intel_ringbuffer.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573
  1. #ifndef _INTEL_RINGBUFFER_H_
  2. #define _INTEL_RINGBUFFER_H_
  3. #include <linux/hashtable.h>
  4. #include "i915_gem_batch_pool.h"
  5. #define I915_CMD_HASH_ORDER 9
  6. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  7. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  8. * to give some inclination as to some of the magic values used in the various
  9. * workarounds!
  10. */
  11. #define CACHELINE_BYTES 64
  12. #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  13. /*
  14. * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  15. * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  16. * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  17. *
  18. * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  19. * cacheline, the Head Pointer must not be greater than the Tail
  20. * Pointer."
  21. */
  22. #define I915_RING_FREE_SPACE 64
  23. struct intel_hw_status_page {
  24. u32 *page_addr;
  25. unsigned int gfx_addr;
  26. struct drm_i915_gem_object *obj;
  27. };
  28. #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  29. #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  30. #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  31. #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  32. #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
  33. #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  34. #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  35. #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  36. #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  37. #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  38. #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  39. #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  40. /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  41. * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  42. */
  43. #define gen8_semaphore_seqno_size sizeof(uint64_t)
  44. #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
  45. (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
  46. #define GEN8_SIGNAL_OFFSET(__ring, to) \
  47. (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
  48. GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  49. #define GEN8_WAIT_OFFSET(__ring, from) \
  50. (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
  51. GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  52. enum intel_engine_hangcheck_action {
  53. HANGCHECK_IDLE = 0,
  54. HANGCHECK_WAIT,
  55. HANGCHECK_ACTIVE,
  56. HANGCHECK_KICK,
  57. HANGCHECK_HUNG,
  58. };
  59. #define HANGCHECK_SCORE_RING_HUNG 31
  60. struct intel_engine_hangcheck {
  61. u64 acthd;
  62. unsigned long user_interrupts;
  63. u32 seqno;
  64. int score;
  65. enum intel_engine_hangcheck_action action;
  66. int deadlock;
  67. u32 instdone[I915_NUM_INSTDONE_REG];
  68. };
  69. struct intel_ring {
  70. struct drm_i915_gem_object *obj;
  71. void *vaddr;
  72. struct i915_vma *vma;
  73. struct intel_engine_cs *engine;
  74. struct list_head link;
  75. u32 head;
  76. u32 tail;
  77. int space;
  78. int size;
  79. int effective_size;
  80. /** We track the position of the requests in the ring buffer, and
  81. * when each is retired we increment last_retired_head as the GPU
  82. * must have finished processing the request and so we know we
  83. * can advance the ringbuffer up to that position.
  84. *
  85. * last_retired_head is set to -1 after the value is consumed so
  86. * we can detect new retirements.
  87. */
  88. u32 last_retired_head;
  89. };
  90. struct i915_gem_context;
  91. struct drm_i915_reg_table;
  92. /*
  93. * we use a single page to load ctx workarounds so all of these
  94. * values are referred in terms of dwords
  95. *
  96. * struct i915_wa_ctx_bb:
  97. * offset: specifies batch starting position, also helpful in case
  98. * if we want to have multiple batches at different offsets based on
  99. * some criteria. It is not a requirement at the moment but provides
  100. * an option for future use.
  101. * size: size of the batch in DWORDS
  102. */
  103. struct i915_ctx_workarounds {
  104. struct i915_wa_ctx_bb {
  105. u32 offset;
  106. u32 size;
  107. } indirect_ctx, per_ctx;
  108. struct drm_i915_gem_object *obj;
  109. };
  110. struct drm_i915_gem_request;
  111. struct intel_engine_cs {
  112. struct drm_i915_private *i915;
  113. const char *name;
  114. enum intel_engine_id {
  115. RCS = 0,
  116. BCS,
  117. VCS,
  118. VCS2, /* Keep instances of the same type engine together. */
  119. VECS
  120. } id;
  121. #define I915_NUM_ENGINES 5
  122. #define _VCS(n) (VCS + (n))
  123. unsigned int exec_id;
  124. unsigned int hw_id;
  125. unsigned int guc_id; /* XXX same as hw_id? */
  126. u64 fence_context;
  127. u32 mmio_base;
  128. unsigned int irq_shift;
  129. struct intel_ring *buffer;
  130. struct list_head buffers;
  131. /* Rather than have every client wait upon all user interrupts,
  132. * with the herd waking after every interrupt and each doing the
  133. * heavyweight seqno dance, we delegate the task (of being the
  134. * bottom-half of the user interrupt) to the first client. After
  135. * every interrupt, we wake up one client, who does the heavyweight
  136. * coherent seqno read and either goes back to sleep (if incomplete),
  137. * or wakes up all the completed clients in parallel, before then
  138. * transferring the bottom-half status to the next client in the queue.
  139. *
  140. * Compared to walking the entire list of waiters in a single dedicated
  141. * bottom-half, we reduce the latency of the first waiter by avoiding
  142. * a context switch, but incur additional coherent seqno reads when
  143. * following the chain of request breadcrumbs. Since it is most likely
  144. * that we have a single client waiting on each seqno, then reducing
  145. * the overhead of waking that client is much preferred.
  146. */
  147. struct intel_breadcrumbs {
  148. struct task_struct *irq_seqno_bh; /* bh for user interrupts */
  149. unsigned long irq_wakeups;
  150. bool irq_posted;
  151. spinlock_t lock; /* protects the lists of requests */
  152. struct rb_root waiters; /* sorted by retirement, priority */
  153. struct rb_root signals; /* sorted by retirement */
  154. struct intel_wait *first_wait; /* oldest waiter by retirement */
  155. struct task_struct *signaler; /* used for fence signalling */
  156. struct drm_i915_gem_request *first_signal;
  157. struct timer_list fake_irq; /* used after a missed interrupt */
  158. bool irq_enabled : 1;
  159. bool rpm_wakelock : 1;
  160. } breadcrumbs;
  161. /*
  162. * A pool of objects to use as shadow copies of client batch buffers
  163. * when the command parser is enabled. Prevents the client from
  164. * modifying the batch contents after software parsing.
  165. */
  166. struct i915_gem_batch_pool batch_pool;
  167. struct intel_hw_status_page status_page;
  168. struct i915_ctx_workarounds wa_ctx;
  169. u32 irq_keep_mask; /* always keep these interrupts */
  170. u32 irq_enable_mask; /* bitmask to enable ring interrupt */
  171. void (*irq_enable)(struct intel_engine_cs *engine);
  172. void (*irq_disable)(struct intel_engine_cs *engine);
  173. int (*init_hw)(struct intel_engine_cs *engine);
  174. int (*init_context)(struct drm_i915_gem_request *req);
  175. int (*emit_flush)(struct drm_i915_gem_request *request,
  176. u32 mode);
  177. #define EMIT_INVALIDATE BIT(0)
  178. #define EMIT_FLUSH BIT(1)
  179. #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
  180. int (*emit_bb_start)(struct drm_i915_gem_request *req,
  181. u64 offset, u32 length,
  182. unsigned int dispatch_flags);
  183. #define I915_DISPATCH_SECURE BIT(0)
  184. #define I915_DISPATCH_PINNED BIT(1)
  185. #define I915_DISPATCH_RS BIT(2)
  186. int (*emit_request)(struct drm_i915_gem_request *req);
  187. void (*submit_request)(struct drm_i915_gem_request *req);
  188. /* Some chipsets are not quite as coherent as advertised and need
  189. * an expensive kick to force a true read of the up-to-date seqno.
  190. * However, the up-to-date seqno is not always required and the last
  191. * seen value is good enough. Note that the seqno will always be
  192. * monotonic, even if not coherent.
  193. */
  194. void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
  195. void (*cleanup)(struct intel_engine_cs *engine);
  196. /* GEN8 signal/wait table - never trust comments!
  197. * signal to signal to signal to signal to signal to
  198. * RCS VCS BCS VECS VCS2
  199. * --------------------------------------------------------------------
  200. * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
  201. * |-------------------------------------------------------------------
  202. * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
  203. * |-------------------------------------------------------------------
  204. * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
  205. * |-------------------------------------------------------------------
  206. * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
  207. * |-------------------------------------------------------------------
  208. * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
  209. * |-------------------------------------------------------------------
  210. *
  211. * Generalization:
  212. * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
  213. * ie. transpose of g(x, y)
  214. *
  215. * sync from sync from sync from sync from sync from
  216. * RCS VCS BCS VECS VCS2
  217. * --------------------------------------------------------------------
  218. * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
  219. * |-------------------------------------------------------------------
  220. * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
  221. * |-------------------------------------------------------------------
  222. * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
  223. * |-------------------------------------------------------------------
  224. * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
  225. * |-------------------------------------------------------------------
  226. * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
  227. * |-------------------------------------------------------------------
  228. *
  229. * Generalization:
  230. * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
  231. * ie. transpose of f(x, y)
  232. */
  233. struct {
  234. u32 sync_seqno[I915_NUM_ENGINES-1];
  235. union {
  236. struct {
  237. /* our mbox written by others */
  238. u32 wait[I915_NUM_ENGINES];
  239. /* mboxes this ring signals to */
  240. i915_reg_t signal[I915_NUM_ENGINES];
  241. } mbox;
  242. u64 signal_ggtt[I915_NUM_ENGINES];
  243. };
  244. /* AKA wait() */
  245. int (*sync_to)(struct drm_i915_gem_request *to,
  246. struct drm_i915_gem_request *from);
  247. int (*signal)(struct drm_i915_gem_request *signaller_req);
  248. } semaphore;
  249. /* Execlists */
  250. struct tasklet_struct irq_tasklet;
  251. spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
  252. struct list_head execlist_queue;
  253. unsigned int fw_domains;
  254. unsigned int next_context_status_buffer;
  255. unsigned int idle_lite_restore_wa;
  256. bool disable_lite_restore_wa;
  257. u32 ctx_desc_template;
  258. /**
  259. * List of objects currently involved in rendering from the
  260. * ringbuffer.
  261. *
  262. * Includes buffers having the contents of their GPU caches
  263. * flushed, not necessarily primitives. last_read_req
  264. * represents when the rendering involved will be completed.
  265. *
  266. * A reference is held on the buffer while on this list.
  267. */
  268. struct list_head active_list;
  269. /**
  270. * List of breadcrumbs associated with GPU requests currently
  271. * outstanding.
  272. */
  273. struct list_head request_list;
  274. /**
  275. * Seqno of request most recently submitted to request_list.
  276. * Used exclusively by hang checker to avoid grabbing lock while
  277. * inspecting request list.
  278. */
  279. u32 last_submitted_seqno;
  280. struct i915_gem_context *last_context;
  281. struct intel_engine_hangcheck hangcheck;
  282. struct {
  283. struct drm_i915_gem_object *obj;
  284. u32 gtt_offset;
  285. } scratch;
  286. bool needs_cmd_parser;
  287. /*
  288. * Table of commands the command parser needs to know about
  289. * for this engine.
  290. */
  291. DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
  292. /*
  293. * Table of registers allowed in commands that read/write registers.
  294. */
  295. const struct drm_i915_reg_table *reg_tables;
  296. int reg_table_count;
  297. /*
  298. * Returns the bitmask for the length field of the specified command.
  299. * Return 0 for an unrecognized/invalid command.
  300. *
  301. * If the command parser finds an entry for a command in the engine's
  302. * cmd_tables, it gets the command's length based on the table entry.
  303. * If not, it calls this function to determine the per-engine length
  304. * field encoding for the command (i.e. different opcode ranges use
  305. * certain bits to encode the command length in the header).
  306. */
  307. u32 (*get_cmd_length_mask)(u32 cmd_header);
  308. };
  309. static inline bool
  310. intel_engine_initialized(const struct intel_engine_cs *engine)
  311. {
  312. return engine->i915 != NULL;
  313. }
  314. static inline unsigned
  315. intel_engine_flag(const struct intel_engine_cs *engine)
  316. {
  317. return 1 << engine->id;
  318. }
  319. static inline u32
  320. intel_engine_sync_index(struct intel_engine_cs *engine,
  321. struct intel_engine_cs *other)
  322. {
  323. int idx;
  324. /*
  325. * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
  326. * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
  327. * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
  328. * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
  329. * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
  330. */
  331. idx = (other - engine) - 1;
  332. if (idx < 0)
  333. idx += I915_NUM_ENGINES;
  334. return idx;
  335. }
  336. static inline void
  337. intel_flush_status_page(struct intel_engine_cs *engine, int reg)
  338. {
  339. mb();
  340. clflush(&engine->status_page.page_addr[reg]);
  341. mb();
  342. }
  343. static inline u32
  344. intel_read_status_page(struct intel_engine_cs *engine, int reg)
  345. {
  346. /* Ensure that the compiler doesn't optimize away the load. */
  347. return READ_ONCE(engine->status_page.page_addr[reg]);
  348. }
  349. static inline void
  350. intel_write_status_page(struct intel_engine_cs *engine,
  351. int reg, u32 value)
  352. {
  353. engine->status_page.page_addr[reg] = value;
  354. }
  355. /*
  356. * Reads a dword out of the status page, which is written to from the command
  357. * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
  358. * MI_STORE_DATA_IMM.
  359. *
  360. * The following dwords have a reserved meaning:
  361. * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
  362. * 0x04: ring 0 head pointer
  363. * 0x05: ring 1 head pointer (915-class)
  364. * 0x06: ring 2 head pointer (915-class)
  365. * 0x10-0x1b: Context status DWords (GM45)
  366. * 0x1f: Last written status offset. (GM45)
  367. * 0x20-0x2f: Reserved (Gen6+)
  368. *
  369. * The area from dword 0x30 to 0x3ff is available for driver usage.
  370. */
  371. #define I915_GEM_HWS_INDEX 0x30
  372. #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  373. #define I915_GEM_HWS_SCRATCH_INDEX 0x40
  374. #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  375. struct intel_ring *
  376. intel_engine_create_ring(struct intel_engine_cs *engine, int size);
  377. int intel_ring_pin(struct intel_ring *ring);
  378. void intel_ring_unpin(struct intel_ring *ring);
  379. void intel_ring_free(struct intel_ring *ring);
  380. void intel_engine_stop(struct intel_engine_cs *engine);
  381. void intel_engine_cleanup(struct intel_engine_cs *engine);
  382. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
  383. int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
  384. int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
  385. static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
  386. {
  387. *(uint32_t *)(ring->vaddr + ring->tail) = data;
  388. ring->tail += 4;
  389. }
  390. static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
  391. {
  392. intel_ring_emit(ring, i915_mmio_reg_offset(reg));
  393. }
  394. static inline void intel_ring_advance(struct intel_ring *ring)
  395. {
  396. /* Dummy function.
  397. *
  398. * This serves as a placeholder in the code so that the reader
  399. * can compare against the preceding intel_ring_begin() and
  400. * check that the number of dwords emitted matches the space
  401. * reserved for the command packet (i.e. the value passed to
  402. * intel_ring_begin()).
  403. */
  404. }
  405. static inline u32 intel_ring_offset(struct intel_ring *ring, u32 value)
  406. {
  407. /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
  408. return value & (ring->size - 1);
  409. }
  410. int __intel_ring_space(int head, int tail, int size);
  411. void intel_ring_update_space(struct intel_ring *ring);
  412. int __must_check intel_engine_idle(struct intel_engine_cs *engine);
  413. void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno);
  414. int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
  415. void intel_fini_pipe_control(struct intel_engine_cs *engine);
  416. void intel_engine_setup_common(struct intel_engine_cs *engine);
  417. int intel_engine_init_common(struct intel_engine_cs *engine);
  418. int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
  419. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
  420. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
  421. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
  422. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
  423. u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
  424. static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
  425. {
  426. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  427. }
  428. int init_workarounds_ring(struct intel_engine_cs *engine);
  429. /*
  430. * Arbitrary size for largest possible 'add request' sequence. The code paths
  431. * are complex and variable. Empirical measurement shows that the worst case
  432. * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
  433. * we need to allocate double the largest single packet within that emission
  434. * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
  435. */
  436. #define MIN_SPACE_FOR_ADD_REQUEST 336
  437. static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
  438. {
  439. return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
  440. }
  441. /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
  442. struct intel_wait {
  443. struct rb_node node;
  444. struct task_struct *tsk;
  445. u32 seqno;
  446. };
  447. struct intel_signal_node {
  448. struct rb_node node;
  449. struct intel_wait wait;
  450. };
  451. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
  452. static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
  453. {
  454. wait->tsk = current;
  455. wait->seqno = seqno;
  456. }
  457. static inline bool intel_wait_complete(const struct intel_wait *wait)
  458. {
  459. return RB_EMPTY_NODE(&wait->node);
  460. }
  461. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  462. struct intel_wait *wait);
  463. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  464. struct intel_wait *wait);
  465. void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
  466. static inline bool intel_engine_has_waiter(struct intel_engine_cs *engine)
  467. {
  468. return READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
  469. }
  470. static inline bool intel_engine_wakeup(struct intel_engine_cs *engine)
  471. {
  472. bool wakeup = false;
  473. struct task_struct *tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
  474. /* Note that for this not to dangerously chase a dangling pointer,
  475. * the caller is responsible for ensure that the task remain valid for
  476. * wake_up_process() i.e. that the RCU grace period cannot expire.
  477. *
  478. * Also note that tsk is likely to be in !TASK_RUNNING state so an
  479. * early test for tsk->state != TASK_RUNNING before wake_up_process()
  480. * is unlikely to be beneficial.
  481. */
  482. if (tsk)
  483. wakeup = wake_up_process(tsk);
  484. return wakeup;
  485. }
  486. void intel_engine_enable_fake_irq(struct intel_engine_cs *engine);
  487. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
  488. unsigned int intel_kick_waiters(struct drm_i915_private *i915);
  489. unsigned int intel_kick_signalers(struct drm_i915_private *i915);
  490. #endif /* _INTEL_RINGBUFFER_H_ */