i915_sysfs.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Ben Widawsky <ben@bwidawsk.net>
  25. *
  26. */
  27. #include <linux/device.h>
  28. #include <linux/module.h>
  29. #include <linux/stat.h>
  30. #include <linux/sysfs.h>
  31. #include "intel_drv.h"
  32. #include "i915_drv.h"
  33. static inline struct drm_i915_private *kdev_minor_to_i915(struct device *kdev)
  34. {
  35. struct drm_minor *minor = dev_get_drvdata(kdev);
  36. return to_i915(minor->dev);
  37. }
  38. #ifdef CONFIG_PM
  39. static u32 calc_residency(struct drm_i915_private *dev_priv,
  40. i915_reg_t reg)
  41. {
  42. u64 res;
  43. intel_runtime_pm_get(dev_priv);
  44. res = intel_rc6_residency_us(dev_priv, reg);
  45. intel_runtime_pm_put(dev_priv);
  46. return DIV_ROUND_CLOSEST_ULL(res, 1000);
  47. }
  48. static ssize_t
  49. show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
  50. {
  51. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  52. unsigned int mask;
  53. mask = 0;
  54. if (HAS_RC6(dev_priv))
  55. mask |= BIT(0);
  56. if (HAS_RC6p(dev_priv))
  57. mask |= BIT(1);
  58. if (HAS_RC6pp(dev_priv))
  59. mask |= BIT(2);
  60. return snprintf(buf, PAGE_SIZE, "%x\n", mask);
  61. }
  62. static ssize_t
  63. show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  64. {
  65. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  66. u32 rc6_residency = calc_residency(dev_priv, GEN6_GT_GFX_RC6);
  67. return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
  68. }
  69. static ssize_t
  70. show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  71. {
  72. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  73. u32 rc6p_residency = calc_residency(dev_priv, GEN6_GT_GFX_RC6p);
  74. return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
  75. }
  76. static ssize_t
  77. show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  78. {
  79. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  80. u32 rc6pp_residency = calc_residency(dev_priv, GEN6_GT_GFX_RC6pp);
  81. return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
  82. }
  83. static ssize_t
  84. show_media_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  85. {
  86. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  87. u32 rc6_residency = calc_residency(dev_priv, VLV_GT_MEDIA_RC6);
  88. return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
  89. }
  90. static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
  91. static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
  92. static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
  93. static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
  94. static DEVICE_ATTR(media_rc6_residency_ms, S_IRUGO, show_media_rc6_ms, NULL);
  95. static struct attribute *rc6_attrs[] = {
  96. &dev_attr_rc6_enable.attr,
  97. &dev_attr_rc6_residency_ms.attr,
  98. NULL
  99. };
  100. static const struct attribute_group rc6_attr_group = {
  101. .name = power_group_name,
  102. .attrs = rc6_attrs
  103. };
  104. static struct attribute *rc6p_attrs[] = {
  105. &dev_attr_rc6p_residency_ms.attr,
  106. &dev_attr_rc6pp_residency_ms.attr,
  107. NULL
  108. };
  109. static const struct attribute_group rc6p_attr_group = {
  110. .name = power_group_name,
  111. .attrs = rc6p_attrs
  112. };
  113. static struct attribute *media_rc6_attrs[] = {
  114. &dev_attr_media_rc6_residency_ms.attr,
  115. NULL
  116. };
  117. static const struct attribute_group media_rc6_attr_group = {
  118. .name = power_group_name,
  119. .attrs = media_rc6_attrs
  120. };
  121. #endif
  122. static int l3_access_valid(struct drm_i915_private *dev_priv, loff_t offset)
  123. {
  124. if (!HAS_L3_DPF(dev_priv))
  125. return -EPERM;
  126. if (offset % 4 != 0)
  127. return -EINVAL;
  128. if (offset >= GEN7_L3LOG_SIZE)
  129. return -ENXIO;
  130. return 0;
  131. }
  132. static ssize_t
  133. i915_l3_read(struct file *filp, struct kobject *kobj,
  134. struct bin_attribute *attr, char *buf,
  135. loff_t offset, size_t count)
  136. {
  137. struct device *kdev = kobj_to_dev(kobj);
  138. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  139. struct drm_device *dev = &dev_priv->drm;
  140. int slice = (int)(uintptr_t)attr->private;
  141. int ret;
  142. count = round_down(count, 4);
  143. ret = l3_access_valid(dev_priv, offset);
  144. if (ret)
  145. return ret;
  146. count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
  147. ret = i915_mutex_lock_interruptible(dev);
  148. if (ret)
  149. return ret;
  150. if (dev_priv->l3_parity.remap_info[slice])
  151. memcpy(buf,
  152. dev_priv->l3_parity.remap_info[slice] + (offset/4),
  153. count);
  154. else
  155. memset(buf, 0, count);
  156. mutex_unlock(&dev->struct_mutex);
  157. return count;
  158. }
  159. static ssize_t
  160. i915_l3_write(struct file *filp, struct kobject *kobj,
  161. struct bin_attribute *attr, char *buf,
  162. loff_t offset, size_t count)
  163. {
  164. struct device *kdev = kobj_to_dev(kobj);
  165. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  166. struct drm_device *dev = &dev_priv->drm;
  167. struct i915_gem_context *ctx;
  168. int slice = (int)(uintptr_t)attr->private;
  169. u32 **remap_info;
  170. int ret;
  171. ret = l3_access_valid(dev_priv, offset);
  172. if (ret)
  173. return ret;
  174. ret = i915_mutex_lock_interruptible(dev);
  175. if (ret)
  176. return ret;
  177. remap_info = &dev_priv->l3_parity.remap_info[slice];
  178. if (!*remap_info) {
  179. *remap_info = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
  180. if (!*remap_info) {
  181. ret = -ENOMEM;
  182. goto out;
  183. }
  184. }
  185. /* TODO: Ideally we really want a GPU reset here to make sure errors
  186. * aren't propagated. Since I cannot find a stable way to reset the GPU
  187. * at this point it is left as a TODO.
  188. */
  189. memcpy(*remap_info + (offset/4), buf, count);
  190. /* NB: We defer the remapping until we switch to the context */
  191. list_for_each_entry(ctx, &dev_priv->contexts.list, link)
  192. ctx->remap_slice |= (1<<slice);
  193. ret = count;
  194. out:
  195. mutex_unlock(&dev->struct_mutex);
  196. return ret;
  197. }
  198. static const struct bin_attribute dpf_attrs = {
  199. .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
  200. .size = GEN7_L3LOG_SIZE,
  201. .read = i915_l3_read,
  202. .write = i915_l3_write,
  203. .mmap = NULL,
  204. .private = (void *)0
  205. };
  206. static const struct bin_attribute dpf_attrs_1 = {
  207. .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
  208. .size = GEN7_L3LOG_SIZE,
  209. .read = i915_l3_read,
  210. .write = i915_l3_write,
  211. .mmap = NULL,
  212. .private = (void *)1
  213. };
  214. static ssize_t gt_act_freq_mhz_show(struct device *kdev,
  215. struct device_attribute *attr, char *buf)
  216. {
  217. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  218. int ret;
  219. intel_runtime_pm_get(dev_priv);
  220. mutex_lock(&dev_priv->pcu_lock);
  221. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  222. u32 freq;
  223. freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  224. ret = intel_gpu_freq(dev_priv, (freq >> 8) & 0xff);
  225. } else {
  226. ret = intel_gpu_freq(dev_priv,
  227. intel_get_cagf(dev_priv,
  228. I915_READ(GEN6_RPSTAT1)));
  229. }
  230. mutex_unlock(&dev_priv->pcu_lock);
  231. intel_runtime_pm_put(dev_priv);
  232. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  233. }
  234. static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
  235. struct device_attribute *attr, char *buf)
  236. {
  237. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  238. return snprintf(buf, PAGE_SIZE, "%d\n",
  239. intel_gpu_freq(dev_priv,
  240. dev_priv->gt_pm.rps.cur_freq));
  241. }
  242. static ssize_t gt_boost_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  243. {
  244. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  245. return snprintf(buf, PAGE_SIZE, "%d\n",
  246. intel_gpu_freq(dev_priv,
  247. dev_priv->gt_pm.rps.boost_freq));
  248. }
  249. static ssize_t gt_boost_freq_mhz_store(struct device *kdev,
  250. struct device_attribute *attr,
  251. const char *buf, size_t count)
  252. {
  253. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  254. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  255. u32 val;
  256. ssize_t ret;
  257. ret = kstrtou32(buf, 0, &val);
  258. if (ret)
  259. return ret;
  260. /* Validate against (static) hardware limits */
  261. val = intel_freq_opcode(dev_priv, val);
  262. if (val < rps->min_freq || val > rps->max_freq)
  263. return -EINVAL;
  264. mutex_lock(&dev_priv->pcu_lock);
  265. rps->boost_freq = val;
  266. mutex_unlock(&dev_priv->pcu_lock);
  267. return count;
  268. }
  269. static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
  270. struct device_attribute *attr, char *buf)
  271. {
  272. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  273. return snprintf(buf, PAGE_SIZE, "%d\n",
  274. intel_gpu_freq(dev_priv,
  275. dev_priv->gt_pm.rps.efficient_freq));
  276. }
  277. static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  278. {
  279. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  280. return snprintf(buf, PAGE_SIZE, "%d\n",
  281. intel_gpu_freq(dev_priv,
  282. dev_priv->gt_pm.rps.max_freq_softlimit));
  283. }
  284. static ssize_t gt_max_freq_mhz_store(struct device *kdev,
  285. struct device_attribute *attr,
  286. const char *buf, size_t count)
  287. {
  288. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  289. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  290. u32 val;
  291. ssize_t ret;
  292. ret = kstrtou32(buf, 0, &val);
  293. if (ret)
  294. return ret;
  295. intel_runtime_pm_get(dev_priv);
  296. mutex_lock(&dev_priv->pcu_lock);
  297. val = intel_freq_opcode(dev_priv, val);
  298. if (val < rps->min_freq ||
  299. val > rps->max_freq ||
  300. val < rps->min_freq_softlimit) {
  301. mutex_unlock(&dev_priv->pcu_lock);
  302. intel_runtime_pm_put(dev_priv);
  303. return -EINVAL;
  304. }
  305. if (val > rps->rp0_freq)
  306. DRM_DEBUG("User requested overclocking to %d\n",
  307. intel_gpu_freq(dev_priv, val));
  308. rps->max_freq_softlimit = val;
  309. val = clamp_t(int, rps->cur_freq,
  310. rps->min_freq_softlimit,
  311. rps->max_freq_softlimit);
  312. /* We still need *_set_rps to process the new max_delay and
  313. * update the interrupt limits and PMINTRMSK even though
  314. * frequency request may be unchanged. */
  315. ret = intel_set_rps(dev_priv, val);
  316. mutex_unlock(&dev_priv->pcu_lock);
  317. intel_runtime_pm_put(dev_priv);
  318. return ret ?: count;
  319. }
  320. static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  321. {
  322. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  323. return snprintf(buf, PAGE_SIZE, "%d\n",
  324. intel_gpu_freq(dev_priv,
  325. dev_priv->gt_pm.rps.min_freq_softlimit));
  326. }
  327. static ssize_t gt_min_freq_mhz_store(struct device *kdev,
  328. struct device_attribute *attr,
  329. const char *buf, size_t count)
  330. {
  331. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  332. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  333. u32 val;
  334. ssize_t ret;
  335. ret = kstrtou32(buf, 0, &val);
  336. if (ret)
  337. return ret;
  338. intel_runtime_pm_get(dev_priv);
  339. mutex_lock(&dev_priv->pcu_lock);
  340. val = intel_freq_opcode(dev_priv, val);
  341. if (val < rps->min_freq ||
  342. val > rps->max_freq ||
  343. val > rps->max_freq_softlimit) {
  344. mutex_unlock(&dev_priv->pcu_lock);
  345. intel_runtime_pm_put(dev_priv);
  346. return -EINVAL;
  347. }
  348. rps->min_freq_softlimit = val;
  349. val = clamp_t(int, rps->cur_freq,
  350. rps->min_freq_softlimit,
  351. rps->max_freq_softlimit);
  352. /* We still need *_set_rps to process the new min_delay and
  353. * update the interrupt limits and PMINTRMSK even though
  354. * frequency request may be unchanged. */
  355. ret = intel_set_rps(dev_priv, val);
  356. mutex_unlock(&dev_priv->pcu_lock);
  357. intel_runtime_pm_put(dev_priv);
  358. return ret ?: count;
  359. }
  360. static DEVICE_ATTR(gt_act_freq_mhz, S_IRUGO, gt_act_freq_mhz_show, NULL);
  361. static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
  362. static DEVICE_ATTR(gt_boost_freq_mhz, S_IRUGO | S_IWUSR, gt_boost_freq_mhz_show, gt_boost_freq_mhz_store);
  363. static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
  364. static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
  365. static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
  366. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
  367. static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  368. static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  369. static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  370. /* For now we have a static number of RP states */
  371. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  372. {
  373. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  374. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  375. u32 val;
  376. if (attr == &dev_attr_gt_RP0_freq_mhz)
  377. val = intel_gpu_freq(dev_priv, rps->rp0_freq);
  378. else if (attr == &dev_attr_gt_RP1_freq_mhz)
  379. val = intel_gpu_freq(dev_priv, rps->rp1_freq);
  380. else if (attr == &dev_attr_gt_RPn_freq_mhz)
  381. val = intel_gpu_freq(dev_priv, rps->min_freq);
  382. else
  383. BUG();
  384. return snprintf(buf, PAGE_SIZE, "%d\n", val);
  385. }
  386. static const struct attribute *gen6_attrs[] = {
  387. &dev_attr_gt_act_freq_mhz.attr,
  388. &dev_attr_gt_cur_freq_mhz.attr,
  389. &dev_attr_gt_boost_freq_mhz.attr,
  390. &dev_attr_gt_max_freq_mhz.attr,
  391. &dev_attr_gt_min_freq_mhz.attr,
  392. &dev_attr_gt_RP0_freq_mhz.attr,
  393. &dev_attr_gt_RP1_freq_mhz.attr,
  394. &dev_attr_gt_RPn_freq_mhz.attr,
  395. NULL,
  396. };
  397. static const struct attribute *vlv_attrs[] = {
  398. &dev_attr_gt_act_freq_mhz.attr,
  399. &dev_attr_gt_cur_freq_mhz.attr,
  400. &dev_attr_gt_boost_freq_mhz.attr,
  401. &dev_attr_gt_max_freq_mhz.attr,
  402. &dev_attr_gt_min_freq_mhz.attr,
  403. &dev_attr_gt_RP0_freq_mhz.attr,
  404. &dev_attr_gt_RP1_freq_mhz.attr,
  405. &dev_attr_gt_RPn_freq_mhz.attr,
  406. &dev_attr_vlv_rpe_freq_mhz.attr,
  407. NULL,
  408. };
  409. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  410. static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
  411. struct bin_attribute *attr, char *buf,
  412. loff_t off, size_t count)
  413. {
  414. struct device *kdev = kobj_to_dev(kobj);
  415. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  416. struct drm_i915_error_state_buf error_str;
  417. struct i915_gpu_state *gpu;
  418. ssize_t ret;
  419. ret = i915_error_state_buf_init(&error_str, dev_priv, count, off);
  420. if (ret)
  421. return ret;
  422. gpu = i915_first_error_state(dev_priv);
  423. ret = i915_error_state_to_str(&error_str, gpu);
  424. if (ret)
  425. goto out;
  426. ret = count < error_str.bytes ? count : error_str.bytes;
  427. memcpy(buf, error_str.buf, ret);
  428. out:
  429. i915_gpu_state_put(gpu);
  430. i915_error_state_buf_release(&error_str);
  431. return ret;
  432. }
  433. static ssize_t error_state_write(struct file *file, struct kobject *kobj,
  434. struct bin_attribute *attr, char *buf,
  435. loff_t off, size_t count)
  436. {
  437. struct device *kdev = kobj_to_dev(kobj);
  438. struct drm_i915_private *dev_priv = kdev_minor_to_i915(kdev);
  439. DRM_DEBUG_DRIVER("Resetting error state\n");
  440. i915_reset_error_state(dev_priv);
  441. return count;
  442. }
  443. static const struct bin_attribute error_state_attr = {
  444. .attr.name = "error",
  445. .attr.mode = S_IRUSR | S_IWUSR,
  446. .size = 0,
  447. .read = error_state_read,
  448. .write = error_state_write,
  449. };
  450. static void i915_setup_error_capture(struct device *kdev)
  451. {
  452. if (sysfs_create_bin_file(&kdev->kobj, &error_state_attr))
  453. DRM_ERROR("error_state sysfs setup failed\n");
  454. }
  455. static void i915_teardown_error_capture(struct device *kdev)
  456. {
  457. sysfs_remove_bin_file(&kdev->kobj, &error_state_attr);
  458. }
  459. #else
  460. static void i915_setup_error_capture(struct device *kdev) {}
  461. static void i915_teardown_error_capture(struct device *kdev) {}
  462. #endif
  463. void i915_setup_sysfs(struct drm_i915_private *dev_priv)
  464. {
  465. struct device *kdev = dev_priv->drm.primary->kdev;
  466. int ret;
  467. #ifdef CONFIG_PM
  468. if (HAS_RC6(dev_priv)) {
  469. ret = sysfs_merge_group(&kdev->kobj,
  470. &rc6_attr_group);
  471. if (ret)
  472. DRM_ERROR("RC6 residency sysfs setup failed\n");
  473. }
  474. if (HAS_RC6p(dev_priv)) {
  475. ret = sysfs_merge_group(&kdev->kobj,
  476. &rc6p_attr_group);
  477. if (ret)
  478. DRM_ERROR("RC6p residency sysfs setup failed\n");
  479. }
  480. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  481. ret = sysfs_merge_group(&kdev->kobj,
  482. &media_rc6_attr_group);
  483. if (ret)
  484. DRM_ERROR("Media RC6 residency sysfs setup failed\n");
  485. }
  486. #endif
  487. if (HAS_L3_DPF(dev_priv)) {
  488. ret = device_create_bin_file(kdev, &dpf_attrs);
  489. if (ret)
  490. DRM_ERROR("l3 parity sysfs setup failed\n");
  491. if (NUM_L3_SLICES(dev_priv) > 1) {
  492. ret = device_create_bin_file(kdev,
  493. &dpf_attrs_1);
  494. if (ret)
  495. DRM_ERROR("l3 parity slice 1 setup failed\n");
  496. }
  497. }
  498. ret = 0;
  499. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  500. ret = sysfs_create_files(&kdev->kobj, vlv_attrs);
  501. else if (INTEL_GEN(dev_priv) >= 6)
  502. ret = sysfs_create_files(&kdev->kobj, gen6_attrs);
  503. if (ret)
  504. DRM_ERROR("RPS sysfs setup failed\n");
  505. i915_setup_error_capture(kdev);
  506. }
  507. void i915_teardown_sysfs(struct drm_i915_private *dev_priv)
  508. {
  509. struct device *kdev = dev_priv->drm.primary->kdev;
  510. i915_teardown_error_capture(kdev);
  511. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  512. sysfs_remove_files(&kdev->kobj, vlv_attrs);
  513. else
  514. sysfs_remove_files(&kdev->kobj, gen6_attrs);
  515. device_remove_bin_file(kdev, &dpf_attrs_1);
  516. device_remove_bin_file(kdev, &dpf_attrs);
  517. #ifdef CONFIG_PM
  518. sysfs_unmerge_group(&kdev->kobj, &rc6_attr_group);
  519. sysfs_unmerge_group(&kdev->kobj, &rc6p_attr_group);
  520. #endif
  521. }