  1873. u64 status;
  1874. int handled;
  1875. cpuc = this_cpu_ptr(&cpu_hw_events);
  1876. /*
  1877. * No known reason to not always do late ACK,
  1878. * but just in case do it opt-in.
  1879. */
  1880. if (!x86_pmu.late_ack)
  1881. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1882. __intel_pmu_disable_all();
  1883. handled = intel_pmu_drain_bts_buffer();
  1884. handled += intel_bts_interrupt();
  1885. status = intel_pmu_get_status();
  1886. if (!status)
  1887. goto done;
  1888. loops = 0;
  1889. again:
  1890. intel_pmu_lbr_read();
  1891. intel_pmu_ack_status(status);
  1892. if (++loops > 100) {
  1893. static bool warned = false;
  1894. if (!warned) {
  1895. WARN(1, "perfevents: irq loop stuck!\n");
  1896. perf_event_print_debug();
  1897. warned = true;
  1898. }
  1899. intel_pmu_reset();
  1900. goto done;
  1901. }
  1902. inc_irq_stat(apic_perf_irqs);
  1903. /*
  1904. * Ignore a range of extra bits in status that do not indicate
  1905. * overflow by themselves.
  1906. */
  1907. status &= ~(GLOBAL_STATUS_COND_CHG |
  1908. GLOBAL_STATUS_ASIF |
  1909. GLOBAL_STATUS_LBRS_FROZEN);
  1910. if (!status)
  1911. goto done;
  1912. /*
  1913. * PEBS overflow sets bit 62 in the global status register
  1914. */
  1915. if (__test_and_clear_bit(62, (unsigned long *)&status)) {
  1916. handled++;
  1917. x86_pmu.drain_pebs(regs);
  1918. /*
  1919. * There are cases where, even though, the PEBS ovfl bit is set
  1920. * in GLOBAL_OVF_STATUS, the PEBS events may also have their
  1921. * overflow bits set for their counters. We must clear them
  1922. * here because they have been processed as exact samples in
  1923. * the drain_pebs() routine. They must not be processed again
  1924. * in the for_each_bit_set() loop for regular samples below.
  1925. */
  1926. status &= ~cpuc->pebs_enabled;
  1927. status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
  1928. }
  1929. /*
  1930. * Intel PT
  1931. */
  1932. if (__test_and_clear_bit(55, (unsigned long *)&status)) {
  1933. handled++;
  1934. intel_pt_interrupt();
  1935. }
  1936. /*
  1937. * Checkpointed counters can lead to 'spurious' PMIs because the
  1938. * rollback caused by the PMI will have cleared the overflow status
  1939. * bit. Therefore always force probe these counters.
  1940. */
  1941. status |= cpuc->intel_cp_status;
  1942. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  1943. struct perf_event *event = cpuc->events[bit];
  1944. handled++;
  1945. if (!test_bit(bit, cpuc->active_mask))
  1946. continue;
  1947. if (!intel_pmu_save_and_restart(event))
  1948. continue;
  1949. perf_sample_data_init(&data, 0, event->hw.last_period);
  1950. if (has_branch_stack(event))
  1951. data.br_stack = &cpuc->lbr_stack;
  1952. if (perf_event_overflow(event, &data, regs))
  1953. x86_pmu_stop(event, 0);
  1954. }
  1955. /*
  1956. * Repeat if there is more work to be done:
  1957. */
  1958. status = intel_pmu_get_status();
  1959. if (status)
  1960. goto again;
  1961. done:
  1962. /* Only restore PMU state when it's active. See x86_pmu_disable(). */
  1963. if (cpuc->enabled)
  1964. __intel_pmu_enable_all(0, true);
  1965. /*
  1966. * Only unmask the NMI after the overflow counters
  1967. * have been reset. This avoids spurious NMIs on
  1968. * Haswell CPUs.
  1969. */
  1970. if (x86_pmu.late_ack)
  1971. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1972. return handled;
  1973. }
  1974. static struct event_constraint *
  1975. intel_bts_constraints(struct perf_event *event)
  1976. {
  1977. struct hw_perf_event *hwc = &event->hw;
  1978. unsigned int hw_event, bts_event;
  1979. if (event->attr.freq)
  1980. return NULL;
  1981. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  1982. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  1983. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  1984. return &bts_constraint;
  1985. return NULL;
  1986. }
  1987. static int intel_alt_er(int idx, u64 config)
  1988. {
  1989. int alt_idx = idx;
  1990. if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
  1991. return idx;
  1992. if (idx == EXTRA_REG_RSP_0)
  1993. alt_idx = EXTRA_REG_RSP_1;
  1994. if (idx == EXTRA_REG_RSP_1)
  1995. alt_idx = EXTRA_REG_RSP_0;
  1996. if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
  1997. return idx;
  1998. return alt_idx;
  1999. }
  2000. static void intel_fixup_er(struct perf_event *event, int idx)
  2001. {
  2002. event->hw.extra_reg.idx = idx;
  2003. if (idx == EXTRA_REG_RSP_0) {
  2004. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  2005. event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
  2006. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
  2007. } else if (idx == EXTRA_REG_RSP_1) {
  2008. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  2009. event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
  2010. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
  2011. }
  2012. }
  2013. /*
  2014. * manage allocation of shared extra msr for certain events
  2015. *
  2016. * sharing can be:
  2017. * per-cpu: to be shared between the various events on a single PMU
  2018. * per-core: per-cpu + shared by HT threads
  2019. */
  2020. static struct event_constraint *
  2021. __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
  2022. struct perf_event *event,
  2023. struct hw_perf_event_extra *reg)
  2024. {
  2025. struct event_constraint *c = &emptyconstraint;
  2026. struct er_account *era;
  2027. unsigned long flags;
  2028. int idx = reg->idx;
  2029. /*
  2030. * reg->alloc can be set due to existing state, so for fake cpuc we
  2031. * need to ignore this, otherwise we might fail to allocate proper fake
  2032. * state for this extra reg constraint. Also see the comment below.
  2033. */
  2034. if (reg->alloc && !cpuc->is_fake)
  2035. return NULL; /* call x86_get_event_constraint() */
  2036. again:
  2037. era = &cpuc->shared_regs->regs[idx];
  2038. /*
  2039. * we use spin_lock_irqsave() to avoid lockdep issues when
  2040. * passing a fake cpuc
  2041. */
  2042. raw_spin_lock_irqsave(&era->lock, flags);
  2043. if (!atomic_read(&era->ref) || era->config == reg->config) {
  2044. /*
  2045. * If its a fake cpuc -- as per validate_{group,event}() we
  2046. * shouldn't touch event state and we can avoid doing so
  2047. * since both will only call get_event_constraints() once
  2048. * on each event, this avoids the need for reg->alloc.
  2049. *
  2050. * Not doing the ER fixup will only result in era->reg being
  2051. * wrong, but since we won't actually try and program hardware
  2052. * this isn't a problem either.
  2053. */
  2054. if (!cpuc->is_fake) {
  2055. if (idx != reg->idx)
  2056. intel_fixup_er(event, idx);
  2057. /*
  2058. * x86_schedule_events() can call get_event_constraints()
  2059. * multiple times on events in the case of incremental
  2060. * scheduling(). reg->alloc ensures we only do the ER
  2061. * allocation once.
  2062. */
  2063. reg->alloc = 1;
  2064. }
  2065. /* lock in msr value */
  2066. era->config = reg->config;
  2067. era->reg = reg->reg;
  2068. /* one more user */
  2069. atomic_inc(&era->ref);
  2070. /*
  2071. * need to call x86_get_event_constraint()
  2072. * to check if associated event has constraints
  2073. */
  2074. c = NULL;
  2075. } else {
  2076. idx = intel_alt_er(idx, reg->config);
  2077. if (idx != reg->idx) {
  2078. raw_spin_unlock_irqrestore(&era->lock, flags);
  2079. goto again;
  2080. }
  2081. }
  2082. raw_spin_unlock_irqrestore(&era->lock, flags);
  2083. return c;
  2084. }
  2085. static void
  2086. __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
  2087. struct hw_perf_event_extra *reg)
  2088. {
  2089. struct er_account *era;
  2090. /*
  2091. * Only put constraint if extra reg was actually allocated. Also takes
  2092. * care of event which do not use an extra shared reg.
  2093. *
  2094. * Also, if this is a fake cpuc we shouldn't touch any event state
  2095. * (reg->alloc) and we don't care about leaving inconsistent cpuc state
  2096. * either since it'll be thrown out.
  2097. */
  2098. if (!reg->alloc || cpuc->is_fake)
  2099. return;
  2100. era = &cpuc->shared_regs->regs[reg->idx];
  2101. /* one fewer user */
  2102. atomic_dec(&era->ref);
  2103. /* allocate again next time */
  2104. reg->alloc = 0;
  2105. }
  2106. static struct event_constraint *
  2107. intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
  2108. struct perf_event *event)
  2109. {
  2110. struct event_constraint *c = NULL, *d;
  2111. struct hw_perf_event_extra *xreg, *breg;
  2112. xreg = &event->hw.extra_reg;
  2113. if (xreg->idx != EXTRA_REG_NONE) {
  2114. c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
  2115. if (c == &emptyconstraint)
  2116. return c;
  2117. }
  2118. breg = &event->hw.branch_reg;
  2119. if (breg->idx != EXTRA_REG_NONE) {
  2120. d = __intel_shared_reg_get_constraints(cpuc, event, breg);
  2121. if (d == &emptyconstraint) {
  2122. __intel_shared_reg_put_constraints(cpuc, xreg);
  2123. c = d;
  2124. }
  2125. }
  2126. return c;
  2127. }
  2128. struct event_constraint *
  2129. x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2130. struct perf_event *event)
  2131. {
  2132. struct event_constraint *c;
  2133. if (x86_pmu.event_constraints) {
  2134. for_each_event_constraint(c, x86_pmu.event_constraints) {
  2135. if ((event->hw.config & c->cmask) == c->code) {
  2136. event->hw.flags |= c->flags;
  2137. return c;
  2138. }
  2139. }
  2140. }
  2141. return &unconstrained;
  2142. }
  2143. static struct event_constraint *
  2144. __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2145. struct perf_event *event)
  2146. {
  2147. struct event_constraint *c;
  2148. c = intel_bts_constraints(event);
  2149. if (c)
  2150. return c;
  2151. c = intel_shared_regs_constraints(cpuc, event);
  2152. if (c)
  2153. return c;
  2154. c = intel_pebs_constraints(event);
  2155. if (c)
  2156. return c;
  2157. return x86_get_event_constraints(cpuc, idx, event);
  2158. }
  2159. static void
  2160. intel_start_scheduling(struct cpu_hw_events *cpuc)
  2161. {
  2162. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2163. struct intel_excl_states *xl;
  2164. int tid = cpuc->excl_thread_id;
  2165. /*
  2166. * nothing needed if in group validation mode
  2167. */
  2168. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2169. return;
  2170. /*
  2171. * no exclusion needed
  2172. */
  2173. if (WARN_ON_ONCE(!excl_cntrs))
  2174. return;
  2175. xl = &excl_cntrs->states[tid];
  2176. xl->sched_started = true;
  2177. /*
  2178. * lock shared state until we are done scheduling
  2179. * in stop_event_scheduling()
  2180. * makes scheduling appear as a transaction
  2181. */
  2182. raw_spin_lock(&excl_cntrs->lock);
  2183. }
  2184. static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
  2185. {
  2186. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2187. struct event_constraint *c = cpuc->event_constraint[idx];
  2188. struct intel_excl_states *xl;
  2189. int tid = cpuc->excl_thread_id;
  2190. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2191. return;
  2192. if (WARN_ON_ONCE(!excl_cntrs))
  2193. return;
  2194. if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
  2195. return;
  2196. xl = &excl_cntrs->states[tid];
  2197. lockdep_assert_held(&excl_cntrs->lock);
  2198. if (c->flags & PERF_X86_EVENT_EXCL)
  2199. xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
  2200. else
  2201. xl->state[cntr] = INTEL_EXCL_SHARED;
  2202. }
  2203. static void
  2204. intel_stop_scheduling(struct cpu_hw_events *cpuc)
  2205. {
  2206. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2207. struct intel_excl_states *xl;
  2208. int tid = cpuc->excl_thread_id;
  2209. /*
  2210. * nothing needed if in group validation mode
  2211. */
  2212. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2213. return;
  2214. /*
  2215. * no exclusion needed
  2216. */
  2217. if (WARN_ON_ONCE(!excl_cntrs))
  2218. return;
  2219. xl = &excl_cntrs->states[tid];
  2220. xl->sched_started = false;
  2221. /*
  2222. * release shared state lock (acquired in intel_start_scheduling())
  2223. */
  2224. raw_spin_unlock(&excl_cntrs->lock);
  2225. }
  2226. static struct event_constraint *
  2227. intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
  2228. int idx, struct event_constraint *c)
  2229. {
  2230. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2231. struct intel_excl_states *xlo;
  2232. int tid = cpuc->excl_thread_id;
  2233. int is_excl, i;
  2234. /*
  2235. * validating a group does not require
  2236. * enforcing cross-thread exclusion
  2237. */
  2238. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2239. return c;
  2240. /*
  2241. * no exclusion needed
  2242. */
  2243. if (WARN_ON_ONCE(!excl_cntrs))
  2244. return c;
  2245. /*
  2246. * because we modify the constraint, we need
  2247. * to make a copy. Static constraints come
  2248. * from static const tables.
  2249. *
  2250. * only needed when constraint has not yet
  2251. * been cloned (marked dynamic)
  2252. */
  2253. if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
  2254. struct event_constraint *cx;
  2255. /*
  2256. * grab pre-allocated constraint entry
  2257. */
  2258. cx = &cpuc->constraint_list[idx];
  2259. /*
  2260. * initialize dynamic constraint
  2261. * with static constraint
  2262. */
  2263. *cx = *c;
  2264. /*
  2265. * mark constraint as dynamic, so we
  2266. * can free it later on
  2267. */
  2268. cx->flags |= PERF_X86_EVENT_DYNAMIC;
  2269. c = cx;
  2270. }
  2271. /*
  2272. * From here on, the constraint is dynamic.
  2273. * Either it was just allocated above, or it
  2274. * was allocated during a earlier invocation
  2275. * of this function
  2276. */
  2277. /*
  2278. * state of sibling HT
  2279. */
  2280. xlo = &excl_cntrs->states[tid ^ 1];
  2281. /*
  2282. * event requires exclusive counter access
  2283. * across HT threads
  2284. */
  2285. is_excl = c->flags & PERF_X86_EVENT_EXCL;
  2286. if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
  2287. event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
  2288. if (!cpuc->n_excl++)
  2289. WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
  2290. }
  2291. /*
  2292. * Modify static constraint with current dynamic
  2293. * state of thread
  2294. *
  2295. * EXCLUSIVE: sibling counter measuring exclusive event
  2296. * SHARED : sibling counter measuring non-exclusive event
  2297. * UNUSED : sibling counter unused
  2298. */
  2299. for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
  2300. /*
  2301. * exclusive event in sibling counter
  2302. * our corresponding counter cannot be used
  2303. * regardless of our event
  2304. */
  2305. if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
  2306. __clear_bit(i, c->idxmsk);
  2307. /*
  2308. * if measuring an exclusive event, sibling
  2309. * measuring non-exclusive, then counter cannot
  2310. * be used
  2311. */
  2312. if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
  2313. __clear_bit(i, c->idxmsk);
  2314. }
  2315. /*
  2316. * recompute actual bit weight for scheduling algorithm
  2317. */
  2318. c->weight = hweight64(c->idxmsk64);
  2319. /*
  2320. * if we return an empty mask, then switch
  2321. * back to static empty constraint to avoid
  2322. * the cost of freeing later on
  2323. */
  2324. if (c->weight == 0)
  2325. c = &emptyconstraint;
  2326. return c;
  2327. }
  2328. static struct event_constraint *
  2329. intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2330. struct perf_event *event)
  2331. {
  2332. struct event_constraint *c1 = NULL;
  2333. struct event_constraint *c2;
  2334. if (idx >= 0) /* fake does < 0 */
  2335. c1 = cpuc->event_constraint[idx];
  2336. /*
  2337. * first time only
  2338. * - static constraint: no change across incremental scheduling calls
  2339. * - dynamic constraint: handled by intel_get_excl_constraints()
  2340. */
  2341. c2 = __intel_get_event_constraints(cpuc, idx, event);
  2342. if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
  2343. bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
  2344. c1->weight = c2->weight;
  2345. c2 = c1;
  2346. }
  2347. if (cpuc->excl_cntrs)
  2348. return intel_get_excl_constraints(cpuc, event, idx, c2);
  2349. return c2;
  2350. }
  2351. static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
  2352. struct perf_event *event)
  2353. {
  2354. struct hw_perf_event *hwc = &event->hw;
  2355. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2356. int tid = cpuc->excl_thread_id;
  2357. struct intel_excl_states *xl;
  2358. /*
  2359. * nothing needed if in group validation mode
  2360. */
  2361. if (cpuc->is_fake)
  2362. return;
  2363. if (WARN_ON_ONCE(!excl_cntrs))
  2364. return;
  2365. if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
  2366. hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
  2367. if (!--cpuc->n_excl)
  2368. WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
  2369. }
  2370. /*
  2371. * If event was actually assigned, then mark the counter state as
  2372. * unused now.
  2373. */
  2374. if (hwc->idx >= 0) {
  2375. xl = &excl_cntrs->states[tid];
  2376. /*
  2377. * put_constraint may be called from x86_schedule_events()
  2378. * which already has the lock held so here make locking
  2379. * conditional.
  2380. */
  2381. if (!xl->sched_started)
  2382. raw_spin_lock(&excl_cntrs->lock);
  2383. xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
  2384. if (!xl->sched_started)
  2385. raw_spin_unlock(&excl_cntrs->lock);
  2386. }
  2387. }
  2388. static void
  2389. intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
  2390. struct perf_event *event)
  2391. {
  2392. struct hw_perf_event_extra *reg;
  2393. reg = &event->hw.extra_reg;
  2394. if (reg->idx != EXTRA_REG_NONE)
  2395. __intel_shared_reg_put_constraints(cpuc, reg);
  2396. reg = &event->hw.branch_reg;
  2397. if (reg->idx != EXTRA_REG_NONE)
  2398. __intel_shared_reg_put_constraints(cpuc, reg);
  2399. }
  2400. static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
  2401. struct perf_event *event)
  2402. {
  2403. intel_put_shared_regs_event_constraints(cpuc, event);
  2404. /*
  2405. * is PMU has exclusive counter restrictions, then
  2406. * all events are subject to and must call the
  2407. * put_excl_constraints() routine
  2408. */
  2409. if (cpuc->excl_cntrs)
  2410. intel_put_excl_constraints(cpuc, event);
  2411. }
  2412. static void intel_pebs_aliases_core2(struct perf_event *event)
  2413. {
  2414. if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  2415. /*
  2416. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  2417. * (0x003c) so that we can use it with PEBS.
  2418. *
  2419. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  2420. * PEBS capable. However we can use INST_RETIRED.ANY_P
  2421. * (0x00c0), which is a PEBS capable event, to get the same
  2422. * count.
  2423. *
  2424. * INST_RETIRED.ANY_P counts the number of cycles that retires
  2425. * CNTMASK instructions. By setting CNTMASK to a value (16)
  2426. * larger than the maximum number of instructions that can be
  2427. * retired per cycle (4) and then inverting the condition, we
  2428. * count all cycles that retire 16 or less instructions, which
  2429. * is every cycle.
  2430. *
  2431. * Thereby we gain a PEBS capable cycle counter.
  2432. */
  2433. u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
  2434. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  2435. event->hw.config = alt_config;
  2436. }
  2437. }
  2438. static void intel_pebs_aliases_snb(struct perf_event *event)
  2439. {
  2440. if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  2441. /*
  2442. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  2443. * (0x003c) so that we can use it with PEBS.
  2444. *
  2445. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  2446. * PEBS capable. However we can use UOPS_RETIRED.ALL
  2447. * (0x01c2), which is a PEBS capable event, to get the same
  2448. * count.
  2449. *
  2450. * UOPS_RETIRED.ALL counts the number of cycles that retires
  2451. * CNTMASK micro-ops. By setting CNTMASK to a value (16)
  2452. * larger than the maximum number of micro-ops that can be
  2453. * retired per cycle (4) and then inverting the condition, we
  2454. * count all cycles that retire 16 or less micro-ops, which
  2455. * is every cycle.
  2456. *
  2457. * Thereby we gain a PEBS capable cycle counter.
  2458. */
  2459. u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
  2460. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  2461. event->hw.config = alt_config;
  2462. }
  2463. }
  2464. static void intel_pebs_aliases_precdist(struct perf_event *event)
  2465. {
  2466. if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  2467. /*
  2468. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  2469. * (0x003c) so that we can use it with PEBS.
  2470. *
  2471. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  2472. * PEBS capable. However we can use INST_RETIRED.PREC_DIST
  2473. * (0x01c0), which is a PEBS capable event, to get the same
  2474. * count.
  2475. *
  2476. * The PREC_DIST event has special support to minimize sample
  2477. * shadowing effects. One drawback is that it can be
  2478. * only programmed on counter 1, but that seems like an
  2479. * acceptable trade off.
  2480. */
  2481. u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
  2482. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  2483. event->hw.config = alt_config;
  2484. }
  2485. }
  2486. static void intel_pebs_aliases_ivb(struct perf_event *event)
  2487. {
  2488. if (event->attr.precise_ip < 3)
  2489. return intel_pebs_aliases_snb(event);
  2490. return intel_pebs_aliases_precdist(event);
  2491. }
  2492. static void intel_pebs_aliases_skl(struct perf_event *event)
  2493. {
  2494. if (event->attr.precise_ip < 3)
  2495. return intel_pebs_aliases_core2(event);
  2496. return intel_pebs_aliases_precdist(event);
  2497. }
  2498. static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
  2499. {
  2500. unsigned long flags = x86_pmu.free_running_flags;
  2501. if (event->attr.use_clockid)
  2502. flags &= ~PERF_SAMPLE_TIME;
  2503. return flags;
  2504. }
  2505. static int intel_pmu_hw_config(struct perf_event *event)
  2506. {
  2507. int ret = x86_pmu_hw_config(event);
  2508. if (ret)
  2509. return ret;
  2510. if (event->attr.precise_ip) {
  2511. if (!event->attr.freq) {
  2512. event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
  2513. if (!(event->attr.sample_type &
  2514. ~intel_pmu_free_running_flags(event)))
  2515. event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
  2516. }
  2517. if (x86_pmu.pebs_aliases)
  2518. x86_pmu.pebs_aliases(event);
  2519. }
  2520. if (needs_branch_stack(event)) {
  2521. ret = intel_pmu_setup_lbr_filter(event);
  2522. if (ret)
  2523. return ret;
  2524. /*
  2525. * BTS is set up earlier in this path, so don't account twice
  2526. */
  2527. if (!intel_pmu_has_bts(event)) {
  2528. /* disallow lbr if conflicting events are present */
  2529. if (x86_add_exclusive(x86_lbr_exclusive_lbr))
  2530. return -EBUSY;
  2531. event->destroy = hw_perf_lbr_event_destroy;
  2532. }
  2533. }
  2534. if (event->attr.type != PERF_TYPE_RAW)
  2535. return 0;
  2536. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  2537. return 0;
  2538. if (x86_pmu.version < 3)
  2539. return -EINVAL;
  2540. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2541. return -EACCES;
  2542. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  2543. return 0;
  2544. }
  2545. struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
  2546. {
  2547. if (x86_pmu.guest_get_msrs)
  2548. return x86_pmu.guest_get_msrs(nr);
  2549. *nr = 0;
  2550. return NULL;
  2551. }
  2552. EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
  2553. static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
  2554. {
  2555. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  2556. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  2557. arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
  2558. arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
  2559. arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
  2560. /*
  2561. * If PMU counter has PEBS enabled it is not enough to disable counter
  2562. * on a guest entry since PEBS memory write can overshoot guest entry
  2563. * and corrupt guest memory. Disabling PEBS solves the problem.
  2564. */
  2565. arr[1].msr = MSR_IA32_PEBS_ENABLE;
  2566. arr[1].host = cpuc->pebs_enabled;
  2567. arr[1].guest = 0;
  2568. *nr = 2;
  2569. return arr;
  2570. }
  2571. static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
  2572. {
  2573. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  2574. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  2575. int idx;
  2576. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  2577. struct perf_event *event = cpuc->events[idx];
  2578. arr[idx].msr = x86_pmu_config_addr(idx);
  2579. arr[idx].host = arr[idx].guest = 0;
  2580. if (!test_bit(idx, cpuc->active_mask))
  2581. continue;
  2582. arr[idx].host = arr[idx].guest =
  2583. event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
  2584. if (event->attr.exclude_host)
  2585. arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  2586. else if (event->attr.exclude_guest)
  2587. arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  2588. }
  2589. *nr = x86_pmu.num_counters;
  2590. return arr;
  2591. }
  2592. static void core_pmu_enable_event(struct perf_event *event)
  2593. {
  2594. if (!event->attr.exclude_host)
  2595. x86_pmu_enable_event(event);
  2596. }
  2597. static void core_pmu_enable_all(int added)
  2598. {
  2599. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  2600. int idx;
  2601. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  2602. struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
  2603. if (!test_bit(idx, cpuc->active_mask) ||
  2604. cpuc->events[idx]->attr.exclude_host)
  2605. continue;
  2606. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  2607. }
  2608. }
  2609. static int hsw_hw_config(struct perf_event *event)
  2610. {
  2611. int ret = intel_pmu_hw_config(event);
  2612. if (ret)
  2613. return ret;
  2614. if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
  2615. return 0;
  2616. event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
  2617. /*
  2618. * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
  2619. * PEBS or in ANY thread mode. Since the results are non-sensical forbid
  2620. * this combination.
  2621. */
  2622. if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
  2623. ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
  2624. event->attr.precise_ip > 0))
  2625. return -EOPNOTSUPP;
  2626. if (event_is_checkpointed(event)) {
  2627. /*
  2628. * Sampling of checkpointed events can cause situations where
  2629. * the CPU constantly aborts because of a overflow, which is
  2630. * then checkpointed back and ignored. Forbid checkpointing
  2631. * for sampling.
  2632. *
  2633. * But still allow a long sampling period, so that perf stat
  2634. * from KVM works.
  2635. */
  2636. if (event->attr.sample_period > 0 &&
  2637. event->attr.sample_period < 0x7fffffff)
  2638. return -EOPNOTSUPP;
  2639. }
  2640. return 0;
  2641. }
  2642. static struct event_constraint counter2_constraint =
  2643. EVENT_CONSTRAINT(0, 0x4, 0);
  2644. static struct event_constraint *
  2645. hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2646. struct perf_event *event)
  2647. {
  2648. struct event_constraint *c;
  2649. c = intel_get_event_constraints(cpuc, idx, event);
  2650. /* Handle special quirk on in_tx_checkpointed only in counter 2 */
  2651. if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
  2652. if (c->idxmsk64 & (1U << 2))
  2653. return &counter2_constraint;
  2654. return &emptyconstraint;
  2655. }
  2656. return c;
  2657. }
  2658. /*
  2659. * Broadwell:
  2660. *
  2661. * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
  2662. * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
  2663. * the two to enforce a minimum period of 128 (the smallest value that has bits
  2664. * 0-5 cleared and >= 100).
  2665. *
  2666. * Because of how the code in x86_perf_event_set_period() works, the truncation
  2667. * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
  2668. * to make up for the 'lost' events due to carrying the 'error' in period_left.
  2669. *
  2670. * Therefore the effective (average) period matches the requested period,
  2671. * despite coarser hardware granularity.
  2672. */
  2673. static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
  2674. {
  2675. if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
  2676. X86_CONFIG(.event=0xc0, .umask=0x01)) {
  2677. if (left < 128)
  2678. left = 128;
  2679. left &= ~0x3fu;
  2680. }
  2681. return left;
  2682. }
  2683. PMU_FORMAT_ATTR(event, "config:0-7" );
  2684. PMU_FORMAT_ATTR(umask, "config:8-15" );
  2685. PMU_FORMAT_ATTR(edge, "config:18" );
  2686. PMU_FORMAT_ATTR(pc, "config:19" );
  2687. PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
  2688. PMU_FORMAT_ATTR(inv, "config:23" );
  2689. PMU_FORMAT_ATTR(cmask, "config:24-31" );
  2690. PMU_FORMAT_ATTR(in_tx, "config:32");
  2691. PMU_FORMAT_ATTR(in_tx_cp, "config:33");
  2692. static struct attribute *intel_arch_formats_attr[] = {
  2693. &format_attr_event.attr,
  2694. &format_attr_umask.attr,
  2695. &format_attr_edge.attr,
  2696. &format_attr_pc.attr,
  2697. &format_attr_inv.attr,
  2698. &format_attr_cmask.attr,
  2699. NULL,
  2700. };
  2701. ssize_t intel_event_sysfs_show(char *page, u64 config)
  2702. {
  2703. u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
  2704. return x86_event_sysfs_show(page, config, event);
  2705. }
  2706. struct intel_shared_regs *allocate_shared_regs(int cpu)
  2707. {
  2708. struct intel_shared_regs *regs;
  2709. int i;
  2710. regs = kzalloc_node(sizeof(struct intel_shared_regs),
  2711. GFP_KERNEL, cpu_to_node(cpu));
  2712. if (regs) {
  2713. /*
  2714. * initialize the locks to keep lockdep happy
  2715. */
  2716. for (i = 0; i < EXTRA_REG_MAX; i++)
  2717. raw_spin_lock_init(&regs->regs[i].lock);
  2718. regs->core_id = -1;
  2719. }
  2720. return regs;
  2721. }
  2722. static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
  2723. {
  2724. struct intel_excl_cntrs *c;
  2725. c = kzalloc_node(sizeof(struct intel_excl_cntrs),
  2726. GFP_KERNEL, cpu_to_node(cpu));
  2727. if (c) {
  2728. raw_spin_lock_init(&c->lock);
  2729. c->core_id = -1;
  2730. }
  2731. return c;
  2732. }
  2733. static int intel_pmu_cpu_prepare(int cpu)
  2734. {
  2735. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2736. if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
  2737. cpuc->shared_regs = allocate_shared_regs(cpu);
  2738. if (!cpuc->shared_regs)
  2739. goto err;
  2740. }
  2741. if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
  2742. size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
  2743. cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
  2744. if (!cpuc->constraint_list)
  2745. goto err_shared_regs;
  2746. cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
  2747. if (!cpuc->excl_cntrs)
  2748. goto err_constraint_list;
  2749. cpuc->excl_thread_id = 0;
  2750. }
  2751. return NOTIFY_OK;
  2752. err_constraint_list:
  2753. kfree(cpuc->constraint_list);
  2754. cpuc->constraint_list = NULL;
  2755. err_shared_regs:
  2756. kfree(cpuc->shared_regs);
  2757. cpuc->shared_regs = NULL;
  2758. err:
  2759. return NOTIFY_BAD;
  2760. }
  2761. static void intel_pmu_cpu_starting(int cpu)
  2762. {
  2763. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2764. int core_id = topology_core_id(cpu);
  2765. int i;
  2766. init_debug_store_on_cpu(cpu);
  2767. /*
  2768. * Deal with CPUs that don't clear their LBRs on power-up.
  2769. */
  2770. intel_pmu_lbr_reset();
  2771. cpuc->lbr_sel = NULL;
  2772. if (!cpuc->shared_regs)
  2773. return;
  2774. if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
  2775. for_each_cpu(i, topology_sibling_cpumask(cpu)) {
  2776. struct intel_shared_regs *pc;
  2777. pc = per_cpu(cpu_hw_events, i).shared_regs;
  2778. if (pc && pc->core_id == core_id) {
  2779. cpuc->kfree_on_online[0] = cpuc->shared_regs;
  2780. cpuc->shared_regs = pc;
  2781. break;
  2782. }
  2783. }
  2784. cpuc->shared_regs->core_id = core_id;
  2785. cpuc->shared_regs->refcnt++;
  2786. }
  2787. if (x86_pmu.lbr_sel_map)
  2788. cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
  2789. if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
  2790. for_each_cpu(i, topology_sibling_cpumask(cpu)) {
  2791. struct intel_excl_cntrs *c;
  2792. c = per_cpu(cpu_hw_events, i).excl_cntrs;
  2793. if (c && c->core_id == core_id) {
  2794. cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
  2795. cpuc->excl_cntrs = c;
  2796. cpuc->excl_thread_id = 1;
  2797. break;
  2798. }
  2799. }
  2800. cpuc->excl_cntrs->core_id = core_id;
  2801. cpuc->excl_cntrs->refcnt++;
  2802. }
  2803. }
  2804. static void free_excl_cntrs(int cpu)
  2805. {
  2806. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2807. struct intel_excl_cntrs *c;
  2808. c = cpuc->excl_cntrs;
  2809. if (c) {
  2810. if (c->core_id == -1 || --c->refcnt == 0)
  2811. kfree(c);
  2812. cpuc->excl_cntrs = NULL;
  2813. kfree(cpuc->constraint_list);
  2814. cpuc->constraint_list = NULL;
  2815. }
  2816. }
  2817. static void intel_pmu_cpu_dying(int cpu)
  2818. {
  2819. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2820. struct intel_shared_regs *pc;
  2821. pc = cpuc->shared_regs;
  2822. if (pc) {
  2823. if (pc->core_id == -1 || --pc->refcnt == 0)
  2824. kfree(pc);
  2825. cpuc->shared_regs = NULL;
  2826. }
  2827. free_excl_cntrs(cpu);
  2828. fini_debug_store_on_cpu(cpu);
  2829. }
  2830. static void intel_pmu_sched_task(struct perf_event_context *ctx,
  2831. bool sched_in)
  2832. {
  2833. if (x86_pmu.pebs_active)
  2834. intel_pmu_pebs_sched_task(ctx, sched_in);
  2835. if (x86_pmu.lbr_nr)
  2836. intel_pmu_lbr_sched_task(ctx, sched_in);
  2837. }
  2838. PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
  2839. PMU_FORMAT_ATTR(ldlat, "config1:0-15");
  2840. PMU_FORMAT_ATTR(frontend, "config1:0-23");
  2841. static struct attribute *intel_arch3_formats_attr[] = {
  2842. &format_attr_event.attr,
  2843. &format_attr_umask.attr,
  2844. &format_attr_edge.attr,
  2845. &format_attr_pc.attr,
  2846. &format_attr_any.attr,
  2847. &format_attr_inv.attr,
  2848. &format_attr_cmask.attr,
  2849. &format_attr_in_tx.attr,
  2850. &format_attr_in_tx_cp.attr,
  2851. &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
  2852. &format_attr_ldlat.attr, /* PEBS load latency */
  2853. NULL,
  2854. };
  2855. static struct attribute *skl_format_attr[] = {
  2856. &format_attr_frontend.attr,
  2857. NULL,
  2858. };
  2859. static __initconst const struct x86_pmu core_pmu = {
  2860. .name = "core",
  2861. .handle_irq = x86_pmu_handle_irq,
  2862. .disable_all = x86_pmu_disable_all,
  2863. .enable_all = core_pmu_enable_all,
  2864. .enable = core_pmu_enable_event,
  2865. .disable = x86_pmu_disable_event,
  2866. .hw_config = x86_pmu_hw_config,
  2867. .schedule_events = x86_schedule_events,
  2868. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  2869. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  2870. .event_map = intel_pmu_event_map,
  2871. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  2872. .apic = 1,
  2873. .free_running_flags = PEBS_FREERUNNING_FLAGS,
  2874. /*
  2875. * Intel PMCs cannot be accessed sanely above 32-bit width,
  2876. * so we install an artificial 1<<31 period regardless of
  2877. * the generic event period:
  2878. */
  2879. .max_period = (1ULL<<31) - 1,
  2880. .get_event_constraints = intel_get_event_constraints,
  2881. .put_event_constraints = intel_put_event_constraints,
  2882. .event_constraints = intel_core_event_constraints,
  2883. .guest_get_msrs = core_guest_get_msrs,
  2884. .format_attrs = intel_arch_formats_attr,
  2885. .events_sysfs_show = intel_event_sysfs_show,
  2886. /*
  2887. * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
  2888. * together with PMU version 1 and thus be using core_pmu with
  2889. * shared_regs. We need following callbacks here to allocate
  2890. * it properly.
  2891. */
  2892. .cpu_prepare = intel_pmu_cpu_prepare,
  2893. .cpu_starting = intel_pmu_cpu_starting,
  2894. .cpu_dying = intel_pmu_cpu_dying,
  2895. };
  2896. static __initconst const struct x86_pmu intel_pmu = {
  2897. .name = "Intel",
  2898. .handle_irq = intel_pmu_handle_irq,
  2899. .disable_all = intel_pmu_disable_all,
  2900. .enable_all = intel_pmu_enable_all,
  2901. .enable = intel_pmu_enable_event,
  2902. .disable = intel_pmu_disable_event,
  2903. .hw_config = intel_pmu_hw_config,
  2904. .schedule_events = x86_schedule_events,
  2905. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  2906. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  2907. .event_map = intel_pmu_event_map,
  2908. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  2909. .apic = 1,
  2910. .free_running_flags = PEBS_FREERUNNING_FLAGS,
  2911. /*
  2912. * Intel PMCs cannot be accessed sanely above 32 bit width,
  2913. * so we install an artificial 1<<31 period regardless of
  2914. * the generic event period:
  2915. */
  2916. .max_period = (1ULL << 31) - 1,
  2917. .get_event_constraints = intel_get_event_constraints,
  2918. .put_event_constraints = intel_put_event_constraints,
  2919. .pebs_aliases = intel_pebs_aliases_core2,
  2920. .format_attrs = intel_arch3_formats_attr,
  2921. .events_sysfs_show = intel_event_sysfs_show,
  2922. .cpu_prepare = intel_pmu_cpu_prepare,
  2923. .cpu_starting = intel_pmu_cpu_starting,
  2924. .cpu_dying = intel_pmu_cpu_dying,
  2925. .guest_get_msrs = intel_guest_get_msrs,
  2926. .sched_task = intel_pmu_sched_task,
  2927. };
  2928. static __init void intel_clovertown_quirk(void)
  2929. {
  2930. /*
  2931. * PEBS is unreliable due to:
  2932. *
  2933. * AJ67 - PEBS may experience CPL leaks
  2934. * AJ68 - PEBS PMI may be delayed by one event
  2935. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  2936. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  2937. *
  2938. * AJ67 could be worked around by restricting the OS/USR flags.
  2939. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  2940. *
  2941. * AJ106 could possibly be worked around by not allowing LBR
  2942. * usage from PEBS, including the fixup.
  2943. * AJ68 could possibly be worked around by always programming
  2944. * a pebs_event_reset[0] value and coping with the lost events.
  2945. *
  2946. * But taken together it might just make sense to not enable PEBS on
  2947. * these chips.
  2948. */
  2949. pr_warn("PEBS disabled due to CPU errata\n");
  2950. x86_pmu.pebs = 0;
  2951. x86_pmu.pebs_constraints = NULL;
  2952. }
  2953. static int intel_snb_pebs_broken(int cpu)
  2954. {
  2955. u32 rev = UINT_MAX; /* default to broken for unknown models */
  2956. switch (cpu_data(cpu).x86_model) {
  2957. case 42: /* SNB */
  2958. rev = 0x28;
  2959. break;
  2960. case 45: /* SNB-EP */
  2961. switch (cpu_data(cpu).x86_mask) {
  2962. case 6: rev = 0x618; break;
  2963. case 7: rev = 0x70c; break;
  2964. }
  2965. }
  2966. return (cpu_data(cpu).microcode < rev);
  2967. }
  2968. static void intel_snb_check_microcode(void)
  2969. {
  2970. int pebs_broken = 0;
  2971. int cpu;
  2972. get_online_cpus();
  2973. for_each_online_cpu(cpu) {
  2974. if ((pebs_broken = intel_snb_pebs_broken(cpu)))
  2975. break;
  2976. }
  2977. put_online_cpus();
  2978. if (pebs_broken == x86_pmu.pebs_broken)
  2979. return;
  2980. /*
  2981. * Serialized by the microcode lock..
  2982. */
  2983. if (x86_pmu.pebs_broken) {
  2984. pr_info("PEBS enabled due to microcode update\n");
  2985. x86_pmu.pebs_broken = 0;
  2986. } else {
  2987. pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
  2988. x86_pmu.pebs_broken = 1;
  2989. }
  2990. }
  2991. /*
  2992. * Under certain circumstances, access certain MSR may cause #GP.
  2993. * The function tests if the input MSR can be safely accessed.
  2994. */
  2995. static bool check_msr(unsigned long msr, u64 mask)
  2996. {
  2997. u64 val_old, val_new, val_tmp;
  2998. /*
  2999. * Read the current value, change it and read it back to see if it
  3000. * matches, this is needed to detect certain hardware emulators
  3001. * (qemu/kvm) that don't trap on the MSR access and always return 0s.
  3002. */
  3003. if (rdmsrl_safe(msr, &val_old))
  3004. return false;
  3005. /*
  3006. * Only change the bits which can be updated by wrmsrl.
  3007. */
  3008. val_tmp = val_old ^ mask;
  3009. if (wrmsrl_safe(msr, val_tmp) ||
  3010. rdmsrl_safe(msr, &val_new))
  3011. return false;
  3012. if (val_new != val_tmp)
  3013. return false;
  3014. /* Here it's sure that the MSR can be safely accessed.
  3015. * Restore the old value and return.
  3016. */
  3017. wrmsrl(msr, val_old);
  3018. return true;
  3019. }
  3020. static __init void intel_sandybridge_quirk(void)
  3021. {
  3022. x86_pmu.check_microcode = intel_snb_check_microcode;
  3023. intel_snb_check_microcode();
  3024. }
  3025. static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
  3026. { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
  3027. { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
  3028. { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
  3029. { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
  3030. { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
  3031. { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
  3032. { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
  3033. };
  3034. static __init void intel_arch_events_quirk(void)
  3035. {
  3036. int bit;
  3037. /* disable event that reported as not presend by cpuid */
  3038. for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
  3039. intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
  3040. pr_warn("CPUID marked event: \'%s\' unavailable\n",
  3041. intel_arch_events_map[bit].name);
  3042. }
  3043. }
  3044. static __init void intel_nehalem_quirk(void)
  3045. {
  3046. union cpuid10_ebx ebx;
  3047. ebx.full = x86_pmu.events_maskl;
  3048. if (ebx.split.no_branch_misses_retired) {
  3049. /*
  3050. * Erratum AAJ80 detected, we work it around by using
  3051. * the BR_MISP_EXEC.ANY event. This will over-count
  3052. * branch-misses, but it's still much better than the
  3053. * architectural event which is often completely bogus:
  3054. */
  3055. intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
  3056. ebx.split.no_branch_misses_retired = 0;
  3057. x86_pmu.events_maskl = ebx.full;
  3058. pr_info("CPU erratum AAJ80 worked around\n");
  3059. }
  3060. }
  3061. /*
  3062. * enable software workaround for errata:
  3063. * SNB: BJ122
  3064. * IVB: BV98
  3065. * HSW: HSD29
  3066. *
  3067. * Only needed when HT is enabled. However detecting
  3068. * if HT is enabled is difficult (model specific). So instead,
  3069. * we enable the workaround in the early boot, and verify if
  3070. * it is needed in a later initcall phase once we have valid
  3071. * topology information to check if HT is actually enabled
  3072. */
  3073. static __init void intel_ht_bug(void)
  3074. {
  3075. x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
  3076. x86_pmu.start_scheduling = intel_start_scheduling;
  3077. x86_pmu.commit_scheduling = intel_commit_scheduling;
  3078. x86_pmu.stop_scheduling = intel_stop_scheduling;
  3079. }
  3080. EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
  3081. EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
  3082. /* Haswell special events */
  3083. EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
  3084. EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
  3085. EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
  3086. EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
  3087. EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
  3088. EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
  3089. EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
  3090. EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
  3091. EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
  3092. EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
  3093. EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
  3094. EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
  3095. static struct attribute *hsw_events_attrs[] = {
  3096. EVENT_PTR(tx_start),
  3097. EVENT_PTR(tx_commit),
  3098. EVENT_PTR(tx_abort),
  3099. EVENT_PTR(tx_capacity),
  3100. EVENT_PTR(tx_conflict),
  3101. EVENT_PTR(el_start),
  3102. EVENT_PTR(el_commit),
  3103. EVENT_PTR(el_abort),
  3104. EVENT_PTR(el_capacity),
  3105. EVENT_PTR(el_conflict),
  3106. EVENT_PTR(cycles_t),
  3107. EVENT_PTR(cycles_ct),
  3108. EVENT_PTR(mem_ld_hsw),
  3109. EVENT_PTR(mem_st_hsw),
  3110. NULL
  3111. };
  3112. __init int intel_pmu_init(void)
  3113. {
  3114. union cpuid10_edx edx;
  3115. union cpuid10_eax eax;
  3116. union cpuid10_ebx ebx;
  3117. struct event_constraint *c;
  3118. unsigned int unused;
  3119. struct extra_reg *er;
  3120. int version, i;
  3121. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  3122. switch (boot_cpu_data.x86) {
  3123. case 0x6:
  3124. return p6_pmu_init();
  3125. case 0xb:
  3126. return knc_pmu_init();
  3127. case 0xf:
  3128. return p4_pmu_init();
  3129. }
  3130. return -ENODEV;
  3131. }
  3132. /*
  3133. * Check whether the Architectural PerfMon supports
  3134. * Branch Misses Retired hw_event or not.
  3135. */
  3136. cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
  3137. if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
  3138. return -ENODEV;
  3139. version = eax.split.version_id;
  3140. if (version < 2)
  3141. x86_pmu = core_pmu;
  3142. else
  3143. x86_pmu = intel_pmu;
  3144. x86_pmu.version = version;
  3145. x86_pmu.num_counters = eax.split.num_counters;
  3146. x86_pmu.cntval_bits = eax.split.bit_width;
  3147. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  3148. x86_pmu.events_maskl = ebx.full;
  3149. x86_pmu.events_mask_len = eax.split.mask_length;
  3150. x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
  3151. /*
  3152. * Quirk: v2 perfmon does not report fixed-purpose events, so
  3153. * assume at least 3 events:
  3154. */
  3155. if (version > 1)
  3156. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  3157. if (boot_cpu_has(X86_FEATURE_PDCM)) {
  3158. u64 capabilities;
  3159. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  3160. x86_pmu.intel_cap.capabilities = capabilities;
  3161. }
  3162. intel_ds_init();
  3163. x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
  3164. /*
  3165. * Install the hw-cache-events table:
  3166. */
  3167. switch (boot_cpu_data.x86_model) {
  3168. case 14: /* 65nm Core "Yonah" */
  3169. pr_cont("Core events, ");
  3170. break;
  3171. case 15: /* 65nm Core2 "Merom" */
  3172. x86_add_quirk(intel_clovertown_quirk);
  3173. case 22: /* 65nm Core2 "Merom-L" */
  3174. case 23: /* 45nm Core2 "Penryn" */
  3175. case 29: /* 45nm Core2 "Dunnington (MP) */
  3176. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  3177. sizeof(hw_cache_event_ids));
  3178. intel_pmu_lbr_init_core();
  3179. x86_pmu.event_constraints = intel_core2_event_constraints;
  3180. x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
  3181. pr_cont("Core2 events, ");
  3182. break;
  3183. case 30: /* 45nm Nehalem */
  3184. case 26: /* 45nm Nehalem-EP */
  3185. case 46: /* 45nm Nehalem-EX */
  3186. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  3187. sizeof(hw_cache_event_ids));
  3188. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  3189. sizeof(hw_cache_extra_regs));
  3190. intel_pmu_lbr_init_nhm();
  3191. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  3192. x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
  3193. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  3194. x86_pmu.extra_regs = intel_nehalem_extra_regs;
  3195. x86_pmu.cpu_events = nhm_events_attrs;
  3196. /* UOPS_ISSUED.STALLED_CYCLES */
  3197. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3198. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3199. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  3200. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
  3201. X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
  3202. intel_pmu_pebs_data_source_nhm();
  3203. x86_add_quirk(intel_nehalem_quirk);
  3204. pr_cont("Nehalem events, ");
  3205. break;
  3206. case 28: /* 45nm Atom "Pineview" */
  3207. case 38: /* 45nm Atom "Lincroft" */
  3208. case 39: /* 32nm Atom "Penwell" */
  3209. case 53: /* 32nm Atom "Cloverview" */
  3210. case 54: /* 32nm Atom "Cedarview" */
  3211. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  3212. sizeof(hw_cache_event_ids));
  3213. intel_pmu_lbr_init_atom();
  3214. x86_pmu.event_constraints = intel_gen_event_constraints;
  3215. x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
  3216. x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
  3217. pr_cont("Atom events, ");
  3218. break;
  3219. case 55: /* 22nm Atom "Silvermont" */
  3220. case 76: /* 14nm Atom "Airmont" */
  3221. case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
  3222. memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
  3223. sizeof(hw_cache_event_ids));
  3224. memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
  3225. sizeof(hw_cache_extra_regs));
  3226. intel_pmu_lbr_init_slm();
  3227. x86_pmu.event_constraints = intel_slm_event_constraints;
  3228. x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
  3229. x86_pmu.extra_regs = intel_slm_extra_regs;
  3230. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3231. pr_cont("Silvermont events, ");
  3232. break;
  3233. case 92: /* 14nm Atom "Goldmont" */
  3234. case 95: /* 14nm Atom "Goldmont Denverton" */
  3235. memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
  3236. sizeof(hw_cache_event_ids));
  3237. memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
  3238. sizeof(hw_cache_extra_regs));
  3239. intel_pmu_lbr_init_skl();
  3240. x86_pmu.event_constraints = intel_slm_event_constraints;
  3241. x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
  3242. x86_pmu.extra_regs = intel_glm_extra_regs;
  3243. /*
  3244. * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
  3245. * for precise cycles.
  3246. * :pp is identical to :ppp
  3247. */
  3248. x86_pmu.pebs_aliases = NULL;
  3249. x86_pmu.pebs_prec_dist = true;
  3250. x86_pmu.lbr_pt_coexist = true;
  3251. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3252. pr_cont("Goldmont events, ");
  3253. break;
  3254. case 37: /* 32nm Westmere */
  3255. case 44: /* 32nm Westmere-EP */
  3256. case 47: /* 32nm Westmere-EX */
  3257. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  3258. sizeof(hw_cache_event_ids));
  3259. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  3260. sizeof(hw_cache_extra_regs));
  3261. intel_pmu_lbr_init_nhm();
  3262. x86_pmu.event_constraints = intel_westmere_event_constraints;
  3263. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  3264. x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
  3265. x86_pmu.extra_regs = intel_westmere_extra_regs;
  3266. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3267. x86_pmu.cpu_events = nhm_events_attrs;
  3268. /* UOPS_ISSUED.STALLED_CYCLES */
  3269. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3270. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3271. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  3272. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
  3273. X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
  3274. intel_pmu_pebs_data_source_nhm();
  3275. pr_cont("Westmere events, ");
  3276. break;
  3277. case 42: /* 32nm SandyBridge */
  3278. case 45: /* 32nm SandyBridge-E/EN/EP */
  3279. x86_add_quirk(intel_sandybridge_quirk);
  3280. x86_add_quirk(intel_ht_bug);
  3281. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  3282. sizeof(hw_cache_event_ids));
  3283. memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
  3284. sizeof(hw_cache_extra_regs));
  3285. intel_pmu_lbr_init_snb();
  3286. x86_pmu.event_constraints = intel_snb_event_constraints;
  3287. x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
  3288. x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
  3289. if (boot_cpu_data.x86_model == 45)
  3290. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3291. else
  3292. x86_pmu.extra_regs = intel_snb_extra_regs;
  3293. /* all extra regs are per-cpu when HT is on */
  3294. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3295. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3296. x86_pmu.cpu_events = snb_events_attrs;
  3297. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  3298. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3299. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3300. /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
  3301. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
  3302. X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
  3303. pr_cont("SandyBridge events, ");
  3304. break;
  3305. case 58: /* 22nm IvyBridge */
  3306. case 62: /* 22nm IvyBridge-EP/EX */
  3307. x86_add_quirk(intel_ht_bug);
  3308. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  3309. sizeof(hw_cache_event_ids));
  3310. /* dTLB-load-misses on IVB is different than SNB */
  3311. hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
  3312. memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
  3313. sizeof(hw_cache_extra_regs));
  3314. intel_pmu_lbr_init_snb();
  3315. x86_pmu.event_constraints = intel_ivb_event_constraints;
  3316. x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
  3317. x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
  3318. x86_pmu.pebs_prec_dist = true;
  3319. if (boot_cpu_data.x86_model == 62)
  3320. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3321. else
  3322. x86_pmu.extra_regs = intel_snb_extra_regs;
  3323. /* all extra regs are per-cpu when HT is on */
  3324. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3325. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3326. x86_pmu.cpu_events = snb_events_attrs;
  3327. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  3328. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3329. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3330. pr_cont("IvyBridge events, ");
  3331. break;
  3332. case 60: /* 22nm Haswell Core */
  3333. case 63: /* 22nm Haswell Server */
  3334. case 69: /* 22nm Haswell ULT */
  3335. case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
  3336. x86_add_quirk(intel_ht_bug);
  3337. x86_pmu.late_ack = true;
  3338. memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3339. memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3340. intel_pmu_lbr_init_hsw();
  3341. x86_pmu.event_constraints = intel_hsw_event_constraints;
  3342. x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
  3343. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3344. x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
  3345. x86_pmu.pebs_prec_dist = true;
  3346. /* all extra regs are per-cpu when HT is on */
  3347. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3348. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3349. x86_pmu.hw_config = hsw_hw_config;
  3350. x86_pmu.get_event_constraints = hsw_get_event_constraints;
  3351. x86_pmu.cpu_events = hsw_events_attrs;
  3352. x86_pmu.lbr_double_abort = true;
  3353. pr_cont("Haswell events, ");
  3354. break;
  3355. case 61: /* 14nm Broadwell Core-M */
  3356. case 86: /* 14nm Broadwell Xeon D */
  3357. case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
  3358. case 79: /* 14nm Broadwell Server */
  3359. x86_pmu.late_ack = true;
  3360. memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3361. memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3362. /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
  3363. hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
  3364. BDW_L3_MISS|HSW_SNOOP_DRAM;
  3365. hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
  3366. HSW_SNOOP_DRAM;
  3367. hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
  3368. BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
  3369. hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
  3370. BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
  3371. intel_pmu_lbr_init_hsw();
  3372. x86_pmu.event_constraints = intel_bdw_event_constraints;
  3373. x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
  3374. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3375. x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
  3376. x86_pmu.pebs_prec_dist = true;
  3377. /* all extra regs are per-cpu when HT is on */
  3378. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3379. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3380. x86_pmu.hw_config = hsw_hw_config;
  3381. x86_pmu.get_event_constraints = hsw_get_event_constraints;
  3382. x86_pmu.cpu_events = hsw_events_attrs;
  3383. x86_pmu.limit_period = bdw_limit_period;
  3384. pr_cont("Broadwell events, ");
  3385. break;
  3386. case 87: /* Knights Landing Xeon Phi */
  3387. memcpy(hw_cache_event_ids,
  3388. slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3389. memcpy(hw_cache_extra_regs,
  3390. knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3391. intel_pmu_lbr_init_knl();
  3392. x86_pmu.event_constraints = intel_slm_event_constraints;
  3393. x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
  3394. x86_pmu.extra_regs = intel_knl_extra_regs;
  3395. /* all extra regs are per-cpu when HT is on */
  3396. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3397. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3398. pr_cont("Knights Landing events, ");
  3399. break;
  3400. case 142: /* 14nm Kabylake Mobile */
  3401. case 158: /* 14nm Kabylake Desktop */
  3402. case 78: /* 14nm Skylake Mobile */
  3403. case 94: /* 14nm Skylake Desktop */
  3404. case 85: /* 14nm Skylake Server */
  3405. x86_pmu.late_ack = true;
  3406. memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3407. memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3408. intel_pmu_lbr_init_skl();
  3409. x86_pmu.event_constraints = intel_skl_event_constraints;
  3410. x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
  3411. x86_pmu.extra_regs = intel_skl_extra_regs;
  3412. x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
  3413. x86_pmu.pebs_prec_dist = true;
  3414. /* all extra regs are per-cpu when HT is on */
  3415. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3416. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3417. x86_pmu.hw_config = hsw_hw_config;
  3418. x86_pmu.get_event_constraints = hsw_get_event_constraints;
  3419. x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
  3420. skl_format_attr);
  3421. WARN_ON(!x86_pmu.format_attrs);
  3422. x86_pmu.cpu_events = hsw_events_attrs;
  3423. pr_cont("Skylake events, ");
  3424. break;
  3425. default:
  3426. switch (x86_pmu.version) {
  3427. case 1:
  3428. x86_pmu.event_constraints = intel_v1_event_constraints;
  3429. pr_cont("generic architected perfmon v1, ");
  3430. break;
  3431. default:
  3432. /*
  3433. * default constraints for v2 and up
  3434. */
  3435. x86_pmu.event_constraints = intel_gen_event_constraints;
  3436. pr_cont("generic architected perfmon, ");
  3437. break;
  3438. }
  3439. }
  3440. if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
  3441. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  3442. x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
  3443. x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
  3444. }
  3445. x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
  3446. if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
  3447. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  3448. x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
  3449. x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
  3450. }
  3451. x86_pmu.intel_ctrl |=
  3452. ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
  3453. if (x86_pmu.event_constraints) {
  3454. /*
  3455. * event on fixed counter2 (REF_CYCLES) only works on this
  3456. * counter, so do not extend mask to generic counters
  3457. */
  3458. for_each_event_constraint(c, x86_pmu.event_constraints) {
  3459. if (c->cmask == FIXED_EVENT_FLAGS
  3460. && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
  3461. c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
  3462. }
  3463. c->idxmsk64 &=
  3464. ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
  3465. c->weight = hweight64(c->idxmsk64);
  3466. }
  3467. }
  3468. /*
  3469. * Access LBR MSR may cause #GP under certain circumstances.
  3470. * E.g. KVM doesn't support LBR MSR
  3471. * Check all LBT MSR here.
  3472. * Disable LBR access if any LBR MSRs can not be accessed.
  3473. */
  3474. if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
  3475. x86_pmu.lbr_nr = 0;
  3476. for (i = 0; i < x86_pmu.lbr_nr; i++) {
  3477. if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
  3478. check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
  3479. x86_pmu.lbr_nr = 0;
  3480. }
  3481. /*
  3482. * Access extra MSR may cause #GP under certain circumstances.
  3483. * E.g. KVM doesn't support offcore event
  3484. * Check all extra_regs here.
  3485. */
  3486. if (x86_pmu.extra_regs) {
  3487. for (er = x86_pmu.extra_regs; er->msr; er++) {
  3488. er->extra_msr_access = check_msr(er->msr, 0x11UL);
  3489. /* Disable LBR select mapping */
  3490. if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
  3491. x86_pmu.lbr_sel_map = NULL;
  3492. }
  3493. }
  3494. /* Support full width counters using alternative MSR range */
  3495. if (x86_pmu.intel_cap.full_width_write) {
  3496. x86_pmu.max_period = x86_pmu.cntval_mask;
  3497. x86_pmu.perfctr = MSR_IA32_PMC0;
  3498. pr_cont("full-width counters, ");
  3499. }
  3500. return 0;
  3501. }
  3502. /*
  3503. * HT bug: phase 2 init
  3504. * Called once we have valid topology information to check
  3505. * whether or not HT is enabled
  3506. * If HT is off, then we disable the workaround
  3507. */
  3508. static __init int fixup_ht_bug(void)
  3509. {
  3510. int cpu = smp_processor_id();
  3511. int w, c;
  3512. /*
  3513. * problem not present on this CPU model, nothing to do
  3514. */
  3515. if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
  3516. return 0;
  3517. w = cpumask_weight(topology_sibling_cpumask(cpu));
  3518. if (w > 1) {
  3519. pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
  3520. return 0;
  3521. }
  3522. if (lockup_detector_suspend() != 0) {
  3523. pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
  3524. return 0;
  3525. }
  3526. x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
  3527. x86_pmu.start_scheduling = NULL;
  3528. x86_pmu.commit_scheduling = NULL;
  3529. x86_pmu.stop_scheduling = NULL;
  3530. lockup_detector_resume();
  3531. get_online_cpus();
  3532. for_each_online_cpu(c) {
  3533. free_excl_cntrs(c);
  3534. }
  3535. put_online_cpus();
  3536. pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
  3537. return 0;
  3538. }
  3539. subsys_initcall(fixup_ht_bug)