vmstat.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758
  1. /*
  2. * linux/mm/vmstat.c
  3. *
  4. * Manages VM statistics
  5. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  6. *
  7. * zoned VM statistics
  8. * Copyright (C) 2006 Silicon Graphics, Inc.,
  9. * Christoph Lameter <christoph@lameter.com>
  10. * Copyright (C) 2008-2014 Christoph Lameter
  11. */
  12. #include <linux/fs.h>
  13. #include <linux/mm.h>
  14. #include <linux/err.h>
  15. #include <linux/module.h>
  16. #include <linux/slab.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpumask.h>
  19. #include <linux/vmstat.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/debugfs.h>
  23. #include <linux/sched.h>
  24. #include <linux/math64.h>
  25. #include <linux/writeback.h>
  26. #include <linux/compaction.h>
  27. #include <linux/mm_inline.h>
  28. #include <linux/page_ext.h>
  29. #include <linux/page_owner.h>
  30. #include "internal.h"
  31. #ifdef CONFIG_VM_EVENT_COUNTERS
  32. DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  33. EXPORT_PER_CPU_SYMBOL(vm_event_states);
  34. static void sum_vm_events(unsigned long *ret)
  35. {
  36. int cpu;
  37. int i;
  38. memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  39. for_each_online_cpu(cpu) {
  40. struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  41. for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  42. ret[i] += this->event[i];
  43. }
  44. }
  45. /*
  46. * Accumulate the vm event counters across all CPUs.
  47. * The result is unavoidably approximate - it can change
  48. * during and after execution of this function.
  49. */
  50. void all_vm_events(unsigned long *ret)
  51. {
  52. get_online_cpus();
  53. sum_vm_events(ret);
  54. put_online_cpus();
  55. }
  56. EXPORT_SYMBOL_GPL(all_vm_events);
  57. /*
  58. * Fold the foreign cpu events into our own.
  59. *
  60. * This is adding to the events on one processor
  61. * but keeps the global counts constant.
  62. */
  63. void vm_events_fold_cpu(int cpu)
  64. {
  65. struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  66. int i;
  67. for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  68. count_vm_events(i, fold_state->event[i]);
  69. fold_state->event[i] = 0;
  70. }
  71. }
  72. #endif /* CONFIG_VM_EVENT_COUNTERS */
  73. /*
  74. * Manage combined zone based / global counters
  75. *
  76. * vm_stat contains the global counters
  77. */
  78. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
  79. EXPORT_SYMBOL(vm_stat);
  80. #ifdef CONFIG_SMP
  81. int calculate_pressure_threshold(struct zone *zone)
  82. {
  83. int threshold;
  84. int watermark_distance;
  85. /*
  86. * As vmstats are not up to date, there is drift between the estimated
  87. * and real values. For high thresholds and a high number of CPUs, it
  88. * is possible for the min watermark to be breached while the estimated
  89. * value looks fine. The pressure threshold is a reduced value such
  90. * that even the maximum amount of drift will not accidentally breach
  91. * the min watermark
  92. */
  93. watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
  94. threshold = max(1, (int)(watermark_distance / num_online_cpus()));
  95. /*
  96. * Maximum threshold is 125
  97. */
  98. threshold = min(125, threshold);
  99. return threshold;
  100. }
  101. int calculate_normal_threshold(struct zone *zone)
  102. {
  103. int threshold;
  104. int mem; /* memory in 128 MB units */
  105. /*
  106. * The threshold scales with the number of processors and the amount
  107. * of memory per zone. More memory means that we can defer updates for
  108. * longer, more processors could lead to more contention.
  109. * fls() is used to have a cheap way of logarithmic scaling.
  110. *
  111. * Some sample thresholds:
  112. *
  113. * Threshold Processors (fls) Zonesize fls(mem+1)
  114. * ------------------------------------------------------------------
  115. * 8 1 1 0.9-1 GB 4
  116. * 16 2 2 0.9-1 GB 4
  117. * 20 2 2 1-2 GB 5
  118. * 24 2 2 2-4 GB 6
  119. * 28 2 2 4-8 GB 7
  120. * 32 2 2 8-16 GB 8
  121. * 4 2 2 <128M 1
  122. * 30 4 3 2-4 GB 5
  123. * 48 4 3 8-16 GB 8
  124. * 32 8 4 1-2 GB 4
  125. * 32 8 4 0.9-1GB 4
  126. * 10 16 5 <128M 1
  127. * 40 16 5 900M 4
  128. * 70 64 7 2-4 GB 5
  129. * 84 64 7 4-8 GB 6
  130. * 108 512 9 4-8 GB 6
  131. * 125 1024 10 8-16 GB 8
  132. * 125 1024 10 16-32 GB 9
  133. */
  134. mem = zone->managed_pages >> (27 - PAGE_SHIFT);
  135. threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
  136. /*
  137. * Maximum threshold is 125
  138. */
  139. threshold = min(125, threshold);
  140. return threshold;
  141. }
  142. /*
  143. * Refresh the thresholds for each zone.
  144. */
  145. void refresh_zone_stat_thresholds(void)
  146. {
  147. struct zone *zone;
  148. int cpu;
  149. int threshold;
  150. for_each_populated_zone(zone) {
  151. unsigned long max_drift, tolerate_drift;
  152. threshold = calculate_normal_threshold(zone);
  153. for_each_online_cpu(cpu)
  154. per_cpu_ptr(zone->pageset, cpu)->stat_threshold
  155. = threshold;
  156. /*
  157. * Only set percpu_drift_mark if there is a danger that
  158. * NR_FREE_PAGES reports the low watermark is ok when in fact
  159. * the min watermark could be breached by an allocation
  160. */
  161. tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
  162. max_drift = num_online_cpus() * threshold;
  163. if (max_drift > tolerate_drift)
  164. zone->percpu_drift_mark = high_wmark_pages(zone) +
  165. max_drift;
  166. }
  167. }
  168. void set_pgdat_percpu_threshold(pg_data_t *pgdat,
  169. int (*calculate_pressure)(struct zone *))
  170. {
  171. struct zone *zone;
  172. int cpu;
  173. int threshold;
  174. int i;
  175. for (i = 0; i < pgdat->nr_zones; i++) {
  176. zone = &pgdat->node_zones[i];
  177. if (!zone->percpu_drift_mark)
  178. continue;
  179. threshold = (*calculate_pressure)(zone);
  180. for_each_online_cpu(cpu)
  181. per_cpu_ptr(zone->pageset, cpu)->stat_threshold
  182. = threshold;
  183. }
  184. }
  185. /*
  186. * For use when we know that interrupts are disabled,
  187. * or when we know that preemption is disabled and that
  188. * particular counter cannot be updated from interrupt context.
  189. */
  190. void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
  191. long delta)
  192. {
  193. struct per_cpu_pageset __percpu *pcp = zone->pageset;
  194. s8 __percpu *p = pcp->vm_stat_diff + item;
  195. long x;
  196. long t;
  197. x = delta + __this_cpu_read(*p);
  198. t = __this_cpu_read(pcp->stat_threshold);
  199. if (unlikely(x > t || x < -t)) {
  200. zone_page_state_add(x, zone, item);
  201. x = 0;
  202. }
  203. __this_cpu_write(*p, x);
  204. }
  205. EXPORT_SYMBOL(__mod_zone_page_state);
  206. /*
  207. * Optimized increment and decrement functions.
  208. *
  209. * These are only for a single page and therefore can take a struct page *
  210. * argument instead of struct zone *. This allows the inclusion of the code
  211. * generated for page_zone(page) into the optimized functions.
  212. *
  213. * No overflow check is necessary and therefore the differential can be
  214. * incremented or decremented in place which may allow the compilers to
  215. * generate better code.
  216. * The increment or decrement is known and therefore one boundary check can
  217. * be omitted.
  218. *
  219. * NOTE: These functions are very performance sensitive. Change only
  220. * with care.
  221. *
  222. * Some processors have inc/dec instructions that are atomic vs an interrupt.
  223. * However, the code must first determine the differential location in a zone
  224. * based on the processor number and then inc/dec the counter. There is no
  225. * guarantee without disabling preemption that the processor will not change
  226. * in between and therefore the atomicity vs. interrupt cannot be exploited
  227. * in a useful way here.
  228. */
  229. void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
  230. {
  231. struct per_cpu_pageset __percpu *pcp = zone->pageset;
  232. s8 __percpu *p = pcp->vm_stat_diff + item;
  233. s8 v, t;
  234. v = __this_cpu_inc_return(*p);
  235. t = __this_cpu_read(pcp->stat_threshold);
  236. if (unlikely(v > t)) {
  237. s8 overstep = t >> 1;
  238. zone_page_state_add(v + overstep, zone, item);
  239. __this_cpu_write(*p, -overstep);
  240. }
  241. }
  242. void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
  243. {
  244. __inc_zone_state(page_zone(page), item);
  245. }
  246. EXPORT_SYMBOL(__inc_zone_page_state);
  247. void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
  248. {
  249. struct per_cpu_pageset __percpu *pcp = zone->pageset;
  250. s8 __percpu *p = pcp->vm_stat_diff + item;
  251. s8 v, t;
  252. v = __this_cpu_dec_return(*p);
  253. t = __this_cpu_read(pcp->stat_threshold);
  254. if (unlikely(v < - t)) {
  255. s8 overstep = t >> 1;
  256. zone_page_state_add(v - overstep, zone, item);
  257. __this_cpu_write(*p, overstep);
  258. }
  259. }
  260. void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
  261. {
  262. __dec_zone_state(page_zone(page), item);
  263. }
  264. EXPORT_SYMBOL(__dec_zone_page_state);
  265. #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
  266. /*
  267. * If we have cmpxchg_local support then we do not need to incur the overhead
  268. * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
  269. *
  270. * mod_state() modifies the zone counter state through atomic per cpu
  271. * operations.
  272. *
  273. * Overstep mode specifies how overstep should handled:
  274. * 0 No overstepping
  275. * 1 Overstepping half of threshold
  276. * -1 Overstepping minus half of threshold
  277. */
  278. static inline void mod_state(struct zone *zone, enum zone_stat_item item,
  279. long delta, int overstep_mode)
  280. {
  281. struct per_cpu_pageset __percpu *pcp = zone->pageset;
  282. s8 __percpu *p = pcp->vm_stat_diff + item;
  283. long o, n, t, z;
  284. do {
  285. z = 0; /* overflow to zone counters */
  286. /*
  287. * The fetching of the stat_threshold is racy. We may apply
  288. * a counter threshold to the wrong the cpu if we get
  289. * rescheduled while executing here. However, the next
  290. * counter update will apply the threshold again and
  291. * therefore bring the counter under the threshold again.
  292. *
  293. * Most of the time the thresholds are the same anyways
  294. * for all cpus in a zone.
  295. */
  296. t = this_cpu_read(pcp->stat_threshold);
  297. o = this_cpu_read(*p);
  298. n = delta + o;
  299. if (n > t || n < -t) {
  300. int os = overstep_mode * (t >> 1) ;
  301. /* Overflow must be added to zone counters */
  302. z = n + os;
  303. n = -os;
  304. }
  305. } while (this_cpu_cmpxchg(*p, o, n) != o);
  306. if (z)
  307. zone_page_state_add(z, zone, item);
  308. }
  309. void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
  310. long delta)
  311. {
  312. mod_state(zone, item, delta, 0);
  313. }
  314. EXPORT_SYMBOL(mod_zone_page_state);
  315. void inc_zone_state(struct zone *zone, enum zone_stat_item item)
  316. {
  317. mod_state(zone, item, 1, 1);
  318. }
  319. void inc_zone_page_state(struct page *page, enum zone_stat_item item)
  320. {
  321. mod_state(page_zone(page), item, 1, 1);
  322. }
  323. EXPORT_SYMBOL(inc_zone_page_state);
  324. void dec_zone_page_state(struct page *page, enum zone_stat_item item)
  325. {
  326. mod_state(page_zone(page), item, -1, -1);
  327. }
  328. EXPORT_SYMBOL(dec_zone_page_state);
  329. #else
  330. /*
  331. * Use interrupt disable to serialize counter updates
  332. */
  333. void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
  334. long delta)
  335. {
  336. unsigned long flags;
  337. local_irq_save(flags);
  338. __mod_zone_page_state(zone, item, delta);
  339. local_irq_restore(flags);
  340. }
  341. EXPORT_SYMBOL(mod_zone_page_state);
  342. void inc_zone_state(struct zone *zone, enum zone_stat_item item)
  343. {
  344. unsigned long flags;
  345. local_irq_save(flags);
  346. __inc_zone_state(zone, item);
  347. local_irq_restore(flags);
  348. }
  349. void inc_zone_page_state(struct page *page, enum zone_stat_item item)
  350. {
  351. unsigned long flags;
  352. struct zone *zone;
  353. zone = page_zone(page);
  354. local_irq_save(flags);
  355. __inc_zone_state(zone, item);
  356. local_irq_restore(flags);
  357. }
  358. EXPORT_SYMBOL(inc_zone_page_state);
  359. void dec_zone_page_state(struct page *page, enum zone_stat_item item)
  360. {
  361. unsigned long flags;
  362. local_irq_save(flags);
  363. __dec_zone_page_state(page, item);
  364. local_irq_restore(flags);
  365. }
  366. EXPORT_SYMBOL(dec_zone_page_state);
  367. #endif
  368. /*
  369. * Fold a differential into the global counters.
  370. * Returns the number of counters updated.
  371. */
  372. static int fold_diff(int *diff)
  373. {
  374. int i;
  375. int changes = 0;
  376. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  377. if (diff[i]) {
  378. atomic_long_add(diff[i], &vm_stat[i]);
  379. changes++;
  380. }
  381. return changes;
  382. }
  383. /*
  384. * Update the zone counters for the current cpu.
  385. *
  386. * Note that refresh_cpu_vm_stats strives to only access
  387. * node local memory. The per cpu pagesets on remote zones are placed
  388. * in the memory local to the processor using that pageset. So the
  389. * loop over all zones will access a series of cachelines local to
  390. * the processor.
  391. *
  392. * The call to zone_page_state_add updates the cachelines with the
  393. * statistics in the remote zone struct as well as the global cachelines
  394. * with the global counters. These could cause remote node cache line
  395. * bouncing and will have to be only done when necessary.
  396. *
  397. * The function returns the number of global counters updated.
  398. */
  399. static int refresh_cpu_vm_stats(bool do_pagesets)
  400. {
  401. struct zone *zone;
  402. int i;
  403. int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
  404. int changes = 0;
  405. for_each_populated_zone(zone) {
  406. struct per_cpu_pageset __percpu *p = zone->pageset;
  407. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
  408. int v;
  409. v = this_cpu_xchg(p->vm_stat_diff[i], 0);
  410. if (v) {
  411. atomic_long_add(v, &zone->vm_stat[i]);
  412. global_diff[i] += v;
  413. #ifdef CONFIG_NUMA
  414. /* 3 seconds idle till flush */
  415. __this_cpu_write(p->expire, 3);
  416. #endif
  417. }
  418. }
  419. #ifdef CONFIG_NUMA
  420. if (do_pagesets) {
  421. cond_resched();
  422. /*
  423. * Deal with draining the remote pageset of this
  424. * processor
  425. *
  426. * Check if there are pages remaining in this pageset
  427. * if not then there is nothing to expire.
  428. */
  429. if (!__this_cpu_read(p->expire) ||
  430. !__this_cpu_read(p->pcp.count))
  431. continue;
  432. /*
  433. * We never drain zones local to this processor.
  434. */
  435. if (zone_to_nid(zone) == numa_node_id()) {
  436. __this_cpu_write(p->expire, 0);
  437. continue;
  438. }
  439. if (__this_cpu_dec_return(p->expire))
  440. continue;
  441. if (__this_cpu_read(p->pcp.count)) {
  442. drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
  443. changes++;
  444. }
  445. }
  446. #endif
  447. }
  448. changes += fold_diff(global_diff);
  449. return changes;
  450. }
  451. /*
  452. * Fold the data for an offline cpu into the global array.
  453. * There cannot be any access by the offline cpu and therefore
  454. * synchronization is simplified.
  455. */
  456. void cpu_vm_stats_fold(int cpu)
  457. {
  458. struct zone *zone;
  459. int i;
  460. int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
  461. for_each_populated_zone(zone) {
  462. struct per_cpu_pageset *p;
  463. p = per_cpu_ptr(zone->pageset, cpu);
  464. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  465. if (p->vm_stat_diff[i]) {
  466. int v;
  467. v = p->vm_stat_diff[i];
  468. p->vm_stat_diff[i] = 0;
  469. atomic_long_add(v, &zone->vm_stat[i]);
  470. global_diff[i] += v;
  471. }
  472. }
  473. fold_diff(global_diff);
  474. }
  475. /*
  476. * this is only called if !populated_zone(zone), which implies no other users of
  477. * pset->vm_stat_diff[] exsist.
  478. */
  479. void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
  480. {
  481. int i;
  482. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  483. if (pset->vm_stat_diff[i]) {
  484. int v = pset->vm_stat_diff[i];
  485. pset->vm_stat_diff[i] = 0;
  486. atomic_long_add(v, &zone->vm_stat[i]);
  487. atomic_long_add(v, &vm_stat[i]);
  488. }
  489. }
  490. #endif
  491. #ifdef CONFIG_NUMA
  492. /*
  493. * Determine the per node value of a stat item.
  494. */
  495. unsigned long node_page_state(int node, enum zone_stat_item item)
  496. {
  497. struct zone *zones = NODE_DATA(node)->node_zones;
  498. int i;
  499. unsigned long count = 0;
  500. for (i = 0; i < MAX_NR_ZONES; i++)
  501. count += zone_page_state(zones + i, item);
  502. return count;
  503. }
  504. #endif
  505. #ifdef CONFIG_COMPACTION
  506. struct contig_page_info {
  507. unsigned long free_pages;
  508. unsigned long free_blocks_total;
  509. unsigned long free_blocks_suitable;
  510. };
  511. /*
  512. * Calculate the number of free pages in a zone, how many contiguous
  513. * pages are free and how many are large enough to satisfy an allocation of
  514. * the target size. Note that this function makes no attempt to estimate
  515. * how many suitable free blocks there *might* be if MOVABLE pages were
  516. * migrated. Calculating that is possible, but expensive and can be
  517. * figured out from userspace
  518. */
  519. static void fill_contig_page_info(struct zone *zone,
  520. unsigned int suitable_order,
  521. struct contig_page_info *info)
  522. {
  523. unsigned int order;
  524. info->free_pages = 0;
  525. info->free_blocks_total = 0;
  526. info->free_blocks_suitable = 0;
  527. for (order = 0; order < MAX_ORDER; order++) {
  528. unsigned long blocks;
  529. /* Count number of free blocks */
  530. blocks = zone->free_area[order].nr_free;
  531. info->free_blocks_total += blocks;
  532. /* Count free base pages */
  533. info->free_pages += blocks << order;
  534. /* Count the suitable free blocks */
  535. if (order >= suitable_order)
  536. info->free_blocks_suitable += blocks <<
  537. (order - suitable_order);
  538. }
  539. }
  540. /*
  541. * A fragmentation index only makes sense if an allocation of a requested
  542. * size would fail. If that is true, the fragmentation index indicates
  543. * whether external fragmentation or a lack of memory was the problem.
  544. * The value can be used to determine if page reclaim or compaction
  545. * should be used
  546. */
  547. static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
  548. {
  549. unsigned long requested = 1UL << order;
  550. if (!info->free_blocks_total)
  551. return 0;
  552. /* Fragmentation index only makes sense when a request would fail */
  553. if (info->free_blocks_suitable)
  554. return -1000;
  555. /*
  556. * Index is between 0 and 1 so return within 3 decimal places
  557. *
  558. * 0 => allocation would fail due to lack of memory
  559. * 1 => allocation would fail due to fragmentation
  560. */
  561. return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
  562. }
  563. /* Same as __fragmentation index but allocs contig_page_info on stack */
  564. int fragmentation_index(struct zone *zone, unsigned int order)
  565. {
  566. struct contig_page_info info;
  567. fill_contig_page_info(zone, order, &info);
  568. return __fragmentation_index(order, &info);
  569. }
  570. #endif
  571. #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
  572. #ifdef CONFIG_ZONE_DMA
  573. #define TEXT_FOR_DMA(xx) xx "_dma",
  574. #else
  575. #define TEXT_FOR_DMA(xx)
  576. #endif
  577. #ifdef CONFIG_ZONE_DMA32
  578. #define TEXT_FOR_DMA32(xx) xx "_dma32",
  579. #else
  580. #define TEXT_FOR_DMA32(xx)
  581. #endif
  582. #ifdef CONFIG_HIGHMEM
  583. #define TEXT_FOR_HIGHMEM(xx) xx "_high",
  584. #else
  585. #define TEXT_FOR_HIGHMEM(xx)
  586. #endif
  587. #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
  588. TEXT_FOR_HIGHMEM(xx) xx "_movable",
  589. const char * const vmstat_text[] = {
  590. /* enum zone_stat_item countes */
  591. "nr_free_pages",
  592. "nr_alloc_batch",
  593. "nr_inactive_anon",
  594. "nr_active_anon",
  595. "nr_inactive_file",
  596. "nr_active_file",
  597. "nr_unevictable",
  598. "nr_mlock",
  599. "nr_anon_pages",
  600. "nr_mapped",
  601. "nr_file_pages",
  602. "nr_dirty",
  603. "nr_writeback",
  604. "nr_slab_reclaimable",
  605. "nr_slab_unreclaimable",
  606. "nr_page_table_pages",
  607. "nr_kernel_stack",
  608. "nr_unstable",
  609. "nr_bounce",
  610. "nr_vmscan_write",
  611. "nr_vmscan_immediate_reclaim",
  612. "nr_writeback_temp",
  613. "nr_isolated_anon",
  614. "nr_isolated_file",
  615. "nr_shmem",
  616. "nr_dirtied",
  617. "nr_written",
  618. "nr_pages_scanned",
  619. #if IS_ENABLED(CONFIG_ZSMALLOC)
  620. "nr_zspages",
  621. #endif
  622. #ifdef CONFIG_NUMA
  623. "numa_hit",
  624. "numa_miss",
  625. "numa_foreign",
  626. "numa_interleave",
  627. "numa_local",
  628. "numa_other",
  629. #endif
  630. "workingset_refault",
  631. "workingset_activate",
  632. "workingset_nodereclaim",
  633. "nr_anon_transparent_hugepages",
  634. "nr_free_cma",
  635. /* enum writeback_stat_item counters */
  636. "nr_dirty_threshold",
  637. "nr_dirty_background_threshold",
  638. #ifdef CONFIG_VM_EVENT_COUNTERS
  639. /* enum vm_event_item counters */
  640. "pgpgin",
  641. "pgpgout",
  642. "pswpin",
  643. "pswpout",
  644. TEXTS_FOR_ZONES("pgalloc")
  645. "pgfree",
  646. "pgactivate",
  647. "pgdeactivate",
  648. "pgfault",
  649. "pgmajfault",
  650. "pglazyfreed",
  651. TEXTS_FOR_ZONES("pgrefill")
  652. TEXTS_FOR_ZONES("pgsteal_kswapd")
  653. TEXTS_FOR_ZONES("pgsteal_direct")
  654. TEXTS_FOR_ZONES("pgscan_kswapd")
  655. TEXTS_FOR_ZONES("pgscan_direct")
  656. "pgscan_direct_throttle",
  657. #ifdef CONFIG_NUMA
  658. "zone_reclaim_failed",
  659. #endif
  660. "pginodesteal",
  661. "slabs_scanned",
  662. "kswapd_inodesteal",
  663. "kswapd_low_wmark_hit_quickly",
  664. "kswapd_high_wmark_hit_quickly",
  665. "pageoutrun",
  666. "allocstall",
  667. "pgrotated",
  668. "drop_pagecache",
  669. "drop_slab",
  670. #ifdef CONFIG_NUMA_BALANCING
  671. "numa_pte_updates",
  672. "numa_huge_pte_updates",
  673. "numa_hint_faults",
  674. "numa_hint_faults_local",
  675. "numa_pages_migrated",
  676. #endif
  677. #ifdef CONFIG_MIGRATION
  678. "pgmigrate_success",
  679. "pgmigrate_fail",
  680. #endif
  681. #ifdef CONFIG_COMPACTION
  682. "compact_migrate_scanned",
  683. "compact_free_scanned",
  684. "compact_isolated",
  685. "compact_stall",
  686. "compact_fail",
  687. "compact_success",
  688. "compact_daemon_wake",
  689. #endif
  690. #ifdef CONFIG_HUGETLB_PAGE
  691. "htlb_buddy_alloc_success",
  692. "htlb_buddy_alloc_fail",
  693. #endif
  694. "unevictable_pgs_culled",
  695. "unevictable_pgs_scanned",
  696. "unevictable_pgs_rescued",
  697. "unevictable_pgs_mlocked",
  698. "unevictable_pgs_munlocked",
  699. "unevictable_pgs_cleared",
  700. "unevictable_pgs_stranded",
  701. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  702. "thp_fault_alloc",
  703. "thp_fault_fallback",
  704. "thp_collapse_alloc",
  705. "thp_collapse_alloc_failed",
  706. "thp_split_page",
  707. "thp_split_page_failed",
  708. "thp_deferred_split_page",
  709. "thp_split_pmd",
  710. "thp_zero_page_alloc",
  711. "thp_zero_page_alloc_failed",
  712. #endif
  713. #ifdef CONFIG_MEMORY_BALLOON
  714. "balloon_inflate",
  715. "balloon_deflate",
  716. #ifdef CONFIG_BALLOON_COMPACTION
  717. "balloon_migrate",
  718. #endif
  719. #endif /* CONFIG_MEMORY_BALLOON */
  720. #ifdef CONFIG_DEBUG_TLBFLUSH
  721. #ifdef CONFIG_SMP
  722. "nr_tlb_remote_flush",
  723. "nr_tlb_remote_flush_received",
  724. #endif /* CONFIG_SMP */
  725. "nr_tlb_local_flush_all",
  726. "nr_tlb_local_flush_one",
  727. #endif /* CONFIG_DEBUG_TLBFLUSH */
  728. #ifdef CONFIG_DEBUG_VM_VMACACHE
  729. "vmacache_find_calls",
  730. "vmacache_find_hits",
  731. "vmacache_full_flushes",
  732. #endif
  733. #endif /* CONFIG_VM_EVENTS_COUNTERS */
  734. };
  735. #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
  736. #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
  737. defined(CONFIG_PROC_FS)
  738. static void *frag_start(struct seq_file *m, loff_t *pos)
  739. {
  740. pg_data_t *pgdat;
  741. loff_t node = *pos;
  742. for (pgdat = first_online_pgdat();
  743. pgdat && node;
  744. pgdat = next_online_pgdat(pgdat))
  745. --node;
  746. return pgdat;
  747. }
  748. static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
  749. {
  750. pg_data_t *pgdat = (pg_data_t *)arg;
  751. (*pos)++;
  752. return next_online_pgdat(pgdat);
  753. }
  754. static void frag_stop(struct seq_file *m, void *arg)
  755. {
  756. }
  757. /* Walk all the zones in a node and print using a callback */
  758. static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
  759. void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
  760. {
  761. struct zone *zone;
  762. struct zone *node_zones = pgdat->node_zones;
  763. unsigned long flags;
  764. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  765. if (!populated_zone(zone))
  766. continue;
  767. spin_lock_irqsave(&zone->lock, flags);
  768. print(m, pgdat, zone);
  769. spin_unlock_irqrestore(&zone->lock, flags);
  770. }
  771. }
  772. #endif
  773. #ifdef CONFIG_PROC_FS
  774. static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
  775. struct zone *zone)
  776. {
  777. int order;
  778. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  779. for (order = 0; order < MAX_ORDER; ++order)
  780. seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
  781. seq_putc(m, '\n');
  782. }
  783. /*
  784. * This walks the free areas for each zone.
  785. */
  786. static int frag_show(struct seq_file *m, void *arg)
  787. {
  788. pg_data_t *pgdat = (pg_data_t *)arg;
  789. walk_zones_in_node(m, pgdat, frag_show_print);
  790. return 0;
  791. }
  792. static void pagetypeinfo_showfree_print(struct seq_file *m,
  793. pg_data_t *pgdat, struct zone *zone)
  794. {
  795. int order, mtype;
  796. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
  797. seq_printf(m, "Node %4d, zone %8s, type %12s ",
  798. pgdat->node_id,
  799. zone->name,
  800. migratetype_names[mtype]);
  801. for (order = 0; order < MAX_ORDER; ++order) {
  802. unsigned long freecount = 0;
  803. struct free_area *area;
  804. struct list_head *curr;
  805. area = &(zone->free_area[order]);
  806. list_for_each(curr, &area->free_list[mtype])
  807. freecount++;
  808. seq_printf(m, "%6lu ", freecount);
  809. }
  810. seq_putc(m, '\n');
  811. }
  812. }
  813. /* Print out the free pages at each order for each migatetype */
  814. static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
  815. {
  816. int order;
  817. pg_data_t *pgdat = (pg_data_t *)arg;
  818. /* Print header */
  819. seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
  820. for (order = 0; order < MAX_ORDER; ++order)
  821. seq_printf(m, "%6d ", order);
  822. seq_putc(m, '\n');
  823. walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
  824. return 0;
  825. }
  826. static void pagetypeinfo_showblockcount_print(struct seq_file *m,
  827. pg_data_t *pgdat, struct zone *zone)
  828. {
  829. int mtype;
  830. unsigned long pfn;
  831. unsigned long start_pfn = zone->zone_start_pfn;
  832. unsigned long end_pfn = zone_end_pfn(zone);
  833. unsigned long count[MIGRATE_TYPES] = { 0, };
  834. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  835. struct page *page;
  836. if (!pfn_valid(pfn))
  837. continue;
  838. page = pfn_to_page(pfn);
  839. /* Watch for unexpected holes punched in the memmap */
  840. if (!memmap_valid_within(pfn, page, zone))
  841. continue;
  842. if (page_zone(page) != zone)
  843. continue;
  844. mtype = get_pageblock_migratetype(page);
  845. if (mtype < MIGRATE_TYPES)
  846. count[mtype]++;
  847. }
  848. /* Print counts */
  849. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  850. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
  851. seq_printf(m, "%12lu ", count[mtype]);
  852. seq_putc(m, '\n');
  853. }
  854. /* Print out the free pages at each order for each migratetype */
  855. static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
  856. {
  857. int mtype;
  858. pg_data_t *pgdat = (pg_data_t *)arg;
  859. seq_printf(m, "\n%-23s", "Number of blocks type ");
  860. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
  861. seq_printf(m, "%12s ", migratetype_names[mtype]);
  862. seq_putc(m, '\n');
  863. walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
  864. return 0;
  865. }
  866. #ifdef CONFIG_PAGE_OWNER
  867. static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
  868. pg_data_t *pgdat,
  869. struct zone *zone)
  870. {
  871. struct page *page;
  872. struct page_ext *page_ext;
  873. unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
  874. unsigned long end_pfn = pfn + zone->spanned_pages;
  875. unsigned long count[MIGRATE_TYPES] = { 0, };
  876. int pageblock_mt, page_mt;
  877. int i;
  878. /* Scan block by block. First and last block may be incomplete */
  879. pfn = zone->zone_start_pfn;
  880. /*
  881. * Walk the zone in pageblock_nr_pages steps. If a page block spans
  882. * a zone boundary, it will be double counted between zones. This does
  883. * not matter as the mixed block count will still be correct
  884. */
  885. for (; pfn < end_pfn; ) {
  886. if (!pfn_valid(pfn)) {
  887. pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
  888. continue;
  889. }
  890. block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
  891. block_end_pfn = min(block_end_pfn, end_pfn);
  892. page = pfn_to_page(pfn);
  893. pageblock_mt = get_pageblock_migratetype(page);
  894. for (; pfn < block_end_pfn; pfn++) {
  895. if (!pfn_valid_within(pfn))
  896. continue;
  897. page = pfn_to_page(pfn);
  898. if (page_zone(page) != zone)
  899. continue;
  900. if (PageBuddy(page)) {
  901. pfn += (1UL << page_order(page)) - 1;
  902. continue;
  903. }
  904. if (PageReserved(page))
  905. continue;
  906. page_ext = lookup_page_ext(page);
  907. if (unlikely(!page_ext))
  908. continue;
  909. if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
  910. continue;
  911. page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
  912. if (pageblock_mt != page_mt) {
  913. if (is_migrate_cma(pageblock_mt))
  914. count[MIGRATE_MOVABLE]++;
  915. else
  916. count[pageblock_mt]++;
  917. pfn = block_end_pfn;
  918. break;
  919. }
  920. pfn += (1UL << page_ext->order) - 1;
  921. }
  922. }
  923. /* Print counts */
  924. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  925. for (i = 0; i < MIGRATE_TYPES; i++)
  926. seq_printf(m, "%12lu ", count[i]);
  927. seq_putc(m, '\n');
  928. }
  929. #endif /* CONFIG_PAGE_OWNER */
  930. /*
  931. * Print out the number of pageblocks for each migratetype that contain pages
  932. * of other types. This gives an indication of how well fallbacks are being
  933. * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
  934. * to determine what is going on
  935. */
  936. static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
  937. {
  938. #ifdef CONFIG_PAGE_OWNER
  939. int mtype;
  940. if (!static_branch_unlikely(&page_owner_inited))
  941. return;
  942. drain_all_pages(NULL);
  943. seq_printf(m, "\n%-23s", "Number of mixed blocks ");
  944. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
  945. seq_printf(m, "%12s ", migratetype_names[mtype]);
  946. seq_putc(m, '\n');
  947. walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
  948. #endif /* CONFIG_PAGE_OWNER */
  949. }
  950. /*
  951. * This prints out statistics in relation to grouping pages by mobility.
  952. * It is expensive to collect so do not constantly read the file.
  953. */
  954. static int pagetypeinfo_show(struct seq_file *m, void *arg)
  955. {
  956. pg_data_t *pgdat = (pg_data_t *)arg;
  957. /* check memoryless node */
  958. if (!node_state(pgdat->node_id, N_MEMORY))
  959. return 0;
  960. seq_printf(m, "Page block order: %d\n", pageblock_order);
  961. seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
  962. seq_putc(m, '\n');
  963. pagetypeinfo_showfree(m, pgdat);
  964. pagetypeinfo_showblockcount(m, pgdat);
  965. pagetypeinfo_showmixedcount(m, pgdat);
  966. return 0;
  967. }
  968. static const struct seq_operations fragmentation_op = {
  969. .start = frag_start,
  970. .next = frag_next,
  971. .stop = frag_stop,
  972. .show = frag_show,
  973. };
  974. static int fragmentation_open(struct inode *inode, struct file *file)
  975. {
  976. return seq_open(file, &fragmentation_op);
  977. }
  978. static const struct file_operations fragmentation_file_operations = {
  979. .open = fragmentation_open,
  980. .read = seq_read,
  981. .llseek = seq_lseek,
  982. .release = seq_release,
  983. };
  984. static const struct seq_operations pagetypeinfo_op = {
  985. .start = frag_start,
  986. .next = frag_next,
  987. .stop = frag_stop,
  988. .show = pagetypeinfo_show,
  989. };
  990. static int pagetypeinfo_open(struct inode *inode, struct file *file)
  991. {
  992. return seq_open(file, &pagetypeinfo_op);
  993. }
  994. static const struct file_operations pagetypeinfo_file_ops = {
  995. .open = pagetypeinfo_open,
  996. .read = seq_read,
  997. .llseek = seq_lseek,
  998. .release = seq_release,
  999. };
  1000. static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
  1001. struct zone *zone)
  1002. {
  1003. int i;
  1004. seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
  1005. seq_printf(m,
  1006. "\n pages free %lu"
  1007. "\n min %lu"
  1008. "\n low %lu"
  1009. "\n high %lu"
  1010. "\n scanned %lu"
  1011. "\n spanned %lu"
  1012. "\n present %lu"
  1013. "\n managed %lu",
  1014. zone_page_state(zone, NR_FREE_PAGES),
  1015. min_wmark_pages(zone),
  1016. low_wmark_pages(zone),
  1017. high_wmark_pages(zone),
  1018. zone_page_state(zone, NR_PAGES_SCANNED),
  1019. zone->spanned_pages,
  1020. zone->present_pages,
  1021. zone->managed_pages);
  1022. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  1023. seq_printf(m, "\n %-12s %lu", vmstat_text[i],
  1024. zone_page_state(zone, i));
  1025. seq_printf(m,
  1026. "\n protection: (%ld",
  1027. zone->lowmem_reserve[0]);
  1028. for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
  1029. seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
  1030. seq_printf(m,
  1031. ")"
  1032. "\n pagesets");
  1033. for_each_online_cpu(i) {
  1034. struct per_cpu_pageset *pageset;
  1035. pageset = per_cpu_ptr(zone->pageset, i);
  1036. seq_printf(m,
  1037. "\n cpu: %i"
  1038. "\n count: %i"
  1039. "\n high: %i"
  1040. "\n batch: %i",
  1041. i,
  1042. pageset->pcp.count,
  1043. pageset->pcp.high,
  1044. pageset->pcp.batch);
  1045. #ifdef CONFIG_SMP
  1046. seq_printf(m, "\n vm stats threshold: %d",
  1047. pageset->stat_threshold);
  1048. #endif
  1049. }
  1050. seq_printf(m,
  1051. "\n all_unreclaimable: %u"
  1052. "\n start_pfn: %lu"
  1053. "\n inactive_ratio: %u",
  1054. !zone_reclaimable(zone),
  1055. zone->zone_start_pfn,
  1056. zone->inactive_ratio);
  1057. seq_putc(m, '\n');
  1058. }
  1059. /*
  1060. * Output information about zones in @pgdat.
  1061. */
  1062. static int zoneinfo_show(struct seq_file *m, void *arg)
  1063. {
  1064. pg_data_t *pgdat = (pg_data_t *)arg;
  1065. walk_zones_in_node(m, pgdat, zoneinfo_show_print);
  1066. return 0;
  1067. }
  1068. static const struct seq_operations zoneinfo_op = {
  1069. .start = frag_start, /* iterate over all zones. The same as in
  1070. * fragmentation. */
  1071. .next = frag_next,
  1072. .stop = frag_stop,
  1073. .show = zoneinfo_show,
  1074. };
  1075. static int zoneinfo_open(struct inode *inode, struct file *file)
  1076. {
  1077. return seq_open(file, &zoneinfo_op);
  1078. }
  1079. static const struct file_operations proc_zoneinfo_file_operations = {
  1080. .open = zoneinfo_open,
  1081. .read = seq_read,
  1082. .llseek = seq_lseek,
  1083. .release = seq_release,
  1084. };
  1085. enum writeback_stat_item {
  1086. NR_DIRTY_THRESHOLD,
  1087. NR_DIRTY_BG_THRESHOLD,
  1088. NR_VM_WRITEBACK_STAT_ITEMS,
  1089. };
  1090. static void *vmstat_start(struct seq_file *m, loff_t *pos)
  1091. {
  1092. unsigned long *v;
  1093. int i, stat_items_size;
  1094. if (*pos >= ARRAY_SIZE(vmstat_text))
  1095. return NULL;
  1096. stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
  1097. NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
  1098. #ifdef CONFIG_VM_EVENT_COUNTERS
  1099. stat_items_size += sizeof(struct vm_event_state);
  1100. #endif
  1101. v = kmalloc(stat_items_size, GFP_KERNEL);
  1102. m->private = v;
  1103. if (!v)
  1104. return ERR_PTR(-ENOMEM);
  1105. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  1106. v[i] = global_page_state(i);
  1107. v += NR_VM_ZONE_STAT_ITEMS;
  1108. global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
  1109. v + NR_DIRTY_THRESHOLD);
  1110. v += NR_VM_WRITEBACK_STAT_ITEMS;
  1111. #ifdef CONFIG_VM_EVENT_COUNTERS
  1112. all_vm_events(v);
  1113. v[PGPGIN] /= 2; /* sectors -> kbytes */
  1114. v[PGPGOUT] /= 2;
  1115. #endif
  1116. return (unsigned long *)m->private + *pos;
  1117. }
  1118. static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
  1119. {
  1120. (*pos)++;
  1121. if (*pos >= ARRAY_SIZE(vmstat_text))
  1122. return NULL;
  1123. return (unsigned long *)m->private + *pos;
  1124. }
  1125. static int vmstat_show(struct seq_file *m, void *arg)
  1126. {
  1127. unsigned long *l = arg;
  1128. unsigned long off = l - (unsigned long *)m->private;
  1129. seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
  1130. return 0;
  1131. }
  1132. static void vmstat_stop(struct seq_file *m, void *arg)
  1133. {
  1134. kfree(m->private);
  1135. m->private = NULL;
  1136. }
  1137. static const struct seq_operations vmstat_op = {
  1138. .start = vmstat_start,
  1139. .next = vmstat_next,
  1140. .stop = vmstat_stop,
  1141. .show = vmstat_show,
  1142. };
  1143. static int vmstat_open(struct inode *inode, struct file *file)
  1144. {
  1145. return seq_open(file, &vmstat_op);
  1146. }
  1147. static const struct file_operations proc_vmstat_file_operations = {
  1148. .open = vmstat_open,
  1149. .read = seq_read,
  1150. .llseek = seq_lseek,
  1151. .release = seq_release,
  1152. };
  1153. #endif /* CONFIG_PROC_FS */
  1154. #ifdef CONFIG_SMP
  1155. static struct workqueue_struct *vmstat_wq;
  1156. static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
  1157. int sysctl_stat_interval __read_mostly = HZ;
  1158. #ifdef CONFIG_PROC_FS
  1159. static void refresh_vm_stats(struct work_struct *work)
  1160. {
  1161. refresh_cpu_vm_stats(true);
  1162. }
  1163. int vmstat_refresh(struct ctl_table *table, int write,
  1164. void __user *buffer, size_t *lenp, loff_t *ppos)
  1165. {
  1166. long val;
  1167. int err;
  1168. int i;
  1169. /*
  1170. * The regular update, every sysctl_stat_interval, may come later
  1171. * than expected: leaving a significant amount in per_cpu buckets.
  1172. * This is particularly misleading when checking a quantity of HUGE
  1173. * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
  1174. * which can equally be echo'ed to or cat'ted from (by root),
  1175. * can be used to update the stats just before reading them.
  1176. *
  1177. * Oh, and since global_page_state() etc. are so careful to hide
  1178. * transiently negative values, report an error here if any of
  1179. * the stats is negative, so we know to go looking for imbalance.
  1180. */
  1181. err = schedule_on_each_cpu(refresh_vm_stats);
  1182. if (err)
  1183. return err;
  1184. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
  1185. val = atomic_long_read(&vm_stat[i]);
  1186. if (val < 0) {
  1187. switch (i) {
  1188. case NR_ALLOC_BATCH:
  1189. case NR_PAGES_SCANNED:
  1190. /*
  1191. * These are often seen to go negative in
  1192. * recent kernels, but not to go permanently
  1193. * negative. Whilst it would be nicer not to
  1194. * have exceptions, rooting them out would be
  1195. * another task, of rather low priority.
  1196. */
  1197. break;
  1198. default:
  1199. pr_warn("%s: %s %ld\n",
  1200. __func__, vmstat_text[i], val);
  1201. err = -EINVAL;
  1202. break;
  1203. }
  1204. }
  1205. }
  1206. if (err)
  1207. return err;
  1208. if (write)
  1209. *ppos += *lenp;
  1210. else
  1211. *lenp = 0;
  1212. return 0;
  1213. }
  1214. #endif /* CONFIG_PROC_FS */
  1215. static void vmstat_update(struct work_struct *w)
  1216. {
  1217. if (refresh_cpu_vm_stats(true)) {
  1218. /*
  1219. * Counters were updated so we expect more updates
  1220. * to occur in the future. Keep on running the
  1221. * update worker thread.
  1222. */
  1223. queue_delayed_work_on(smp_processor_id(), vmstat_wq,
  1224. this_cpu_ptr(&vmstat_work),
  1225. round_jiffies_relative(sysctl_stat_interval));
  1226. }
  1227. }
  1228. /*
  1229. * Switch off vmstat processing and then fold all the remaining differentials
  1230. * until the diffs stay at zero. The function is used by NOHZ and can only be
  1231. * invoked when tick processing is not active.
  1232. */
  1233. /*
  1234. * Check if the diffs for a certain cpu indicate that
  1235. * an update is needed.
  1236. */
  1237. static bool need_update(int cpu)
  1238. {
  1239. struct zone *zone;
  1240. for_each_populated_zone(zone) {
  1241. struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
  1242. BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
  1243. /*
  1244. * The fast way of checking if there are any vmstat diffs.
  1245. * This works because the diffs are byte sized items.
  1246. */
  1247. if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
  1248. return true;
  1249. }
  1250. return false;
  1251. }
  1252. /*
  1253. * Switch off vmstat processing and then fold all the remaining differentials
  1254. * until the diffs stay at zero. The function is used by NOHZ and can only be
  1255. * invoked when tick processing is not active.
  1256. */
  1257. void quiet_vmstat(void)
  1258. {
  1259. if (system_state != SYSTEM_RUNNING)
  1260. return;
  1261. if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
  1262. return;
  1263. if (!need_update(smp_processor_id()))
  1264. return;
  1265. /*
  1266. * Just refresh counters and do not care about the pending delayed
  1267. * vmstat_update. It doesn't fire that often to matter and canceling
  1268. * it would be too expensive from this path.
  1269. * vmstat_shepherd will take care about that for us.
  1270. */
  1271. refresh_cpu_vm_stats(false);
  1272. }
  1273. /*
  1274. * Shepherd worker thread that checks the
  1275. * differentials of processors that have their worker
  1276. * threads for vm statistics updates disabled because of
  1277. * inactivity.
  1278. */
  1279. static void vmstat_shepherd(struct work_struct *w);
  1280. static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
  1281. static void vmstat_shepherd(struct work_struct *w)
  1282. {
  1283. int cpu;
  1284. get_online_cpus();
  1285. /* Check processors whose vmstat worker threads have been disabled */
  1286. for_each_online_cpu(cpu) {
  1287. struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
  1288. if (!delayed_work_pending(dw) && need_update(cpu))
  1289. queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
  1290. }
  1291. put_online_cpus();
  1292. schedule_delayed_work(&shepherd,
  1293. round_jiffies_relative(sysctl_stat_interval));
  1294. }
  1295. static void __init start_shepherd_timer(void)
  1296. {
  1297. int cpu;
  1298. for_each_possible_cpu(cpu)
  1299. INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
  1300. vmstat_update);
  1301. vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
  1302. schedule_delayed_work(&shepherd,
  1303. round_jiffies_relative(sysctl_stat_interval));
  1304. }
  1305. static void vmstat_cpu_dead(int node)
  1306. {
  1307. int cpu;
  1308. get_online_cpus();
  1309. for_each_online_cpu(cpu)
  1310. if (cpu_to_node(cpu) == node)
  1311. goto end;
  1312. node_clear_state(node, N_CPU);
  1313. end:
  1314. put_online_cpus();
  1315. }
  1316. /*
  1317. * Use the cpu notifier to insure that the thresholds are recalculated
  1318. * when necessary.
  1319. */
  1320. static int vmstat_cpuup_callback(struct notifier_block *nfb,
  1321. unsigned long action,
  1322. void *hcpu)
  1323. {
  1324. long cpu = (long)hcpu;
  1325. switch (action) {
  1326. case CPU_ONLINE:
  1327. case CPU_ONLINE_FROZEN:
  1328. refresh_zone_stat_thresholds();
  1329. node_set_state(cpu_to_node(cpu), N_CPU);
  1330. break;
  1331. case CPU_DOWN_PREPARE:
  1332. case CPU_DOWN_PREPARE_FROZEN:
  1333. cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
  1334. break;
  1335. case CPU_DOWN_FAILED:
  1336. case CPU_DOWN_FAILED_FROZEN:
  1337. break;
  1338. case CPU_DEAD:
  1339. case CPU_DEAD_FROZEN:
  1340. refresh_zone_stat_thresholds();
  1341. vmstat_cpu_dead(cpu_to_node(cpu));
  1342. break;
  1343. default:
  1344. break;
  1345. }
  1346. return NOTIFY_OK;
  1347. }
  1348. static struct notifier_block vmstat_notifier =
  1349. { &vmstat_cpuup_callback, NULL, 0 };
  1350. #endif
  1351. static int __init setup_vmstat(void)
  1352. {
  1353. #ifdef CONFIG_SMP
  1354. cpu_notifier_register_begin();
  1355. __register_cpu_notifier(&vmstat_notifier);
  1356. start_shepherd_timer();
  1357. cpu_notifier_register_done();
  1358. #endif
  1359. #ifdef CONFIG_PROC_FS
  1360. proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
  1361. proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
  1362. proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
  1363. proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
  1364. #endif
  1365. return 0;
  1366. }
  1367. module_init(setup_vmstat)
  1368. #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
  1369. /*
  1370. * Return an index indicating how much of the available free memory is
  1371. * unusable for an allocation of the requested size.
  1372. */
  1373. static int unusable_free_index(unsigned int order,
  1374. struct contig_page_info *info)
  1375. {
  1376. /* No free memory is interpreted as all free memory is unusable */
  1377. if (info->free_pages == 0)
  1378. return 1000;
  1379. /*
  1380. * Index should be a value between 0 and 1. Return a value to 3
  1381. * decimal places.
  1382. *
  1383. * 0 => no fragmentation
  1384. * 1 => high fragmentation
  1385. */
  1386. return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
  1387. }
  1388. static void unusable_show_print(struct seq_file *m,
  1389. pg_data_t *pgdat, struct zone *zone)
  1390. {
  1391. unsigned int order;
  1392. int index;
  1393. struct contig_page_info info;
  1394. seq_printf(m, "Node %d, zone %8s ",
  1395. pgdat->node_id,
  1396. zone->name);
  1397. for (order = 0; order < MAX_ORDER; ++order) {
  1398. fill_contig_page_info(zone, order, &info);
  1399. index = unusable_free_index(order, &info);
  1400. seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
  1401. }
  1402. seq_putc(m, '\n');
  1403. }
  1404. /*
  1405. * Display unusable free space index
  1406. *
  1407. * The unusable free space index measures how much of the available free
  1408. * memory cannot be used to satisfy an allocation of a given size and is a
  1409. * value between 0 and 1. The higher the value, the more of free memory is
  1410. * unusable and by implication, the worse the external fragmentation is. This
  1411. * can be expressed as a percentage by multiplying by 100.
  1412. */
  1413. static int unusable_show(struct seq_file *m, void *arg)
  1414. {
  1415. pg_data_t *pgdat = (pg_data_t *)arg;
  1416. /* check memoryless node */
  1417. if (!node_state(pgdat->node_id, N_MEMORY))
  1418. return 0;
  1419. walk_zones_in_node(m, pgdat, unusable_show_print);
  1420. return 0;
  1421. }
  1422. static const struct seq_operations unusable_op = {
  1423. .start = frag_start,
  1424. .next = frag_next,
  1425. .stop = frag_stop,
  1426. .show = unusable_show,
  1427. };
  1428. static int unusable_open(struct inode *inode, struct file *file)
  1429. {
  1430. return seq_open(file, &unusable_op);
  1431. }
  1432. static const struct file_operations unusable_file_ops = {
  1433. .open = unusable_open,
  1434. .read = seq_read,
  1435. .llseek = seq_lseek,
  1436. .release = seq_release,
  1437. };
  1438. static void extfrag_show_print(struct seq_file *m,
  1439. pg_data_t *pgdat, struct zone *zone)
  1440. {
  1441. unsigned int order;
  1442. int index;
  1443. /* Alloc on stack as interrupts are disabled for zone walk */
  1444. struct contig_page_info info;
  1445. seq_printf(m, "Node %d, zone %8s ",
  1446. pgdat->node_id,
  1447. zone->name);
  1448. for (order = 0; order < MAX_ORDER; ++order) {
  1449. fill_contig_page_info(zone, order, &info);
  1450. index = __fragmentation_index(order, &info);
  1451. seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
  1452. }
  1453. seq_putc(m, '\n');
  1454. }
  1455. /*
  1456. * Display fragmentation index for orders that allocations would fail for
  1457. */
  1458. static int extfrag_show(struct seq_file *m, void *arg)
  1459. {
  1460. pg_data_t *pgdat = (pg_data_t *)arg;
  1461. walk_zones_in_node(m, pgdat, extfrag_show_print);
  1462. return 0;
  1463. }
  1464. static const struct seq_operations extfrag_op = {
  1465. .start = frag_start,
  1466. .next = frag_next,
  1467. .stop = frag_stop,
  1468. .show = extfrag_show,
  1469. };
  1470. static int extfrag_open(struct inode *inode, struct file *file)
  1471. {
  1472. return seq_open(file, &extfrag_op);
  1473. }
  1474. static const struct file_operations extfrag_file_ops = {
  1475. .open = extfrag_open,
  1476. .read = seq_read,
  1477. .llseek = seq_lseek,
  1478. .release = seq_release,
  1479. };
  1480. static int __init extfrag_debug_init(void)
  1481. {
  1482. struct dentry *extfrag_debug_root;
  1483. extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
  1484. if (!extfrag_debug_root)
  1485. return -ENOMEM;
  1486. if (!debugfs_create_file("unusable_index", 0444,
  1487. extfrag_debug_root, NULL, &unusable_file_ops))
  1488. goto fail;
  1489. if (!debugfs_create_file("extfrag_index", 0444,
  1490. extfrag_debug_root, NULL, &extfrag_file_ops))
  1491. goto fail;
  1492. return 0;
  1493. fail:
  1494. debugfs_remove_recursive(extfrag_debug_root);
  1495. return -ENOMEM;
  1496. }
  1497. module_init(extfrag_debug_init);
  1498. #endif