namespace.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/cred.h>
  18. #include <linux/idr.h>
  19. #include <linux/init.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_ns.h>
  24. #include <linux/magic.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/task_work.h>
  27. #include <linux/sched/task.h>
  28. #include "pnode.h"
  29. #include "internal.h"
  30. /* Maximum number of mounts in a mount namespace */
  31. unsigned int sysctl_mount_max __read_mostly = 100000;
  32. static unsigned int m_hash_mask __read_mostly;
  33. static unsigned int m_hash_shift __read_mostly;
  34. static unsigned int mp_hash_mask __read_mostly;
  35. static unsigned int mp_hash_shift __read_mostly;
  36. static __initdata unsigned long mhash_entries;
  37. static int __init set_mhash_entries(char *str)
  38. {
  39. if (!str)
  40. return 0;
  41. mhash_entries = simple_strtoul(str, &str, 0);
  42. return 1;
  43. }
  44. __setup("mhash_entries=", set_mhash_entries);
  45. static __initdata unsigned long mphash_entries;
  46. static int __init set_mphash_entries(char *str)
  47. {
  48. if (!str)
  49. return 0;
  50. mphash_entries = simple_strtoul(str, &str, 0);
  51. return 1;
  52. }
  53. __setup("mphash_entries=", set_mphash_entries);
  54. static u64 event;
  55. static DEFINE_IDA(mnt_id_ida);
  56. static DEFINE_IDA(mnt_group_ida);
  57. static DEFINE_SPINLOCK(mnt_id_lock);
  58. static int mnt_id_start = 0;
  59. static int mnt_group_start = 1;
  60. static struct hlist_head *mount_hashtable __read_mostly;
  61. static struct hlist_head *mountpoint_hashtable __read_mostly;
  62. static struct kmem_cache *mnt_cache __read_mostly;
  63. static DECLARE_RWSEM(namespace_sem);
  64. /* /sys/fs */
  65. struct kobject *fs_kobj;
  66. EXPORT_SYMBOL_GPL(fs_kobj);
  67. /*
  68. * vfsmount lock may be taken for read to prevent changes to the
  69. * vfsmount hash, ie. during mountpoint lookups or walking back
  70. * up the tree.
  71. *
  72. * It should be taken for write in all cases where the vfsmount
  73. * tree or hash is modified or when a vfsmount structure is modified.
  74. */
  75. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  76. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  77. {
  78. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  79. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  80. tmp = tmp + (tmp >> m_hash_shift);
  81. return &mount_hashtable[tmp & m_hash_mask];
  82. }
  83. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  84. {
  85. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  86. tmp = tmp + (tmp >> mp_hash_shift);
  87. return &mountpoint_hashtable[tmp & mp_hash_mask];
  88. }
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static void drop_mountpoint(struct fs_pin *p)
  170. {
  171. struct mount *m = container_of(p, struct mount, mnt_umount);
  172. dput(m->mnt_ex_mountpoint);
  173. pin_remove(p);
  174. mntput(&m->mnt);
  175. }
  176. static struct mount *alloc_vfsmnt(const char *name)
  177. {
  178. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  179. if (mnt) {
  180. int err;
  181. err = mnt_alloc_id(mnt);
  182. if (err)
  183. goto out_free_cache;
  184. if (name) {
  185. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  186. if (!mnt->mnt_devname)
  187. goto out_free_id;
  188. }
  189. #ifdef CONFIG_SMP
  190. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  191. if (!mnt->mnt_pcp)
  192. goto out_free_devname;
  193. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  194. #else
  195. mnt->mnt_count = 1;
  196. mnt->mnt_writers = 0;
  197. #endif
  198. INIT_HLIST_NODE(&mnt->mnt_hash);
  199. INIT_LIST_HEAD(&mnt->mnt_child);
  200. INIT_LIST_HEAD(&mnt->mnt_mounts);
  201. INIT_LIST_HEAD(&mnt->mnt_list);
  202. INIT_LIST_HEAD(&mnt->mnt_expire);
  203. INIT_LIST_HEAD(&mnt->mnt_share);
  204. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  205. INIT_LIST_HEAD(&mnt->mnt_slave);
  206. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  207. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  208. }
  209. return mnt;
  210. #ifdef CONFIG_SMP
  211. out_free_devname:
  212. kfree_const(mnt->mnt_devname);
  213. #endif
  214. out_free_id:
  215. mnt_free_id(mnt);
  216. out_free_cache:
  217. kmem_cache_free(mnt_cache, mnt);
  218. return NULL;
  219. }
  220. /*
  221. * Most r/o checks on a fs are for operations that take
  222. * discrete amounts of time, like a write() or unlink().
  223. * We must keep track of when those operations start
  224. * (for permission checks) and when they end, so that
  225. * we can determine when writes are able to occur to
  226. * a filesystem.
  227. */
  228. /*
  229. * __mnt_is_readonly: check whether a mount is read-only
  230. * @mnt: the mount to check for its write status
  231. *
  232. * This shouldn't be used directly ouside of the VFS.
  233. * It does not guarantee that the filesystem will stay
  234. * r/w, just that it is right *now*. This can not and
  235. * should not be used in place of IS_RDONLY(inode).
  236. * mnt_want/drop_write() will _keep_ the filesystem
  237. * r/w.
  238. */
  239. int __mnt_is_readonly(struct vfsmount *mnt)
  240. {
  241. if (mnt->mnt_flags & MNT_READONLY)
  242. return 1;
  243. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  244. return 1;
  245. return 0;
  246. }
  247. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  248. static inline void mnt_inc_writers(struct mount *mnt)
  249. {
  250. #ifdef CONFIG_SMP
  251. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  252. #else
  253. mnt->mnt_writers++;
  254. #endif
  255. }
  256. static inline void mnt_dec_writers(struct mount *mnt)
  257. {
  258. #ifdef CONFIG_SMP
  259. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  260. #else
  261. mnt->mnt_writers--;
  262. #endif
  263. }
  264. static unsigned int mnt_get_writers(struct mount *mnt)
  265. {
  266. #ifdef CONFIG_SMP
  267. unsigned int count = 0;
  268. int cpu;
  269. for_each_possible_cpu(cpu) {
  270. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  271. }
  272. return count;
  273. #else
  274. return mnt->mnt_writers;
  275. #endif
  276. }
  277. static int mnt_is_readonly(struct vfsmount *mnt)
  278. {
  279. if (mnt->mnt_sb->s_readonly_remount)
  280. return 1;
  281. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  282. smp_rmb();
  283. return __mnt_is_readonly(mnt);
  284. }
  285. /*
  286. * Most r/o & frozen checks on a fs are for operations that take discrete
  287. * amounts of time, like a write() or unlink(). We must keep track of when
  288. * those operations start (for permission checks) and when they end, so that we
  289. * can determine when writes are able to occur to a filesystem.
  290. */
  291. /**
  292. * __mnt_want_write - get write access to a mount without freeze protection
  293. * @m: the mount on which to take a write
  294. *
  295. * This tells the low-level filesystem that a write is about to be performed to
  296. * it, and makes sure that writes are allowed (mnt it read-write) before
  297. * returning success. This operation does not protect against filesystem being
  298. * frozen. When the write operation is finished, __mnt_drop_write() must be
  299. * called. This is effectively a refcount.
  300. */
  301. int __mnt_want_write(struct vfsmount *m)
  302. {
  303. struct mount *mnt = real_mount(m);
  304. int ret = 0;
  305. preempt_disable();
  306. mnt_inc_writers(mnt);
  307. /*
  308. * The store to mnt_inc_writers must be visible before we pass
  309. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  310. * incremented count after it has set MNT_WRITE_HOLD.
  311. */
  312. smp_mb();
  313. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  314. cpu_relax();
  315. /*
  316. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  317. * be set to match its requirements. So we must not load that until
  318. * MNT_WRITE_HOLD is cleared.
  319. */
  320. smp_rmb();
  321. if (mnt_is_readonly(m)) {
  322. mnt_dec_writers(mnt);
  323. ret = -EROFS;
  324. }
  325. preempt_enable();
  326. return ret;
  327. }
  328. /**
  329. * mnt_want_write - get write access to a mount
  330. * @m: the mount on which to take a write
  331. *
  332. * This tells the low-level filesystem that a write is about to be performed to
  333. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  334. * is not frozen) before returning success. When the write operation is
  335. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  336. */
  337. int mnt_want_write(struct vfsmount *m)
  338. {
  339. int ret;
  340. sb_start_write(m->mnt_sb);
  341. ret = __mnt_want_write(m);
  342. if (ret)
  343. sb_end_write(m->mnt_sb);
  344. return ret;
  345. }
  346. EXPORT_SYMBOL_GPL(mnt_want_write);
  347. /**
  348. * mnt_clone_write - get write access to a mount
  349. * @mnt: the mount on which to take a write
  350. *
  351. * This is effectively like mnt_want_write, except
  352. * it must only be used to take an extra write reference
  353. * on a mountpoint that we already know has a write reference
  354. * on it. This allows some optimisation.
  355. *
  356. * After finished, mnt_drop_write must be called as usual to
  357. * drop the reference.
  358. */
  359. int mnt_clone_write(struct vfsmount *mnt)
  360. {
  361. /* superblock may be r/o */
  362. if (__mnt_is_readonly(mnt))
  363. return -EROFS;
  364. preempt_disable();
  365. mnt_inc_writers(real_mount(mnt));
  366. preempt_enable();
  367. return 0;
  368. }
  369. EXPORT_SYMBOL_GPL(mnt_clone_write);
  370. /**
  371. * __mnt_want_write_file - get write access to a file's mount
  372. * @file: the file who's mount on which to take a write
  373. *
  374. * This is like __mnt_want_write, but it takes a file and can
  375. * do some optimisations if the file is open for write already
  376. */
  377. int __mnt_want_write_file(struct file *file)
  378. {
  379. if (!(file->f_mode & FMODE_WRITER))
  380. return __mnt_want_write(file->f_path.mnt);
  381. else
  382. return mnt_clone_write(file->f_path.mnt);
  383. }
  384. /**
  385. * mnt_want_write_file - get write access to a file's mount
  386. * @file: the file who's mount on which to take a write
  387. *
  388. * This is like mnt_want_write, but it takes a file and can
  389. * do some optimisations if the file is open for write already
  390. */
  391. int mnt_want_write_file(struct file *file)
  392. {
  393. int ret;
  394. sb_start_write(file->f_path.mnt->mnt_sb);
  395. ret = __mnt_want_write_file(file);
  396. if (ret)
  397. sb_end_write(file->f_path.mnt->mnt_sb);
  398. return ret;
  399. }
  400. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  401. /**
  402. * __mnt_drop_write - give up write access to a mount
  403. * @mnt: the mount on which to give up write access
  404. *
  405. * Tells the low-level filesystem that we are done
  406. * performing writes to it. Must be matched with
  407. * __mnt_want_write() call above.
  408. */
  409. void __mnt_drop_write(struct vfsmount *mnt)
  410. {
  411. preempt_disable();
  412. mnt_dec_writers(real_mount(mnt));
  413. preempt_enable();
  414. }
  415. /**
  416. * mnt_drop_write - give up write access to a mount
  417. * @mnt: the mount on which to give up write access
  418. *
  419. * Tells the low-level filesystem that we are done performing writes to it and
  420. * also allows filesystem to be frozen again. Must be matched with
  421. * mnt_want_write() call above.
  422. */
  423. void mnt_drop_write(struct vfsmount *mnt)
  424. {
  425. __mnt_drop_write(mnt);
  426. sb_end_write(mnt->mnt_sb);
  427. }
  428. EXPORT_SYMBOL_GPL(mnt_drop_write);
  429. void __mnt_drop_write_file(struct file *file)
  430. {
  431. __mnt_drop_write(file->f_path.mnt);
  432. }
  433. void mnt_drop_write_file(struct file *file)
  434. {
  435. mnt_drop_write(file->f_path.mnt);
  436. }
  437. EXPORT_SYMBOL(mnt_drop_write_file);
  438. static int mnt_make_readonly(struct mount *mnt)
  439. {
  440. int ret = 0;
  441. lock_mount_hash();
  442. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  443. /*
  444. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  445. * should be visible before we do.
  446. */
  447. smp_mb();
  448. /*
  449. * With writers on hold, if this value is zero, then there are
  450. * definitely no active writers (although held writers may subsequently
  451. * increment the count, they'll have to wait, and decrement it after
  452. * seeing MNT_READONLY).
  453. *
  454. * It is OK to have counter incremented on one CPU and decremented on
  455. * another: the sum will add up correctly. The danger would be when we
  456. * sum up each counter, if we read a counter before it is incremented,
  457. * but then read another CPU's count which it has been subsequently
  458. * decremented from -- we would see more decrements than we should.
  459. * MNT_WRITE_HOLD protects against this scenario, because
  460. * mnt_want_write first increments count, then smp_mb, then spins on
  461. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  462. * we're counting up here.
  463. */
  464. if (mnt_get_writers(mnt) > 0)
  465. ret = -EBUSY;
  466. else
  467. mnt->mnt.mnt_flags |= MNT_READONLY;
  468. /*
  469. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  470. * that become unheld will see MNT_READONLY.
  471. */
  472. smp_wmb();
  473. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  474. unlock_mount_hash();
  475. return ret;
  476. }
  477. static void __mnt_unmake_readonly(struct mount *mnt)
  478. {
  479. lock_mount_hash();
  480. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  481. unlock_mount_hash();
  482. }
  483. int sb_prepare_remount_readonly(struct super_block *sb)
  484. {
  485. struct mount *mnt;
  486. int err = 0;
  487. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  488. if (atomic_long_read(&sb->s_remove_count))
  489. return -EBUSY;
  490. lock_mount_hash();
  491. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  492. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  493. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  494. smp_mb();
  495. if (mnt_get_writers(mnt) > 0) {
  496. err = -EBUSY;
  497. break;
  498. }
  499. }
  500. }
  501. if (!err && atomic_long_read(&sb->s_remove_count))
  502. err = -EBUSY;
  503. if (!err) {
  504. sb->s_readonly_remount = 1;
  505. smp_wmb();
  506. }
  507. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  508. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  509. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  510. }
  511. unlock_mount_hash();
  512. return err;
  513. }
  514. static void free_vfsmnt(struct mount *mnt)
  515. {
  516. kfree_const(mnt->mnt_devname);
  517. #ifdef CONFIG_SMP
  518. free_percpu(mnt->mnt_pcp);
  519. #endif
  520. kmem_cache_free(mnt_cache, mnt);
  521. }
  522. static void delayed_free_vfsmnt(struct rcu_head *head)
  523. {
  524. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  525. }
  526. /* call under rcu_read_lock */
  527. int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  528. {
  529. struct mount *mnt;
  530. if (read_seqretry(&mount_lock, seq))
  531. return 1;
  532. if (bastard == NULL)
  533. return 0;
  534. mnt = real_mount(bastard);
  535. mnt_add_count(mnt, 1);
  536. if (likely(!read_seqretry(&mount_lock, seq)))
  537. return 0;
  538. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  539. mnt_add_count(mnt, -1);
  540. return 1;
  541. }
  542. return -1;
  543. }
  544. /* call under rcu_read_lock */
  545. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  546. {
  547. int res = __legitimize_mnt(bastard, seq);
  548. if (likely(!res))
  549. return true;
  550. if (unlikely(res < 0)) {
  551. rcu_read_unlock();
  552. mntput(bastard);
  553. rcu_read_lock();
  554. }
  555. return false;
  556. }
  557. /*
  558. * find the first mount at @dentry on vfsmount @mnt.
  559. * call under rcu_read_lock()
  560. */
  561. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  562. {
  563. struct hlist_head *head = m_hash(mnt, dentry);
  564. struct mount *p;
  565. hlist_for_each_entry_rcu(p, head, mnt_hash)
  566. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  567. return p;
  568. return NULL;
  569. }
  570. /*
  571. * lookup_mnt - Return the first child mount mounted at path
  572. *
  573. * "First" means first mounted chronologically. If you create the
  574. * following mounts:
  575. *
  576. * mount /dev/sda1 /mnt
  577. * mount /dev/sda2 /mnt
  578. * mount /dev/sda3 /mnt
  579. *
  580. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  581. * return successively the root dentry and vfsmount of /dev/sda1, then
  582. * /dev/sda2, then /dev/sda3, then NULL.
  583. *
  584. * lookup_mnt takes a reference to the found vfsmount.
  585. */
  586. struct vfsmount *lookup_mnt(const struct path *path)
  587. {
  588. struct mount *child_mnt;
  589. struct vfsmount *m;
  590. unsigned seq;
  591. rcu_read_lock();
  592. do {
  593. seq = read_seqbegin(&mount_lock);
  594. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  595. m = child_mnt ? &child_mnt->mnt : NULL;
  596. } while (!legitimize_mnt(m, seq));
  597. rcu_read_unlock();
  598. return m;
  599. }
  600. /*
  601. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  602. * current mount namespace.
  603. *
  604. * The common case is dentries are not mountpoints at all and that
  605. * test is handled inline. For the slow case when we are actually
  606. * dealing with a mountpoint of some kind, walk through all of the
  607. * mounts in the current mount namespace and test to see if the dentry
  608. * is a mountpoint.
  609. *
  610. * The mount_hashtable is not usable in the context because we
  611. * need to identify all mounts that may be in the current mount
  612. * namespace not just a mount that happens to have some specified
  613. * parent mount.
  614. */
  615. bool __is_local_mountpoint(struct dentry *dentry)
  616. {
  617. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  618. struct mount *mnt;
  619. bool is_covered = false;
  620. if (!d_mountpoint(dentry))
  621. goto out;
  622. down_read(&namespace_sem);
  623. list_for_each_entry(mnt, &ns->list, mnt_list) {
  624. is_covered = (mnt->mnt_mountpoint == dentry);
  625. if (is_covered)
  626. break;
  627. }
  628. up_read(&namespace_sem);
  629. out:
  630. return is_covered;
  631. }
  632. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  633. {
  634. struct hlist_head *chain = mp_hash(dentry);
  635. struct mountpoint *mp;
  636. hlist_for_each_entry(mp, chain, m_hash) {
  637. if (mp->m_dentry == dentry) {
  638. /* might be worth a WARN_ON() */
  639. if (d_unlinked(dentry))
  640. return ERR_PTR(-ENOENT);
  641. mp->m_count++;
  642. return mp;
  643. }
  644. }
  645. return NULL;
  646. }
  647. static struct mountpoint *get_mountpoint(struct dentry *dentry)
  648. {
  649. struct mountpoint *mp, *new = NULL;
  650. int ret;
  651. if (d_mountpoint(dentry)) {
  652. mountpoint:
  653. read_seqlock_excl(&mount_lock);
  654. mp = lookup_mountpoint(dentry);
  655. read_sequnlock_excl(&mount_lock);
  656. if (mp)
  657. goto done;
  658. }
  659. if (!new)
  660. new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  661. if (!new)
  662. return ERR_PTR(-ENOMEM);
  663. /* Exactly one processes may set d_mounted */
  664. ret = d_set_mounted(dentry);
  665. /* Someone else set d_mounted? */
  666. if (ret == -EBUSY)
  667. goto mountpoint;
  668. /* The dentry is not available as a mountpoint? */
  669. mp = ERR_PTR(ret);
  670. if (ret)
  671. goto done;
  672. /* Add the new mountpoint to the hash table */
  673. read_seqlock_excl(&mount_lock);
  674. new->m_dentry = dentry;
  675. new->m_count = 1;
  676. hlist_add_head(&new->m_hash, mp_hash(dentry));
  677. INIT_HLIST_HEAD(&new->m_list);
  678. read_sequnlock_excl(&mount_lock);
  679. mp = new;
  680. new = NULL;
  681. done:
  682. kfree(new);
  683. return mp;
  684. }
  685. static void put_mountpoint(struct mountpoint *mp)
  686. {
  687. if (!--mp->m_count) {
  688. struct dentry *dentry = mp->m_dentry;
  689. BUG_ON(!hlist_empty(&mp->m_list));
  690. spin_lock(&dentry->d_lock);
  691. dentry->d_flags &= ~DCACHE_MOUNTED;
  692. spin_unlock(&dentry->d_lock);
  693. hlist_del(&mp->m_hash);
  694. kfree(mp);
  695. }
  696. }
  697. static inline int check_mnt(struct mount *mnt)
  698. {
  699. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  700. }
  701. /*
  702. * vfsmount lock must be held for write
  703. */
  704. static void touch_mnt_namespace(struct mnt_namespace *ns)
  705. {
  706. if (ns) {
  707. ns->event = ++event;
  708. wake_up_interruptible(&ns->poll);
  709. }
  710. }
  711. /*
  712. * vfsmount lock must be held for write
  713. */
  714. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  715. {
  716. if (ns && ns->event != event) {
  717. ns->event = event;
  718. wake_up_interruptible(&ns->poll);
  719. }
  720. }
  721. /*
  722. * vfsmount lock must be held for write
  723. */
  724. static void unhash_mnt(struct mount *mnt)
  725. {
  726. mnt->mnt_parent = mnt;
  727. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  728. list_del_init(&mnt->mnt_child);
  729. hlist_del_init_rcu(&mnt->mnt_hash);
  730. hlist_del_init(&mnt->mnt_mp_list);
  731. put_mountpoint(mnt->mnt_mp);
  732. mnt->mnt_mp = NULL;
  733. }
  734. /*
  735. * vfsmount lock must be held for write
  736. */
  737. static void detach_mnt(struct mount *mnt, struct path *old_path)
  738. {
  739. old_path->dentry = mnt->mnt_mountpoint;
  740. old_path->mnt = &mnt->mnt_parent->mnt;
  741. unhash_mnt(mnt);
  742. }
  743. /*
  744. * vfsmount lock must be held for write
  745. */
  746. static void umount_mnt(struct mount *mnt)
  747. {
  748. /* old mountpoint will be dropped when we can do that */
  749. mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
  750. unhash_mnt(mnt);
  751. }
  752. /*
  753. * vfsmount lock must be held for write
  754. */
  755. void mnt_set_mountpoint(struct mount *mnt,
  756. struct mountpoint *mp,
  757. struct mount *child_mnt)
  758. {
  759. mp->m_count++;
  760. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  761. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  762. child_mnt->mnt_parent = mnt;
  763. child_mnt->mnt_mp = mp;
  764. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  765. }
  766. static void __attach_mnt(struct mount *mnt, struct mount *parent)
  767. {
  768. hlist_add_head_rcu(&mnt->mnt_hash,
  769. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  770. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  771. }
  772. /*
  773. * vfsmount lock must be held for write
  774. */
  775. static void attach_mnt(struct mount *mnt,
  776. struct mount *parent,
  777. struct mountpoint *mp)
  778. {
  779. mnt_set_mountpoint(parent, mp, mnt);
  780. __attach_mnt(mnt, parent);
  781. }
  782. void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
  783. {
  784. struct mountpoint *old_mp = mnt->mnt_mp;
  785. struct dentry *old_mountpoint = mnt->mnt_mountpoint;
  786. struct mount *old_parent = mnt->mnt_parent;
  787. list_del_init(&mnt->mnt_child);
  788. hlist_del_init(&mnt->mnt_mp_list);
  789. hlist_del_init_rcu(&mnt->mnt_hash);
  790. attach_mnt(mnt, parent, mp);
  791. put_mountpoint(old_mp);
  792. /*
  793. * Safely avoid even the suggestion this code might sleep or
  794. * lock the mount hash by taking advantage of the knowledge that
  795. * mnt_change_mountpoint will not release the final reference
  796. * to a mountpoint.
  797. *
  798. * During mounting, the mount passed in as the parent mount will
  799. * continue to use the old mountpoint and during unmounting, the
  800. * old mountpoint will continue to exist until namespace_unlock,
  801. * which happens well after mnt_change_mountpoint.
  802. */
  803. spin_lock(&old_mountpoint->d_lock);
  804. old_mountpoint->d_lockref.count--;
  805. spin_unlock(&old_mountpoint->d_lock);
  806. mnt_add_count(old_parent, -1);
  807. }
  808. /*
  809. * vfsmount lock must be held for write
  810. */
  811. static void commit_tree(struct mount *mnt)
  812. {
  813. struct mount *parent = mnt->mnt_parent;
  814. struct mount *m;
  815. LIST_HEAD(head);
  816. struct mnt_namespace *n = parent->mnt_ns;
  817. BUG_ON(parent == mnt);
  818. list_add_tail(&head, &mnt->mnt_list);
  819. list_for_each_entry(m, &head, mnt_list)
  820. m->mnt_ns = n;
  821. list_splice(&head, n->list.prev);
  822. n->mounts += n->pending_mounts;
  823. n->pending_mounts = 0;
  824. __attach_mnt(mnt, parent);
  825. touch_mnt_namespace(n);
  826. }
  827. static struct mount *next_mnt(struct mount *p, struct mount *root)
  828. {
  829. struct list_head *next = p->mnt_mounts.next;
  830. if (next == &p->mnt_mounts) {
  831. while (1) {
  832. if (p == root)
  833. return NULL;
  834. next = p->mnt_child.next;
  835. if (next != &p->mnt_parent->mnt_mounts)
  836. break;
  837. p = p->mnt_parent;
  838. }
  839. }
  840. return list_entry(next, struct mount, mnt_child);
  841. }
  842. static struct mount *skip_mnt_tree(struct mount *p)
  843. {
  844. struct list_head *prev = p->mnt_mounts.prev;
  845. while (prev != &p->mnt_mounts) {
  846. p = list_entry(prev, struct mount, mnt_child);
  847. prev = p->mnt_mounts.prev;
  848. }
  849. return p;
  850. }
  851. struct vfsmount *
  852. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  853. {
  854. struct mount *mnt;
  855. struct dentry *root;
  856. if (!type)
  857. return ERR_PTR(-ENODEV);
  858. mnt = alloc_vfsmnt(name);
  859. if (!mnt)
  860. return ERR_PTR(-ENOMEM);
  861. if (flags & MS_KERNMOUNT)
  862. mnt->mnt.mnt_flags = MNT_INTERNAL;
  863. root = mount_fs(type, flags, name, data);
  864. if (IS_ERR(root)) {
  865. mnt_free_id(mnt);
  866. free_vfsmnt(mnt);
  867. return ERR_CAST(root);
  868. }
  869. mnt->mnt.mnt_root = root;
  870. mnt->mnt.mnt_sb = root->d_sb;
  871. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  872. mnt->mnt_parent = mnt;
  873. lock_mount_hash();
  874. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  875. unlock_mount_hash();
  876. return &mnt->mnt;
  877. }
  878. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  879. struct vfsmount *
  880. vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
  881. const char *name, void *data)
  882. {
  883. /* Until it is worked out how to pass the user namespace
  884. * through from the parent mount to the submount don't support
  885. * unprivileged mounts with submounts.
  886. */
  887. if (mountpoint->d_sb->s_user_ns != &init_user_ns)
  888. return ERR_PTR(-EPERM);
  889. return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
  890. }
  891. EXPORT_SYMBOL_GPL(vfs_submount);
  892. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  893. int flag)
  894. {
  895. struct super_block *sb = old->mnt.mnt_sb;
  896. struct mount *mnt;
  897. int err;
  898. mnt = alloc_vfsmnt(old->mnt_devname);
  899. if (!mnt)
  900. return ERR_PTR(-ENOMEM);
  901. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  902. mnt->mnt_group_id = 0; /* not a peer of original */
  903. else
  904. mnt->mnt_group_id = old->mnt_group_id;
  905. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  906. err = mnt_alloc_group_id(mnt);
  907. if (err)
  908. goto out_free;
  909. }
  910. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  911. /* Don't allow unprivileged users to change mount flags */
  912. if (flag & CL_UNPRIVILEGED) {
  913. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  914. if (mnt->mnt.mnt_flags & MNT_READONLY)
  915. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  916. if (mnt->mnt.mnt_flags & MNT_NODEV)
  917. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  918. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  919. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  920. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  921. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  922. }
  923. /* Don't allow unprivileged users to reveal what is under a mount */
  924. if ((flag & CL_UNPRIVILEGED) &&
  925. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  926. mnt->mnt.mnt_flags |= MNT_LOCKED;
  927. atomic_inc(&sb->s_active);
  928. mnt->mnt.mnt_sb = sb;
  929. mnt->mnt.mnt_root = dget(root);
  930. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  931. mnt->mnt_parent = mnt;
  932. lock_mount_hash();
  933. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  934. unlock_mount_hash();
  935. if ((flag & CL_SLAVE) ||
  936. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  937. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  938. mnt->mnt_master = old;
  939. CLEAR_MNT_SHARED(mnt);
  940. } else if (!(flag & CL_PRIVATE)) {
  941. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  942. list_add(&mnt->mnt_share, &old->mnt_share);
  943. if (IS_MNT_SLAVE(old))
  944. list_add(&mnt->mnt_slave, &old->mnt_slave);
  945. mnt->mnt_master = old->mnt_master;
  946. } else {
  947. CLEAR_MNT_SHARED(mnt);
  948. }
  949. if (flag & CL_MAKE_SHARED)
  950. set_mnt_shared(mnt);
  951. /* stick the duplicate mount on the same expiry list
  952. * as the original if that was on one */
  953. if (flag & CL_EXPIRE) {
  954. if (!list_empty(&old->mnt_expire))
  955. list_add(&mnt->mnt_expire, &old->mnt_expire);
  956. }
  957. return mnt;
  958. out_free:
  959. mnt_free_id(mnt);
  960. free_vfsmnt(mnt);
  961. return ERR_PTR(err);
  962. }
  963. static void cleanup_mnt(struct mount *mnt)
  964. {
  965. /*
  966. * This probably indicates that somebody messed
  967. * up a mnt_want/drop_write() pair. If this
  968. * happens, the filesystem was probably unable
  969. * to make r/w->r/o transitions.
  970. */
  971. /*
  972. * The locking used to deal with mnt_count decrement provides barriers,
  973. * so mnt_get_writers() below is safe.
  974. */
  975. WARN_ON(mnt_get_writers(mnt));
  976. if (unlikely(mnt->mnt_pins.first))
  977. mnt_pin_kill(mnt);
  978. fsnotify_vfsmount_delete(&mnt->mnt);
  979. dput(mnt->mnt.mnt_root);
  980. deactivate_super(mnt->mnt.mnt_sb);
  981. mnt_free_id(mnt);
  982. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  983. }
  984. static void __cleanup_mnt(struct rcu_head *head)
  985. {
  986. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  987. }
  988. static LLIST_HEAD(delayed_mntput_list);
  989. static void delayed_mntput(struct work_struct *unused)
  990. {
  991. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  992. struct llist_node *next;
  993. for (; node; node = next) {
  994. next = llist_next(node);
  995. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  996. }
  997. }
  998. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  999. static void mntput_no_expire(struct mount *mnt)
  1000. {
  1001. rcu_read_lock();
  1002. mnt_add_count(mnt, -1);
  1003. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  1004. rcu_read_unlock();
  1005. return;
  1006. }
  1007. lock_mount_hash();
  1008. if (mnt_get_count(mnt)) {
  1009. rcu_read_unlock();
  1010. unlock_mount_hash();
  1011. return;
  1012. }
  1013. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  1014. rcu_read_unlock();
  1015. unlock_mount_hash();
  1016. return;
  1017. }
  1018. mnt->mnt.mnt_flags |= MNT_DOOMED;
  1019. rcu_read_unlock();
  1020. list_del(&mnt->mnt_instance);
  1021. if (unlikely(!list_empty(&mnt->mnt_mounts))) {
  1022. struct mount *p, *tmp;
  1023. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  1024. umount_mnt(p);
  1025. }
  1026. }
  1027. unlock_mount_hash();
  1028. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  1029. struct task_struct *task = current;
  1030. if (likely(!(task->flags & PF_KTHREAD))) {
  1031. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  1032. if (!task_work_add(task, &mnt->mnt_rcu, true))
  1033. return;
  1034. }
  1035. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  1036. schedule_delayed_work(&delayed_mntput_work, 1);
  1037. return;
  1038. }
  1039. cleanup_mnt(mnt);
  1040. }
  1041. void mntput(struct vfsmount *mnt)
  1042. {
  1043. if (mnt) {
  1044. struct mount *m = real_mount(mnt);
  1045. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  1046. if (unlikely(m->mnt_expiry_mark))
  1047. m->mnt_expiry_mark = 0;
  1048. mntput_no_expire(m);
  1049. }
  1050. }
  1051. EXPORT_SYMBOL(mntput);
  1052. struct vfsmount *mntget(struct vfsmount *mnt)
  1053. {
  1054. if (mnt)
  1055. mnt_add_count(real_mount(mnt), 1);
  1056. return mnt;
  1057. }
  1058. EXPORT_SYMBOL(mntget);
  1059. /* path_is_mountpoint() - Check if path is a mount in the current
  1060. * namespace.
  1061. *
  1062. * d_mountpoint() can only be used reliably to establish if a dentry is
  1063. * not mounted in any namespace and that common case is handled inline.
  1064. * d_mountpoint() isn't aware of the possibility there may be multiple
  1065. * mounts using a given dentry in a different namespace. This function
  1066. * checks if the passed in path is a mountpoint rather than the dentry
  1067. * alone.
  1068. */
  1069. bool path_is_mountpoint(const struct path *path)
  1070. {
  1071. unsigned seq;
  1072. bool res;
  1073. if (!d_mountpoint(path->dentry))
  1074. return false;
  1075. rcu_read_lock();
  1076. do {
  1077. seq = read_seqbegin(&mount_lock);
  1078. res = __path_is_mountpoint(path);
  1079. } while (read_seqretry(&mount_lock, seq));
  1080. rcu_read_unlock();
  1081. return res;
  1082. }
  1083. EXPORT_SYMBOL(path_is_mountpoint);
  1084. struct vfsmount *mnt_clone_internal(const struct path *path)
  1085. {
  1086. struct mount *p;
  1087. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  1088. if (IS_ERR(p))
  1089. return ERR_CAST(p);
  1090. p->mnt.mnt_flags |= MNT_INTERNAL;
  1091. return &p->mnt;
  1092. }
  1093. static inline void mangle(struct seq_file *m, const char *s)
  1094. {
  1095. seq_escape(m, s, " \t\n\\");
  1096. }
  1097. /*
  1098. * Simple .show_options callback for filesystems which don't want to
  1099. * implement more complex mount option showing.
  1100. *
  1101. * See also save_mount_options().
  1102. */
  1103. int generic_show_options(struct seq_file *m, struct dentry *root)
  1104. {
  1105. const char *options;
  1106. rcu_read_lock();
  1107. options = rcu_dereference(root->d_sb->s_options);
  1108. if (options != NULL && options[0]) {
  1109. seq_putc(m, ',');
  1110. mangle(m, options);
  1111. }
  1112. rcu_read_unlock();
  1113. return 0;
  1114. }
  1115. EXPORT_SYMBOL(generic_show_options);
  1116. /*
  1117. * If filesystem uses generic_show_options(), this function should be
  1118. * called from the fill_super() callback.
  1119. *
  1120. * The .remount_fs callback usually needs to be handled in a special
  1121. * way, to make sure, that previous options are not overwritten if the
  1122. * remount fails.
  1123. *
  1124. * Also note, that if the filesystem's .remount_fs function doesn't
  1125. * reset all options to their default value, but changes only newly
  1126. * given options, then the displayed options will not reflect reality
  1127. * any more.
  1128. */
  1129. void save_mount_options(struct super_block *sb, char *options)
  1130. {
  1131. BUG_ON(sb->s_options);
  1132. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1133. }
  1134. EXPORT_SYMBOL(save_mount_options);
  1135. void replace_mount_options(struct super_block *sb, char *options)
  1136. {
  1137. char *old = sb->s_options;
  1138. rcu_assign_pointer(sb->s_options, options);
  1139. if (old) {
  1140. synchronize_rcu();
  1141. kfree(old);
  1142. }
  1143. }
  1144. EXPORT_SYMBOL(replace_mount_options);
  1145. #ifdef CONFIG_PROC_FS
  1146. /* iterator; we want it to have access to namespace_sem, thus here... */
  1147. static void *m_start(struct seq_file *m, loff_t *pos)
  1148. {
  1149. struct proc_mounts *p = m->private;
  1150. down_read(&namespace_sem);
  1151. if (p->cached_event == p->ns->event) {
  1152. void *v = p->cached_mount;
  1153. if (*pos == p->cached_index)
  1154. return v;
  1155. if (*pos == p->cached_index + 1) {
  1156. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1157. return p->cached_mount = v;
  1158. }
  1159. }
  1160. p->cached_event = p->ns->event;
  1161. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1162. p->cached_index = *pos;
  1163. return p->cached_mount;
  1164. }
  1165. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1166. {
  1167. struct proc_mounts *p = m->private;
  1168. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1169. p->cached_index = *pos;
  1170. return p->cached_mount;
  1171. }
  1172. static void m_stop(struct seq_file *m, void *v)
  1173. {
  1174. up_read(&namespace_sem);
  1175. }
  1176. static int m_show(struct seq_file *m, void *v)
  1177. {
  1178. struct proc_mounts *p = m->private;
  1179. struct mount *r = list_entry(v, struct mount, mnt_list);
  1180. return p->show(m, &r->mnt);
  1181. }
  1182. const struct seq_operations mounts_op = {
  1183. .start = m_start,
  1184. .next = m_next,
  1185. .stop = m_stop,
  1186. .show = m_show,
  1187. };
  1188. #endif /* CONFIG_PROC_FS */
  1189. /**
  1190. * may_umount_tree - check if a mount tree is busy
  1191. * @mnt: root of mount tree
  1192. *
  1193. * This is called to check if a tree of mounts has any
  1194. * open files, pwds, chroots or sub mounts that are
  1195. * busy.
  1196. */
  1197. int may_umount_tree(struct vfsmount *m)
  1198. {
  1199. struct mount *mnt = real_mount(m);
  1200. int actual_refs = 0;
  1201. int minimum_refs = 0;
  1202. struct mount *p;
  1203. BUG_ON(!m);
  1204. /* write lock needed for mnt_get_count */
  1205. lock_mount_hash();
  1206. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1207. actual_refs += mnt_get_count(p);
  1208. minimum_refs += 2;
  1209. }
  1210. unlock_mount_hash();
  1211. if (actual_refs > minimum_refs)
  1212. return 0;
  1213. return 1;
  1214. }
  1215. EXPORT_SYMBOL(may_umount_tree);
  1216. /**
  1217. * may_umount - check if a mount point is busy
  1218. * @mnt: root of mount
  1219. *
  1220. * This is called to check if a mount point has any
  1221. * open files, pwds, chroots or sub mounts. If the
  1222. * mount has sub mounts this will return busy
  1223. * regardless of whether the sub mounts are busy.
  1224. *
  1225. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1226. * give false negatives. The main reason why it's here is that we need
  1227. * a non-destructive way to look for easily umountable filesystems.
  1228. */
  1229. int may_umount(struct vfsmount *mnt)
  1230. {
  1231. int ret = 1;
  1232. down_read(&namespace_sem);
  1233. lock_mount_hash();
  1234. if (propagate_mount_busy(real_mount(mnt), 2))
  1235. ret = 0;
  1236. unlock_mount_hash();
  1237. up_read(&namespace_sem);
  1238. return ret;
  1239. }
  1240. EXPORT_SYMBOL(may_umount);
  1241. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1242. static void namespace_unlock(void)
  1243. {
  1244. struct hlist_head head;
  1245. hlist_move_list(&unmounted, &head);
  1246. up_write(&namespace_sem);
  1247. if (likely(hlist_empty(&head)))
  1248. return;
  1249. synchronize_rcu();
  1250. group_pin_kill(&head);
  1251. }
  1252. static inline void namespace_lock(void)
  1253. {
  1254. down_write(&namespace_sem);
  1255. }
  1256. enum umount_tree_flags {
  1257. UMOUNT_SYNC = 1,
  1258. UMOUNT_PROPAGATE = 2,
  1259. UMOUNT_CONNECTED = 4,
  1260. };
  1261. static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
  1262. {
  1263. /* Leaving mounts connected is only valid for lazy umounts */
  1264. if (how & UMOUNT_SYNC)
  1265. return true;
  1266. /* A mount without a parent has nothing to be connected to */
  1267. if (!mnt_has_parent(mnt))
  1268. return true;
  1269. /* Because the reference counting rules change when mounts are
  1270. * unmounted and connected, umounted mounts may not be
  1271. * connected to mounted mounts.
  1272. */
  1273. if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
  1274. return true;
  1275. /* Has it been requested that the mount remain connected? */
  1276. if (how & UMOUNT_CONNECTED)
  1277. return false;
  1278. /* Is the mount locked such that it needs to remain connected? */
  1279. if (IS_MNT_LOCKED(mnt))
  1280. return false;
  1281. /* By default disconnect the mount */
  1282. return true;
  1283. }
  1284. /*
  1285. * mount_lock must be held
  1286. * namespace_sem must be held for write
  1287. */
  1288. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1289. {
  1290. LIST_HEAD(tmp_list);
  1291. struct mount *p;
  1292. if (how & UMOUNT_PROPAGATE)
  1293. propagate_mount_unlock(mnt);
  1294. /* Gather the mounts to umount */
  1295. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1296. p->mnt.mnt_flags |= MNT_UMOUNT;
  1297. list_move(&p->mnt_list, &tmp_list);
  1298. }
  1299. /* Hide the mounts from mnt_mounts */
  1300. list_for_each_entry(p, &tmp_list, mnt_list) {
  1301. list_del_init(&p->mnt_child);
  1302. }
  1303. /* Add propogated mounts to the tmp_list */
  1304. if (how & UMOUNT_PROPAGATE)
  1305. propagate_umount(&tmp_list);
  1306. while (!list_empty(&tmp_list)) {
  1307. struct mnt_namespace *ns;
  1308. bool disconnect;
  1309. p = list_first_entry(&tmp_list, struct mount, mnt_list);
  1310. list_del_init(&p->mnt_expire);
  1311. list_del_init(&p->mnt_list);
  1312. ns = p->mnt_ns;
  1313. if (ns) {
  1314. ns->mounts--;
  1315. __touch_mnt_namespace(ns);
  1316. }
  1317. p->mnt_ns = NULL;
  1318. if (how & UMOUNT_SYNC)
  1319. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1320. disconnect = disconnect_mount(p, how);
  1321. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
  1322. disconnect ? &unmounted : NULL);
  1323. if (mnt_has_parent(p)) {
  1324. mnt_add_count(p->mnt_parent, -1);
  1325. if (!disconnect) {
  1326. /* Don't forget about p */
  1327. list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
  1328. } else {
  1329. umount_mnt(p);
  1330. }
  1331. }
  1332. change_mnt_propagation(p, MS_PRIVATE);
  1333. }
  1334. }
  1335. static void shrink_submounts(struct mount *mnt);
  1336. static int do_umount(struct mount *mnt, int flags)
  1337. {
  1338. struct super_block *sb = mnt->mnt.mnt_sb;
  1339. int retval;
  1340. retval = security_sb_umount(&mnt->mnt, flags);
  1341. if (retval)
  1342. return retval;
  1343. /*
  1344. * Allow userspace to request a mountpoint be expired rather than
  1345. * unmounting unconditionally. Unmount only happens if:
  1346. * (1) the mark is already set (the mark is cleared by mntput())
  1347. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1348. */
  1349. if (flags & MNT_EXPIRE) {
  1350. if (&mnt->mnt == current->fs->root.mnt ||
  1351. flags & (MNT_FORCE | MNT_DETACH))
  1352. return -EINVAL;
  1353. /*
  1354. * probably don't strictly need the lock here if we examined
  1355. * all race cases, but it's a slowpath.
  1356. */
  1357. lock_mount_hash();
  1358. if (mnt_get_count(mnt) != 2) {
  1359. unlock_mount_hash();
  1360. return -EBUSY;
  1361. }
  1362. unlock_mount_hash();
  1363. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1364. return -EAGAIN;
  1365. }
  1366. /*
  1367. * If we may have to abort operations to get out of this
  1368. * mount, and they will themselves hold resources we must
  1369. * allow the fs to do things. In the Unix tradition of
  1370. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1371. * might fail to complete on the first run through as other tasks
  1372. * must return, and the like. Thats for the mount program to worry
  1373. * about for the moment.
  1374. */
  1375. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1376. sb->s_op->umount_begin(sb);
  1377. }
  1378. /*
  1379. * No sense to grab the lock for this test, but test itself looks
  1380. * somewhat bogus. Suggestions for better replacement?
  1381. * Ho-hum... In principle, we might treat that as umount + switch
  1382. * to rootfs. GC would eventually take care of the old vfsmount.
  1383. * Actually it makes sense, especially if rootfs would contain a
  1384. * /reboot - static binary that would close all descriptors and
  1385. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1386. */
  1387. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1388. /*
  1389. * Special case for "unmounting" root ...
  1390. * we just try to remount it readonly.
  1391. */
  1392. if (!capable(CAP_SYS_ADMIN))
  1393. return -EPERM;
  1394. down_write(&sb->s_umount);
  1395. if (!(sb->s_flags & MS_RDONLY))
  1396. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1397. up_write(&sb->s_umount);
  1398. return retval;
  1399. }
  1400. namespace_lock();
  1401. lock_mount_hash();
  1402. event++;
  1403. if (flags & MNT_DETACH) {
  1404. if (!list_empty(&mnt->mnt_list))
  1405. umount_tree(mnt, UMOUNT_PROPAGATE);
  1406. retval = 0;
  1407. } else {
  1408. shrink_submounts(mnt);
  1409. retval = -EBUSY;
  1410. if (!propagate_mount_busy(mnt, 2)) {
  1411. if (!list_empty(&mnt->mnt_list))
  1412. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1413. retval = 0;
  1414. }
  1415. }
  1416. unlock_mount_hash();
  1417. namespace_unlock();
  1418. return retval;
  1419. }
  1420. /*
  1421. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1422. *
  1423. * During unlink, rmdir, and d_drop it is possible to loose the path
  1424. * to an existing mountpoint, and wind up leaking the mount.
  1425. * detach_mounts allows lazily unmounting those mounts instead of
  1426. * leaking them.
  1427. *
  1428. * The caller may hold dentry->d_inode->i_mutex.
  1429. */
  1430. void __detach_mounts(struct dentry *dentry)
  1431. {
  1432. struct mountpoint *mp;
  1433. struct mount *mnt;
  1434. namespace_lock();
  1435. lock_mount_hash();
  1436. mp = lookup_mountpoint(dentry);
  1437. if (IS_ERR_OR_NULL(mp))
  1438. goto out_unlock;
  1439. event++;
  1440. while (!hlist_empty(&mp->m_list)) {
  1441. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1442. if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
  1443. hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
  1444. umount_mnt(mnt);
  1445. }
  1446. else umount_tree(mnt, UMOUNT_CONNECTED);
  1447. }
  1448. put_mountpoint(mp);
  1449. out_unlock:
  1450. unlock_mount_hash();
  1451. namespace_unlock();
  1452. }
  1453. /*
  1454. * Is the caller allowed to modify his namespace?
  1455. */
  1456. static inline bool may_mount(void)
  1457. {
  1458. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1459. }
  1460. static inline bool may_mandlock(void)
  1461. {
  1462. #ifndef CONFIG_MANDATORY_FILE_LOCKING
  1463. return false;
  1464. #endif
  1465. return capable(CAP_SYS_ADMIN);
  1466. }
  1467. /*
  1468. * Now umount can handle mount points as well as block devices.
  1469. * This is important for filesystems which use unnamed block devices.
  1470. *
  1471. * We now support a flag for forced unmount like the other 'big iron'
  1472. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1473. */
  1474. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1475. {
  1476. struct path path;
  1477. struct mount *mnt;
  1478. int retval;
  1479. int lookup_flags = 0;
  1480. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1481. return -EINVAL;
  1482. if (!may_mount())
  1483. return -EPERM;
  1484. if (!(flags & UMOUNT_NOFOLLOW))
  1485. lookup_flags |= LOOKUP_FOLLOW;
  1486. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1487. if (retval)
  1488. goto out;
  1489. mnt = real_mount(path.mnt);
  1490. retval = -EINVAL;
  1491. if (path.dentry != path.mnt->mnt_root)
  1492. goto dput_and_out;
  1493. if (!check_mnt(mnt))
  1494. goto dput_and_out;
  1495. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1496. goto dput_and_out;
  1497. retval = -EPERM;
  1498. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1499. goto dput_and_out;
  1500. retval = do_umount(mnt, flags);
  1501. dput_and_out:
  1502. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1503. dput(path.dentry);
  1504. mntput_no_expire(mnt);
  1505. out:
  1506. return retval;
  1507. }
  1508. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1509. /*
  1510. * The 2.0 compatible umount. No flags.
  1511. */
  1512. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1513. {
  1514. return sys_umount(name, 0);
  1515. }
  1516. #endif
  1517. static bool is_mnt_ns_file(struct dentry *dentry)
  1518. {
  1519. /* Is this a proxy for a mount namespace? */
  1520. return dentry->d_op == &ns_dentry_operations &&
  1521. dentry->d_fsdata == &mntns_operations;
  1522. }
  1523. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1524. {
  1525. return container_of(ns, struct mnt_namespace, ns);
  1526. }
  1527. static bool mnt_ns_loop(struct dentry *dentry)
  1528. {
  1529. /* Could bind mounting the mount namespace inode cause a
  1530. * mount namespace loop?
  1531. */
  1532. struct mnt_namespace *mnt_ns;
  1533. if (!is_mnt_ns_file(dentry))
  1534. return false;
  1535. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1536. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1537. }
  1538. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1539. int flag)
  1540. {
  1541. struct mount *res, *p, *q, *r, *parent;
  1542. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1543. return ERR_PTR(-EINVAL);
  1544. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1545. return ERR_PTR(-EINVAL);
  1546. res = q = clone_mnt(mnt, dentry, flag);
  1547. if (IS_ERR(q))
  1548. return q;
  1549. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1550. p = mnt;
  1551. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1552. struct mount *s;
  1553. if (!is_subdir(r->mnt_mountpoint, dentry))
  1554. continue;
  1555. for (s = r; s; s = next_mnt(s, r)) {
  1556. if (!(flag & CL_COPY_UNBINDABLE) &&
  1557. IS_MNT_UNBINDABLE(s)) {
  1558. s = skip_mnt_tree(s);
  1559. continue;
  1560. }
  1561. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1562. is_mnt_ns_file(s->mnt.mnt_root)) {
  1563. s = skip_mnt_tree(s);
  1564. continue;
  1565. }
  1566. while (p != s->mnt_parent) {
  1567. p = p->mnt_parent;
  1568. q = q->mnt_parent;
  1569. }
  1570. p = s;
  1571. parent = q;
  1572. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1573. if (IS_ERR(q))
  1574. goto out;
  1575. lock_mount_hash();
  1576. list_add_tail(&q->mnt_list, &res->mnt_list);
  1577. attach_mnt(q, parent, p->mnt_mp);
  1578. unlock_mount_hash();
  1579. }
  1580. }
  1581. return res;
  1582. out:
  1583. if (res) {
  1584. lock_mount_hash();
  1585. umount_tree(res, UMOUNT_SYNC);
  1586. unlock_mount_hash();
  1587. }
  1588. return q;
  1589. }
  1590. /* Caller should check returned pointer for errors */
  1591. struct vfsmount *collect_mounts(const struct path *path)
  1592. {
  1593. struct mount *tree;
  1594. namespace_lock();
  1595. if (!check_mnt(real_mount(path->mnt)))
  1596. tree = ERR_PTR(-EINVAL);
  1597. else
  1598. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1599. CL_COPY_ALL | CL_PRIVATE);
  1600. namespace_unlock();
  1601. if (IS_ERR(tree))
  1602. return ERR_CAST(tree);
  1603. return &tree->mnt;
  1604. }
  1605. void drop_collected_mounts(struct vfsmount *mnt)
  1606. {
  1607. namespace_lock();
  1608. lock_mount_hash();
  1609. umount_tree(real_mount(mnt), UMOUNT_SYNC);
  1610. unlock_mount_hash();
  1611. namespace_unlock();
  1612. }
  1613. /**
  1614. * clone_private_mount - create a private clone of a path
  1615. *
  1616. * This creates a new vfsmount, which will be the clone of @path. The new will
  1617. * not be attached anywhere in the namespace and will be private (i.e. changes
  1618. * to the originating mount won't be propagated into this).
  1619. *
  1620. * Release with mntput().
  1621. */
  1622. struct vfsmount *clone_private_mount(const struct path *path)
  1623. {
  1624. struct mount *old_mnt = real_mount(path->mnt);
  1625. struct mount *new_mnt;
  1626. if (IS_MNT_UNBINDABLE(old_mnt))
  1627. return ERR_PTR(-EINVAL);
  1628. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1629. if (IS_ERR(new_mnt))
  1630. return ERR_CAST(new_mnt);
  1631. return &new_mnt->mnt;
  1632. }
  1633. EXPORT_SYMBOL_GPL(clone_private_mount);
  1634. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1635. struct vfsmount *root)
  1636. {
  1637. struct mount *mnt;
  1638. int res = f(root, arg);
  1639. if (res)
  1640. return res;
  1641. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1642. res = f(&mnt->mnt, arg);
  1643. if (res)
  1644. return res;
  1645. }
  1646. return 0;
  1647. }
  1648. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1649. {
  1650. struct mount *p;
  1651. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1652. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1653. mnt_release_group_id(p);
  1654. }
  1655. }
  1656. static int invent_group_ids(struct mount *mnt, bool recurse)
  1657. {
  1658. struct mount *p;
  1659. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1660. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1661. int err = mnt_alloc_group_id(p);
  1662. if (err) {
  1663. cleanup_group_ids(mnt, p);
  1664. return err;
  1665. }
  1666. }
  1667. }
  1668. return 0;
  1669. }
  1670. int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
  1671. {
  1672. unsigned int max = READ_ONCE(sysctl_mount_max);
  1673. unsigned int mounts = 0, old, pending, sum;
  1674. struct mount *p;
  1675. for (p = mnt; p; p = next_mnt(p, mnt))
  1676. mounts++;
  1677. old = ns->mounts;
  1678. pending = ns->pending_mounts;
  1679. sum = old + pending;
  1680. if ((old > sum) ||
  1681. (pending > sum) ||
  1682. (max < sum) ||
  1683. (mounts > (max - sum)))
  1684. return -ENOSPC;
  1685. ns->pending_mounts = pending + mounts;
  1686. return 0;
  1687. }
  1688. /*
  1689. * @source_mnt : mount tree to be attached
  1690. * @nd : place the mount tree @source_mnt is attached
  1691. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1692. * store the parent mount and mountpoint dentry.
  1693. * (done when source_mnt is moved)
  1694. *
  1695. * NOTE: in the table below explains the semantics when a source mount
  1696. * of a given type is attached to a destination mount of a given type.
  1697. * ---------------------------------------------------------------------------
  1698. * | BIND MOUNT OPERATION |
  1699. * |**************************************************************************
  1700. * | source-->| shared | private | slave | unbindable |
  1701. * | dest | | | | |
  1702. * | | | | | | |
  1703. * | v | | | | |
  1704. * |**************************************************************************
  1705. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1706. * | | | | | |
  1707. * |non-shared| shared (+) | private | slave (*) | invalid |
  1708. * ***************************************************************************
  1709. * A bind operation clones the source mount and mounts the clone on the
  1710. * destination mount.
  1711. *
  1712. * (++) the cloned mount is propagated to all the mounts in the propagation
  1713. * tree of the destination mount and the cloned mount is added to
  1714. * the peer group of the source mount.
  1715. * (+) the cloned mount is created under the destination mount and is marked
  1716. * as shared. The cloned mount is added to the peer group of the source
  1717. * mount.
  1718. * (+++) the mount is propagated to all the mounts in the propagation tree
  1719. * of the destination mount and the cloned mount is made slave
  1720. * of the same master as that of the source mount. The cloned mount
  1721. * is marked as 'shared and slave'.
  1722. * (*) the cloned mount is made a slave of the same master as that of the
  1723. * source mount.
  1724. *
  1725. * ---------------------------------------------------------------------------
  1726. * | MOVE MOUNT OPERATION |
  1727. * |**************************************************************************
  1728. * | source-->| shared | private | slave | unbindable |
  1729. * | dest | | | | |
  1730. * | | | | | | |
  1731. * | v | | | | |
  1732. * |**************************************************************************
  1733. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1734. * | | | | | |
  1735. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1736. * ***************************************************************************
  1737. *
  1738. * (+) the mount is moved to the destination. And is then propagated to
  1739. * all the mounts in the propagation tree of the destination mount.
  1740. * (+*) the mount is moved to the destination.
  1741. * (+++) the mount is moved to the destination and is then propagated to
  1742. * all the mounts belonging to the destination mount's propagation tree.
  1743. * the mount is marked as 'shared and slave'.
  1744. * (*) the mount continues to be a slave at the new location.
  1745. *
  1746. * if the source mount is a tree, the operations explained above is
  1747. * applied to each mount in the tree.
  1748. * Must be called without spinlocks held, since this function can sleep
  1749. * in allocations.
  1750. */
  1751. static int attach_recursive_mnt(struct mount *source_mnt,
  1752. struct mount *dest_mnt,
  1753. struct mountpoint *dest_mp,
  1754. struct path *parent_path)
  1755. {
  1756. HLIST_HEAD(tree_list);
  1757. struct mnt_namespace *ns = dest_mnt->mnt_ns;
  1758. struct mountpoint *smp;
  1759. struct mount *child, *p;
  1760. struct hlist_node *n;
  1761. int err;
  1762. /* Preallocate a mountpoint in case the new mounts need
  1763. * to be tucked under other mounts.
  1764. */
  1765. smp = get_mountpoint(source_mnt->mnt.mnt_root);
  1766. if (IS_ERR(smp))
  1767. return PTR_ERR(smp);
  1768. /* Is there space to add these mounts to the mount namespace? */
  1769. if (!parent_path) {
  1770. err = count_mounts(ns, source_mnt);
  1771. if (err)
  1772. goto out;
  1773. }
  1774. if (IS_MNT_SHARED(dest_mnt)) {
  1775. err = invent_group_ids(source_mnt, true);
  1776. if (err)
  1777. goto out;
  1778. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1779. lock_mount_hash();
  1780. if (err)
  1781. goto out_cleanup_ids;
  1782. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1783. set_mnt_shared(p);
  1784. } else {
  1785. lock_mount_hash();
  1786. }
  1787. if (parent_path) {
  1788. detach_mnt(source_mnt, parent_path);
  1789. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1790. touch_mnt_namespace(source_mnt->mnt_ns);
  1791. } else {
  1792. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1793. commit_tree(source_mnt);
  1794. }
  1795. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1796. struct mount *q;
  1797. hlist_del_init(&child->mnt_hash);
  1798. q = __lookup_mnt(&child->mnt_parent->mnt,
  1799. child->mnt_mountpoint);
  1800. if (q)
  1801. mnt_change_mountpoint(child, smp, q);
  1802. commit_tree(child);
  1803. }
  1804. put_mountpoint(smp);
  1805. unlock_mount_hash();
  1806. return 0;
  1807. out_cleanup_ids:
  1808. while (!hlist_empty(&tree_list)) {
  1809. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1810. child->mnt_parent->mnt_ns->pending_mounts = 0;
  1811. umount_tree(child, UMOUNT_SYNC);
  1812. }
  1813. unlock_mount_hash();
  1814. cleanup_group_ids(source_mnt, NULL);
  1815. out:
  1816. ns->pending_mounts = 0;
  1817. read_seqlock_excl(&mount_lock);
  1818. put_mountpoint(smp);
  1819. read_sequnlock_excl(&mount_lock);
  1820. return err;
  1821. }
  1822. static struct mountpoint *lock_mount(struct path *path)
  1823. {
  1824. struct vfsmount *mnt;
  1825. struct dentry *dentry = path->dentry;
  1826. retry:
  1827. inode_lock(dentry->d_inode);
  1828. if (unlikely(cant_mount(dentry))) {
  1829. inode_unlock(dentry->d_inode);
  1830. return ERR_PTR(-ENOENT);
  1831. }
  1832. namespace_lock();
  1833. mnt = lookup_mnt(path);
  1834. if (likely(!mnt)) {
  1835. struct mountpoint *mp = get_mountpoint(dentry);
  1836. if (IS_ERR(mp)) {
  1837. namespace_unlock();
  1838. inode_unlock(dentry->d_inode);
  1839. return mp;
  1840. }
  1841. return mp;
  1842. }
  1843. namespace_unlock();
  1844. inode_unlock(path->dentry->d_inode);
  1845. path_put(path);
  1846. path->mnt = mnt;
  1847. dentry = path->dentry = dget(mnt->mnt_root);
  1848. goto retry;
  1849. }
  1850. static void unlock_mount(struct mountpoint *where)
  1851. {
  1852. struct dentry *dentry = where->m_dentry;
  1853. read_seqlock_excl(&mount_lock);
  1854. put_mountpoint(where);
  1855. read_sequnlock_excl(&mount_lock);
  1856. namespace_unlock();
  1857. inode_unlock(dentry->d_inode);
  1858. }
  1859. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1860. {
  1861. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1862. return -EINVAL;
  1863. if (d_is_dir(mp->m_dentry) !=
  1864. d_is_dir(mnt->mnt.mnt_root))
  1865. return -ENOTDIR;
  1866. return attach_recursive_mnt(mnt, p, mp, NULL);
  1867. }
  1868. /*
  1869. * Sanity check the flags to change_mnt_propagation.
  1870. */
  1871. static int flags_to_propagation_type(int flags)
  1872. {
  1873. int type = flags & ~(MS_REC | MS_SILENT);
  1874. /* Fail if any non-propagation flags are set */
  1875. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1876. return 0;
  1877. /* Only one propagation flag should be set */
  1878. if (!is_power_of_2(type))
  1879. return 0;
  1880. return type;
  1881. }
  1882. /*
  1883. * recursively change the type of the mountpoint.
  1884. */
  1885. static int do_change_type(struct path *path, int flag)
  1886. {
  1887. struct mount *m;
  1888. struct mount *mnt = real_mount(path->mnt);
  1889. int recurse = flag & MS_REC;
  1890. int type;
  1891. int err = 0;
  1892. if (path->dentry != path->mnt->mnt_root)
  1893. return -EINVAL;
  1894. type = flags_to_propagation_type(flag);
  1895. if (!type)
  1896. return -EINVAL;
  1897. namespace_lock();
  1898. if (type == MS_SHARED) {
  1899. err = invent_group_ids(mnt, recurse);
  1900. if (err)
  1901. goto out_unlock;
  1902. }
  1903. lock_mount_hash();
  1904. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1905. change_mnt_propagation(m, type);
  1906. unlock_mount_hash();
  1907. out_unlock:
  1908. namespace_unlock();
  1909. return err;
  1910. }
  1911. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1912. {
  1913. struct mount *child;
  1914. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1915. if (!is_subdir(child->mnt_mountpoint, dentry))
  1916. continue;
  1917. if (child->mnt.mnt_flags & MNT_LOCKED)
  1918. return true;
  1919. }
  1920. return false;
  1921. }
  1922. /*
  1923. * do loopback mount.
  1924. */
  1925. static int do_loopback(struct path *path, const char *old_name,
  1926. int recurse)
  1927. {
  1928. struct path old_path;
  1929. struct mount *mnt = NULL, *old, *parent;
  1930. struct mountpoint *mp;
  1931. int err;
  1932. if (!old_name || !*old_name)
  1933. return -EINVAL;
  1934. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1935. if (err)
  1936. return err;
  1937. err = -EINVAL;
  1938. if (mnt_ns_loop(old_path.dentry))
  1939. goto out;
  1940. mp = lock_mount(path);
  1941. err = PTR_ERR(mp);
  1942. if (IS_ERR(mp))
  1943. goto out;
  1944. old = real_mount(old_path.mnt);
  1945. parent = real_mount(path->mnt);
  1946. err = -EINVAL;
  1947. if (IS_MNT_UNBINDABLE(old))
  1948. goto out2;
  1949. if (!check_mnt(parent))
  1950. goto out2;
  1951. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1952. goto out2;
  1953. if (!recurse && has_locked_children(old, old_path.dentry))
  1954. goto out2;
  1955. if (recurse)
  1956. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1957. else
  1958. mnt = clone_mnt(old, old_path.dentry, 0);
  1959. if (IS_ERR(mnt)) {
  1960. err = PTR_ERR(mnt);
  1961. goto out2;
  1962. }
  1963. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1964. err = graft_tree(mnt, parent, mp);
  1965. if (err) {
  1966. lock_mount_hash();
  1967. umount_tree(mnt, UMOUNT_SYNC);
  1968. unlock_mount_hash();
  1969. }
  1970. out2:
  1971. unlock_mount(mp);
  1972. out:
  1973. path_put(&old_path);
  1974. return err;
  1975. }
  1976. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1977. {
  1978. int error = 0;
  1979. int readonly_request = 0;
  1980. if (ms_flags & MS_RDONLY)
  1981. readonly_request = 1;
  1982. if (readonly_request == __mnt_is_readonly(mnt))
  1983. return 0;
  1984. if (readonly_request)
  1985. error = mnt_make_readonly(real_mount(mnt));
  1986. else
  1987. __mnt_unmake_readonly(real_mount(mnt));
  1988. return error;
  1989. }
  1990. /*
  1991. * change filesystem flags. dir should be a physical root of filesystem.
  1992. * If you've mounted a non-root directory somewhere and want to do remount
  1993. * on it - tough luck.
  1994. */
  1995. static int do_remount(struct path *path, int flags, int mnt_flags,
  1996. void *data)
  1997. {
  1998. int err;
  1999. struct super_block *sb = path->mnt->mnt_sb;
  2000. struct mount *mnt = real_mount(path->mnt);
  2001. if (!check_mnt(mnt))
  2002. return -EINVAL;
  2003. if (path->dentry != path->mnt->mnt_root)
  2004. return -EINVAL;
  2005. /* Don't allow changing of locked mnt flags.
  2006. *
  2007. * No locks need to be held here while testing the various
  2008. * MNT_LOCK flags because those flags can never be cleared
  2009. * once they are set.
  2010. */
  2011. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  2012. !(mnt_flags & MNT_READONLY)) {
  2013. return -EPERM;
  2014. }
  2015. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  2016. !(mnt_flags & MNT_NODEV)) {
  2017. return -EPERM;
  2018. }
  2019. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  2020. !(mnt_flags & MNT_NOSUID)) {
  2021. return -EPERM;
  2022. }
  2023. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  2024. !(mnt_flags & MNT_NOEXEC)) {
  2025. return -EPERM;
  2026. }
  2027. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  2028. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  2029. return -EPERM;
  2030. }
  2031. err = security_sb_remount(sb, data);
  2032. if (err)
  2033. return err;
  2034. down_write(&sb->s_umount);
  2035. if (flags & MS_BIND)
  2036. err = change_mount_flags(path->mnt, flags);
  2037. else if (!capable(CAP_SYS_ADMIN))
  2038. err = -EPERM;
  2039. else
  2040. err = do_remount_sb(sb, flags, data, 0);
  2041. if (!err) {
  2042. lock_mount_hash();
  2043. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  2044. mnt->mnt.mnt_flags = mnt_flags;
  2045. touch_mnt_namespace(mnt->mnt_ns);
  2046. unlock_mount_hash();
  2047. }
  2048. up_write(&sb->s_umount);
  2049. return err;
  2050. }
  2051. static inline int tree_contains_unbindable(struct mount *mnt)
  2052. {
  2053. struct mount *p;
  2054. for (p = mnt; p; p = next_mnt(p, mnt)) {
  2055. if (IS_MNT_UNBINDABLE(p))
  2056. return 1;
  2057. }
  2058. return 0;
  2059. }
  2060. static int do_move_mount(struct path *path, const char *old_name)
  2061. {
  2062. struct path old_path, parent_path;
  2063. struct mount *p;
  2064. struct mount *old;
  2065. struct mountpoint *mp;
  2066. int err;
  2067. if (!old_name || !*old_name)
  2068. return -EINVAL;
  2069. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  2070. if (err)
  2071. return err;
  2072. mp = lock_mount(path);
  2073. err = PTR_ERR(mp);
  2074. if (IS_ERR(mp))
  2075. goto out;
  2076. old = real_mount(old_path.mnt);
  2077. p = real_mount(path->mnt);
  2078. err = -EINVAL;
  2079. if (!check_mnt(p) || !check_mnt(old))
  2080. goto out1;
  2081. if (old->mnt.mnt_flags & MNT_LOCKED)
  2082. goto out1;
  2083. err = -EINVAL;
  2084. if (old_path.dentry != old_path.mnt->mnt_root)
  2085. goto out1;
  2086. if (!mnt_has_parent(old))
  2087. goto out1;
  2088. if (d_is_dir(path->dentry) !=
  2089. d_is_dir(old_path.dentry))
  2090. goto out1;
  2091. /*
  2092. * Don't move a mount residing in a shared parent.
  2093. */
  2094. if (IS_MNT_SHARED(old->mnt_parent))
  2095. goto out1;
  2096. /*
  2097. * Don't move a mount tree containing unbindable mounts to a destination
  2098. * mount which is shared.
  2099. */
  2100. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  2101. goto out1;
  2102. err = -ELOOP;
  2103. for (; mnt_has_parent(p); p = p->mnt_parent)
  2104. if (p == old)
  2105. goto out1;
  2106. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  2107. if (err)
  2108. goto out1;
  2109. /* if the mount is moved, it should no longer be expire
  2110. * automatically */
  2111. list_del_init(&old->mnt_expire);
  2112. out1:
  2113. unlock_mount(mp);
  2114. out:
  2115. if (!err)
  2116. path_put(&parent_path);
  2117. path_put(&old_path);
  2118. return err;
  2119. }
  2120. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  2121. {
  2122. int err;
  2123. const char *subtype = strchr(fstype, '.');
  2124. if (subtype) {
  2125. subtype++;
  2126. err = -EINVAL;
  2127. if (!subtype[0])
  2128. goto err;
  2129. } else
  2130. subtype = "";
  2131. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  2132. err = -ENOMEM;
  2133. if (!mnt->mnt_sb->s_subtype)
  2134. goto err;
  2135. return mnt;
  2136. err:
  2137. mntput(mnt);
  2138. return ERR_PTR(err);
  2139. }
  2140. /*
  2141. * add a mount into a namespace's mount tree
  2142. */
  2143. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2144. {
  2145. struct mountpoint *mp;
  2146. struct mount *parent;
  2147. int err;
  2148. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2149. mp = lock_mount(path);
  2150. if (IS_ERR(mp))
  2151. return PTR_ERR(mp);
  2152. parent = real_mount(path->mnt);
  2153. err = -EINVAL;
  2154. if (unlikely(!check_mnt(parent))) {
  2155. /* that's acceptable only for automounts done in private ns */
  2156. if (!(mnt_flags & MNT_SHRINKABLE))
  2157. goto unlock;
  2158. /* ... and for those we'd better have mountpoint still alive */
  2159. if (!parent->mnt_ns)
  2160. goto unlock;
  2161. }
  2162. /* Refuse the same filesystem on the same mount point */
  2163. err = -EBUSY;
  2164. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2165. path->mnt->mnt_root == path->dentry)
  2166. goto unlock;
  2167. err = -EINVAL;
  2168. if (d_is_symlink(newmnt->mnt.mnt_root))
  2169. goto unlock;
  2170. newmnt->mnt.mnt_flags = mnt_flags;
  2171. err = graft_tree(newmnt, parent, mp);
  2172. unlock:
  2173. unlock_mount(mp);
  2174. return err;
  2175. }
  2176. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
  2177. /*
  2178. * create a new mount for userspace and request it to be added into the
  2179. * namespace's tree
  2180. */
  2181. static int do_new_mount(struct path *path, const char *fstype, int flags,
  2182. int mnt_flags, const char *name, void *data)
  2183. {
  2184. struct file_system_type *type;
  2185. struct vfsmount *mnt;
  2186. int err;
  2187. if (!fstype)
  2188. return -EINVAL;
  2189. type = get_fs_type(fstype);
  2190. if (!type)
  2191. return -ENODEV;
  2192. mnt = vfs_kern_mount(type, flags, name, data);
  2193. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2194. !mnt->mnt_sb->s_subtype)
  2195. mnt = fs_set_subtype(mnt, fstype);
  2196. put_filesystem(type);
  2197. if (IS_ERR(mnt))
  2198. return PTR_ERR(mnt);
  2199. if (mount_too_revealing(mnt, &mnt_flags)) {
  2200. mntput(mnt);
  2201. return -EPERM;
  2202. }
  2203. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2204. if (err)
  2205. mntput(mnt);
  2206. return err;
  2207. }
  2208. int finish_automount(struct vfsmount *m, struct path *path)
  2209. {
  2210. struct mount *mnt = real_mount(m);
  2211. int err;
  2212. /* The new mount record should have at least 2 refs to prevent it being
  2213. * expired before we get a chance to add it
  2214. */
  2215. BUG_ON(mnt_get_count(mnt) < 2);
  2216. if (m->mnt_sb == path->mnt->mnt_sb &&
  2217. m->mnt_root == path->dentry) {
  2218. err = -ELOOP;
  2219. goto fail;
  2220. }
  2221. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2222. if (!err)
  2223. return 0;
  2224. fail:
  2225. /* remove m from any expiration list it may be on */
  2226. if (!list_empty(&mnt->mnt_expire)) {
  2227. namespace_lock();
  2228. list_del_init(&mnt->mnt_expire);
  2229. namespace_unlock();
  2230. }
  2231. mntput(m);
  2232. mntput(m);
  2233. return err;
  2234. }
  2235. /**
  2236. * mnt_set_expiry - Put a mount on an expiration list
  2237. * @mnt: The mount to list.
  2238. * @expiry_list: The list to add the mount to.
  2239. */
  2240. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2241. {
  2242. namespace_lock();
  2243. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2244. namespace_unlock();
  2245. }
  2246. EXPORT_SYMBOL(mnt_set_expiry);
  2247. /*
  2248. * process a list of expirable mountpoints with the intent of discarding any
  2249. * mountpoints that aren't in use and haven't been touched since last we came
  2250. * here
  2251. */
  2252. void mark_mounts_for_expiry(struct list_head *mounts)
  2253. {
  2254. struct mount *mnt, *next;
  2255. LIST_HEAD(graveyard);
  2256. if (list_empty(mounts))
  2257. return;
  2258. namespace_lock();
  2259. lock_mount_hash();
  2260. /* extract from the expiration list every vfsmount that matches the
  2261. * following criteria:
  2262. * - only referenced by its parent vfsmount
  2263. * - still marked for expiry (marked on the last call here; marks are
  2264. * cleared by mntput())
  2265. */
  2266. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2267. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2268. propagate_mount_busy(mnt, 1))
  2269. continue;
  2270. list_move(&mnt->mnt_expire, &graveyard);
  2271. }
  2272. while (!list_empty(&graveyard)) {
  2273. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2274. touch_mnt_namespace(mnt->mnt_ns);
  2275. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2276. }
  2277. unlock_mount_hash();
  2278. namespace_unlock();
  2279. }
  2280. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2281. /*
  2282. * Ripoff of 'select_parent()'
  2283. *
  2284. * search the list of submounts for a given mountpoint, and move any
  2285. * shrinkable submounts to the 'graveyard' list.
  2286. */
  2287. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2288. {
  2289. struct mount *this_parent = parent;
  2290. struct list_head *next;
  2291. int found = 0;
  2292. repeat:
  2293. next = this_parent->mnt_mounts.next;
  2294. resume:
  2295. while (next != &this_parent->mnt_mounts) {
  2296. struct list_head *tmp = next;
  2297. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2298. next = tmp->next;
  2299. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2300. continue;
  2301. /*
  2302. * Descend a level if the d_mounts list is non-empty.
  2303. */
  2304. if (!list_empty(&mnt->mnt_mounts)) {
  2305. this_parent = mnt;
  2306. goto repeat;
  2307. }
  2308. if (!propagate_mount_busy(mnt, 1)) {
  2309. list_move_tail(&mnt->mnt_expire, graveyard);
  2310. found++;
  2311. }
  2312. }
  2313. /*
  2314. * All done at this level ... ascend and resume the search
  2315. */
  2316. if (this_parent != parent) {
  2317. next = this_parent->mnt_child.next;
  2318. this_parent = this_parent->mnt_parent;
  2319. goto resume;
  2320. }
  2321. return found;
  2322. }
  2323. /*
  2324. * process a list of expirable mountpoints with the intent of discarding any
  2325. * submounts of a specific parent mountpoint
  2326. *
  2327. * mount_lock must be held for write
  2328. */
  2329. static void shrink_submounts(struct mount *mnt)
  2330. {
  2331. LIST_HEAD(graveyard);
  2332. struct mount *m;
  2333. /* extract submounts of 'mountpoint' from the expiration list */
  2334. while (select_submounts(mnt, &graveyard)) {
  2335. while (!list_empty(&graveyard)) {
  2336. m = list_first_entry(&graveyard, struct mount,
  2337. mnt_expire);
  2338. touch_mnt_namespace(m->mnt_ns);
  2339. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2340. }
  2341. }
  2342. }
  2343. /*
  2344. * Some copy_from_user() implementations do not return the exact number of
  2345. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2346. * Note that this function differs from copy_from_user() in that it will oops
  2347. * on bad values of `to', rather than returning a short copy.
  2348. */
  2349. static long exact_copy_from_user(void *to, const void __user * from,
  2350. unsigned long n)
  2351. {
  2352. char *t = to;
  2353. const char __user *f = from;
  2354. char c;
  2355. if (!access_ok(VERIFY_READ, from, n))
  2356. return n;
  2357. while (n) {
  2358. if (__get_user(c, f)) {
  2359. memset(t, 0, n);
  2360. break;
  2361. }
  2362. *t++ = c;
  2363. f++;
  2364. n--;
  2365. }
  2366. return n;
  2367. }
  2368. void *copy_mount_options(const void __user * data)
  2369. {
  2370. int i;
  2371. unsigned long size;
  2372. char *copy;
  2373. if (!data)
  2374. return NULL;
  2375. copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2376. if (!copy)
  2377. return ERR_PTR(-ENOMEM);
  2378. /* We only care that *some* data at the address the user
  2379. * gave us is valid. Just in case, we'll zero
  2380. * the remainder of the page.
  2381. */
  2382. /* copy_from_user cannot cross TASK_SIZE ! */
  2383. size = TASK_SIZE - (unsigned long)data;
  2384. if (size > PAGE_SIZE)
  2385. size = PAGE_SIZE;
  2386. i = size - exact_copy_from_user(copy, data, size);
  2387. if (!i) {
  2388. kfree(copy);
  2389. return ERR_PTR(-EFAULT);
  2390. }
  2391. if (i != PAGE_SIZE)
  2392. memset(copy + i, 0, PAGE_SIZE - i);
  2393. return copy;
  2394. }
  2395. char *copy_mount_string(const void __user *data)
  2396. {
  2397. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2398. }
  2399. /*
  2400. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2401. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2402. *
  2403. * data is a (void *) that can point to any structure up to
  2404. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2405. * information (or be NULL).
  2406. *
  2407. * Pre-0.97 versions of mount() didn't have a flags word.
  2408. * When the flags word was introduced its top half was required
  2409. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2410. * Therefore, if this magic number is present, it carries no information
  2411. * and must be discarded.
  2412. */
  2413. long do_mount(const char *dev_name, const char __user *dir_name,
  2414. const char *type_page, unsigned long flags, void *data_page)
  2415. {
  2416. struct path path;
  2417. int retval = 0;
  2418. int mnt_flags = 0;
  2419. /* Discard magic */
  2420. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2421. flags &= ~MS_MGC_MSK;
  2422. /* Basic sanity checks */
  2423. if (data_page)
  2424. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2425. /* ... and get the mountpoint */
  2426. retval = user_path(dir_name, &path);
  2427. if (retval)
  2428. return retval;
  2429. retval = security_sb_mount(dev_name, &path,
  2430. type_page, flags, data_page);
  2431. if (!retval && !may_mount())
  2432. retval = -EPERM;
  2433. if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
  2434. retval = -EPERM;
  2435. if (retval)
  2436. goto dput_out;
  2437. /* Default to relatime unless overriden */
  2438. if (!(flags & MS_NOATIME))
  2439. mnt_flags |= MNT_RELATIME;
  2440. /* Separate the per-mountpoint flags */
  2441. if (flags & MS_NOSUID)
  2442. mnt_flags |= MNT_NOSUID;
  2443. if (flags & MS_NODEV)
  2444. mnt_flags |= MNT_NODEV;
  2445. if (flags & MS_NOEXEC)
  2446. mnt_flags |= MNT_NOEXEC;
  2447. if (flags & MS_NOATIME)
  2448. mnt_flags |= MNT_NOATIME;
  2449. if (flags & MS_NODIRATIME)
  2450. mnt_flags |= MNT_NODIRATIME;
  2451. if (flags & MS_STRICTATIME)
  2452. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2453. if (flags & MS_RDONLY)
  2454. mnt_flags |= MNT_READONLY;
  2455. /* The default atime for remount is preservation */
  2456. if ((flags & MS_REMOUNT) &&
  2457. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2458. MS_STRICTATIME)) == 0)) {
  2459. mnt_flags &= ~MNT_ATIME_MASK;
  2460. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2461. }
  2462. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2463. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2464. MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
  2465. if (flags & MS_REMOUNT)
  2466. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2467. data_page);
  2468. else if (flags & MS_BIND)
  2469. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2470. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2471. retval = do_change_type(&path, flags);
  2472. else if (flags & MS_MOVE)
  2473. retval = do_move_mount(&path, dev_name);
  2474. else
  2475. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2476. dev_name, data_page);
  2477. dput_out:
  2478. path_put(&path);
  2479. return retval;
  2480. }
  2481. static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
  2482. {
  2483. return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
  2484. }
  2485. static void dec_mnt_namespaces(struct ucounts *ucounts)
  2486. {
  2487. dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
  2488. }
  2489. static void free_mnt_ns(struct mnt_namespace *ns)
  2490. {
  2491. ns_free_inum(&ns->ns);
  2492. dec_mnt_namespaces(ns->ucounts);
  2493. put_user_ns(ns->user_ns);
  2494. kfree(ns);
  2495. }
  2496. /*
  2497. * Assign a sequence number so we can detect when we attempt to bind
  2498. * mount a reference to an older mount namespace into the current
  2499. * mount namespace, preventing reference counting loops. A 64bit
  2500. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2501. * is effectively never, so we can ignore the possibility.
  2502. */
  2503. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2504. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2505. {
  2506. struct mnt_namespace *new_ns;
  2507. struct ucounts *ucounts;
  2508. int ret;
  2509. ucounts = inc_mnt_namespaces(user_ns);
  2510. if (!ucounts)
  2511. return ERR_PTR(-ENOSPC);
  2512. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2513. if (!new_ns) {
  2514. dec_mnt_namespaces(ucounts);
  2515. return ERR_PTR(-ENOMEM);
  2516. }
  2517. ret = ns_alloc_inum(&new_ns->ns);
  2518. if (ret) {
  2519. kfree(new_ns);
  2520. dec_mnt_namespaces(ucounts);
  2521. return ERR_PTR(ret);
  2522. }
  2523. new_ns->ns.ops = &mntns_operations;
  2524. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2525. atomic_set(&new_ns->count, 1);
  2526. new_ns->root = NULL;
  2527. INIT_LIST_HEAD(&new_ns->list);
  2528. init_waitqueue_head(&new_ns->poll);
  2529. new_ns->event = 0;
  2530. new_ns->user_ns = get_user_ns(user_ns);
  2531. new_ns->ucounts = ucounts;
  2532. new_ns->mounts = 0;
  2533. new_ns->pending_mounts = 0;
  2534. return new_ns;
  2535. }
  2536. __latent_entropy
  2537. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2538. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2539. {
  2540. struct mnt_namespace *new_ns;
  2541. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2542. struct mount *p, *q;
  2543. struct mount *old;
  2544. struct mount *new;
  2545. int copy_flags;
  2546. BUG_ON(!ns);
  2547. if (likely(!(flags & CLONE_NEWNS))) {
  2548. get_mnt_ns(ns);
  2549. return ns;
  2550. }
  2551. old = ns->root;
  2552. new_ns = alloc_mnt_ns(user_ns);
  2553. if (IS_ERR(new_ns))
  2554. return new_ns;
  2555. namespace_lock();
  2556. /* First pass: copy the tree topology */
  2557. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2558. if (user_ns != ns->user_ns)
  2559. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2560. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2561. if (IS_ERR(new)) {
  2562. namespace_unlock();
  2563. free_mnt_ns(new_ns);
  2564. return ERR_CAST(new);
  2565. }
  2566. new_ns->root = new;
  2567. list_add_tail(&new_ns->list, &new->mnt_list);
  2568. /*
  2569. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2570. * as belonging to new namespace. We have already acquired a private
  2571. * fs_struct, so tsk->fs->lock is not needed.
  2572. */
  2573. p = old;
  2574. q = new;
  2575. while (p) {
  2576. q->mnt_ns = new_ns;
  2577. new_ns->mounts++;
  2578. if (new_fs) {
  2579. if (&p->mnt == new_fs->root.mnt) {
  2580. new_fs->root.mnt = mntget(&q->mnt);
  2581. rootmnt = &p->mnt;
  2582. }
  2583. if (&p->mnt == new_fs->pwd.mnt) {
  2584. new_fs->pwd.mnt = mntget(&q->mnt);
  2585. pwdmnt = &p->mnt;
  2586. }
  2587. }
  2588. p = next_mnt(p, old);
  2589. q = next_mnt(q, new);
  2590. if (!q)
  2591. break;
  2592. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2593. p = next_mnt(p, old);
  2594. }
  2595. namespace_unlock();
  2596. if (rootmnt)
  2597. mntput(rootmnt);
  2598. if (pwdmnt)
  2599. mntput(pwdmnt);
  2600. return new_ns;
  2601. }
  2602. /**
  2603. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2604. * @mnt: pointer to the new root filesystem mountpoint
  2605. */
  2606. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2607. {
  2608. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2609. if (!IS_ERR(new_ns)) {
  2610. struct mount *mnt = real_mount(m);
  2611. mnt->mnt_ns = new_ns;
  2612. new_ns->root = mnt;
  2613. new_ns->mounts++;
  2614. list_add(&mnt->mnt_list, &new_ns->list);
  2615. } else {
  2616. mntput(m);
  2617. }
  2618. return new_ns;
  2619. }
  2620. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2621. {
  2622. struct mnt_namespace *ns;
  2623. struct super_block *s;
  2624. struct path path;
  2625. int err;
  2626. ns = create_mnt_ns(mnt);
  2627. if (IS_ERR(ns))
  2628. return ERR_CAST(ns);
  2629. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2630. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2631. put_mnt_ns(ns);
  2632. if (err)
  2633. return ERR_PTR(err);
  2634. /* trade a vfsmount reference for active sb one */
  2635. s = path.mnt->mnt_sb;
  2636. atomic_inc(&s->s_active);
  2637. mntput(path.mnt);
  2638. /* lock the sucker */
  2639. down_write(&s->s_umount);
  2640. /* ... and return the root of (sub)tree on it */
  2641. return path.dentry;
  2642. }
  2643. EXPORT_SYMBOL(mount_subtree);
  2644. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2645. char __user *, type, unsigned long, flags, void __user *, data)
  2646. {
  2647. int ret;
  2648. char *kernel_type;
  2649. char *kernel_dev;
  2650. void *options;
  2651. kernel_type = copy_mount_string(type);
  2652. ret = PTR_ERR(kernel_type);
  2653. if (IS_ERR(kernel_type))
  2654. goto out_type;
  2655. kernel_dev = copy_mount_string(dev_name);
  2656. ret = PTR_ERR(kernel_dev);
  2657. if (IS_ERR(kernel_dev))
  2658. goto out_dev;
  2659. options = copy_mount_options(data);
  2660. ret = PTR_ERR(options);
  2661. if (IS_ERR(options))
  2662. goto out_data;
  2663. ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
  2664. kfree(options);
  2665. out_data:
  2666. kfree(kernel_dev);
  2667. out_dev:
  2668. kfree(kernel_type);
  2669. out_type:
  2670. return ret;
  2671. }
  2672. /*
  2673. * Return true if path is reachable from root
  2674. *
  2675. * namespace_sem or mount_lock is held
  2676. */
  2677. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2678. const struct path *root)
  2679. {
  2680. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2681. dentry = mnt->mnt_mountpoint;
  2682. mnt = mnt->mnt_parent;
  2683. }
  2684. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2685. }
  2686. bool path_is_under(const struct path *path1, const struct path *path2)
  2687. {
  2688. bool res;
  2689. read_seqlock_excl(&mount_lock);
  2690. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2691. read_sequnlock_excl(&mount_lock);
  2692. return res;
  2693. }
  2694. EXPORT_SYMBOL(path_is_under);
  2695. /*
  2696. * pivot_root Semantics:
  2697. * Moves the root file system of the current process to the directory put_old,
  2698. * makes new_root as the new root file system of the current process, and sets
  2699. * root/cwd of all processes which had them on the current root to new_root.
  2700. *
  2701. * Restrictions:
  2702. * The new_root and put_old must be directories, and must not be on the
  2703. * same file system as the current process root. The put_old must be
  2704. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2705. * pointed to by put_old must yield the same directory as new_root. No other
  2706. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2707. *
  2708. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2709. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2710. * in this situation.
  2711. *
  2712. * Notes:
  2713. * - we don't move root/cwd if they are not at the root (reason: if something
  2714. * cared enough to change them, it's probably wrong to force them elsewhere)
  2715. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2716. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2717. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2718. * first.
  2719. */
  2720. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2721. const char __user *, put_old)
  2722. {
  2723. struct path new, old, parent_path, root_parent, root;
  2724. struct mount *new_mnt, *root_mnt, *old_mnt;
  2725. struct mountpoint *old_mp, *root_mp;
  2726. int error;
  2727. if (!may_mount())
  2728. return -EPERM;
  2729. error = user_path_dir(new_root, &new);
  2730. if (error)
  2731. goto out0;
  2732. error = user_path_dir(put_old, &old);
  2733. if (error)
  2734. goto out1;
  2735. error = security_sb_pivotroot(&old, &new);
  2736. if (error)
  2737. goto out2;
  2738. get_fs_root(current->fs, &root);
  2739. old_mp = lock_mount(&old);
  2740. error = PTR_ERR(old_mp);
  2741. if (IS_ERR(old_mp))
  2742. goto out3;
  2743. error = -EINVAL;
  2744. new_mnt = real_mount(new.mnt);
  2745. root_mnt = real_mount(root.mnt);
  2746. old_mnt = real_mount(old.mnt);
  2747. if (IS_MNT_SHARED(old_mnt) ||
  2748. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2749. IS_MNT_SHARED(root_mnt->mnt_parent))
  2750. goto out4;
  2751. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2752. goto out4;
  2753. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2754. goto out4;
  2755. error = -ENOENT;
  2756. if (d_unlinked(new.dentry))
  2757. goto out4;
  2758. error = -EBUSY;
  2759. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2760. goto out4; /* loop, on the same file system */
  2761. error = -EINVAL;
  2762. if (root.mnt->mnt_root != root.dentry)
  2763. goto out4; /* not a mountpoint */
  2764. if (!mnt_has_parent(root_mnt))
  2765. goto out4; /* not attached */
  2766. root_mp = root_mnt->mnt_mp;
  2767. if (new.mnt->mnt_root != new.dentry)
  2768. goto out4; /* not a mountpoint */
  2769. if (!mnt_has_parent(new_mnt))
  2770. goto out4; /* not attached */
  2771. /* make sure we can reach put_old from new_root */
  2772. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2773. goto out4;
  2774. /* make certain new is below the root */
  2775. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2776. goto out4;
  2777. root_mp->m_count++; /* pin it so it won't go away */
  2778. lock_mount_hash();
  2779. detach_mnt(new_mnt, &parent_path);
  2780. detach_mnt(root_mnt, &root_parent);
  2781. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2782. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2783. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2784. }
  2785. /* mount old root on put_old */
  2786. attach_mnt(root_mnt, old_mnt, old_mp);
  2787. /* mount new_root on / */
  2788. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2789. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2790. /* A moved mount should not expire automatically */
  2791. list_del_init(&new_mnt->mnt_expire);
  2792. put_mountpoint(root_mp);
  2793. unlock_mount_hash();
  2794. chroot_fs_refs(&root, &new);
  2795. error = 0;
  2796. out4:
  2797. unlock_mount(old_mp);
  2798. if (!error) {
  2799. path_put(&root_parent);
  2800. path_put(&parent_path);
  2801. }
  2802. out3:
  2803. path_put(&root);
  2804. out2:
  2805. path_put(&old);
  2806. out1:
  2807. path_put(&new);
  2808. out0:
  2809. return error;
  2810. }
  2811. static void __init init_mount_tree(void)
  2812. {
  2813. struct vfsmount *mnt;
  2814. struct mnt_namespace *ns;
  2815. struct path root;
  2816. struct file_system_type *type;
  2817. type = get_fs_type("rootfs");
  2818. if (!type)
  2819. panic("Can't find rootfs type");
  2820. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2821. put_filesystem(type);
  2822. if (IS_ERR(mnt))
  2823. panic("Can't create rootfs");
  2824. ns = create_mnt_ns(mnt);
  2825. if (IS_ERR(ns))
  2826. panic("Can't allocate initial namespace");
  2827. init_task.nsproxy->mnt_ns = ns;
  2828. get_mnt_ns(ns);
  2829. root.mnt = mnt;
  2830. root.dentry = mnt->mnt_root;
  2831. mnt->mnt_flags |= MNT_LOCKED;
  2832. set_fs_pwd(current->fs, &root);
  2833. set_fs_root(current->fs, &root);
  2834. }
  2835. void __init mnt_init(void)
  2836. {
  2837. unsigned u;
  2838. int err;
  2839. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2840. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2841. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2842. sizeof(struct hlist_head),
  2843. mhash_entries, 19,
  2844. 0,
  2845. &m_hash_shift, &m_hash_mask, 0, 0);
  2846. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2847. sizeof(struct hlist_head),
  2848. mphash_entries, 19,
  2849. 0,
  2850. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2851. if (!mount_hashtable || !mountpoint_hashtable)
  2852. panic("Failed to allocate mount hash table\n");
  2853. for (u = 0; u <= m_hash_mask; u++)
  2854. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2855. for (u = 0; u <= mp_hash_mask; u++)
  2856. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2857. kernfs_init();
  2858. err = sysfs_init();
  2859. if (err)
  2860. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2861. __func__, err);
  2862. fs_kobj = kobject_create_and_add("fs", NULL);
  2863. if (!fs_kobj)
  2864. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2865. init_rootfs();
  2866. init_mount_tree();
  2867. }
  2868. void put_mnt_ns(struct mnt_namespace *ns)
  2869. {
  2870. if (!atomic_dec_and_test(&ns->count))
  2871. return;
  2872. drop_collected_mounts(&ns->root->mnt);
  2873. free_mnt_ns(ns);
  2874. }
  2875. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2876. {
  2877. struct vfsmount *mnt;
  2878. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2879. if (!IS_ERR(mnt)) {
  2880. /*
  2881. * it is a longterm mount, don't release mnt until
  2882. * we unmount before file sys is unregistered
  2883. */
  2884. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2885. }
  2886. return mnt;
  2887. }
  2888. EXPORT_SYMBOL_GPL(kern_mount_data);
  2889. void kern_unmount(struct vfsmount *mnt)
  2890. {
  2891. /* release long term mount so mount point can be released */
  2892. if (!IS_ERR_OR_NULL(mnt)) {
  2893. real_mount(mnt)->mnt_ns = NULL;
  2894. synchronize_rcu(); /* yecchhh... */
  2895. mntput(mnt);
  2896. }
  2897. }
  2898. EXPORT_SYMBOL(kern_unmount);
  2899. bool our_mnt(struct vfsmount *mnt)
  2900. {
  2901. return check_mnt(real_mount(mnt));
  2902. }
  2903. bool current_chrooted(void)
  2904. {
  2905. /* Does the current process have a non-standard root */
  2906. struct path ns_root;
  2907. struct path fs_root;
  2908. bool chrooted;
  2909. /* Find the namespace root */
  2910. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2911. ns_root.dentry = ns_root.mnt->mnt_root;
  2912. path_get(&ns_root);
  2913. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2914. ;
  2915. get_fs_root(current->fs, &fs_root);
  2916. chrooted = !path_equal(&fs_root, &ns_root);
  2917. path_put(&fs_root);
  2918. path_put(&ns_root);
  2919. return chrooted;
  2920. }
  2921. static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
  2922. int *new_mnt_flags)
  2923. {
  2924. int new_flags = *new_mnt_flags;
  2925. struct mount *mnt;
  2926. bool visible = false;
  2927. down_read(&namespace_sem);
  2928. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2929. struct mount *child;
  2930. int mnt_flags;
  2931. if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
  2932. continue;
  2933. /* This mount is not fully visible if it's root directory
  2934. * is not the root directory of the filesystem.
  2935. */
  2936. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2937. continue;
  2938. /* A local view of the mount flags */
  2939. mnt_flags = mnt->mnt.mnt_flags;
  2940. /* Don't miss readonly hidden in the superblock flags */
  2941. if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
  2942. mnt_flags |= MNT_LOCK_READONLY;
  2943. /* Verify the mount flags are equal to or more permissive
  2944. * than the proposed new mount.
  2945. */
  2946. if ((mnt_flags & MNT_LOCK_READONLY) &&
  2947. !(new_flags & MNT_READONLY))
  2948. continue;
  2949. if ((mnt_flags & MNT_LOCK_ATIME) &&
  2950. ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
  2951. continue;
  2952. /* This mount is not fully visible if there are any
  2953. * locked child mounts that cover anything except for
  2954. * empty directories.
  2955. */
  2956. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2957. struct inode *inode = child->mnt_mountpoint->d_inode;
  2958. /* Only worry about locked mounts */
  2959. if (!(child->mnt.mnt_flags & MNT_LOCKED))
  2960. continue;
  2961. /* Is the directory permanetly empty? */
  2962. if (!is_empty_dir_inode(inode))
  2963. goto next;
  2964. }
  2965. /* Preserve the locked attributes */
  2966. *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
  2967. MNT_LOCK_ATIME);
  2968. visible = true;
  2969. goto found;
  2970. next: ;
  2971. }
  2972. found:
  2973. up_read(&namespace_sem);
  2974. return visible;
  2975. }
  2976. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
  2977. {
  2978. const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
  2979. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2980. unsigned long s_iflags;
  2981. if (ns->user_ns == &init_user_ns)
  2982. return false;
  2983. /* Can this filesystem be too revealing? */
  2984. s_iflags = mnt->mnt_sb->s_iflags;
  2985. if (!(s_iflags & SB_I_USERNS_VISIBLE))
  2986. return false;
  2987. if ((s_iflags & required_iflags) != required_iflags) {
  2988. WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
  2989. required_iflags);
  2990. return true;
  2991. }
  2992. return !mnt_already_visible(ns, mnt, new_mnt_flags);
  2993. }
  2994. bool mnt_may_suid(struct vfsmount *mnt)
  2995. {
  2996. /*
  2997. * Foreign mounts (accessed via fchdir or through /proc
  2998. * symlinks) are always treated as if they are nosuid. This
  2999. * prevents namespaces from trusting potentially unsafe
  3000. * suid/sgid bits, file caps, or security labels that originate
  3001. * in other namespaces.
  3002. */
  3003. return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
  3004. current_in_userns(mnt->mnt_sb->s_user_ns);
  3005. }
  3006. static struct ns_common *mntns_get(struct task_struct *task)
  3007. {
  3008. struct ns_common *ns = NULL;
  3009. struct nsproxy *nsproxy;
  3010. task_lock(task);
  3011. nsproxy = task->nsproxy;
  3012. if (nsproxy) {
  3013. ns = &nsproxy->mnt_ns->ns;
  3014. get_mnt_ns(to_mnt_ns(ns));
  3015. }
  3016. task_unlock(task);
  3017. return ns;
  3018. }
  3019. static void mntns_put(struct ns_common *ns)
  3020. {
  3021. put_mnt_ns(to_mnt_ns(ns));
  3022. }
  3023. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  3024. {
  3025. struct fs_struct *fs = current->fs;
  3026. struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
  3027. struct path root;
  3028. int err;
  3029. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  3030. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  3031. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  3032. return -EPERM;
  3033. if (fs->users != 1)
  3034. return -EINVAL;
  3035. get_mnt_ns(mnt_ns);
  3036. old_mnt_ns = nsproxy->mnt_ns;
  3037. nsproxy->mnt_ns = mnt_ns;
  3038. /* Find the root */
  3039. err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
  3040. "/", LOOKUP_DOWN, &root);
  3041. if (err) {
  3042. /* revert to old namespace */
  3043. nsproxy->mnt_ns = old_mnt_ns;
  3044. put_mnt_ns(mnt_ns);
  3045. return err;
  3046. }
  3047. put_mnt_ns(old_mnt_ns);
  3048. /* Update the pwd and root */
  3049. set_fs_pwd(fs, &root);
  3050. set_fs_root(fs, &root);
  3051. path_put(&root);
  3052. return 0;
  3053. }
  3054. static struct user_namespace *mntns_owner(struct ns_common *ns)
  3055. {
  3056. return to_mnt_ns(ns)->user_ns;
  3057. }
  3058. const struct proc_ns_operations mntns_operations = {
  3059. .name = "mnt",
  3060. .type = CLONE_NEWNS,
  3061. .get = mntns_get,
  3062. .put = mntns_put,
  3063. .install = mntns_install,
  3064. .owner = mntns_owner,
  3065. };