kfd_chardev.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/device.h>
  23. #include <linux/export.h>
  24. #include <linux/err.h>
  25. #include <linux/fs.h>
  26. #include <linux/sched.h>
  27. #include <linux/slab.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/compat.h>
  30. #include <uapi/linux/kfd_ioctl.h>
  31. #include <linux/time.h>
  32. #include <linux/mm.h>
  33. #include <linux/mman.h>
  34. #include <asm/processor.h>
  35. #include "kfd_priv.h"
  36. #include "kfd_device_queue_manager.h"
  37. #include "kfd_dbgmgr.h"
  38. static long kfd_ioctl(struct file *, unsigned int, unsigned long);
  39. static int kfd_open(struct inode *, struct file *);
  40. static int kfd_mmap(struct file *, struct vm_area_struct *);
  41. static const char kfd_dev_name[] = "kfd";
  42. static const struct file_operations kfd_fops = {
  43. .owner = THIS_MODULE,
  44. .unlocked_ioctl = kfd_ioctl,
  45. .compat_ioctl = kfd_ioctl,
  46. .open = kfd_open,
  47. .mmap = kfd_mmap,
  48. };
  49. static int kfd_char_dev_major = -1;
  50. static struct class *kfd_class;
  51. struct device *kfd_device;
  52. int kfd_chardev_init(void)
  53. {
  54. int err = 0;
  55. kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
  56. err = kfd_char_dev_major;
  57. if (err < 0)
  58. goto err_register_chrdev;
  59. kfd_class = class_create(THIS_MODULE, kfd_dev_name);
  60. err = PTR_ERR(kfd_class);
  61. if (IS_ERR(kfd_class))
  62. goto err_class_create;
  63. kfd_device = device_create(kfd_class, NULL,
  64. MKDEV(kfd_char_dev_major, 0),
  65. NULL, kfd_dev_name);
  66. err = PTR_ERR(kfd_device);
  67. if (IS_ERR(kfd_device))
  68. goto err_device_create;
  69. return 0;
  70. err_device_create:
  71. class_destroy(kfd_class);
  72. err_class_create:
  73. unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
  74. err_register_chrdev:
  75. return err;
  76. }
  77. void kfd_chardev_exit(void)
  78. {
  79. device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
  80. class_destroy(kfd_class);
  81. unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
  82. }
  83. struct device *kfd_chardev(void)
  84. {
  85. return kfd_device;
  86. }
  87. static int kfd_open(struct inode *inode, struct file *filep)
  88. {
  89. struct kfd_process *process;
  90. bool is_32bit_user_mode;
  91. if (iminor(inode) != 0)
  92. return -ENODEV;
  93. is_32bit_user_mode = in_compat_syscall();
  94. if (is_32bit_user_mode) {
  95. dev_warn(kfd_device,
  96. "Process %d (32-bit) failed to open /dev/kfd\n"
  97. "32-bit processes are not supported by amdkfd\n",
  98. current->pid);
  99. return -EPERM;
  100. }
  101. process = kfd_create_process(filep);
  102. if (IS_ERR(process))
  103. return PTR_ERR(process);
  104. dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
  105. process->pasid, process->is_32bit_user_mode);
  106. return 0;
  107. }
  108. static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
  109. void *data)
  110. {
  111. struct kfd_ioctl_get_version_args *args = data;
  112. args->major_version = KFD_IOCTL_MAJOR_VERSION;
  113. args->minor_version = KFD_IOCTL_MINOR_VERSION;
  114. return 0;
  115. }
  116. static int set_queue_properties_from_user(struct queue_properties *q_properties,
  117. struct kfd_ioctl_create_queue_args *args)
  118. {
  119. if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
  120. pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
  121. return -EINVAL;
  122. }
  123. if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
  124. pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
  125. return -EINVAL;
  126. }
  127. if ((args->ring_base_address) &&
  128. (!access_ok(VERIFY_WRITE,
  129. (const void __user *) args->ring_base_address,
  130. sizeof(uint64_t)))) {
  131. pr_err("Can't access ring base address\n");
  132. return -EFAULT;
  133. }
  134. if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
  135. pr_err("Ring size must be a power of 2 or 0\n");
  136. return -EINVAL;
  137. }
  138. if (!access_ok(VERIFY_WRITE,
  139. (const void __user *) args->read_pointer_address,
  140. sizeof(uint32_t))) {
  141. pr_err("Can't access read pointer\n");
  142. return -EFAULT;
  143. }
  144. if (!access_ok(VERIFY_WRITE,
  145. (const void __user *) args->write_pointer_address,
  146. sizeof(uint32_t))) {
  147. pr_err("Can't access write pointer\n");
  148. return -EFAULT;
  149. }
  150. if (args->eop_buffer_address &&
  151. !access_ok(VERIFY_WRITE,
  152. (const void __user *) args->eop_buffer_address,
  153. sizeof(uint32_t))) {
  154. pr_debug("Can't access eop buffer");
  155. return -EFAULT;
  156. }
  157. if (args->ctx_save_restore_address &&
  158. !access_ok(VERIFY_WRITE,
  159. (const void __user *) args->ctx_save_restore_address,
  160. sizeof(uint32_t))) {
  161. pr_debug("Can't access ctx save restore buffer");
  162. return -EFAULT;
  163. }
  164. q_properties->is_interop = false;
  165. q_properties->queue_percent = args->queue_percentage;
  166. q_properties->priority = args->queue_priority;
  167. q_properties->queue_address = args->ring_base_address;
  168. q_properties->queue_size = args->ring_size;
  169. q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
  170. q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
  171. q_properties->eop_ring_buffer_address = args->eop_buffer_address;
  172. q_properties->eop_ring_buffer_size = args->eop_buffer_size;
  173. q_properties->ctx_save_restore_area_address =
  174. args->ctx_save_restore_address;
  175. q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
  176. q_properties->ctl_stack_size = args->ctl_stack_size;
  177. if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
  178. args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
  179. q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
  180. else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
  181. q_properties->type = KFD_QUEUE_TYPE_SDMA;
  182. else
  183. return -ENOTSUPP;
  184. if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
  185. q_properties->format = KFD_QUEUE_FORMAT_AQL;
  186. else
  187. q_properties->format = KFD_QUEUE_FORMAT_PM4;
  188. pr_debug("Queue Percentage: %d, %d\n",
  189. q_properties->queue_percent, args->queue_percentage);
  190. pr_debug("Queue Priority: %d, %d\n",
  191. q_properties->priority, args->queue_priority);
  192. pr_debug("Queue Address: 0x%llX, 0x%llX\n",
  193. q_properties->queue_address, args->ring_base_address);
  194. pr_debug("Queue Size: 0x%llX, %u\n",
  195. q_properties->queue_size, args->ring_size);
  196. pr_debug("Queue r/w Pointers: %p, %p\n",
  197. q_properties->read_ptr,
  198. q_properties->write_ptr);
  199. pr_debug("Queue Format: %d\n", q_properties->format);
  200. pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
  201. pr_debug("Queue CTX save area: 0x%llX\n",
  202. q_properties->ctx_save_restore_area_address);
  203. return 0;
  204. }
  205. static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
  206. void *data)
  207. {
  208. struct kfd_ioctl_create_queue_args *args = data;
  209. struct kfd_dev *dev;
  210. int err = 0;
  211. unsigned int queue_id;
  212. struct kfd_process_device *pdd;
  213. struct queue_properties q_properties;
  214. memset(&q_properties, 0, sizeof(struct queue_properties));
  215. pr_debug("Creating queue ioctl\n");
  216. err = set_queue_properties_from_user(&q_properties, args);
  217. if (err)
  218. return err;
  219. pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
  220. dev = kfd_device_by_id(args->gpu_id);
  221. if (!dev) {
  222. pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
  223. return -EINVAL;
  224. }
  225. mutex_lock(&p->mutex);
  226. pdd = kfd_bind_process_to_device(dev, p);
  227. if (IS_ERR(pdd)) {
  228. err = -ESRCH;
  229. goto err_bind_process;
  230. }
  231. pr_debug("Creating queue for PASID %d on gpu 0x%x\n",
  232. p->pasid,
  233. dev->id);
  234. err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id);
  235. if (err != 0)
  236. goto err_create_queue;
  237. args->queue_id = queue_id;
  238. /* Return gpu_id as doorbell offset for mmap usage */
  239. args->doorbell_offset = (KFD_MMAP_DOORBELL_MASK | args->gpu_id);
  240. args->doorbell_offset <<= PAGE_SHIFT;
  241. mutex_unlock(&p->mutex);
  242. pr_debug("Queue id %d was created successfully\n", args->queue_id);
  243. pr_debug("Ring buffer address == 0x%016llX\n",
  244. args->ring_base_address);
  245. pr_debug("Read ptr address == 0x%016llX\n",
  246. args->read_pointer_address);
  247. pr_debug("Write ptr address == 0x%016llX\n",
  248. args->write_pointer_address);
  249. return 0;
  250. err_create_queue:
  251. err_bind_process:
  252. mutex_unlock(&p->mutex);
  253. return err;
  254. }
  255. static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
  256. void *data)
  257. {
  258. int retval;
  259. struct kfd_ioctl_destroy_queue_args *args = data;
  260. pr_debug("Destroying queue id %d for pasid %d\n",
  261. args->queue_id,
  262. p->pasid);
  263. mutex_lock(&p->mutex);
  264. retval = pqm_destroy_queue(&p->pqm, args->queue_id);
  265. mutex_unlock(&p->mutex);
  266. return retval;
  267. }
  268. static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
  269. void *data)
  270. {
  271. int retval;
  272. struct kfd_ioctl_update_queue_args *args = data;
  273. struct queue_properties properties;
  274. if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
  275. pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
  276. return -EINVAL;
  277. }
  278. if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
  279. pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
  280. return -EINVAL;
  281. }
  282. if ((args->ring_base_address) &&
  283. (!access_ok(VERIFY_WRITE,
  284. (const void __user *) args->ring_base_address,
  285. sizeof(uint64_t)))) {
  286. pr_err("Can't access ring base address\n");
  287. return -EFAULT;
  288. }
  289. if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
  290. pr_err("Ring size must be a power of 2 or 0\n");
  291. return -EINVAL;
  292. }
  293. properties.queue_address = args->ring_base_address;
  294. properties.queue_size = args->ring_size;
  295. properties.queue_percent = args->queue_percentage;
  296. properties.priority = args->queue_priority;
  297. pr_debug("Updating queue id %d for pasid %d\n",
  298. args->queue_id, p->pasid);
  299. mutex_lock(&p->mutex);
  300. retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
  301. mutex_unlock(&p->mutex);
  302. return retval;
  303. }
  304. static int kfd_ioctl_set_memory_policy(struct file *filep,
  305. struct kfd_process *p, void *data)
  306. {
  307. struct kfd_ioctl_set_memory_policy_args *args = data;
  308. struct kfd_dev *dev;
  309. int err = 0;
  310. struct kfd_process_device *pdd;
  311. enum cache_policy default_policy, alternate_policy;
  312. if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
  313. && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
  314. return -EINVAL;
  315. }
  316. if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
  317. && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
  318. return -EINVAL;
  319. }
  320. dev = kfd_device_by_id(args->gpu_id);
  321. if (!dev)
  322. return -EINVAL;
  323. mutex_lock(&p->mutex);
  324. pdd = kfd_bind_process_to_device(dev, p);
  325. if (IS_ERR(pdd)) {
  326. err = -ESRCH;
  327. goto out;
  328. }
  329. default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
  330. ? cache_policy_coherent : cache_policy_noncoherent;
  331. alternate_policy =
  332. (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
  333. ? cache_policy_coherent : cache_policy_noncoherent;
  334. if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
  335. &pdd->qpd,
  336. default_policy,
  337. alternate_policy,
  338. (void __user *)args->alternate_aperture_base,
  339. args->alternate_aperture_size))
  340. err = -EINVAL;
  341. out:
  342. mutex_unlock(&p->mutex);
  343. return err;
  344. }
  345. static int kfd_ioctl_set_trap_handler(struct file *filep,
  346. struct kfd_process *p, void *data)
  347. {
  348. struct kfd_ioctl_set_trap_handler_args *args = data;
  349. struct kfd_dev *dev;
  350. int err = 0;
  351. struct kfd_process_device *pdd;
  352. dev = kfd_device_by_id(args->gpu_id);
  353. if (dev == NULL)
  354. return -EINVAL;
  355. mutex_lock(&p->mutex);
  356. pdd = kfd_bind_process_to_device(dev, p);
  357. if (IS_ERR(pdd)) {
  358. err = -ESRCH;
  359. goto out;
  360. }
  361. if (dev->dqm->ops.set_trap_handler(dev->dqm,
  362. &pdd->qpd,
  363. args->tba_addr,
  364. args->tma_addr))
  365. err = -EINVAL;
  366. out:
  367. mutex_unlock(&p->mutex);
  368. return err;
  369. }
  370. static int kfd_ioctl_dbg_register(struct file *filep,
  371. struct kfd_process *p, void *data)
  372. {
  373. struct kfd_ioctl_dbg_register_args *args = data;
  374. struct kfd_dev *dev;
  375. struct kfd_dbgmgr *dbgmgr_ptr;
  376. struct kfd_process_device *pdd;
  377. bool create_ok;
  378. long status = 0;
  379. dev = kfd_device_by_id(args->gpu_id);
  380. if (!dev)
  381. return -EINVAL;
  382. if (dev->device_info->asic_family == CHIP_CARRIZO) {
  383. pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
  384. return -EINVAL;
  385. }
  386. mutex_lock(&p->mutex);
  387. mutex_lock(kfd_get_dbgmgr_mutex());
  388. /*
  389. * make sure that we have pdd, if this the first queue created for
  390. * this process
  391. */
  392. pdd = kfd_bind_process_to_device(dev, p);
  393. if (IS_ERR(pdd)) {
  394. status = PTR_ERR(pdd);
  395. goto out;
  396. }
  397. if (!dev->dbgmgr) {
  398. /* In case of a legal call, we have no dbgmgr yet */
  399. create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
  400. if (create_ok) {
  401. status = kfd_dbgmgr_register(dbgmgr_ptr, p);
  402. if (status != 0)
  403. kfd_dbgmgr_destroy(dbgmgr_ptr);
  404. else
  405. dev->dbgmgr = dbgmgr_ptr;
  406. }
  407. } else {
  408. pr_debug("debugger already registered\n");
  409. status = -EINVAL;
  410. }
  411. out:
  412. mutex_unlock(kfd_get_dbgmgr_mutex());
  413. mutex_unlock(&p->mutex);
  414. return status;
  415. }
  416. static int kfd_ioctl_dbg_unregister(struct file *filep,
  417. struct kfd_process *p, void *data)
  418. {
  419. struct kfd_ioctl_dbg_unregister_args *args = data;
  420. struct kfd_dev *dev;
  421. long status;
  422. dev = kfd_device_by_id(args->gpu_id);
  423. if (!dev || !dev->dbgmgr)
  424. return -EINVAL;
  425. if (dev->device_info->asic_family == CHIP_CARRIZO) {
  426. pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
  427. return -EINVAL;
  428. }
  429. mutex_lock(kfd_get_dbgmgr_mutex());
  430. status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
  431. if (!status) {
  432. kfd_dbgmgr_destroy(dev->dbgmgr);
  433. dev->dbgmgr = NULL;
  434. }
  435. mutex_unlock(kfd_get_dbgmgr_mutex());
  436. return status;
  437. }
  438. /*
  439. * Parse and generate variable size data structure for address watch.
  440. * Total size of the buffer and # watch points is limited in order
  441. * to prevent kernel abuse. (no bearing to the much smaller HW limitation
  442. * which is enforced by dbgdev module)
  443. * please also note that the watch address itself are not "copied from user",
  444. * since it be set into the HW in user mode values.
  445. *
  446. */
  447. static int kfd_ioctl_dbg_address_watch(struct file *filep,
  448. struct kfd_process *p, void *data)
  449. {
  450. struct kfd_ioctl_dbg_address_watch_args *args = data;
  451. struct kfd_dev *dev;
  452. struct dbg_address_watch_info aw_info;
  453. unsigned char *args_buff;
  454. long status;
  455. void __user *cmd_from_user;
  456. uint64_t watch_mask_value = 0;
  457. unsigned int args_idx = 0;
  458. memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
  459. dev = kfd_device_by_id(args->gpu_id);
  460. if (!dev)
  461. return -EINVAL;
  462. if (dev->device_info->asic_family == CHIP_CARRIZO) {
  463. pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
  464. return -EINVAL;
  465. }
  466. cmd_from_user = (void __user *) args->content_ptr;
  467. /* Validate arguments */
  468. if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
  469. (args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
  470. (cmd_from_user == NULL))
  471. return -EINVAL;
  472. /* this is the actual buffer to work with */
  473. args_buff = memdup_user(cmd_from_user,
  474. args->buf_size_in_bytes - sizeof(*args));
  475. if (IS_ERR(args_buff))
  476. return PTR_ERR(args_buff);
  477. aw_info.process = p;
  478. aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
  479. args_idx += sizeof(aw_info.num_watch_points);
  480. aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
  481. args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
  482. /*
  483. * set watch address base pointer to point on the array base
  484. * within args_buff
  485. */
  486. aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
  487. /* skip over the addresses buffer */
  488. args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
  489. if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
  490. status = -EINVAL;
  491. goto out;
  492. }
  493. watch_mask_value = (uint64_t) args_buff[args_idx];
  494. if (watch_mask_value > 0) {
  495. /*
  496. * There is an array of masks.
  497. * set watch mask base pointer to point on the array base
  498. * within args_buff
  499. */
  500. aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
  501. /* skip over the masks buffer */
  502. args_idx += sizeof(aw_info.watch_mask) *
  503. aw_info.num_watch_points;
  504. } else {
  505. /* just the NULL mask, set to NULL and skip over it */
  506. aw_info.watch_mask = NULL;
  507. args_idx += sizeof(aw_info.watch_mask);
  508. }
  509. if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
  510. status = -EINVAL;
  511. goto out;
  512. }
  513. /* Currently HSA Event is not supported for DBG */
  514. aw_info.watch_event = NULL;
  515. mutex_lock(kfd_get_dbgmgr_mutex());
  516. status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
  517. mutex_unlock(kfd_get_dbgmgr_mutex());
  518. out:
  519. kfree(args_buff);
  520. return status;
  521. }
  522. /* Parse and generate fixed size data structure for wave control */
  523. static int kfd_ioctl_dbg_wave_control(struct file *filep,
  524. struct kfd_process *p, void *data)
  525. {
  526. struct kfd_ioctl_dbg_wave_control_args *args = data;
  527. struct kfd_dev *dev;
  528. struct dbg_wave_control_info wac_info;
  529. unsigned char *args_buff;
  530. uint32_t computed_buff_size;
  531. long status;
  532. void __user *cmd_from_user;
  533. unsigned int args_idx = 0;
  534. memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
  535. /* we use compact form, independent of the packing attribute value */
  536. computed_buff_size = sizeof(*args) +
  537. sizeof(wac_info.mode) +
  538. sizeof(wac_info.operand) +
  539. sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
  540. sizeof(wac_info.dbgWave_msg.MemoryVA) +
  541. sizeof(wac_info.trapId);
  542. dev = kfd_device_by_id(args->gpu_id);
  543. if (!dev)
  544. return -EINVAL;
  545. if (dev->device_info->asic_family == CHIP_CARRIZO) {
  546. pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
  547. return -EINVAL;
  548. }
  549. /* input size must match the computed "compact" size */
  550. if (args->buf_size_in_bytes != computed_buff_size) {
  551. pr_debug("size mismatch, computed : actual %u : %u\n",
  552. args->buf_size_in_bytes, computed_buff_size);
  553. return -EINVAL;
  554. }
  555. cmd_from_user = (void __user *) args->content_ptr;
  556. if (cmd_from_user == NULL)
  557. return -EINVAL;
  558. /* copy the entire buffer from user */
  559. args_buff = memdup_user(cmd_from_user,
  560. args->buf_size_in_bytes - sizeof(*args));
  561. if (IS_ERR(args_buff))
  562. return PTR_ERR(args_buff);
  563. /* move ptr to the start of the "pay-load" area */
  564. wac_info.process = p;
  565. wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
  566. args_idx += sizeof(wac_info.operand);
  567. wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
  568. args_idx += sizeof(wac_info.mode);
  569. wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
  570. args_idx += sizeof(wac_info.trapId);
  571. wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
  572. *((uint32_t *)(&args_buff[args_idx]));
  573. wac_info.dbgWave_msg.MemoryVA = NULL;
  574. mutex_lock(kfd_get_dbgmgr_mutex());
  575. pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
  576. wac_info.process, wac_info.operand,
  577. wac_info.mode, wac_info.trapId,
  578. wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
  579. status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
  580. pr_debug("Returned status of dbg manager is %ld\n", status);
  581. mutex_unlock(kfd_get_dbgmgr_mutex());
  582. kfree(args_buff);
  583. return status;
  584. }
  585. static int kfd_ioctl_get_clock_counters(struct file *filep,
  586. struct kfd_process *p, void *data)
  587. {
  588. struct kfd_ioctl_get_clock_counters_args *args = data;
  589. struct kfd_dev *dev;
  590. struct timespec64 time;
  591. dev = kfd_device_by_id(args->gpu_id);
  592. if (dev == NULL)
  593. return -EINVAL;
  594. /* Reading GPU clock counter from KGD */
  595. args->gpu_clock_counter =
  596. dev->kfd2kgd->get_gpu_clock_counter(dev->kgd);
  597. /* No access to rdtsc. Using raw monotonic time */
  598. getrawmonotonic64(&time);
  599. args->cpu_clock_counter = (uint64_t)timespec64_to_ns(&time);
  600. get_monotonic_boottime64(&time);
  601. args->system_clock_counter = (uint64_t)timespec64_to_ns(&time);
  602. /* Since the counter is in nano-seconds we use 1GHz frequency */
  603. args->system_clock_freq = 1000000000;
  604. return 0;
  605. }
  606. static int kfd_ioctl_get_process_apertures(struct file *filp,
  607. struct kfd_process *p, void *data)
  608. {
  609. struct kfd_ioctl_get_process_apertures_args *args = data;
  610. struct kfd_process_device_apertures *pAperture;
  611. struct kfd_process_device *pdd;
  612. dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
  613. args->num_of_nodes = 0;
  614. mutex_lock(&p->mutex);
  615. /*if the process-device list isn't empty*/
  616. if (kfd_has_process_device_data(p)) {
  617. /* Run over all pdd of the process */
  618. pdd = kfd_get_first_process_device_data(p);
  619. do {
  620. pAperture =
  621. &args->process_apertures[args->num_of_nodes];
  622. pAperture->gpu_id = pdd->dev->id;
  623. pAperture->lds_base = pdd->lds_base;
  624. pAperture->lds_limit = pdd->lds_limit;
  625. pAperture->gpuvm_base = pdd->gpuvm_base;
  626. pAperture->gpuvm_limit = pdd->gpuvm_limit;
  627. pAperture->scratch_base = pdd->scratch_base;
  628. pAperture->scratch_limit = pdd->scratch_limit;
  629. dev_dbg(kfd_device,
  630. "node id %u\n", args->num_of_nodes);
  631. dev_dbg(kfd_device,
  632. "gpu id %u\n", pdd->dev->id);
  633. dev_dbg(kfd_device,
  634. "lds_base %llX\n", pdd->lds_base);
  635. dev_dbg(kfd_device,
  636. "lds_limit %llX\n", pdd->lds_limit);
  637. dev_dbg(kfd_device,
  638. "gpuvm_base %llX\n", pdd->gpuvm_base);
  639. dev_dbg(kfd_device,
  640. "gpuvm_limit %llX\n", pdd->gpuvm_limit);
  641. dev_dbg(kfd_device,
  642. "scratch_base %llX\n", pdd->scratch_base);
  643. dev_dbg(kfd_device,
  644. "scratch_limit %llX\n", pdd->scratch_limit);
  645. args->num_of_nodes++;
  646. pdd = kfd_get_next_process_device_data(p, pdd);
  647. } while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
  648. }
  649. mutex_unlock(&p->mutex);
  650. return 0;
  651. }
  652. static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
  653. void *data)
  654. {
  655. struct kfd_ioctl_create_event_args *args = data;
  656. int err;
  657. err = kfd_event_create(filp, p, args->event_type,
  658. args->auto_reset != 0, args->node_id,
  659. &args->event_id, &args->event_trigger_data,
  660. &args->event_page_offset,
  661. &args->event_slot_index);
  662. return err;
  663. }
  664. static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
  665. void *data)
  666. {
  667. struct kfd_ioctl_destroy_event_args *args = data;
  668. return kfd_event_destroy(p, args->event_id);
  669. }
  670. static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
  671. void *data)
  672. {
  673. struct kfd_ioctl_set_event_args *args = data;
  674. return kfd_set_event(p, args->event_id);
  675. }
  676. static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
  677. void *data)
  678. {
  679. struct kfd_ioctl_reset_event_args *args = data;
  680. return kfd_reset_event(p, args->event_id);
  681. }
  682. static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
  683. void *data)
  684. {
  685. struct kfd_ioctl_wait_events_args *args = data;
  686. int err;
  687. err = kfd_wait_on_events(p, args->num_events,
  688. (void __user *)args->events_ptr,
  689. (args->wait_for_all != 0),
  690. args->timeout, &args->wait_result);
  691. return err;
  692. }
  693. static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
  694. struct kfd_process *p, void *data)
  695. {
  696. struct kfd_ioctl_set_scratch_backing_va_args *args = data;
  697. struct kfd_process_device *pdd;
  698. struct kfd_dev *dev;
  699. long err;
  700. dev = kfd_device_by_id(args->gpu_id);
  701. if (!dev)
  702. return -EINVAL;
  703. mutex_lock(&p->mutex);
  704. pdd = kfd_bind_process_to_device(dev, p);
  705. if (IS_ERR(pdd)) {
  706. err = PTR_ERR(pdd);
  707. goto bind_process_to_device_fail;
  708. }
  709. pdd->qpd.sh_hidden_private_base = args->va_addr;
  710. mutex_unlock(&p->mutex);
  711. if (sched_policy == KFD_SCHED_POLICY_NO_HWS && pdd->qpd.vmid != 0)
  712. dev->kfd2kgd->set_scratch_backing_va(
  713. dev->kgd, args->va_addr, pdd->qpd.vmid);
  714. return 0;
  715. bind_process_to_device_fail:
  716. mutex_unlock(&p->mutex);
  717. return err;
  718. }
  719. static int kfd_ioctl_get_tile_config(struct file *filep,
  720. struct kfd_process *p, void *data)
  721. {
  722. struct kfd_ioctl_get_tile_config_args *args = data;
  723. struct kfd_dev *dev;
  724. struct tile_config config;
  725. int err = 0;
  726. dev = kfd_device_by_id(args->gpu_id);
  727. if (!dev)
  728. return -EINVAL;
  729. dev->kfd2kgd->get_tile_config(dev->kgd, &config);
  730. args->gb_addr_config = config.gb_addr_config;
  731. args->num_banks = config.num_banks;
  732. args->num_ranks = config.num_ranks;
  733. if (args->num_tile_configs > config.num_tile_configs)
  734. args->num_tile_configs = config.num_tile_configs;
  735. err = copy_to_user((void __user *)args->tile_config_ptr,
  736. config.tile_config_ptr,
  737. args->num_tile_configs * sizeof(uint32_t));
  738. if (err) {
  739. args->num_tile_configs = 0;
  740. return -EFAULT;
  741. }
  742. if (args->num_macro_tile_configs > config.num_macro_tile_configs)
  743. args->num_macro_tile_configs =
  744. config.num_macro_tile_configs;
  745. err = copy_to_user((void __user *)args->macro_tile_config_ptr,
  746. config.macro_tile_config_ptr,
  747. args->num_macro_tile_configs * sizeof(uint32_t));
  748. if (err) {
  749. args->num_macro_tile_configs = 0;
  750. return -EFAULT;
  751. }
  752. return 0;
  753. }
  754. #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
  755. [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
  756. .cmd_drv = 0, .name = #ioctl}
  757. /** Ioctl table */
  758. static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
  759. AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
  760. kfd_ioctl_get_version, 0),
  761. AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
  762. kfd_ioctl_create_queue, 0),
  763. AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
  764. kfd_ioctl_destroy_queue, 0),
  765. AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
  766. kfd_ioctl_set_memory_policy, 0),
  767. AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
  768. kfd_ioctl_get_clock_counters, 0),
  769. AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
  770. kfd_ioctl_get_process_apertures, 0),
  771. AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
  772. kfd_ioctl_update_queue, 0),
  773. AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
  774. kfd_ioctl_create_event, 0),
  775. AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
  776. kfd_ioctl_destroy_event, 0),
  777. AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
  778. kfd_ioctl_set_event, 0),
  779. AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
  780. kfd_ioctl_reset_event, 0),
  781. AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
  782. kfd_ioctl_wait_events, 0),
  783. AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
  784. kfd_ioctl_dbg_register, 0),
  785. AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
  786. kfd_ioctl_dbg_unregister, 0),
  787. AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
  788. kfd_ioctl_dbg_address_watch, 0),
  789. AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
  790. kfd_ioctl_dbg_wave_control, 0),
  791. AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
  792. kfd_ioctl_set_scratch_backing_va, 0),
  793. AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
  794. kfd_ioctl_get_tile_config, 0),
  795. AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
  796. kfd_ioctl_set_trap_handler, 0),
  797. };
  798. #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
  799. static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
  800. {
  801. struct kfd_process *process;
  802. amdkfd_ioctl_t *func;
  803. const struct amdkfd_ioctl_desc *ioctl = NULL;
  804. unsigned int nr = _IOC_NR(cmd);
  805. char stack_kdata[128];
  806. char *kdata = NULL;
  807. unsigned int usize, asize;
  808. int retcode = -EINVAL;
  809. if (nr >= AMDKFD_CORE_IOCTL_COUNT)
  810. goto err_i1;
  811. if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
  812. u32 amdkfd_size;
  813. ioctl = &amdkfd_ioctls[nr];
  814. amdkfd_size = _IOC_SIZE(ioctl->cmd);
  815. usize = asize = _IOC_SIZE(cmd);
  816. if (amdkfd_size > asize)
  817. asize = amdkfd_size;
  818. cmd = ioctl->cmd;
  819. } else
  820. goto err_i1;
  821. dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, nr, arg);
  822. process = kfd_get_process(current);
  823. if (IS_ERR(process)) {
  824. dev_dbg(kfd_device, "no process\n");
  825. goto err_i1;
  826. }
  827. /* Do not trust userspace, use our own definition */
  828. func = ioctl->func;
  829. if (unlikely(!func)) {
  830. dev_dbg(kfd_device, "no function\n");
  831. retcode = -EINVAL;
  832. goto err_i1;
  833. }
  834. if (cmd & (IOC_IN | IOC_OUT)) {
  835. if (asize <= sizeof(stack_kdata)) {
  836. kdata = stack_kdata;
  837. } else {
  838. kdata = kmalloc(asize, GFP_KERNEL);
  839. if (!kdata) {
  840. retcode = -ENOMEM;
  841. goto err_i1;
  842. }
  843. }
  844. if (asize > usize)
  845. memset(kdata + usize, 0, asize - usize);
  846. }
  847. if (cmd & IOC_IN) {
  848. if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
  849. retcode = -EFAULT;
  850. goto err_i1;
  851. }
  852. } else if (cmd & IOC_OUT) {
  853. memset(kdata, 0, usize);
  854. }
  855. retcode = func(filep, process, kdata);
  856. if (cmd & IOC_OUT)
  857. if (copy_to_user((void __user *)arg, kdata, usize) != 0)
  858. retcode = -EFAULT;
  859. err_i1:
  860. if (!ioctl)
  861. dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
  862. task_pid_nr(current), cmd, nr);
  863. if (kdata != stack_kdata)
  864. kfree(kdata);
  865. if (retcode)
  866. dev_dbg(kfd_device, "ret = %d\n", retcode);
  867. return retcode;
  868. }
  869. static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
  870. {
  871. struct kfd_process *process;
  872. process = kfd_get_process(current);
  873. if (IS_ERR(process))
  874. return PTR_ERR(process);
  875. if ((vma->vm_pgoff & KFD_MMAP_DOORBELL_MASK) ==
  876. KFD_MMAP_DOORBELL_MASK) {
  877. vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_DOORBELL_MASK;
  878. return kfd_doorbell_mmap(process, vma);
  879. } else if ((vma->vm_pgoff & KFD_MMAP_EVENTS_MASK) ==
  880. KFD_MMAP_EVENTS_MASK) {
  881. vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_EVENTS_MASK;
  882. return kfd_event_mmap(process, vma);
  883. } else if ((vma->vm_pgoff & KFD_MMAP_RESERVED_MEM_MASK) ==
  884. KFD_MMAP_RESERVED_MEM_MASK) {
  885. vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_RESERVED_MEM_MASK;
  886. return kfd_reserved_mem_mmap(process, vma);
  887. }
  888. return -EFAULT;
  889. }