vmx.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "kvm_vmx.h"
  20. #include <linux/module.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <asm/io.h>
  24. #include <asm/desc.h>
  25. #include "segment_descriptor.h"
  26. MODULE_AUTHOR("Qumranet");
  27. MODULE_LICENSE("GPL");
  28. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  29. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  30. #ifdef CONFIG_X86_64
  31. #define HOST_IS_64 1
  32. #else
  33. #define HOST_IS_64 0
  34. #endif
  35. static struct vmcs_descriptor {
  36. int size;
  37. int order;
  38. u32 revision_id;
  39. } vmcs_descriptor;
  40. #define VMX_SEGMENT_FIELD(seg) \
  41. [VCPU_SREG_##seg] = { \
  42. .selector = GUEST_##seg##_SELECTOR, \
  43. .base = GUEST_##seg##_BASE, \
  44. .limit = GUEST_##seg##_LIMIT, \
  45. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  46. }
  47. static struct kvm_vmx_segment_field {
  48. unsigned selector;
  49. unsigned base;
  50. unsigned limit;
  51. unsigned ar_bytes;
  52. } kvm_vmx_segment_fields[] = {
  53. VMX_SEGMENT_FIELD(CS),
  54. VMX_SEGMENT_FIELD(DS),
  55. VMX_SEGMENT_FIELD(ES),
  56. VMX_SEGMENT_FIELD(FS),
  57. VMX_SEGMENT_FIELD(GS),
  58. VMX_SEGMENT_FIELD(SS),
  59. VMX_SEGMENT_FIELD(TR),
  60. VMX_SEGMENT_FIELD(LDTR),
  61. };
  62. static const u32 vmx_msr_index[] = {
  63. #ifdef CONFIG_X86_64
  64. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  65. #endif
  66. MSR_EFER, MSR_K6_STAR,
  67. };
  68. #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
  69. static inline int is_page_fault(u32 intr_info)
  70. {
  71. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  72. INTR_INFO_VALID_MASK)) ==
  73. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  74. }
  75. static inline int is_external_interrupt(u32 intr_info)
  76. {
  77. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  78. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  79. }
  80. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  81. {
  82. int i;
  83. for (i = 0; i < vcpu->nmsrs; ++i)
  84. if (vcpu->guest_msrs[i].index == msr)
  85. return &vcpu->guest_msrs[i];
  86. return 0;
  87. }
  88. static void vmcs_clear(struct vmcs *vmcs)
  89. {
  90. u64 phys_addr = __pa(vmcs);
  91. u8 error;
  92. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  93. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  94. : "cc", "memory");
  95. if (error)
  96. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  97. vmcs, phys_addr);
  98. }
  99. static void __vcpu_clear(void *arg)
  100. {
  101. struct kvm_vcpu *vcpu = arg;
  102. int cpu = raw_smp_processor_id();
  103. if (vcpu->cpu == cpu)
  104. vmcs_clear(vcpu->vmcs);
  105. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  106. per_cpu(current_vmcs, cpu) = NULL;
  107. }
  108. static unsigned long vmcs_readl(unsigned long field)
  109. {
  110. unsigned long value;
  111. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  112. : "=a"(value) : "d"(field) : "cc");
  113. return value;
  114. }
  115. static u16 vmcs_read16(unsigned long field)
  116. {
  117. return vmcs_readl(field);
  118. }
  119. static u32 vmcs_read32(unsigned long field)
  120. {
  121. return vmcs_readl(field);
  122. }
  123. static u64 vmcs_read64(unsigned long field)
  124. {
  125. #ifdef CONFIG_X86_64
  126. return vmcs_readl(field);
  127. #else
  128. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  129. #endif
  130. }
  131. static void vmcs_writel(unsigned long field, unsigned long value)
  132. {
  133. u8 error;
  134. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  135. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  136. if (error)
  137. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  138. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  139. }
  140. static void vmcs_write16(unsigned long field, u16 value)
  141. {
  142. vmcs_writel(field, value);
  143. }
  144. static void vmcs_write32(unsigned long field, u32 value)
  145. {
  146. vmcs_writel(field, value);
  147. }
  148. static void vmcs_write64(unsigned long field, u64 value)
  149. {
  150. #ifdef CONFIG_X86_64
  151. vmcs_writel(field, value);
  152. #else
  153. vmcs_writel(field, value);
  154. asm volatile ("");
  155. vmcs_writel(field+1, value >> 32);
  156. #endif
  157. }
  158. /*
  159. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  160. * vcpu mutex is already taken.
  161. */
  162. static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
  163. {
  164. u64 phys_addr = __pa(vcpu->vmcs);
  165. int cpu;
  166. cpu = get_cpu();
  167. if (vcpu->cpu != cpu) {
  168. smp_call_function(__vcpu_clear, vcpu, 0, 1);
  169. vcpu->launched = 0;
  170. }
  171. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  172. u8 error;
  173. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  174. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  175. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  176. : "cc");
  177. if (error)
  178. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  179. vcpu->vmcs, phys_addr);
  180. }
  181. if (vcpu->cpu != cpu) {
  182. struct descriptor_table dt;
  183. unsigned long sysenter_esp;
  184. vcpu->cpu = cpu;
  185. /*
  186. * Linux uses per-cpu TSS and GDT, so set these when switching
  187. * processors.
  188. */
  189. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  190. get_gdt(&dt);
  191. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  192. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  193. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  194. }
  195. return vcpu;
  196. }
  197. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  198. {
  199. put_cpu();
  200. }
  201. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  202. {
  203. return vmcs_readl(GUEST_RFLAGS);
  204. }
  205. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  206. {
  207. vmcs_writel(GUEST_RFLAGS, rflags);
  208. }
  209. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  210. {
  211. unsigned long rip;
  212. u32 interruptibility;
  213. rip = vmcs_readl(GUEST_RIP);
  214. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  215. vmcs_writel(GUEST_RIP, rip);
  216. /*
  217. * We emulated an instruction, so temporary interrupt blocking
  218. * should be removed, if set.
  219. */
  220. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  221. if (interruptibility & 3)
  222. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  223. interruptibility & ~3);
  224. vcpu->interrupt_window_open = 1;
  225. }
  226. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  227. {
  228. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  229. vmcs_readl(GUEST_RIP));
  230. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  231. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  232. GP_VECTOR |
  233. INTR_TYPE_EXCEPTION |
  234. INTR_INFO_DELIEVER_CODE_MASK |
  235. INTR_INFO_VALID_MASK);
  236. }
  237. /*
  238. * reads and returns guest's timestamp counter "register"
  239. * guest_tsc = host_tsc + tsc_offset -- 21.3
  240. */
  241. static u64 guest_read_tsc(void)
  242. {
  243. u64 host_tsc, tsc_offset;
  244. rdtscll(host_tsc);
  245. tsc_offset = vmcs_read64(TSC_OFFSET);
  246. return host_tsc + tsc_offset;
  247. }
  248. /*
  249. * writes 'guest_tsc' into guest's timestamp counter "register"
  250. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  251. */
  252. static void guest_write_tsc(u64 guest_tsc)
  253. {
  254. u64 host_tsc;
  255. rdtscll(host_tsc);
  256. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  257. }
  258. static void reload_tss(void)
  259. {
  260. #ifndef CONFIG_X86_64
  261. /*
  262. * VT restores TR but not its size. Useless.
  263. */
  264. struct descriptor_table gdt;
  265. struct segment_descriptor *descs;
  266. get_gdt(&gdt);
  267. descs = (void *)gdt.base;
  268. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  269. load_TR_desc();
  270. #endif
  271. }
  272. /*
  273. * Reads an msr value (of 'msr_index') into 'pdata'.
  274. * Returns 0 on success, non-0 otherwise.
  275. * Assumes vcpu_load() was already called.
  276. */
  277. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  278. {
  279. u64 data;
  280. struct vmx_msr_entry *msr;
  281. if (!pdata) {
  282. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  283. return -EINVAL;
  284. }
  285. switch (msr_index) {
  286. #ifdef CONFIG_X86_64
  287. case MSR_FS_BASE:
  288. data = vmcs_readl(GUEST_FS_BASE);
  289. break;
  290. case MSR_GS_BASE:
  291. data = vmcs_readl(GUEST_GS_BASE);
  292. break;
  293. case MSR_EFER:
  294. return kvm_get_msr_common(vcpu, msr_index, pdata);
  295. #endif
  296. case MSR_IA32_TIME_STAMP_COUNTER:
  297. data = guest_read_tsc();
  298. break;
  299. case MSR_IA32_SYSENTER_CS:
  300. data = vmcs_read32(GUEST_SYSENTER_CS);
  301. break;
  302. case MSR_IA32_SYSENTER_EIP:
  303. data = vmcs_read32(GUEST_SYSENTER_EIP);
  304. break;
  305. case MSR_IA32_SYSENTER_ESP:
  306. data = vmcs_read32(GUEST_SYSENTER_ESP);
  307. break;
  308. default:
  309. msr = find_msr_entry(vcpu, msr_index);
  310. if (msr) {
  311. data = msr->data;
  312. break;
  313. }
  314. return kvm_get_msr_common(vcpu, msr_index, pdata);
  315. }
  316. *pdata = data;
  317. return 0;
  318. }
  319. /*
  320. * Writes msr value into into the appropriate "register".
  321. * Returns 0 on success, non-0 otherwise.
  322. * Assumes vcpu_load() was already called.
  323. */
  324. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  325. {
  326. struct vmx_msr_entry *msr;
  327. switch (msr_index) {
  328. #ifdef CONFIG_X86_64
  329. case MSR_EFER:
  330. return kvm_set_msr_common(vcpu, msr_index, data);
  331. case MSR_FS_BASE:
  332. vmcs_writel(GUEST_FS_BASE, data);
  333. break;
  334. case MSR_GS_BASE:
  335. vmcs_writel(GUEST_GS_BASE, data);
  336. break;
  337. #endif
  338. case MSR_IA32_SYSENTER_CS:
  339. vmcs_write32(GUEST_SYSENTER_CS, data);
  340. break;
  341. case MSR_IA32_SYSENTER_EIP:
  342. vmcs_write32(GUEST_SYSENTER_EIP, data);
  343. break;
  344. case MSR_IA32_SYSENTER_ESP:
  345. vmcs_write32(GUEST_SYSENTER_ESP, data);
  346. break;
  347. case MSR_IA32_TIME_STAMP_COUNTER: {
  348. guest_write_tsc(data);
  349. break;
  350. }
  351. default:
  352. msr = find_msr_entry(vcpu, msr_index);
  353. if (msr) {
  354. msr->data = data;
  355. break;
  356. }
  357. return kvm_set_msr_common(vcpu, msr_index, data);
  358. msr->data = data;
  359. break;
  360. }
  361. return 0;
  362. }
  363. /*
  364. * Sync the rsp and rip registers into the vcpu structure. This allows
  365. * registers to be accessed by indexing vcpu->regs.
  366. */
  367. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  368. {
  369. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  370. vcpu->rip = vmcs_readl(GUEST_RIP);
  371. }
  372. /*
  373. * Syncs rsp and rip back into the vmcs. Should be called after possible
  374. * modification.
  375. */
  376. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  377. {
  378. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  379. vmcs_writel(GUEST_RIP, vcpu->rip);
  380. }
  381. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  382. {
  383. unsigned long dr7 = 0x400;
  384. u32 exception_bitmap;
  385. int old_singlestep;
  386. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  387. old_singlestep = vcpu->guest_debug.singlestep;
  388. vcpu->guest_debug.enabled = dbg->enabled;
  389. if (vcpu->guest_debug.enabled) {
  390. int i;
  391. dr7 |= 0x200; /* exact */
  392. for (i = 0; i < 4; ++i) {
  393. if (!dbg->breakpoints[i].enabled)
  394. continue;
  395. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  396. dr7 |= 2 << (i*2); /* global enable */
  397. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  398. }
  399. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  400. vcpu->guest_debug.singlestep = dbg->singlestep;
  401. } else {
  402. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  403. vcpu->guest_debug.singlestep = 0;
  404. }
  405. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  406. unsigned long flags;
  407. flags = vmcs_readl(GUEST_RFLAGS);
  408. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  409. vmcs_writel(GUEST_RFLAGS, flags);
  410. }
  411. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  412. vmcs_writel(GUEST_DR7, dr7);
  413. return 0;
  414. }
  415. static __init int cpu_has_kvm_support(void)
  416. {
  417. unsigned long ecx = cpuid_ecx(1);
  418. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  419. }
  420. static __init int vmx_disabled_by_bios(void)
  421. {
  422. u64 msr;
  423. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  424. return (msr & 5) == 1; /* locked but not enabled */
  425. }
  426. static __init void hardware_enable(void *garbage)
  427. {
  428. int cpu = raw_smp_processor_id();
  429. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  430. u64 old;
  431. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  432. if ((old & 5) != 5)
  433. /* enable and lock */
  434. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  435. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  436. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  437. : "memory", "cc");
  438. }
  439. static void hardware_disable(void *garbage)
  440. {
  441. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  442. }
  443. static __init void setup_vmcs_descriptor(void)
  444. {
  445. u32 vmx_msr_low, vmx_msr_high;
  446. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  447. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  448. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  449. vmcs_descriptor.revision_id = vmx_msr_low;
  450. }
  451. static struct vmcs *alloc_vmcs_cpu(int cpu)
  452. {
  453. int node = cpu_to_node(cpu);
  454. struct page *pages;
  455. struct vmcs *vmcs;
  456. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  457. if (!pages)
  458. return NULL;
  459. vmcs = page_address(pages);
  460. memset(vmcs, 0, vmcs_descriptor.size);
  461. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  462. return vmcs;
  463. }
  464. static struct vmcs *alloc_vmcs(void)
  465. {
  466. return alloc_vmcs_cpu(raw_smp_processor_id());
  467. }
  468. static void free_vmcs(struct vmcs *vmcs)
  469. {
  470. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  471. }
  472. static __exit void free_kvm_area(void)
  473. {
  474. int cpu;
  475. for_each_online_cpu(cpu)
  476. free_vmcs(per_cpu(vmxarea, cpu));
  477. }
  478. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  479. static __init int alloc_kvm_area(void)
  480. {
  481. int cpu;
  482. for_each_online_cpu(cpu) {
  483. struct vmcs *vmcs;
  484. vmcs = alloc_vmcs_cpu(cpu);
  485. if (!vmcs) {
  486. free_kvm_area();
  487. return -ENOMEM;
  488. }
  489. per_cpu(vmxarea, cpu) = vmcs;
  490. }
  491. return 0;
  492. }
  493. static __init int hardware_setup(void)
  494. {
  495. setup_vmcs_descriptor();
  496. return alloc_kvm_area();
  497. }
  498. static __exit void hardware_unsetup(void)
  499. {
  500. free_kvm_area();
  501. }
  502. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  503. {
  504. if (vcpu->rmode.active)
  505. vmcs_write32(EXCEPTION_BITMAP, ~0);
  506. else
  507. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  508. }
  509. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  510. {
  511. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  512. if (vmcs_readl(sf->base) == save->base) {
  513. vmcs_write16(sf->selector, save->selector);
  514. vmcs_writel(sf->base, save->base);
  515. vmcs_write32(sf->limit, save->limit);
  516. vmcs_write32(sf->ar_bytes, save->ar);
  517. } else {
  518. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  519. << AR_DPL_SHIFT;
  520. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  521. }
  522. }
  523. static void enter_pmode(struct kvm_vcpu *vcpu)
  524. {
  525. unsigned long flags;
  526. vcpu->rmode.active = 0;
  527. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  528. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  529. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  530. flags = vmcs_readl(GUEST_RFLAGS);
  531. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  532. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  533. vmcs_writel(GUEST_RFLAGS, flags);
  534. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  535. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  536. update_exception_bitmap(vcpu);
  537. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  538. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  539. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  540. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  541. vmcs_write16(GUEST_SS_SELECTOR, 0);
  542. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  543. vmcs_write16(GUEST_CS_SELECTOR,
  544. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  545. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  546. }
  547. static int rmode_tss_base(struct kvm* kvm)
  548. {
  549. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  550. return base_gfn << PAGE_SHIFT;
  551. }
  552. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  553. {
  554. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  555. save->selector = vmcs_read16(sf->selector);
  556. save->base = vmcs_readl(sf->base);
  557. save->limit = vmcs_read32(sf->limit);
  558. save->ar = vmcs_read32(sf->ar_bytes);
  559. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  560. vmcs_write32(sf->limit, 0xffff);
  561. vmcs_write32(sf->ar_bytes, 0xf3);
  562. }
  563. static void enter_rmode(struct kvm_vcpu *vcpu)
  564. {
  565. unsigned long flags;
  566. vcpu->rmode.active = 1;
  567. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  568. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  569. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  570. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  571. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  572. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  573. flags = vmcs_readl(GUEST_RFLAGS);
  574. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  575. flags |= IOPL_MASK | X86_EFLAGS_VM;
  576. vmcs_writel(GUEST_RFLAGS, flags);
  577. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  578. update_exception_bitmap(vcpu);
  579. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  580. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  581. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  582. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  583. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  584. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  585. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  586. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  587. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  588. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  589. }
  590. #ifdef CONFIG_X86_64
  591. static void enter_lmode(struct kvm_vcpu *vcpu)
  592. {
  593. u32 guest_tr_ar;
  594. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  595. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  596. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  597. __FUNCTION__);
  598. vmcs_write32(GUEST_TR_AR_BYTES,
  599. (guest_tr_ar & ~AR_TYPE_MASK)
  600. | AR_TYPE_BUSY_64_TSS);
  601. }
  602. vcpu->shadow_efer |= EFER_LMA;
  603. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  604. vmcs_write32(VM_ENTRY_CONTROLS,
  605. vmcs_read32(VM_ENTRY_CONTROLS)
  606. | VM_ENTRY_CONTROLS_IA32E_MASK);
  607. }
  608. static void exit_lmode(struct kvm_vcpu *vcpu)
  609. {
  610. vcpu->shadow_efer &= ~EFER_LMA;
  611. vmcs_write32(VM_ENTRY_CONTROLS,
  612. vmcs_read32(VM_ENTRY_CONTROLS)
  613. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  614. }
  615. #endif
  616. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  617. {
  618. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  619. enter_pmode(vcpu);
  620. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  621. enter_rmode(vcpu);
  622. #ifdef CONFIG_X86_64
  623. if (vcpu->shadow_efer & EFER_LME) {
  624. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  625. enter_lmode(vcpu);
  626. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  627. exit_lmode(vcpu);
  628. }
  629. #endif
  630. vmcs_writel(CR0_READ_SHADOW, cr0);
  631. vmcs_writel(GUEST_CR0,
  632. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  633. vcpu->cr0 = cr0;
  634. }
  635. /*
  636. * Used when restoring the VM to avoid corrupting segment registers
  637. */
  638. static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
  639. {
  640. vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
  641. update_exception_bitmap(vcpu);
  642. vmcs_writel(CR0_READ_SHADOW, cr0);
  643. vmcs_writel(GUEST_CR0,
  644. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  645. vcpu->cr0 = cr0;
  646. }
  647. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  648. {
  649. vmcs_writel(GUEST_CR3, cr3);
  650. }
  651. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  652. {
  653. vmcs_writel(CR4_READ_SHADOW, cr4);
  654. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  655. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  656. vcpu->cr4 = cr4;
  657. }
  658. #ifdef CONFIG_X86_64
  659. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  660. {
  661. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  662. vcpu->shadow_efer = efer;
  663. if (efer & EFER_LMA) {
  664. vmcs_write32(VM_ENTRY_CONTROLS,
  665. vmcs_read32(VM_ENTRY_CONTROLS) |
  666. VM_ENTRY_CONTROLS_IA32E_MASK);
  667. msr->data = efer;
  668. } else {
  669. vmcs_write32(VM_ENTRY_CONTROLS,
  670. vmcs_read32(VM_ENTRY_CONTROLS) &
  671. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  672. msr->data = efer & ~EFER_LME;
  673. }
  674. }
  675. #endif
  676. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  677. {
  678. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  679. return vmcs_readl(sf->base);
  680. }
  681. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  682. struct kvm_segment *var, int seg)
  683. {
  684. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  685. u32 ar;
  686. var->base = vmcs_readl(sf->base);
  687. var->limit = vmcs_read32(sf->limit);
  688. var->selector = vmcs_read16(sf->selector);
  689. ar = vmcs_read32(sf->ar_bytes);
  690. if (ar & AR_UNUSABLE_MASK)
  691. ar = 0;
  692. var->type = ar & 15;
  693. var->s = (ar >> 4) & 1;
  694. var->dpl = (ar >> 5) & 3;
  695. var->present = (ar >> 7) & 1;
  696. var->avl = (ar >> 12) & 1;
  697. var->l = (ar >> 13) & 1;
  698. var->db = (ar >> 14) & 1;
  699. var->g = (ar >> 15) & 1;
  700. var->unusable = (ar >> 16) & 1;
  701. }
  702. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  703. struct kvm_segment *var, int seg)
  704. {
  705. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  706. u32 ar;
  707. vmcs_writel(sf->base, var->base);
  708. vmcs_write32(sf->limit, var->limit);
  709. vmcs_write16(sf->selector, var->selector);
  710. if (var->unusable)
  711. ar = 1 << 16;
  712. else {
  713. ar = var->type & 15;
  714. ar |= (var->s & 1) << 4;
  715. ar |= (var->dpl & 3) << 5;
  716. ar |= (var->present & 1) << 7;
  717. ar |= (var->avl & 1) << 12;
  718. ar |= (var->l & 1) << 13;
  719. ar |= (var->db & 1) << 14;
  720. ar |= (var->g & 1) << 15;
  721. }
  722. if (ar == 0) /* a 0 value means unusable */
  723. ar = AR_UNUSABLE_MASK;
  724. vmcs_write32(sf->ar_bytes, ar);
  725. }
  726. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  727. {
  728. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  729. *db = (ar >> 14) & 1;
  730. *l = (ar >> 13) & 1;
  731. }
  732. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  733. {
  734. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  735. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  736. }
  737. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  738. {
  739. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  740. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  741. }
  742. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  743. {
  744. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  745. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  746. }
  747. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  748. {
  749. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  750. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  751. }
  752. static int init_rmode_tss(struct kvm* kvm)
  753. {
  754. struct page *p1, *p2, *p3;
  755. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  756. char *page;
  757. p1 = _gfn_to_page(kvm, fn++);
  758. p2 = _gfn_to_page(kvm, fn++);
  759. p3 = _gfn_to_page(kvm, fn);
  760. if (!p1 || !p2 || !p3) {
  761. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  762. return 0;
  763. }
  764. page = kmap_atomic(p1, KM_USER0);
  765. memset(page, 0, PAGE_SIZE);
  766. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  767. kunmap_atomic(page, KM_USER0);
  768. page = kmap_atomic(p2, KM_USER0);
  769. memset(page, 0, PAGE_SIZE);
  770. kunmap_atomic(page, KM_USER0);
  771. page = kmap_atomic(p3, KM_USER0);
  772. memset(page, 0, PAGE_SIZE);
  773. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  774. kunmap_atomic(page, KM_USER0);
  775. return 1;
  776. }
  777. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  778. {
  779. u32 msr_high, msr_low;
  780. rdmsr(msr, msr_low, msr_high);
  781. val &= msr_high;
  782. val |= msr_low;
  783. vmcs_write32(vmcs_field, val);
  784. }
  785. static void seg_setup(int seg)
  786. {
  787. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  788. vmcs_write16(sf->selector, 0);
  789. vmcs_writel(sf->base, 0);
  790. vmcs_write32(sf->limit, 0xffff);
  791. vmcs_write32(sf->ar_bytes, 0x93);
  792. }
  793. /*
  794. * Sets up the vmcs for emulated real mode.
  795. */
  796. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  797. {
  798. u32 host_sysenter_cs;
  799. u32 junk;
  800. unsigned long a;
  801. struct descriptor_table dt;
  802. int i;
  803. int ret = 0;
  804. int nr_good_msrs;
  805. extern asmlinkage void kvm_vmx_return(void);
  806. if (!init_rmode_tss(vcpu->kvm)) {
  807. ret = -ENOMEM;
  808. goto out;
  809. }
  810. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  811. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  812. vcpu->cr8 = 0;
  813. vcpu->apic_base = 0xfee00000 |
  814. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  815. MSR_IA32_APICBASE_ENABLE;
  816. fx_init(vcpu);
  817. /*
  818. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  819. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  820. */
  821. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  822. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  823. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  824. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  825. seg_setup(VCPU_SREG_DS);
  826. seg_setup(VCPU_SREG_ES);
  827. seg_setup(VCPU_SREG_FS);
  828. seg_setup(VCPU_SREG_GS);
  829. seg_setup(VCPU_SREG_SS);
  830. vmcs_write16(GUEST_TR_SELECTOR, 0);
  831. vmcs_writel(GUEST_TR_BASE, 0);
  832. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  833. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  834. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  835. vmcs_writel(GUEST_LDTR_BASE, 0);
  836. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  837. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  838. vmcs_write32(GUEST_SYSENTER_CS, 0);
  839. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  840. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  841. vmcs_writel(GUEST_RFLAGS, 0x02);
  842. vmcs_writel(GUEST_RIP, 0xfff0);
  843. vmcs_writel(GUEST_RSP, 0);
  844. vmcs_writel(GUEST_CR3, 0);
  845. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  846. vmcs_writel(GUEST_DR7, 0x400);
  847. vmcs_writel(GUEST_GDTR_BASE, 0);
  848. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  849. vmcs_writel(GUEST_IDTR_BASE, 0);
  850. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  851. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  852. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  853. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  854. /* I/O */
  855. vmcs_write64(IO_BITMAP_A, 0);
  856. vmcs_write64(IO_BITMAP_B, 0);
  857. guest_write_tsc(0);
  858. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  859. /* Special registers */
  860. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  861. /* Control */
  862. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  863. PIN_BASED_VM_EXEC_CONTROL,
  864. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  865. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  866. );
  867. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  868. CPU_BASED_VM_EXEC_CONTROL,
  869. CPU_BASED_HLT_EXITING /* 20.6.2 */
  870. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  871. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  872. | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
  873. | CPU_BASED_INVDPG_EXITING
  874. | CPU_BASED_MOV_DR_EXITING
  875. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  876. );
  877. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  878. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  879. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  880. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  881. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  882. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  883. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  884. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  885. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  886. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  887. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  888. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  889. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  890. #ifdef CONFIG_X86_64
  891. rdmsrl(MSR_FS_BASE, a);
  892. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  893. rdmsrl(MSR_GS_BASE, a);
  894. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  895. #else
  896. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  897. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  898. #endif
  899. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  900. get_idt(&dt);
  901. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  902. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  903. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  904. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  905. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  906. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  907. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  908. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  909. for (i = 0; i < NR_VMX_MSR; ++i) {
  910. u32 index = vmx_msr_index[i];
  911. u32 data_low, data_high;
  912. u64 data;
  913. int j = vcpu->nmsrs;
  914. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  915. continue;
  916. data = data_low | ((u64)data_high << 32);
  917. vcpu->host_msrs[j].index = index;
  918. vcpu->host_msrs[j].reserved = 0;
  919. vcpu->host_msrs[j].data = data;
  920. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  921. ++vcpu->nmsrs;
  922. }
  923. printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
  924. nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
  925. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  926. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  927. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  928. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  929. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  930. virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
  931. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  932. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  933. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  934. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  935. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  936. /* 22.2.1, 20.8.1 */
  937. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  938. VM_ENTRY_CONTROLS, 0);
  939. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  940. #ifdef CONFIG_X86_64
  941. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  942. vmcs_writel(TPR_THRESHOLD, 0);
  943. #endif
  944. vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
  945. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  946. vcpu->cr0 = 0x60000010;
  947. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  948. vmx_set_cr4(vcpu, 0);
  949. #ifdef CONFIG_X86_64
  950. vmx_set_efer(vcpu, 0);
  951. #endif
  952. return 0;
  953. out:
  954. return ret;
  955. }
  956. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  957. {
  958. u16 ent[2];
  959. u16 cs;
  960. u16 ip;
  961. unsigned long flags;
  962. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  963. u16 sp = vmcs_readl(GUEST_RSP);
  964. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  965. if (sp > ss_limit || sp - 6 > sp) {
  966. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  967. __FUNCTION__,
  968. vmcs_readl(GUEST_RSP),
  969. vmcs_readl(GUEST_SS_BASE),
  970. vmcs_read32(GUEST_SS_LIMIT));
  971. return;
  972. }
  973. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  974. sizeof(ent)) {
  975. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  976. return;
  977. }
  978. flags = vmcs_readl(GUEST_RFLAGS);
  979. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  980. ip = vmcs_readl(GUEST_RIP);
  981. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  982. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  983. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  984. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  985. return;
  986. }
  987. vmcs_writel(GUEST_RFLAGS, flags &
  988. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  989. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  990. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  991. vmcs_writel(GUEST_RIP, ent[0]);
  992. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  993. }
  994. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  995. {
  996. int word_index = __ffs(vcpu->irq_summary);
  997. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  998. int irq = word_index * BITS_PER_LONG + bit_index;
  999. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1000. if (!vcpu->irq_pending[word_index])
  1001. clear_bit(word_index, &vcpu->irq_summary);
  1002. if (vcpu->rmode.active) {
  1003. inject_rmode_irq(vcpu, irq);
  1004. return;
  1005. }
  1006. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1007. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1008. }
  1009. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1010. struct kvm_run *kvm_run)
  1011. {
  1012. u32 cpu_based_vm_exec_control;
  1013. vcpu->interrupt_window_open =
  1014. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1015. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1016. if (vcpu->interrupt_window_open &&
  1017. vcpu->irq_summary &&
  1018. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1019. /*
  1020. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1021. */
  1022. kvm_do_inject_irq(vcpu);
  1023. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1024. if (!vcpu->interrupt_window_open &&
  1025. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1026. /*
  1027. * Interrupts blocked. Wait for unblock.
  1028. */
  1029. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1030. else
  1031. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1032. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1033. }
  1034. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1035. {
  1036. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1037. set_debugreg(dbg->bp[0], 0);
  1038. set_debugreg(dbg->bp[1], 1);
  1039. set_debugreg(dbg->bp[2], 2);
  1040. set_debugreg(dbg->bp[3], 3);
  1041. if (dbg->singlestep) {
  1042. unsigned long flags;
  1043. flags = vmcs_readl(GUEST_RFLAGS);
  1044. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1045. vmcs_writel(GUEST_RFLAGS, flags);
  1046. }
  1047. }
  1048. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1049. int vec, u32 err_code)
  1050. {
  1051. if (!vcpu->rmode.active)
  1052. return 0;
  1053. if (vec == GP_VECTOR && err_code == 0)
  1054. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1055. return 1;
  1056. return 0;
  1057. }
  1058. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1059. {
  1060. u32 intr_info, error_code;
  1061. unsigned long cr2, rip;
  1062. u32 vect_info;
  1063. enum emulation_result er;
  1064. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1065. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1066. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1067. !is_page_fault(intr_info)) {
  1068. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1069. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1070. }
  1071. if (is_external_interrupt(vect_info)) {
  1072. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1073. set_bit(irq, vcpu->irq_pending);
  1074. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1075. }
  1076. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1077. asm ("int $2");
  1078. return 1;
  1079. }
  1080. error_code = 0;
  1081. rip = vmcs_readl(GUEST_RIP);
  1082. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1083. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1084. if (is_page_fault(intr_info)) {
  1085. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1086. spin_lock(&vcpu->kvm->lock);
  1087. if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
  1088. spin_unlock(&vcpu->kvm->lock);
  1089. return 1;
  1090. }
  1091. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1092. spin_unlock(&vcpu->kvm->lock);
  1093. switch (er) {
  1094. case EMULATE_DONE:
  1095. return 1;
  1096. case EMULATE_DO_MMIO:
  1097. ++kvm_stat.mmio_exits;
  1098. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1099. return 0;
  1100. case EMULATE_FAIL:
  1101. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1102. break;
  1103. default:
  1104. BUG();
  1105. }
  1106. }
  1107. if (vcpu->rmode.active &&
  1108. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1109. error_code))
  1110. return 1;
  1111. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1112. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1113. return 0;
  1114. }
  1115. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1116. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1117. kvm_run->ex.error_code = error_code;
  1118. return 0;
  1119. }
  1120. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1121. struct kvm_run *kvm_run)
  1122. {
  1123. ++kvm_stat.irq_exits;
  1124. return 1;
  1125. }
  1126. static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
  1127. {
  1128. u64 inst;
  1129. gva_t rip;
  1130. int countr_size;
  1131. int i, n;
  1132. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1133. countr_size = 2;
  1134. } else {
  1135. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1136. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1137. (cs_ar & AR_DB_MASK) ? 4: 2;
  1138. }
  1139. rip = vmcs_readl(GUEST_RIP);
  1140. if (countr_size != 8)
  1141. rip += vmcs_readl(GUEST_CS_BASE);
  1142. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1143. for (i = 0; i < n; i++) {
  1144. switch (((u8*)&inst)[i]) {
  1145. case 0xf0:
  1146. case 0xf2:
  1147. case 0xf3:
  1148. case 0x2e:
  1149. case 0x36:
  1150. case 0x3e:
  1151. case 0x26:
  1152. case 0x64:
  1153. case 0x65:
  1154. case 0x66:
  1155. break;
  1156. case 0x67:
  1157. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1158. default:
  1159. goto done;
  1160. }
  1161. }
  1162. return 0;
  1163. done:
  1164. countr_size *= 8;
  1165. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1166. return 1;
  1167. }
  1168. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1169. {
  1170. u64 exit_qualification;
  1171. ++kvm_stat.io_exits;
  1172. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1173. kvm_run->exit_reason = KVM_EXIT_IO;
  1174. if (exit_qualification & 8)
  1175. kvm_run->io.direction = KVM_EXIT_IO_IN;
  1176. else
  1177. kvm_run->io.direction = KVM_EXIT_IO_OUT;
  1178. kvm_run->io.size = (exit_qualification & 7) + 1;
  1179. kvm_run->io.string = (exit_qualification & 16) != 0;
  1180. kvm_run->io.string_down
  1181. = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1182. kvm_run->io.rep = (exit_qualification & 32) != 0;
  1183. kvm_run->io.port = exit_qualification >> 16;
  1184. if (kvm_run->io.string) {
  1185. if (!get_io_count(vcpu, &kvm_run->io.count))
  1186. return 1;
  1187. kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1188. } else
  1189. kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
  1190. return 0;
  1191. }
  1192. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1193. {
  1194. u64 address = vmcs_read64(EXIT_QUALIFICATION);
  1195. int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1196. spin_lock(&vcpu->kvm->lock);
  1197. vcpu->mmu.inval_page(vcpu, address);
  1198. spin_unlock(&vcpu->kvm->lock);
  1199. vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
  1200. return 1;
  1201. }
  1202. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1203. {
  1204. u64 exit_qualification;
  1205. int cr;
  1206. int reg;
  1207. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1208. cr = exit_qualification & 15;
  1209. reg = (exit_qualification >> 8) & 15;
  1210. switch ((exit_qualification >> 4) & 3) {
  1211. case 0: /* mov to cr */
  1212. switch (cr) {
  1213. case 0:
  1214. vcpu_load_rsp_rip(vcpu);
  1215. set_cr0(vcpu, vcpu->regs[reg]);
  1216. skip_emulated_instruction(vcpu);
  1217. return 1;
  1218. case 3:
  1219. vcpu_load_rsp_rip(vcpu);
  1220. set_cr3(vcpu, vcpu->regs[reg]);
  1221. skip_emulated_instruction(vcpu);
  1222. return 1;
  1223. case 4:
  1224. vcpu_load_rsp_rip(vcpu);
  1225. set_cr4(vcpu, vcpu->regs[reg]);
  1226. skip_emulated_instruction(vcpu);
  1227. return 1;
  1228. case 8:
  1229. vcpu_load_rsp_rip(vcpu);
  1230. set_cr8(vcpu, vcpu->regs[reg]);
  1231. skip_emulated_instruction(vcpu);
  1232. return 1;
  1233. };
  1234. break;
  1235. case 1: /*mov from cr*/
  1236. switch (cr) {
  1237. case 3:
  1238. vcpu_load_rsp_rip(vcpu);
  1239. vcpu->regs[reg] = vcpu->cr3;
  1240. vcpu_put_rsp_rip(vcpu);
  1241. skip_emulated_instruction(vcpu);
  1242. return 1;
  1243. case 8:
  1244. printk(KERN_DEBUG "handle_cr: read CR8 "
  1245. "cpu erratum AA15\n");
  1246. vcpu_load_rsp_rip(vcpu);
  1247. vcpu->regs[reg] = vcpu->cr8;
  1248. vcpu_put_rsp_rip(vcpu);
  1249. skip_emulated_instruction(vcpu);
  1250. return 1;
  1251. }
  1252. break;
  1253. case 3: /* lmsw */
  1254. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1255. skip_emulated_instruction(vcpu);
  1256. return 1;
  1257. default:
  1258. break;
  1259. }
  1260. kvm_run->exit_reason = 0;
  1261. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1262. (int)(exit_qualification >> 4) & 3, cr);
  1263. return 0;
  1264. }
  1265. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1266. {
  1267. u64 exit_qualification;
  1268. unsigned long val;
  1269. int dr, reg;
  1270. /*
  1271. * FIXME: this code assumes the host is debugging the guest.
  1272. * need to deal with guest debugging itself too.
  1273. */
  1274. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1275. dr = exit_qualification & 7;
  1276. reg = (exit_qualification >> 8) & 15;
  1277. vcpu_load_rsp_rip(vcpu);
  1278. if (exit_qualification & 16) {
  1279. /* mov from dr */
  1280. switch (dr) {
  1281. case 6:
  1282. val = 0xffff0ff0;
  1283. break;
  1284. case 7:
  1285. val = 0x400;
  1286. break;
  1287. default:
  1288. val = 0;
  1289. }
  1290. vcpu->regs[reg] = val;
  1291. } else {
  1292. /* mov to dr */
  1293. }
  1294. vcpu_put_rsp_rip(vcpu);
  1295. skip_emulated_instruction(vcpu);
  1296. return 1;
  1297. }
  1298. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1299. {
  1300. kvm_run->exit_reason = KVM_EXIT_CPUID;
  1301. return 0;
  1302. }
  1303. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1304. {
  1305. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1306. u64 data;
  1307. if (vmx_get_msr(vcpu, ecx, &data)) {
  1308. vmx_inject_gp(vcpu, 0);
  1309. return 1;
  1310. }
  1311. /* FIXME: handling of bits 32:63 of rax, rdx */
  1312. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1313. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1314. skip_emulated_instruction(vcpu);
  1315. return 1;
  1316. }
  1317. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1318. {
  1319. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1320. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1321. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1322. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1323. vmx_inject_gp(vcpu, 0);
  1324. return 1;
  1325. }
  1326. skip_emulated_instruction(vcpu);
  1327. return 1;
  1328. }
  1329. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1330. struct kvm_run *kvm_run)
  1331. {
  1332. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1333. kvm_run->cr8 = vcpu->cr8;
  1334. kvm_run->apic_base = vcpu->apic_base;
  1335. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1336. vcpu->irq_summary == 0);
  1337. }
  1338. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1339. struct kvm_run *kvm_run)
  1340. {
  1341. /*
  1342. * If the user space waits to inject interrupts, exit as soon as
  1343. * possible
  1344. */
  1345. if (kvm_run->request_interrupt_window &&
  1346. !vcpu->irq_summary &&
  1347. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)) {
  1348. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1349. ++kvm_stat.irq_window_exits;
  1350. return 0;
  1351. }
  1352. return 1;
  1353. }
  1354. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1355. {
  1356. skip_emulated_instruction(vcpu);
  1357. if (vcpu->irq_summary)
  1358. return 1;
  1359. kvm_run->exit_reason = KVM_EXIT_HLT;
  1360. ++kvm_stat.halt_exits;
  1361. return 0;
  1362. }
  1363. /*
  1364. * The exit handlers return 1 if the exit was handled fully and guest execution
  1365. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1366. * to be done to userspace and return 0.
  1367. */
  1368. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1369. struct kvm_run *kvm_run) = {
  1370. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1371. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1372. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1373. [EXIT_REASON_INVLPG] = handle_invlpg,
  1374. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1375. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1376. [EXIT_REASON_CPUID] = handle_cpuid,
  1377. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1378. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1379. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1380. [EXIT_REASON_HLT] = handle_halt,
  1381. };
  1382. static const int kvm_vmx_max_exit_handlers =
  1383. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1384. /*
  1385. * The guest has exited. See if we can fix it or if we need userspace
  1386. * assistance.
  1387. */
  1388. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1389. {
  1390. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1391. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1392. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1393. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1394. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1395. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1396. kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1397. if (exit_reason < kvm_vmx_max_exit_handlers
  1398. && kvm_vmx_exit_handlers[exit_reason])
  1399. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1400. else {
  1401. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1402. kvm_run->hw.hardware_exit_reason = exit_reason;
  1403. }
  1404. return 0;
  1405. }
  1406. /*
  1407. * Check if userspace requested an interrupt window, and that the
  1408. * interrupt window is open.
  1409. *
  1410. * No need to exit to userspace if we already have an interrupt queued.
  1411. */
  1412. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1413. struct kvm_run *kvm_run)
  1414. {
  1415. return (!vcpu->irq_summary &&
  1416. kvm_run->request_interrupt_window &&
  1417. vcpu->interrupt_window_open &&
  1418. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1419. }
  1420. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1421. {
  1422. u8 fail;
  1423. u16 fs_sel, gs_sel, ldt_sel;
  1424. int fs_gs_ldt_reload_needed;
  1425. again:
  1426. /*
  1427. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1428. * allow segment selectors with cpl > 0 or ti == 1.
  1429. */
  1430. fs_sel = read_fs();
  1431. gs_sel = read_gs();
  1432. ldt_sel = read_ldt();
  1433. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1434. if (!fs_gs_ldt_reload_needed) {
  1435. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1436. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1437. } else {
  1438. vmcs_write16(HOST_FS_SELECTOR, 0);
  1439. vmcs_write16(HOST_GS_SELECTOR, 0);
  1440. }
  1441. #ifdef CONFIG_X86_64
  1442. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1443. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1444. #else
  1445. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1446. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1447. #endif
  1448. do_interrupt_requests(vcpu, kvm_run);
  1449. if (vcpu->guest_debug.enabled)
  1450. kvm_guest_debug_pre(vcpu);
  1451. fx_save(vcpu->host_fx_image);
  1452. fx_restore(vcpu->guest_fx_image);
  1453. save_msrs(vcpu->host_msrs, vcpu->nmsrs);
  1454. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1455. asm (
  1456. /* Store host registers */
  1457. "pushf \n\t"
  1458. #ifdef CONFIG_X86_64
  1459. "push %%rax; push %%rbx; push %%rdx;"
  1460. "push %%rsi; push %%rdi; push %%rbp;"
  1461. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1462. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1463. "push %%rcx \n\t"
  1464. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1465. #else
  1466. "pusha; push %%ecx \n\t"
  1467. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1468. #endif
  1469. /* Check if vmlaunch of vmresume is needed */
  1470. "cmp $0, %1 \n\t"
  1471. /* Load guest registers. Don't clobber flags. */
  1472. #ifdef CONFIG_X86_64
  1473. "mov %c[cr2](%3), %%rax \n\t"
  1474. "mov %%rax, %%cr2 \n\t"
  1475. "mov %c[rax](%3), %%rax \n\t"
  1476. "mov %c[rbx](%3), %%rbx \n\t"
  1477. "mov %c[rdx](%3), %%rdx \n\t"
  1478. "mov %c[rsi](%3), %%rsi \n\t"
  1479. "mov %c[rdi](%3), %%rdi \n\t"
  1480. "mov %c[rbp](%3), %%rbp \n\t"
  1481. "mov %c[r8](%3), %%r8 \n\t"
  1482. "mov %c[r9](%3), %%r9 \n\t"
  1483. "mov %c[r10](%3), %%r10 \n\t"
  1484. "mov %c[r11](%3), %%r11 \n\t"
  1485. "mov %c[r12](%3), %%r12 \n\t"
  1486. "mov %c[r13](%3), %%r13 \n\t"
  1487. "mov %c[r14](%3), %%r14 \n\t"
  1488. "mov %c[r15](%3), %%r15 \n\t"
  1489. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1490. #else
  1491. "mov %c[cr2](%3), %%eax \n\t"
  1492. "mov %%eax, %%cr2 \n\t"
  1493. "mov %c[rax](%3), %%eax \n\t"
  1494. "mov %c[rbx](%3), %%ebx \n\t"
  1495. "mov %c[rdx](%3), %%edx \n\t"
  1496. "mov %c[rsi](%3), %%esi \n\t"
  1497. "mov %c[rdi](%3), %%edi \n\t"
  1498. "mov %c[rbp](%3), %%ebp \n\t"
  1499. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1500. #endif
  1501. /* Enter guest mode */
  1502. "jne launched \n\t"
  1503. ASM_VMX_VMLAUNCH "\n\t"
  1504. "jmp kvm_vmx_return \n\t"
  1505. "launched: " ASM_VMX_VMRESUME "\n\t"
  1506. ".globl kvm_vmx_return \n\t"
  1507. "kvm_vmx_return: "
  1508. /* Save guest registers, load host registers, keep flags */
  1509. #ifdef CONFIG_X86_64
  1510. "xchg %3, 0(%%rsp) \n\t"
  1511. "mov %%rax, %c[rax](%3) \n\t"
  1512. "mov %%rbx, %c[rbx](%3) \n\t"
  1513. "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
  1514. "mov %%rdx, %c[rdx](%3) \n\t"
  1515. "mov %%rsi, %c[rsi](%3) \n\t"
  1516. "mov %%rdi, %c[rdi](%3) \n\t"
  1517. "mov %%rbp, %c[rbp](%3) \n\t"
  1518. "mov %%r8, %c[r8](%3) \n\t"
  1519. "mov %%r9, %c[r9](%3) \n\t"
  1520. "mov %%r10, %c[r10](%3) \n\t"
  1521. "mov %%r11, %c[r11](%3) \n\t"
  1522. "mov %%r12, %c[r12](%3) \n\t"
  1523. "mov %%r13, %c[r13](%3) \n\t"
  1524. "mov %%r14, %c[r14](%3) \n\t"
  1525. "mov %%r15, %c[r15](%3) \n\t"
  1526. "mov %%cr2, %%rax \n\t"
  1527. "mov %%rax, %c[cr2](%3) \n\t"
  1528. "mov 0(%%rsp), %3 \n\t"
  1529. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1530. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1531. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1532. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1533. #else
  1534. "xchg %3, 0(%%esp) \n\t"
  1535. "mov %%eax, %c[rax](%3) \n\t"
  1536. "mov %%ebx, %c[rbx](%3) \n\t"
  1537. "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
  1538. "mov %%edx, %c[rdx](%3) \n\t"
  1539. "mov %%esi, %c[rsi](%3) \n\t"
  1540. "mov %%edi, %c[rdi](%3) \n\t"
  1541. "mov %%ebp, %c[rbp](%3) \n\t"
  1542. "mov %%cr2, %%eax \n\t"
  1543. "mov %%eax, %c[cr2](%3) \n\t"
  1544. "mov 0(%%esp), %3 \n\t"
  1545. "pop %%ecx; popa \n\t"
  1546. #endif
  1547. "setbe %0 \n\t"
  1548. "popf \n\t"
  1549. : "=g" (fail)
  1550. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1551. "c"(vcpu),
  1552. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1553. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1554. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1555. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1556. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1557. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1558. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1559. #ifdef CONFIG_X86_64
  1560. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1561. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1562. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1563. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1564. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1565. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1566. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1567. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1568. #endif
  1569. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1570. : "cc", "memory" );
  1571. ++kvm_stat.exits;
  1572. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1573. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1574. fx_save(vcpu->guest_fx_image);
  1575. fx_restore(vcpu->host_fx_image);
  1576. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1577. #ifndef CONFIG_X86_64
  1578. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1579. #endif
  1580. kvm_run->exit_type = 0;
  1581. if (fail) {
  1582. kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
  1583. kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
  1584. } else {
  1585. if (fs_gs_ldt_reload_needed) {
  1586. load_ldt(ldt_sel);
  1587. load_fs(fs_sel);
  1588. /*
  1589. * If we have to reload gs, we must take care to
  1590. * preserve our gs base.
  1591. */
  1592. local_irq_disable();
  1593. load_gs(gs_sel);
  1594. #ifdef CONFIG_X86_64
  1595. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1596. #endif
  1597. local_irq_enable();
  1598. reload_tss();
  1599. }
  1600. vcpu->launched = 1;
  1601. kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
  1602. if (kvm_handle_exit(kvm_run, vcpu)) {
  1603. /* Give scheduler a change to reschedule. */
  1604. if (signal_pending(current)) {
  1605. ++kvm_stat.signal_exits;
  1606. post_kvm_run_save(vcpu, kvm_run);
  1607. return -EINTR;
  1608. }
  1609. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1610. ++kvm_stat.request_irq_exits;
  1611. post_kvm_run_save(vcpu, kvm_run);
  1612. return -EINTR;
  1613. }
  1614. kvm_resched(vcpu);
  1615. goto again;
  1616. }
  1617. }
  1618. post_kvm_run_save(vcpu, kvm_run);
  1619. return 0;
  1620. }
  1621. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1622. {
  1623. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1624. }
  1625. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1626. unsigned long addr,
  1627. u32 err_code)
  1628. {
  1629. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1630. ++kvm_stat.pf_guest;
  1631. if (is_page_fault(vect_info)) {
  1632. printk(KERN_DEBUG "inject_page_fault: "
  1633. "double fault 0x%lx @ 0x%lx\n",
  1634. addr, vmcs_readl(GUEST_RIP));
  1635. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1636. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1637. DF_VECTOR |
  1638. INTR_TYPE_EXCEPTION |
  1639. INTR_INFO_DELIEVER_CODE_MASK |
  1640. INTR_INFO_VALID_MASK);
  1641. return;
  1642. }
  1643. vcpu->cr2 = addr;
  1644. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1645. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1646. PF_VECTOR |
  1647. INTR_TYPE_EXCEPTION |
  1648. INTR_INFO_DELIEVER_CODE_MASK |
  1649. INTR_INFO_VALID_MASK);
  1650. }
  1651. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1652. {
  1653. if (vcpu->vmcs) {
  1654. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1655. free_vmcs(vcpu->vmcs);
  1656. vcpu->vmcs = NULL;
  1657. }
  1658. }
  1659. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1660. {
  1661. vmx_free_vmcs(vcpu);
  1662. }
  1663. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1664. {
  1665. struct vmcs *vmcs;
  1666. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1667. if (!vcpu->guest_msrs)
  1668. return -ENOMEM;
  1669. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1670. if (!vcpu->host_msrs)
  1671. goto out_free_guest_msrs;
  1672. vmcs = alloc_vmcs();
  1673. if (!vmcs)
  1674. goto out_free_msrs;
  1675. vmcs_clear(vmcs);
  1676. vcpu->vmcs = vmcs;
  1677. vcpu->launched = 0;
  1678. return 0;
  1679. out_free_msrs:
  1680. kfree(vcpu->host_msrs);
  1681. vcpu->host_msrs = NULL;
  1682. out_free_guest_msrs:
  1683. kfree(vcpu->guest_msrs);
  1684. vcpu->guest_msrs = NULL;
  1685. return -ENOMEM;
  1686. }
  1687. static struct kvm_arch_ops vmx_arch_ops = {
  1688. .cpu_has_kvm_support = cpu_has_kvm_support,
  1689. .disabled_by_bios = vmx_disabled_by_bios,
  1690. .hardware_setup = hardware_setup,
  1691. .hardware_unsetup = hardware_unsetup,
  1692. .hardware_enable = hardware_enable,
  1693. .hardware_disable = hardware_disable,
  1694. .vcpu_create = vmx_create_vcpu,
  1695. .vcpu_free = vmx_free_vcpu,
  1696. .vcpu_load = vmx_vcpu_load,
  1697. .vcpu_put = vmx_vcpu_put,
  1698. .set_guest_debug = set_guest_debug,
  1699. .get_msr = vmx_get_msr,
  1700. .set_msr = vmx_set_msr,
  1701. .get_segment_base = vmx_get_segment_base,
  1702. .get_segment = vmx_get_segment,
  1703. .set_segment = vmx_set_segment,
  1704. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1705. .set_cr0 = vmx_set_cr0,
  1706. .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
  1707. .set_cr3 = vmx_set_cr3,
  1708. .set_cr4 = vmx_set_cr4,
  1709. #ifdef CONFIG_X86_64
  1710. .set_efer = vmx_set_efer,
  1711. #endif
  1712. .get_idt = vmx_get_idt,
  1713. .set_idt = vmx_set_idt,
  1714. .get_gdt = vmx_get_gdt,
  1715. .set_gdt = vmx_set_gdt,
  1716. .cache_regs = vcpu_load_rsp_rip,
  1717. .decache_regs = vcpu_put_rsp_rip,
  1718. .get_rflags = vmx_get_rflags,
  1719. .set_rflags = vmx_set_rflags,
  1720. .tlb_flush = vmx_flush_tlb,
  1721. .inject_page_fault = vmx_inject_page_fault,
  1722. .inject_gp = vmx_inject_gp,
  1723. .run = vmx_vcpu_run,
  1724. .skip_emulated_instruction = skip_emulated_instruction,
  1725. .vcpu_setup = vmx_vcpu_setup,
  1726. };
  1727. static int __init vmx_init(void)
  1728. {
  1729. return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1730. }
  1731. static void __exit vmx_exit(void)
  1732. {
  1733. kvm_exit_arch();
  1734. }
  1735. module_init(vmx_init)
  1736. module_exit(vmx_exit)