vmalloc.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/notifier.h>
  24. #include <linux/rbtree.h>
  25. #include <linux/radix-tree.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/pfn.h>
  28. #include <linux/kmemleak.h>
  29. #include <linux/atomic.h>
  30. #include <linux/compiler.h>
  31. #include <linux/llist.h>
  32. #include <linux/bitops.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/tlbflush.h>
  35. #include <asm/shmparam.h>
  36. #include "internal.h"
  37. struct vfree_deferred {
  38. struct llist_head list;
  39. struct work_struct wq;
  40. };
  41. static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  42. static void __vunmap(const void *, int);
  43. static void free_work(struct work_struct *w)
  44. {
  45. struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  46. struct llist_node *llnode = llist_del_all(&p->list);
  47. while (llnode) {
  48. void *p = llnode;
  49. llnode = llist_next(llnode);
  50. __vunmap(p, 1);
  51. }
  52. }
  53. /*** Page table manipulation functions ***/
  54. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  55. {
  56. pte_t *pte;
  57. pte = pte_offset_kernel(pmd, addr);
  58. do {
  59. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  60. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  61. } while (pte++, addr += PAGE_SIZE, addr != end);
  62. }
  63. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  64. {
  65. pmd_t *pmd;
  66. unsigned long next;
  67. pmd = pmd_offset(pud, addr);
  68. do {
  69. next = pmd_addr_end(addr, end);
  70. if (pmd_clear_huge(pmd))
  71. continue;
  72. if (pmd_none_or_clear_bad(pmd))
  73. continue;
  74. vunmap_pte_range(pmd, addr, next);
  75. } while (pmd++, addr = next, addr != end);
  76. }
  77. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  78. {
  79. pud_t *pud;
  80. unsigned long next;
  81. pud = pud_offset(pgd, addr);
  82. do {
  83. next = pud_addr_end(addr, end);
  84. if (pud_clear_huge(pud))
  85. continue;
  86. if (pud_none_or_clear_bad(pud))
  87. continue;
  88. vunmap_pmd_range(pud, addr, next);
  89. } while (pud++, addr = next, addr != end);
  90. }
  91. static void vunmap_page_range(unsigned long addr, unsigned long end)
  92. {
  93. pgd_t *pgd;
  94. unsigned long next;
  95. BUG_ON(addr >= end);
  96. pgd = pgd_offset_k(addr);
  97. do {
  98. next = pgd_addr_end(addr, end);
  99. if (pgd_none_or_clear_bad(pgd))
  100. continue;
  101. vunmap_pud_range(pgd, addr, next);
  102. } while (pgd++, addr = next, addr != end);
  103. }
  104. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  105. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  106. {
  107. pte_t *pte;
  108. /*
  109. * nr is a running index into the array which helps higher level
  110. * callers keep track of where we're up to.
  111. */
  112. pte = pte_alloc_kernel(pmd, addr);
  113. if (!pte)
  114. return -ENOMEM;
  115. do {
  116. struct page *page = pages[*nr];
  117. if (WARN_ON(!pte_none(*pte)))
  118. return -EBUSY;
  119. if (WARN_ON(!page))
  120. return -ENOMEM;
  121. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  122. (*nr)++;
  123. } while (pte++, addr += PAGE_SIZE, addr != end);
  124. return 0;
  125. }
  126. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  127. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  128. {
  129. pmd_t *pmd;
  130. unsigned long next;
  131. pmd = pmd_alloc(&init_mm, pud, addr);
  132. if (!pmd)
  133. return -ENOMEM;
  134. do {
  135. next = pmd_addr_end(addr, end);
  136. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  137. return -ENOMEM;
  138. } while (pmd++, addr = next, addr != end);
  139. return 0;
  140. }
  141. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  142. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  143. {
  144. pud_t *pud;
  145. unsigned long next;
  146. pud = pud_alloc(&init_mm, pgd, addr);
  147. if (!pud)
  148. return -ENOMEM;
  149. do {
  150. next = pud_addr_end(addr, end);
  151. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  152. return -ENOMEM;
  153. } while (pud++, addr = next, addr != end);
  154. return 0;
  155. }
  156. /*
  157. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  158. * will have pfns corresponding to the "pages" array.
  159. *
  160. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  161. */
  162. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  163. pgprot_t prot, struct page **pages)
  164. {
  165. pgd_t *pgd;
  166. unsigned long next;
  167. unsigned long addr = start;
  168. int err = 0;
  169. int nr = 0;
  170. BUG_ON(addr >= end);
  171. pgd = pgd_offset_k(addr);
  172. do {
  173. next = pgd_addr_end(addr, end);
  174. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  175. if (err)
  176. return err;
  177. } while (pgd++, addr = next, addr != end);
  178. return nr;
  179. }
  180. static int vmap_page_range(unsigned long start, unsigned long end,
  181. pgprot_t prot, struct page **pages)
  182. {
  183. int ret;
  184. ret = vmap_page_range_noflush(start, end, prot, pages);
  185. flush_cache_vmap(start, end);
  186. return ret;
  187. }
  188. int is_vmalloc_or_module_addr(const void *x)
  189. {
  190. /*
  191. * ARM, x86-64 and sparc64 put modules in a special place,
  192. * and fall back on vmalloc() if that fails. Others
  193. * just put it in the vmalloc space.
  194. */
  195. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  196. unsigned long addr = (unsigned long)x;
  197. if (addr >= MODULES_VADDR && addr < MODULES_END)
  198. return 1;
  199. #endif
  200. return is_vmalloc_addr(x);
  201. }
  202. /*
  203. * Walk a vmap address to the struct page it maps.
  204. */
  205. struct page *vmalloc_to_page(const void *vmalloc_addr)
  206. {
  207. unsigned long addr = (unsigned long) vmalloc_addr;
  208. struct page *page = NULL;
  209. pgd_t *pgd = pgd_offset_k(addr);
  210. /*
  211. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  212. * architectures that do not vmalloc module space
  213. */
  214. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  215. if (!pgd_none(*pgd)) {
  216. pud_t *pud = pud_offset(pgd, addr);
  217. if (!pud_none(*pud)) {
  218. pmd_t *pmd = pmd_offset(pud, addr);
  219. if (!pmd_none(*pmd)) {
  220. pte_t *ptep, pte;
  221. ptep = pte_offset_map(pmd, addr);
  222. pte = *ptep;
  223. if (pte_present(pte))
  224. page = pte_page(pte);
  225. pte_unmap(ptep);
  226. }
  227. }
  228. }
  229. return page;
  230. }
  231. EXPORT_SYMBOL(vmalloc_to_page);
  232. /*
  233. * Map a vmalloc()-space virtual address to the physical page frame number.
  234. */
  235. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  236. {
  237. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  238. }
  239. EXPORT_SYMBOL(vmalloc_to_pfn);
  240. /*** Global kva allocator ***/
  241. #define VM_VM_AREA 0x04
  242. static DEFINE_SPINLOCK(vmap_area_lock);
  243. /* Export for kexec only */
  244. LIST_HEAD(vmap_area_list);
  245. static LLIST_HEAD(vmap_purge_list);
  246. static struct rb_root vmap_area_root = RB_ROOT;
  247. /* The vmap cache globals are protected by vmap_area_lock */
  248. static struct rb_node *free_vmap_cache;
  249. static unsigned long cached_hole_size;
  250. static unsigned long cached_vstart;
  251. static unsigned long cached_align;
  252. static unsigned long vmap_area_pcpu_hole;
  253. static struct vmap_area *__find_vmap_area(unsigned long addr)
  254. {
  255. struct rb_node *n = vmap_area_root.rb_node;
  256. while (n) {
  257. struct vmap_area *va;
  258. va = rb_entry(n, struct vmap_area, rb_node);
  259. if (addr < va->va_start)
  260. n = n->rb_left;
  261. else if (addr >= va->va_end)
  262. n = n->rb_right;
  263. else
  264. return va;
  265. }
  266. return NULL;
  267. }
  268. static void __insert_vmap_area(struct vmap_area *va)
  269. {
  270. struct rb_node **p = &vmap_area_root.rb_node;
  271. struct rb_node *parent = NULL;
  272. struct rb_node *tmp;
  273. while (*p) {
  274. struct vmap_area *tmp_va;
  275. parent = *p;
  276. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  277. if (va->va_start < tmp_va->va_end)
  278. p = &(*p)->rb_left;
  279. else if (va->va_end > tmp_va->va_start)
  280. p = &(*p)->rb_right;
  281. else
  282. BUG();
  283. }
  284. rb_link_node(&va->rb_node, parent, p);
  285. rb_insert_color(&va->rb_node, &vmap_area_root);
  286. /* address-sort this list */
  287. tmp = rb_prev(&va->rb_node);
  288. if (tmp) {
  289. struct vmap_area *prev;
  290. prev = rb_entry(tmp, struct vmap_area, rb_node);
  291. list_add_rcu(&va->list, &prev->list);
  292. } else
  293. list_add_rcu(&va->list, &vmap_area_list);
  294. }
  295. static void purge_vmap_area_lazy(void);
  296. static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
  297. /*
  298. * Allocate a region of KVA of the specified size and alignment, within the
  299. * vstart and vend.
  300. */
  301. static struct vmap_area *alloc_vmap_area(unsigned long size,
  302. unsigned long align,
  303. unsigned long vstart, unsigned long vend,
  304. int node, gfp_t gfp_mask)
  305. {
  306. struct vmap_area *va;
  307. struct rb_node *n;
  308. unsigned long addr;
  309. int purged = 0;
  310. struct vmap_area *first;
  311. BUG_ON(!size);
  312. BUG_ON(offset_in_page(size));
  313. BUG_ON(!is_power_of_2(align));
  314. might_sleep_if(gfpflags_allow_blocking(gfp_mask));
  315. va = kmalloc_node(sizeof(struct vmap_area),
  316. gfp_mask & GFP_RECLAIM_MASK, node);
  317. if (unlikely(!va))
  318. return ERR_PTR(-ENOMEM);
  319. /*
  320. * Only scan the relevant parts containing pointers to other objects
  321. * to avoid false negatives.
  322. */
  323. kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
  324. retry:
  325. spin_lock(&vmap_area_lock);
  326. /*
  327. * Invalidate cache if we have more permissive parameters.
  328. * cached_hole_size notes the largest hole noticed _below_
  329. * the vmap_area cached in free_vmap_cache: if size fits
  330. * into that hole, we want to scan from vstart to reuse
  331. * the hole instead of allocating above free_vmap_cache.
  332. * Note that __free_vmap_area may update free_vmap_cache
  333. * without updating cached_hole_size or cached_align.
  334. */
  335. if (!free_vmap_cache ||
  336. size < cached_hole_size ||
  337. vstart < cached_vstart ||
  338. align < cached_align) {
  339. nocache:
  340. cached_hole_size = 0;
  341. free_vmap_cache = NULL;
  342. }
  343. /* record if we encounter less permissive parameters */
  344. cached_vstart = vstart;
  345. cached_align = align;
  346. /* find starting point for our search */
  347. if (free_vmap_cache) {
  348. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  349. addr = ALIGN(first->va_end, align);
  350. if (addr < vstart)
  351. goto nocache;
  352. if (addr + size < addr)
  353. goto overflow;
  354. } else {
  355. addr = ALIGN(vstart, align);
  356. if (addr + size < addr)
  357. goto overflow;
  358. n = vmap_area_root.rb_node;
  359. first = NULL;
  360. while (n) {
  361. struct vmap_area *tmp;
  362. tmp = rb_entry(n, struct vmap_area, rb_node);
  363. if (tmp->va_end >= addr) {
  364. first = tmp;
  365. if (tmp->va_start <= addr)
  366. break;
  367. n = n->rb_left;
  368. } else
  369. n = n->rb_right;
  370. }
  371. if (!first)
  372. goto found;
  373. }
  374. /* from the starting point, walk areas until a suitable hole is found */
  375. while (addr + size > first->va_start && addr + size <= vend) {
  376. if (addr + cached_hole_size < first->va_start)
  377. cached_hole_size = first->va_start - addr;
  378. addr = ALIGN(first->va_end, align);
  379. if (addr + size < addr)
  380. goto overflow;
  381. if (list_is_last(&first->list, &vmap_area_list))
  382. goto found;
  383. first = list_next_entry(first, list);
  384. }
  385. found:
  386. if (addr + size > vend)
  387. goto overflow;
  388. va->va_start = addr;
  389. va->va_end = addr + size;
  390. va->flags = 0;
  391. __insert_vmap_area(va);
  392. free_vmap_cache = &va->rb_node;
  393. spin_unlock(&vmap_area_lock);
  394. BUG_ON(!IS_ALIGNED(va->va_start, align));
  395. BUG_ON(va->va_start < vstart);
  396. BUG_ON(va->va_end > vend);
  397. return va;
  398. overflow:
  399. spin_unlock(&vmap_area_lock);
  400. if (!purged) {
  401. purge_vmap_area_lazy();
  402. purged = 1;
  403. goto retry;
  404. }
  405. if (gfpflags_allow_blocking(gfp_mask)) {
  406. unsigned long freed = 0;
  407. blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
  408. if (freed > 0) {
  409. purged = 0;
  410. goto retry;
  411. }
  412. }
  413. if (printk_ratelimit())
  414. pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
  415. size);
  416. kfree(va);
  417. return ERR_PTR(-EBUSY);
  418. }
  419. int register_vmap_purge_notifier(struct notifier_block *nb)
  420. {
  421. return blocking_notifier_chain_register(&vmap_notify_list, nb);
  422. }
  423. EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
  424. int unregister_vmap_purge_notifier(struct notifier_block *nb)
  425. {
  426. return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
  427. }
  428. EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
  429. static void __free_vmap_area(struct vmap_area *va)
  430. {
  431. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  432. if (free_vmap_cache) {
  433. if (va->va_end < cached_vstart) {
  434. free_vmap_cache = NULL;
  435. } else {
  436. struct vmap_area *cache;
  437. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  438. if (va->va_start <= cache->va_start) {
  439. free_vmap_cache = rb_prev(&va->rb_node);
  440. /*
  441. * We don't try to update cached_hole_size or
  442. * cached_align, but it won't go very wrong.
  443. */
  444. }
  445. }
  446. }
  447. rb_erase(&va->rb_node, &vmap_area_root);
  448. RB_CLEAR_NODE(&va->rb_node);
  449. list_del_rcu(&va->list);
  450. /*
  451. * Track the highest possible candidate for pcpu area
  452. * allocation. Areas outside of vmalloc area can be returned
  453. * here too, consider only end addresses which fall inside
  454. * vmalloc area proper.
  455. */
  456. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  457. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  458. kfree_rcu(va, rcu_head);
  459. }
  460. /*
  461. * Free a region of KVA allocated by alloc_vmap_area
  462. */
  463. static void free_vmap_area(struct vmap_area *va)
  464. {
  465. spin_lock(&vmap_area_lock);
  466. __free_vmap_area(va);
  467. spin_unlock(&vmap_area_lock);
  468. }
  469. /*
  470. * Clear the pagetable entries of a given vmap_area
  471. */
  472. static void unmap_vmap_area(struct vmap_area *va)
  473. {
  474. vunmap_page_range(va->va_start, va->va_end);
  475. }
  476. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  477. {
  478. /*
  479. * Unmap page tables and force a TLB flush immediately if pagealloc
  480. * debugging is enabled. This catches use after free bugs similarly to
  481. * those in linear kernel virtual address space after a page has been
  482. * freed.
  483. *
  484. * All the lazy freeing logic is still retained, in order to minimise
  485. * intrusiveness of this debugging feature.
  486. *
  487. * This is going to be *slow* (linear kernel virtual address debugging
  488. * doesn't do a broadcast TLB flush so it is a lot faster).
  489. */
  490. if (debug_pagealloc_enabled()) {
  491. vunmap_page_range(start, end);
  492. flush_tlb_kernel_range(start, end);
  493. }
  494. }
  495. /*
  496. * lazy_max_pages is the maximum amount of virtual address space we gather up
  497. * before attempting to purge with a TLB flush.
  498. *
  499. * There is a tradeoff here: a larger number will cover more kernel page tables
  500. * and take slightly longer to purge, but it will linearly reduce the number of
  501. * global TLB flushes that must be performed. It would seem natural to scale
  502. * this number up linearly with the number of CPUs (because vmapping activity
  503. * could also scale linearly with the number of CPUs), however it is likely
  504. * that in practice, workloads might be constrained in other ways that mean
  505. * vmap activity will not scale linearly with CPUs. Also, I want to be
  506. * conservative and not introduce a big latency on huge systems, so go with
  507. * a less aggressive log scale. It will still be an improvement over the old
  508. * code, and it will be simple to change the scale factor if we find that it
  509. * becomes a problem on bigger systems.
  510. */
  511. static unsigned long lazy_max_pages(void)
  512. {
  513. unsigned int log;
  514. log = fls(num_online_cpus());
  515. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  516. }
  517. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  518. /* for per-CPU blocks */
  519. static void purge_fragmented_blocks_allcpus(void);
  520. /*
  521. * called before a call to iounmap() if the caller wants vm_area_struct's
  522. * immediately freed.
  523. */
  524. void set_iounmap_nonlazy(void)
  525. {
  526. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  527. }
  528. /*
  529. * Purges all lazily-freed vmap areas.
  530. *
  531. * If sync is 0 then don't purge if there is already a purge in progress.
  532. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  533. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  534. * their own TLB flushing).
  535. * Returns with *start = min(*start, lowest purged address)
  536. * *end = max(*end, highest purged address)
  537. */
  538. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  539. int sync, int force_flush)
  540. {
  541. static DEFINE_SPINLOCK(purge_lock);
  542. struct llist_node *valist;
  543. struct vmap_area *va;
  544. struct vmap_area *n_va;
  545. int nr = 0;
  546. /*
  547. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  548. * should not expect such behaviour. This just simplifies locking for
  549. * the case that isn't actually used at the moment anyway.
  550. */
  551. if (!sync && !force_flush) {
  552. if (!spin_trylock(&purge_lock))
  553. return;
  554. } else
  555. spin_lock(&purge_lock);
  556. if (sync)
  557. purge_fragmented_blocks_allcpus();
  558. valist = llist_del_all(&vmap_purge_list);
  559. llist_for_each_entry(va, valist, purge_list) {
  560. if (va->va_start < *start)
  561. *start = va->va_start;
  562. if (va->va_end > *end)
  563. *end = va->va_end;
  564. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  565. }
  566. if (nr)
  567. atomic_sub(nr, &vmap_lazy_nr);
  568. if (nr || force_flush)
  569. flush_tlb_kernel_range(*start, *end);
  570. if (nr) {
  571. spin_lock(&vmap_area_lock);
  572. llist_for_each_entry_safe(va, n_va, valist, purge_list)
  573. __free_vmap_area(va);
  574. spin_unlock(&vmap_area_lock);
  575. }
  576. spin_unlock(&purge_lock);
  577. }
  578. /*
  579. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  580. * is already purging.
  581. */
  582. static void try_purge_vmap_area_lazy(void)
  583. {
  584. unsigned long start = ULONG_MAX, end = 0;
  585. __purge_vmap_area_lazy(&start, &end, 0, 0);
  586. }
  587. /*
  588. * Kick off a purge of the outstanding lazy areas.
  589. */
  590. static void purge_vmap_area_lazy(void)
  591. {
  592. unsigned long start = ULONG_MAX, end = 0;
  593. __purge_vmap_area_lazy(&start, &end, 1, 0);
  594. }
  595. /*
  596. * Free a vmap area, caller ensuring that the area has been unmapped
  597. * and flush_cache_vunmap had been called for the correct range
  598. * previously.
  599. */
  600. static void free_vmap_area_noflush(struct vmap_area *va)
  601. {
  602. int nr_lazy;
  603. nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
  604. &vmap_lazy_nr);
  605. /* After this point, we may free va at any time */
  606. llist_add(&va->purge_list, &vmap_purge_list);
  607. if (unlikely(nr_lazy > lazy_max_pages()))
  608. try_purge_vmap_area_lazy();
  609. }
  610. /*
  611. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  612. * called for the correct range previously.
  613. */
  614. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  615. {
  616. unmap_vmap_area(va);
  617. free_vmap_area_noflush(va);
  618. }
  619. /*
  620. * Free and unmap a vmap area
  621. */
  622. static void free_unmap_vmap_area(struct vmap_area *va)
  623. {
  624. flush_cache_vunmap(va->va_start, va->va_end);
  625. free_unmap_vmap_area_noflush(va);
  626. }
  627. static struct vmap_area *find_vmap_area(unsigned long addr)
  628. {
  629. struct vmap_area *va;
  630. spin_lock(&vmap_area_lock);
  631. va = __find_vmap_area(addr);
  632. spin_unlock(&vmap_area_lock);
  633. return va;
  634. }
  635. static void free_unmap_vmap_area_addr(unsigned long addr)
  636. {
  637. struct vmap_area *va;
  638. va = find_vmap_area(addr);
  639. BUG_ON(!va);
  640. free_unmap_vmap_area(va);
  641. }
  642. /*** Per cpu kva allocator ***/
  643. /*
  644. * vmap space is limited especially on 32 bit architectures. Ensure there is
  645. * room for at least 16 percpu vmap blocks per CPU.
  646. */
  647. /*
  648. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  649. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  650. * instead (we just need a rough idea)
  651. */
  652. #if BITS_PER_LONG == 32
  653. #define VMALLOC_SPACE (128UL*1024*1024)
  654. #else
  655. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  656. #endif
  657. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  658. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  659. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  660. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  661. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  662. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  663. #define VMAP_BBMAP_BITS \
  664. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  665. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  666. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  667. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  668. static bool vmap_initialized __read_mostly = false;
  669. struct vmap_block_queue {
  670. spinlock_t lock;
  671. struct list_head free;
  672. };
  673. struct vmap_block {
  674. spinlock_t lock;
  675. struct vmap_area *va;
  676. unsigned long free, dirty;
  677. unsigned long dirty_min, dirty_max; /*< dirty range */
  678. struct list_head free_list;
  679. struct rcu_head rcu_head;
  680. struct list_head purge;
  681. };
  682. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  683. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  684. /*
  685. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  686. * in the free path. Could get rid of this if we change the API to return a
  687. * "cookie" from alloc, to be passed to free. But no big deal yet.
  688. */
  689. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  690. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  691. /*
  692. * We should probably have a fallback mechanism to allocate virtual memory
  693. * out of partially filled vmap blocks. However vmap block sizing should be
  694. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  695. * big problem.
  696. */
  697. static unsigned long addr_to_vb_idx(unsigned long addr)
  698. {
  699. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  700. addr /= VMAP_BLOCK_SIZE;
  701. return addr;
  702. }
  703. static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
  704. {
  705. unsigned long addr;
  706. addr = va_start + (pages_off << PAGE_SHIFT);
  707. BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
  708. return (void *)addr;
  709. }
  710. /**
  711. * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
  712. * block. Of course pages number can't exceed VMAP_BBMAP_BITS
  713. * @order: how many 2^order pages should be occupied in newly allocated block
  714. * @gfp_mask: flags for the page level allocator
  715. *
  716. * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
  717. */
  718. static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
  719. {
  720. struct vmap_block_queue *vbq;
  721. struct vmap_block *vb;
  722. struct vmap_area *va;
  723. unsigned long vb_idx;
  724. int node, err;
  725. void *vaddr;
  726. node = numa_node_id();
  727. vb = kmalloc_node(sizeof(struct vmap_block),
  728. gfp_mask & GFP_RECLAIM_MASK, node);
  729. if (unlikely(!vb))
  730. return ERR_PTR(-ENOMEM);
  731. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  732. VMALLOC_START, VMALLOC_END,
  733. node, gfp_mask);
  734. if (IS_ERR(va)) {
  735. kfree(vb);
  736. return ERR_CAST(va);
  737. }
  738. err = radix_tree_preload(gfp_mask);
  739. if (unlikely(err)) {
  740. kfree(vb);
  741. free_vmap_area(va);
  742. return ERR_PTR(err);
  743. }
  744. vaddr = vmap_block_vaddr(va->va_start, 0);
  745. spin_lock_init(&vb->lock);
  746. vb->va = va;
  747. /* At least something should be left free */
  748. BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
  749. vb->free = VMAP_BBMAP_BITS - (1UL << order);
  750. vb->dirty = 0;
  751. vb->dirty_min = VMAP_BBMAP_BITS;
  752. vb->dirty_max = 0;
  753. INIT_LIST_HEAD(&vb->free_list);
  754. vb_idx = addr_to_vb_idx(va->va_start);
  755. spin_lock(&vmap_block_tree_lock);
  756. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  757. spin_unlock(&vmap_block_tree_lock);
  758. BUG_ON(err);
  759. radix_tree_preload_end();
  760. vbq = &get_cpu_var(vmap_block_queue);
  761. spin_lock(&vbq->lock);
  762. list_add_tail_rcu(&vb->free_list, &vbq->free);
  763. spin_unlock(&vbq->lock);
  764. put_cpu_var(vmap_block_queue);
  765. return vaddr;
  766. }
  767. static void free_vmap_block(struct vmap_block *vb)
  768. {
  769. struct vmap_block *tmp;
  770. unsigned long vb_idx;
  771. vb_idx = addr_to_vb_idx(vb->va->va_start);
  772. spin_lock(&vmap_block_tree_lock);
  773. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  774. spin_unlock(&vmap_block_tree_lock);
  775. BUG_ON(tmp != vb);
  776. free_vmap_area_noflush(vb->va);
  777. kfree_rcu(vb, rcu_head);
  778. }
  779. static void purge_fragmented_blocks(int cpu)
  780. {
  781. LIST_HEAD(purge);
  782. struct vmap_block *vb;
  783. struct vmap_block *n_vb;
  784. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  785. rcu_read_lock();
  786. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  787. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  788. continue;
  789. spin_lock(&vb->lock);
  790. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  791. vb->free = 0; /* prevent further allocs after releasing lock */
  792. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  793. vb->dirty_min = 0;
  794. vb->dirty_max = VMAP_BBMAP_BITS;
  795. spin_lock(&vbq->lock);
  796. list_del_rcu(&vb->free_list);
  797. spin_unlock(&vbq->lock);
  798. spin_unlock(&vb->lock);
  799. list_add_tail(&vb->purge, &purge);
  800. } else
  801. spin_unlock(&vb->lock);
  802. }
  803. rcu_read_unlock();
  804. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  805. list_del(&vb->purge);
  806. free_vmap_block(vb);
  807. }
  808. }
  809. static void purge_fragmented_blocks_allcpus(void)
  810. {
  811. int cpu;
  812. for_each_possible_cpu(cpu)
  813. purge_fragmented_blocks(cpu);
  814. }
  815. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  816. {
  817. struct vmap_block_queue *vbq;
  818. struct vmap_block *vb;
  819. void *vaddr = NULL;
  820. unsigned int order;
  821. BUG_ON(offset_in_page(size));
  822. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  823. if (WARN_ON(size == 0)) {
  824. /*
  825. * Allocating 0 bytes isn't what caller wants since
  826. * get_order(0) returns funny result. Just warn and terminate
  827. * early.
  828. */
  829. return NULL;
  830. }
  831. order = get_order(size);
  832. rcu_read_lock();
  833. vbq = &get_cpu_var(vmap_block_queue);
  834. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  835. unsigned long pages_off;
  836. spin_lock(&vb->lock);
  837. if (vb->free < (1UL << order)) {
  838. spin_unlock(&vb->lock);
  839. continue;
  840. }
  841. pages_off = VMAP_BBMAP_BITS - vb->free;
  842. vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
  843. vb->free -= 1UL << order;
  844. if (vb->free == 0) {
  845. spin_lock(&vbq->lock);
  846. list_del_rcu(&vb->free_list);
  847. spin_unlock(&vbq->lock);
  848. }
  849. spin_unlock(&vb->lock);
  850. break;
  851. }
  852. put_cpu_var(vmap_block_queue);
  853. rcu_read_unlock();
  854. /* Allocate new block if nothing was found */
  855. if (!vaddr)
  856. vaddr = new_vmap_block(order, gfp_mask);
  857. return vaddr;
  858. }
  859. static void vb_free(const void *addr, unsigned long size)
  860. {
  861. unsigned long offset;
  862. unsigned long vb_idx;
  863. unsigned int order;
  864. struct vmap_block *vb;
  865. BUG_ON(offset_in_page(size));
  866. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  867. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  868. order = get_order(size);
  869. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  870. offset >>= PAGE_SHIFT;
  871. vb_idx = addr_to_vb_idx((unsigned long)addr);
  872. rcu_read_lock();
  873. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  874. rcu_read_unlock();
  875. BUG_ON(!vb);
  876. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  877. spin_lock(&vb->lock);
  878. /* Expand dirty range */
  879. vb->dirty_min = min(vb->dirty_min, offset);
  880. vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
  881. vb->dirty += 1UL << order;
  882. if (vb->dirty == VMAP_BBMAP_BITS) {
  883. BUG_ON(vb->free);
  884. spin_unlock(&vb->lock);
  885. free_vmap_block(vb);
  886. } else
  887. spin_unlock(&vb->lock);
  888. }
  889. /**
  890. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  891. *
  892. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  893. * to amortize TLB flushing overheads. What this means is that any page you
  894. * have now, may, in a former life, have been mapped into kernel virtual
  895. * address by the vmap layer and so there might be some CPUs with TLB entries
  896. * still referencing that page (additional to the regular 1:1 kernel mapping).
  897. *
  898. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  899. * be sure that none of the pages we have control over will have any aliases
  900. * from the vmap layer.
  901. */
  902. void vm_unmap_aliases(void)
  903. {
  904. unsigned long start = ULONG_MAX, end = 0;
  905. int cpu;
  906. int flush = 0;
  907. if (unlikely(!vmap_initialized))
  908. return;
  909. for_each_possible_cpu(cpu) {
  910. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  911. struct vmap_block *vb;
  912. rcu_read_lock();
  913. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  914. spin_lock(&vb->lock);
  915. if (vb->dirty) {
  916. unsigned long va_start = vb->va->va_start;
  917. unsigned long s, e;
  918. s = va_start + (vb->dirty_min << PAGE_SHIFT);
  919. e = va_start + (vb->dirty_max << PAGE_SHIFT);
  920. start = min(s, start);
  921. end = max(e, end);
  922. flush = 1;
  923. }
  924. spin_unlock(&vb->lock);
  925. }
  926. rcu_read_unlock();
  927. }
  928. __purge_vmap_area_lazy(&start, &end, 1, flush);
  929. }
  930. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  931. /**
  932. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  933. * @mem: the pointer returned by vm_map_ram
  934. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  935. */
  936. void vm_unmap_ram(const void *mem, unsigned int count)
  937. {
  938. unsigned long size = (unsigned long)count << PAGE_SHIFT;
  939. unsigned long addr = (unsigned long)mem;
  940. BUG_ON(!addr);
  941. BUG_ON(addr < VMALLOC_START);
  942. BUG_ON(addr > VMALLOC_END);
  943. BUG_ON(!PAGE_ALIGNED(addr));
  944. debug_check_no_locks_freed(mem, size);
  945. vmap_debug_free_range(addr, addr+size);
  946. if (likely(count <= VMAP_MAX_ALLOC))
  947. vb_free(mem, size);
  948. else
  949. free_unmap_vmap_area_addr(addr);
  950. }
  951. EXPORT_SYMBOL(vm_unmap_ram);
  952. /**
  953. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  954. * @pages: an array of pointers to the pages to be mapped
  955. * @count: number of pages
  956. * @node: prefer to allocate data structures on this node
  957. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  958. *
  959. * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
  960. * faster than vmap so it's good. But if you mix long-life and short-life
  961. * objects with vm_map_ram(), it could consume lots of address space through
  962. * fragmentation (especially on a 32bit machine). You could see failures in
  963. * the end. Please use this function for short-lived objects.
  964. *
  965. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  966. */
  967. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  968. {
  969. unsigned long size = (unsigned long)count << PAGE_SHIFT;
  970. unsigned long addr;
  971. void *mem;
  972. if (likely(count <= VMAP_MAX_ALLOC)) {
  973. mem = vb_alloc(size, GFP_KERNEL);
  974. if (IS_ERR(mem))
  975. return NULL;
  976. addr = (unsigned long)mem;
  977. } else {
  978. struct vmap_area *va;
  979. va = alloc_vmap_area(size, PAGE_SIZE,
  980. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  981. if (IS_ERR(va))
  982. return NULL;
  983. addr = va->va_start;
  984. mem = (void *)addr;
  985. }
  986. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  987. vm_unmap_ram(mem, count);
  988. return NULL;
  989. }
  990. return mem;
  991. }
  992. EXPORT_SYMBOL(vm_map_ram);
  993. static struct vm_struct *vmlist __initdata;
  994. /**
  995. * vm_area_add_early - add vmap area early during boot
  996. * @vm: vm_struct to add
  997. *
  998. * This function is used to add fixed kernel vm area to vmlist before
  999. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  1000. * should contain proper values and the other fields should be zero.
  1001. *
  1002. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1003. */
  1004. void __init vm_area_add_early(struct vm_struct *vm)
  1005. {
  1006. struct vm_struct *tmp, **p;
  1007. BUG_ON(vmap_initialized);
  1008. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1009. if (tmp->addr >= vm->addr) {
  1010. BUG_ON(tmp->addr < vm->addr + vm->size);
  1011. break;
  1012. } else
  1013. BUG_ON(tmp->addr + tmp->size > vm->addr);
  1014. }
  1015. vm->next = *p;
  1016. *p = vm;
  1017. }
  1018. /**
  1019. * vm_area_register_early - register vmap area early during boot
  1020. * @vm: vm_struct to register
  1021. * @align: requested alignment
  1022. *
  1023. * This function is used to register kernel vm area before
  1024. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  1025. * proper values on entry and other fields should be zero. On return,
  1026. * vm->addr contains the allocated address.
  1027. *
  1028. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1029. */
  1030. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  1031. {
  1032. static size_t vm_init_off __initdata;
  1033. unsigned long addr;
  1034. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1035. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1036. vm->addr = (void *)addr;
  1037. vm_area_add_early(vm);
  1038. }
  1039. void __init vmalloc_init(void)
  1040. {
  1041. struct vmap_area *va;
  1042. struct vm_struct *tmp;
  1043. int i;
  1044. for_each_possible_cpu(i) {
  1045. struct vmap_block_queue *vbq;
  1046. struct vfree_deferred *p;
  1047. vbq = &per_cpu(vmap_block_queue, i);
  1048. spin_lock_init(&vbq->lock);
  1049. INIT_LIST_HEAD(&vbq->free);
  1050. p = &per_cpu(vfree_deferred, i);
  1051. init_llist_head(&p->list);
  1052. INIT_WORK(&p->wq, free_work);
  1053. }
  1054. /* Import existing vmlist entries. */
  1055. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1056. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1057. va->flags = VM_VM_AREA;
  1058. va->va_start = (unsigned long)tmp->addr;
  1059. va->va_end = va->va_start + tmp->size;
  1060. va->vm = tmp;
  1061. __insert_vmap_area(va);
  1062. }
  1063. vmap_area_pcpu_hole = VMALLOC_END;
  1064. vmap_initialized = true;
  1065. }
  1066. /**
  1067. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1068. * @addr: start of the VM area to map
  1069. * @size: size of the VM area to map
  1070. * @prot: page protection flags to use
  1071. * @pages: pages to map
  1072. *
  1073. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1074. * specify should have been allocated using get_vm_area() and its
  1075. * friends.
  1076. *
  1077. * NOTE:
  1078. * This function does NOT do any cache flushing. The caller is
  1079. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1080. * before calling this function.
  1081. *
  1082. * RETURNS:
  1083. * The number of pages mapped on success, -errno on failure.
  1084. */
  1085. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1086. pgprot_t prot, struct page **pages)
  1087. {
  1088. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1089. }
  1090. /**
  1091. * unmap_kernel_range_noflush - unmap kernel VM area
  1092. * @addr: start of the VM area to unmap
  1093. * @size: size of the VM area to unmap
  1094. *
  1095. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1096. * specify should have been allocated using get_vm_area() and its
  1097. * friends.
  1098. *
  1099. * NOTE:
  1100. * This function does NOT do any cache flushing. The caller is
  1101. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1102. * before calling this function and flush_tlb_kernel_range() after.
  1103. */
  1104. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1105. {
  1106. vunmap_page_range(addr, addr + size);
  1107. }
  1108. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1109. /**
  1110. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1111. * @addr: start of the VM area to unmap
  1112. * @size: size of the VM area to unmap
  1113. *
  1114. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1115. * the unmapping and tlb after.
  1116. */
  1117. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1118. {
  1119. unsigned long end = addr + size;
  1120. flush_cache_vunmap(addr, end);
  1121. vunmap_page_range(addr, end);
  1122. flush_tlb_kernel_range(addr, end);
  1123. }
  1124. EXPORT_SYMBOL_GPL(unmap_kernel_range);
  1125. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
  1126. {
  1127. unsigned long addr = (unsigned long)area->addr;
  1128. unsigned long end = addr + get_vm_area_size(area);
  1129. int err;
  1130. err = vmap_page_range(addr, end, prot, pages);
  1131. return err > 0 ? 0 : err;
  1132. }
  1133. EXPORT_SYMBOL_GPL(map_vm_area);
  1134. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1135. unsigned long flags, const void *caller)
  1136. {
  1137. spin_lock(&vmap_area_lock);
  1138. vm->flags = flags;
  1139. vm->addr = (void *)va->va_start;
  1140. vm->size = va->va_end - va->va_start;
  1141. vm->caller = caller;
  1142. va->vm = vm;
  1143. va->flags |= VM_VM_AREA;
  1144. spin_unlock(&vmap_area_lock);
  1145. }
  1146. static void clear_vm_uninitialized_flag(struct vm_struct *vm)
  1147. {
  1148. /*
  1149. * Before removing VM_UNINITIALIZED,
  1150. * we should make sure that vm has proper values.
  1151. * Pair with smp_rmb() in show_numa_info().
  1152. */
  1153. smp_wmb();
  1154. vm->flags &= ~VM_UNINITIALIZED;
  1155. }
  1156. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1157. unsigned long align, unsigned long flags, unsigned long start,
  1158. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1159. {
  1160. struct vmap_area *va;
  1161. struct vm_struct *area;
  1162. BUG_ON(in_interrupt());
  1163. if (flags & VM_IOREMAP)
  1164. align = 1ul << clamp_t(int, fls_long(size),
  1165. PAGE_SHIFT, IOREMAP_MAX_ORDER);
  1166. size = PAGE_ALIGN(size);
  1167. if (unlikely(!size))
  1168. return NULL;
  1169. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1170. if (unlikely(!area))
  1171. return NULL;
  1172. if (!(flags & VM_NO_GUARD))
  1173. size += PAGE_SIZE;
  1174. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1175. if (IS_ERR(va)) {
  1176. kfree(area);
  1177. return NULL;
  1178. }
  1179. setup_vmalloc_vm(area, va, flags, caller);
  1180. return area;
  1181. }
  1182. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1183. unsigned long start, unsigned long end)
  1184. {
  1185. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1186. GFP_KERNEL, __builtin_return_address(0));
  1187. }
  1188. EXPORT_SYMBOL_GPL(__get_vm_area);
  1189. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1190. unsigned long start, unsigned long end,
  1191. const void *caller)
  1192. {
  1193. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1194. GFP_KERNEL, caller);
  1195. }
  1196. /**
  1197. * get_vm_area - reserve a contiguous kernel virtual area
  1198. * @size: size of the area
  1199. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1200. *
  1201. * Search an area of @size in the kernel virtual mapping area,
  1202. * and reserved it for out purposes. Returns the area descriptor
  1203. * on success or %NULL on failure.
  1204. */
  1205. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1206. {
  1207. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1208. NUMA_NO_NODE, GFP_KERNEL,
  1209. __builtin_return_address(0));
  1210. }
  1211. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1212. const void *caller)
  1213. {
  1214. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1215. NUMA_NO_NODE, GFP_KERNEL, caller);
  1216. }
  1217. /**
  1218. * find_vm_area - find a continuous kernel virtual area
  1219. * @addr: base address
  1220. *
  1221. * Search for the kernel VM area starting at @addr, and return it.
  1222. * It is up to the caller to do all required locking to keep the returned
  1223. * pointer valid.
  1224. */
  1225. struct vm_struct *find_vm_area(const void *addr)
  1226. {
  1227. struct vmap_area *va;
  1228. va = find_vmap_area((unsigned long)addr);
  1229. if (va && va->flags & VM_VM_AREA)
  1230. return va->vm;
  1231. return NULL;
  1232. }
  1233. /**
  1234. * remove_vm_area - find and remove a continuous kernel virtual area
  1235. * @addr: base address
  1236. *
  1237. * Search for the kernel VM area starting at @addr, and remove it.
  1238. * This function returns the found VM area, but using it is NOT safe
  1239. * on SMP machines, except for its size or flags.
  1240. */
  1241. struct vm_struct *remove_vm_area(const void *addr)
  1242. {
  1243. struct vmap_area *va;
  1244. va = find_vmap_area((unsigned long)addr);
  1245. if (va && va->flags & VM_VM_AREA) {
  1246. struct vm_struct *vm = va->vm;
  1247. spin_lock(&vmap_area_lock);
  1248. va->vm = NULL;
  1249. va->flags &= ~VM_VM_AREA;
  1250. spin_unlock(&vmap_area_lock);
  1251. vmap_debug_free_range(va->va_start, va->va_end);
  1252. kasan_free_shadow(vm);
  1253. free_unmap_vmap_area(va);
  1254. return vm;
  1255. }
  1256. return NULL;
  1257. }
  1258. static void __vunmap(const void *addr, int deallocate_pages)
  1259. {
  1260. struct vm_struct *area;
  1261. if (!addr)
  1262. return;
  1263. if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
  1264. addr))
  1265. return;
  1266. area = remove_vm_area(addr);
  1267. if (unlikely(!area)) {
  1268. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1269. addr);
  1270. return;
  1271. }
  1272. debug_check_no_locks_freed(addr, get_vm_area_size(area));
  1273. debug_check_no_obj_freed(addr, get_vm_area_size(area));
  1274. if (deallocate_pages) {
  1275. int i;
  1276. for (i = 0; i < area->nr_pages; i++) {
  1277. struct page *page = area->pages[i];
  1278. BUG_ON(!page);
  1279. __free_pages(page, 0);
  1280. }
  1281. kvfree(area->pages);
  1282. }
  1283. kfree(area);
  1284. return;
  1285. }
  1286. /**
  1287. * vfree - release memory allocated by vmalloc()
  1288. * @addr: memory base address
  1289. *
  1290. * Free the virtually continuous memory area starting at @addr, as
  1291. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1292. * NULL, no operation is performed.
  1293. *
  1294. * Must not be called in NMI context (strictly speaking, only if we don't
  1295. * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
  1296. * conventions for vfree() arch-depenedent would be a really bad idea)
  1297. *
  1298. * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
  1299. */
  1300. void vfree(const void *addr)
  1301. {
  1302. BUG_ON(in_nmi());
  1303. kmemleak_free(addr);
  1304. if (!addr)
  1305. return;
  1306. if (unlikely(in_interrupt())) {
  1307. struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
  1308. if (llist_add((struct llist_node *)addr, &p->list))
  1309. schedule_work(&p->wq);
  1310. } else
  1311. __vunmap(addr, 1);
  1312. }
  1313. EXPORT_SYMBOL(vfree);
  1314. /**
  1315. * vunmap - release virtual mapping obtained by vmap()
  1316. * @addr: memory base address
  1317. *
  1318. * Free the virtually contiguous memory area starting at @addr,
  1319. * which was created from the page array passed to vmap().
  1320. *
  1321. * Must not be called in interrupt context.
  1322. */
  1323. void vunmap(const void *addr)
  1324. {
  1325. BUG_ON(in_interrupt());
  1326. might_sleep();
  1327. if (addr)
  1328. __vunmap(addr, 0);
  1329. }
  1330. EXPORT_SYMBOL(vunmap);
  1331. /**
  1332. * vmap - map an array of pages into virtually contiguous space
  1333. * @pages: array of page pointers
  1334. * @count: number of pages to map
  1335. * @flags: vm_area->flags
  1336. * @prot: page protection for the mapping
  1337. *
  1338. * Maps @count pages from @pages into contiguous kernel virtual
  1339. * space.
  1340. */
  1341. void *vmap(struct page **pages, unsigned int count,
  1342. unsigned long flags, pgprot_t prot)
  1343. {
  1344. struct vm_struct *area;
  1345. unsigned long size; /* In bytes */
  1346. might_sleep();
  1347. if (count > totalram_pages)
  1348. return NULL;
  1349. size = (unsigned long)count << PAGE_SHIFT;
  1350. area = get_vm_area_caller(size, flags, __builtin_return_address(0));
  1351. if (!area)
  1352. return NULL;
  1353. if (map_vm_area(area, prot, pages)) {
  1354. vunmap(area->addr);
  1355. return NULL;
  1356. }
  1357. return area->addr;
  1358. }
  1359. EXPORT_SYMBOL(vmap);
  1360. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1361. gfp_t gfp_mask, pgprot_t prot,
  1362. int node, const void *caller);
  1363. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1364. pgprot_t prot, int node)
  1365. {
  1366. const int order = 0;
  1367. struct page **pages;
  1368. unsigned int nr_pages, array_size, i;
  1369. const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1370. const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
  1371. nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
  1372. array_size = (nr_pages * sizeof(struct page *));
  1373. area->nr_pages = nr_pages;
  1374. /* Please note that the recursion is strictly bounded. */
  1375. if (array_size > PAGE_SIZE) {
  1376. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1377. PAGE_KERNEL, node, area->caller);
  1378. } else {
  1379. pages = kmalloc_node(array_size, nested_gfp, node);
  1380. }
  1381. area->pages = pages;
  1382. if (!area->pages) {
  1383. remove_vm_area(area->addr);
  1384. kfree(area);
  1385. return NULL;
  1386. }
  1387. for (i = 0; i < area->nr_pages; i++) {
  1388. struct page *page;
  1389. if (node == NUMA_NO_NODE)
  1390. page = alloc_pages(alloc_mask, order);
  1391. else
  1392. page = alloc_pages_node(node, alloc_mask, order);
  1393. if (unlikely(!page)) {
  1394. /* Successfully allocated i pages, free them in __vunmap() */
  1395. area->nr_pages = i;
  1396. goto fail;
  1397. }
  1398. area->pages[i] = page;
  1399. if (gfpflags_allow_blocking(gfp_mask))
  1400. cond_resched();
  1401. }
  1402. if (map_vm_area(area, prot, pages))
  1403. goto fail;
  1404. return area->addr;
  1405. fail:
  1406. warn_alloc_failed(gfp_mask, order,
  1407. "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
  1408. (area->nr_pages*PAGE_SIZE), area->size);
  1409. vfree(area->addr);
  1410. return NULL;
  1411. }
  1412. /**
  1413. * __vmalloc_node_range - allocate virtually contiguous memory
  1414. * @size: allocation size
  1415. * @align: desired alignment
  1416. * @start: vm area range start
  1417. * @end: vm area range end
  1418. * @gfp_mask: flags for the page level allocator
  1419. * @prot: protection mask for the allocated pages
  1420. * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
  1421. * @node: node to use for allocation or NUMA_NO_NODE
  1422. * @caller: caller's return address
  1423. *
  1424. * Allocate enough pages to cover @size from the page level
  1425. * allocator with @gfp_mask flags. Map them into contiguous
  1426. * kernel virtual space, using a pagetable protection of @prot.
  1427. */
  1428. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1429. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1430. pgprot_t prot, unsigned long vm_flags, int node,
  1431. const void *caller)
  1432. {
  1433. struct vm_struct *area;
  1434. void *addr;
  1435. unsigned long real_size = size;
  1436. size = PAGE_ALIGN(size);
  1437. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1438. goto fail;
  1439. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
  1440. vm_flags, start, end, node, gfp_mask, caller);
  1441. if (!area)
  1442. goto fail;
  1443. addr = __vmalloc_area_node(area, gfp_mask, prot, node);
  1444. if (!addr)
  1445. return NULL;
  1446. /*
  1447. * In this function, newly allocated vm_struct has VM_UNINITIALIZED
  1448. * flag. It means that vm_struct is not fully initialized.
  1449. * Now, it is fully initialized, so remove this flag here.
  1450. */
  1451. clear_vm_uninitialized_flag(area);
  1452. /*
  1453. * A ref_count = 2 is needed because vm_struct allocated in
  1454. * __get_vm_area_node() contains a reference to the virtual address of
  1455. * the vmalloc'ed block.
  1456. */
  1457. kmemleak_alloc(addr, real_size, 2, gfp_mask);
  1458. return addr;
  1459. fail:
  1460. warn_alloc_failed(gfp_mask, 0,
  1461. "vmalloc: allocation failure: %lu bytes\n",
  1462. real_size);
  1463. return NULL;
  1464. }
  1465. /**
  1466. * __vmalloc_node - allocate virtually contiguous memory
  1467. * @size: allocation size
  1468. * @align: desired alignment
  1469. * @gfp_mask: flags for the page level allocator
  1470. * @prot: protection mask for the allocated pages
  1471. * @node: node to use for allocation or NUMA_NO_NODE
  1472. * @caller: caller's return address
  1473. *
  1474. * Allocate enough pages to cover @size from the page level
  1475. * allocator with @gfp_mask flags. Map them into contiguous
  1476. * kernel virtual space, using a pagetable protection of @prot.
  1477. */
  1478. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1479. gfp_t gfp_mask, pgprot_t prot,
  1480. int node, const void *caller)
  1481. {
  1482. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1483. gfp_mask, prot, 0, node, caller);
  1484. }
  1485. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1486. {
  1487. return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
  1488. __builtin_return_address(0));
  1489. }
  1490. EXPORT_SYMBOL(__vmalloc);
  1491. static inline void *__vmalloc_node_flags(unsigned long size,
  1492. int node, gfp_t flags)
  1493. {
  1494. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1495. node, __builtin_return_address(0));
  1496. }
  1497. /**
  1498. * vmalloc - allocate virtually contiguous memory
  1499. * @size: allocation size
  1500. * Allocate enough pages to cover @size from the page level
  1501. * allocator and map them into contiguous kernel virtual space.
  1502. *
  1503. * For tight control over page level allocator and protection flags
  1504. * use __vmalloc() instead.
  1505. */
  1506. void *vmalloc(unsigned long size)
  1507. {
  1508. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1509. GFP_KERNEL | __GFP_HIGHMEM);
  1510. }
  1511. EXPORT_SYMBOL(vmalloc);
  1512. /**
  1513. * vzalloc - allocate virtually contiguous memory with zero fill
  1514. * @size: allocation size
  1515. * Allocate enough pages to cover @size from the page level
  1516. * allocator and map them into contiguous kernel virtual space.
  1517. * The memory allocated is set to zero.
  1518. *
  1519. * For tight control over page level allocator and protection flags
  1520. * use __vmalloc() instead.
  1521. */
  1522. void *vzalloc(unsigned long size)
  1523. {
  1524. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1525. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1526. }
  1527. EXPORT_SYMBOL(vzalloc);
  1528. /**
  1529. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1530. * @size: allocation size
  1531. *
  1532. * The resulting memory area is zeroed so it can be mapped to userspace
  1533. * without leaking data.
  1534. */
  1535. void *vmalloc_user(unsigned long size)
  1536. {
  1537. struct vm_struct *area;
  1538. void *ret;
  1539. ret = __vmalloc_node(size, SHMLBA,
  1540. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1541. PAGE_KERNEL, NUMA_NO_NODE,
  1542. __builtin_return_address(0));
  1543. if (ret) {
  1544. area = find_vm_area(ret);
  1545. area->flags |= VM_USERMAP;
  1546. }
  1547. return ret;
  1548. }
  1549. EXPORT_SYMBOL(vmalloc_user);
  1550. /**
  1551. * vmalloc_node - allocate memory on a specific node
  1552. * @size: allocation size
  1553. * @node: numa node
  1554. *
  1555. * Allocate enough pages to cover @size from the page level
  1556. * allocator and map them into contiguous kernel virtual space.
  1557. *
  1558. * For tight control over page level allocator and protection flags
  1559. * use __vmalloc() instead.
  1560. */
  1561. void *vmalloc_node(unsigned long size, int node)
  1562. {
  1563. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1564. node, __builtin_return_address(0));
  1565. }
  1566. EXPORT_SYMBOL(vmalloc_node);
  1567. /**
  1568. * vzalloc_node - allocate memory on a specific node with zero fill
  1569. * @size: allocation size
  1570. * @node: numa node
  1571. *
  1572. * Allocate enough pages to cover @size from the page level
  1573. * allocator and map them into contiguous kernel virtual space.
  1574. * The memory allocated is set to zero.
  1575. *
  1576. * For tight control over page level allocator and protection flags
  1577. * use __vmalloc_node() instead.
  1578. */
  1579. void *vzalloc_node(unsigned long size, int node)
  1580. {
  1581. return __vmalloc_node_flags(size, node,
  1582. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1583. }
  1584. EXPORT_SYMBOL(vzalloc_node);
  1585. #ifndef PAGE_KERNEL_EXEC
  1586. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1587. #endif
  1588. /**
  1589. * vmalloc_exec - allocate virtually contiguous, executable memory
  1590. * @size: allocation size
  1591. *
  1592. * Kernel-internal function to allocate enough pages to cover @size
  1593. * the page level allocator and map them into contiguous and
  1594. * executable kernel virtual space.
  1595. *
  1596. * For tight control over page level allocator and protection flags
  1597. * use __vmalloc() instead.
  1598. */
  1599. void *vmalloc_exec(unsigned long size)
  1600. {
  1601. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1602. NUMA_NO_NODE, __builtin_return_address(0));
  1603. }
  1604. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1605. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1606. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1607. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1608. #else
  1609. #define GFP_VMALLOC32 GFP_KERNEL
  1610. #endif
  1611. /**
  1612. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1613. * @size: allocation size
  1614. *
  1615. * Allocate enough 32bit PA addressable pages to cover @size from the
  1616. * page level allocator and map them into contiguous kernel virtual space.
  1617. */
  1618. void *vmalloc_32(unsigned long size)
  1619. {
  1620. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1621. NUMA_NO_NODE, __builtin_return_address(0));
  1622. }
  1623. EXPORT_SYMBOL(vmalloc_32);
  1624. /**
  1625. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1626. * @size: allocation size
  1627. *
  1628. * The resulting memory area is 32bit addressable and zeroed so it can be
  1629. * mapped to userspace without leaking data.
  1630. */
  1631. void *vmalloc_32_user(unsigned long size)
  1632. {
  1633. struct vm_struct *area;
  1634. void *ret;
  1635. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1636. NUMA_NO_NODE, __builtin_return_address(0));
  1637. if (ret) {
  1638. area = find_vm_area(ret);
  1639. area->flags |= VM_USERMAP;
  1640. }
  1641. return ret;
  1642. }
  1643. EXPORT_SYMBOL(vmalloc_32_user);
  1644. /*
  1645. * small helper routine , copy contents to buf from addr.
  1646. * If the page is not present, fill zero.
  1647. */
  1648. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1649. {
  1650. struct page *p;
  1651. int copied = 0;
  1652. while (count) {
  1653. unsigned long offset, length;
  1654. offset = offset_in_page(addr);
  1655. length = PAGE_SIZE - offset;
  1656. if (length > count)
  1657. length = count;
  1658. p = vmalloc_to_page(addr);
  1659. /*
  1660. * To do safe access to this _mapped_ area, we need
  1661. * lock. But adding lock here means that we need to add
  1662. * overhead of vmalloc()/vfree() calles for this _debug_
  1663. * interface, rarely used. Instead of that, we'll use
  1664. * kmap() and get small overhead in this access function.
  1665. */
  1666. if (p) {
  1667. /*
  1668. * we can expect USER0 is not used (see vread/vwrite's
  1669. * function description)
  1670. */
  1671. void *map = kmap_atomic(p);
  1672. memcpy(buf, map + offset, length);
  1673. kunmap_atomic(map);
  1674. } else
  1675. memset(buf, 0, length);
  1676. addr += length;
  1677. buf += length;
  1678. copied += length;
  1679. count -= length;
  1680. }
  1681. return copied;
  1682. }
  1683. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1684. {
  1685. struct page *p;
  1686. int copied = 0;
  1687. while (count) {
  1688. unsigned long offset, length;
  1689. offset = offset_in_page(addr);
  1690. length = PAGE_SIZE - offset;
  1691. if (length > count)
  1692. length = count;
  1693. p = vmalloc_to_page(addr);
  1694. /*
  1695. * To do safe access to this _mapped_ area, we need
  1696. * lock. But adding lock here means that we need to add
  1697. * overhead of vmalloc()/vfree() calles for this _debug_
  1698. * interface, rarely used. Instead of that, we'll use
  1699. * kmap() and get small overhead in this access function.
  1700. */
  1701. if (p) {
  1702. /*
  1703. * we can expect USER0 is not used (see vread/vwrite's
  1704. * function description)
  1705. */
  1706. void *map = kmap_atomic(p);
  1707. memcpy(map + offset, buf, length);
  1708. kunmap_atomic(map);
  1709. }
  1710. addr += length;
  1711. buf += length;
  1712. copied += length;
  1713. count -= length;
  1714. }
  1715. return copied;
  1716. }
  1717. /**
  1718. * vread() - read vmalloc area in a safe way.
  1719. * @buf: buffer for reading data
  1720. * @addr: vm address.
  1721. * @count: number of bytes to be read.
  1722. *
  1723. * Returns # of bytes which addr and buf should be increased.
  1724. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1725. * includes any intersect with alive vmalloc area.
  1726. *
  1727. * This function checks that addr is a valid vmalloc'ed area, and
  1728. * copy data from that area to a given buffer. If the given memory range
  1729. * of [addr...addr+count) includes some valid address, data is copied to
  1730. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1731. * IOREMAP area is treated as memory hole and no copy is done.
  1732. *
  1733. * If [addr...addr+count) doesn't includes any intersects with alive
  1734. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1735. *
  1736. * Note: In usual ops, vread() is never necessary because the caller
  1737. * should know vmalloc() area is valid and can use memcpy().
  1738. * This is for routines which have to access vmalloc area without
  1739. * any informaion, as /dev/kmem.
  1740. *
  1741. */
  1742. long vread(char *buf, char *addr, unsigned long count)
  1743. {
  1744. struct vmap_area *va;
  1745. struct vm_struct *vm;
  1746. char *vaddr, *buf_start = buf;
  1747. unsigned long buflen = count;
  1748. unsigned long n;
  1749. /* Don't allow overflow */
  1750. if ((unsigned long) addr + count < count)
  1751. count = -(unsigned long) addr;
  1752. spin_lock(&vmap_area_lock);
  1753. list_for_each_entry(va, &vmap_area_list, list) {
  1754. if (!count)
  1755. break;
  1756. if (!(va->flags & VM_VM_AREA))
  1757. continue;
  1758. vm = va->vm;
  1759. vaddr = (char *) vm->addr;
  1760. if (addr >= vaddr + get_vm_area_size(vm))
  1761. continue;
  1762. while (addr < vaddr) {
  1763. if (count == 0)
  1764. goto finished;
  1765. *buf = '\0';
  1766. buf++;
  1767. addr++;
  1768. count--;
  1769. }
  1770. n = vaddr + get_vm_area_size(vm) - addr;
  1771. if (n > count)
  1772. n = count;
  1773. if (!(vm->flags & VM_IOREMAP))
  1774. aligned_vread(buf, addr, n);
  1775. else /* IOREMAP area is treated as memory hole */
  1776. memset(buf, 0, n);
  1777. buf += n;
  1778. addr += n;
  1779. count -= n;
  1780. }
  1781. finished:
  1782. spin_unlock(&vmap_area_lock);
  1783. if (buf == buf_start)
  1784. return 0;
  1785. /* zero-fill memory holes */
  1786. if (buf != buf_start + buflen)
  1787. memset(buf, 0, buflen - (buf - buf_start));
  1788. return buflen;
  1789. }
  1790. /**
  1791. * vwrite() - write vmalloc area in a safe way.
  1792. * @buf: buffer for source data
  1793. * @addr: vm address.
  1794. * @count: number of bytes to be read.
  1795. *
  1796. * Returns # of bytes which addr and buf should be incresed.
  1797. * (same number to @count).
  1798. * If [addr...addr+count) doesn't includes any intersect with valid
  1799. * vmalloc area, returns 0.
  1800. *
  1801. * This function checks that addr is a valid vmalloc'ed area, and
  1802. * copy data from a buffer to the given addr. If specified range of
  1803. * [addr...addr+count) includes some valid address, data is copied from
  1804. * proper area of @buf. If there are memory holes, no copy to hole.
  1805. * IOREMAP area is treated as memory hole and no copy is done.
  1806. *
  1807. * If [addr...addr+count) doesn't includes any intersects with alive
  1808. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1809. *
  1810. * Note: In usual ops, vwrite() is never necessary because the caller
  1811. * should know vmalloc() area is valid and can use memcpy().
  1812. * This is for routines which have to access vmalloc area without
  1813. * any informaion, as /dev/kmem.
  1814. */
  1815. long vwrite(char *buf, char *addr, unsigned long count)
  1816. {
  1817. struct vmap_area *va;
  1818. struct vm_struct *vm;
  1819. char *vaddr;
  1820. unsigned long n, buflen;
  1821. int copied = 0;
  1822. /* Don't allow overflow */
  1823. if ((unsigned long) addr + count < count)
  1824. count = -(unsigned long) addr;
  1825. buflen = count;
  1826. spin_lock(&vmap_area_lock);
  1827. list_for_each_entry(va, &vmap_area_list, list) {
  1828. if (!count)
  1829. break;
  1830. if (!(va->flags & VM_VM_AREA))
  1831. continue;
  1832. vm = va->vm;
  1833. vaddr = (char *) vm->addr;
  1834. if (addr >= vaddr + get_vm_area_size(vm))
  1835. continue;
  1836. while (addr < vaddr) {
  1837. if (count == 0)
  1838. goto finished;
  1839. buf++;
  1840. addr++;
  1841. count--;
  1842. }
  1843. n = vaddr + get_vm_area_size(vm) - addr;
  1844. if (n > count)
  1845. n = count;
  1846. if (!(vm->flags & VM_IOREMAP)) {
  1847. aligned_vwrite(buf, addr, n);
  1848. copied++;
  1849. }
  1850. buf += n;
  1851. addr += n;
  1852. count -= n;
  1853. }
  1854. finished:
  1855. spin_unlock(&vmap_area_lock);
  1856. if (!copied)
  1857. return 0;
  1858. return buflen;
  1859. }
  1860. /**
  1861. * remap_vmalloc_range_partial - map vmalloc pages to userspace
  1862. * @vma: vma to cover
  1863. * @uaddr: target user address to start at
  1864. * @kaddr: virtual address of vmalloc kernel memory
  1865. * @size: size of map area
  1866. *
  1867. * Returns: 0 for success, -Exxx on failure
  1868. *
  1869. * This function checks that @kaddr is a valid vmalloc'ed area,
  1870. * and that it is big enough to cover the range starting at
  1871. * @uaddr in @vma. Will return failure if that criteria isn't
  1872. * met.
  1873. *
  1874. * Similar to remap_pfn_range() (see mm/memory.c)
  1875. */
  1876. int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
  1877. void *kaddr, unsigned long size)
  1878. {
  1879. struct vm_struct *area;
  1880. size = PAGE_ALIGN(size);
  1881. if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
  1882. return -EINVAL;
  1883. area = find_vm_area(kaddr);
  1884. if (!area)
  1885. return -EINVAL;
  1886. if (!(area->flags & VM_USERMAP))
  1887. return -EINVAL;
  1888. if (kaddr + size > area->addr + area->size)
  1889. return -EINVAL;
  1890. do {
  1891. struct page *page = vmalloc_to_page(kaddr);
  1892. int ret;
  1893. ret = vm_insert_page(vma, uaddr, page);
  1894. if (ret)
  1895. return ret;
  1896. uaddr += PAGE_SIZE;
  1897. kaddr += PAGE_SIZE;
  1898. size -= PAGE_SIZE;
  1899. } while (size > 0);
  1900. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1901. return 0;
  1902. }
  1903. EXPORT_SYMBOL(remap_vmalloc_range_partial);
  1904. /**
  1905. * remap_vmalloc_range - map vmalloc pages to userspace
  1906. * @vma: vma to cover (map full range of vma)
  1907. * @addr: vmalloc memory
  1908. * @pgoff: number of pages into addr before first page to map
  1909. *
  1910. * Returns: 0 for success, -Exxx on failure
  1911. *
  1912. * This function checks that addr is a valid vmalloc'ed area, and
  1913. * that it is big enough to cover the vma. Will return failure if
  1914. * that criteria isn't met.
  1915. *
  1916. * Similar to remap_pfn_range() (see mm/memory.c)
  1917. */
  1918. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1919. unsigned long pgoff)
  1920. {
  1921. return remap_vmalloc_range_partial(vma, vma->vm_start,
  1922. addr + (pgoff << PAGE_SHIFT),
  1923. vma->vm_end - vma->vm_start);
  1924. }
  1925. EXPORT_SYMBOL(remap_vmalloc_range);
  1926. /*
  1927. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1928. * have one.
  1929. */
  1930. void __weak vmalloc_sync_all(void)
  1931. {
  1932. }
  1933. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1934. {
  1935. pte_t ***p = data;
  1936. if (p) {
  1937. *(*p) = pte;
  1938. (*p)++;
  1939. }
  1940. return 0;
  1941. }
  1942. /**
  1943. * alloc_vm_area - allocate a range of kernel address space
  1944. * @size: size of the area
  1945. * @ptes: returns the PTEs for the address space
  1946. *
  1947. * Returns: NULL on failure, vm_struct on success
  1948. *
  1949. * This function reserves a range of kernel address space, and
  1950. * allocates pagetables to map that range. No actual mappings
  1951. * are created.
  1952. *
  1953. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  1954. * allocated for the VM area are returned.
  1955. */
  1956. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  1957. {
  1958. struct vm_struct *area;
  1959. area = get_vm_area_caller(size, VM_IOREMAP,
  1960. __builtin_return_address(0));
  1961. if (area == NULL)
  1962. return NULL;
  1963. /*
  1964. * This ensures that page tables are constructed for this region
  1965. * of kernel virtual address space and mapped into init_mm.
  1966. */
  1967. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1968. size, f, ptes ? &ptes : NULL)) {
  1969. free_vm_area(area);
  1970. return NULL;
  1971. }
  1972. return area;
  1973. }
  1974. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1975. void free_vm_area(struct vm_struct *area)
  1976. {
  1977. struct vm_struct *ret;
  1978. ret = remove_vm_area(area->addr);
  1979. BUG_ON(ret != area);
  1980. kfree(area);
  1981. }
  1982. EXPORT_SYMBOL_GPL(free_vm_area);
  1983. #ifdef CONFIG_SMP
  1984. static struct vmap_area *node_to_va(struct rb_node *n)
  1985. {
  1986. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1987. }
  1988. /**
  1989. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1990. * @end: target address
  1991. * @pnext: out arg for the next vmap_area
  1992. * @pprev: out arg for the previous vmap_area
  1993. *
  1994. * Returns: %true if either or both of next and prev are found,
  1995. * %false if no vmap_area exists
  1996. *
  1997. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1998. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1999. */
  2000. static bool pvm_find_next_prev(unsigned long end,
  2001. struct vmap_area **pnext,
  2002. struct vmap_area **pprev)
  2003. {
  2004. struct rb_node *n = vmap_area_root.rb_node;
  2005. struct vmap_area *va = NULL;
  2006. while (n) {
  2007. va = rb_entry(n, struct vmap_area, rb_node);
  2008. if (end < va->va_end)
  2009. n = n->rb_left;
  2010. else if (end > va->va_end)
  2011. n = n->rb_right;
  2012. else
  2013. break;
  2014. }
  2015. if (!va)
  2016. return false;
  2017. if (va->va_end > end) {
  2018. *pnext = va;
  2019. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2020. } else {
  2021. *pprev = va;
  2022. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  2023. }
  2024. return true;
  2025. }
  2026. /**
  2027. * pvm_determine_end - find the highest aligned address between two vmap_areas
  2028. * @pnext: in/out arg for the next vmap_area
  2029. * @pprev: in/out arg for the previous vmap_area
  2030. * @align: alignment
  2031. *
  2032. * Returns: determined end address
  2033. *
  2034. * Find the highest aligned address between *@pnext and *@pprev below
  2035. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2036. * down address is between the end addresses of the two vmap_areas.
  2037. *
  2038. * Please note that the address returned by this function may fall
  2039. * inside *@pnext vmap_area. The caller is responsible for checking
  2040. * that.
  2041. */
  2042. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2043. struct vmap_area **pprev,
  2044. unsigned long align)
  2045. {
  2046. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2047. unsigned long addr;
  2048. if (*pnext)
  2049. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2050. else
  2051. addr = vmalloc_end;
  2052. while (*pprev && (*pprev)->va_end > addr) {
  2053. *pnext = *pprev;
  2054. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2055. }
  2056. return addr;
  2057. }
  2058. /**
  2059. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2060. * @offsets: array containing offset of each area
  2061. * @sizes: array containing size of each area
  2062. * @nr_vms: the number of areas to allocate
  2063. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2064. *
  2065. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2066. * vm_structs on success, %NULL on failure
  2067. *
  2068. * Percpu allocator wants to use congruent vm areas so that it can
  2069. * maintain the offsets among percpu areas. This function allocates
  2070. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2071. * be scattered pretty far, distance between two areas easily going up
  2072. * to gigabytes. To avoid interacting with regular vmallocs, these
  2073. * areas are allocated from top.
  2074. *
  2075. * Despite its complicated look, this allocator is rather simple. It
  2076. * does everything top-down and scans areas from the end looking for
  2077. * matching slot. While scanning, if any of the areas overlaps with
  2078. * existing vmap_area, the base address is pulled down to fit the
  2079. * area. Scanning is repeated till all the areas fit and then all
  2080. * necessary data structres are inserted and the result is returned.
  2081. */
  2082. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2083. const size_t *sizes, int nr_vms,
  2084. size_t align)
  2085. {
  2086. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2087. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2088. struct vmap_area **vas, *prev, *next;
  2089. struct vm_struct **vms;
  2090. int area, area2, last_area, term_area;
  2091. unsigned long base, start, end, last_end;
  2092. bool purged = false;
  2093. /* verify parameters and allocate data structures */
  2094. BUG_ON(offset_in_page(align) || !is_power_of_2(align));
  2095. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2096. start = offsets[area];
  2097. end = start + sizes[area];
  2098. /* is everything aligned properly? */
  2099. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2100. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2101. /* detect the area with the highest address */
  2102. if (start > offsets[last_area])
  2103. last_area = area;
  2104. for (area2 = 0; area2 < nr_vms; area2++) {
  2105. unsigned long start2 = offsets[area2];
  2106. unsigned long end2 = start2 + sizes[area2];
  2107. if (area2 == area)
  2108. continue;
  2109. BUG_ON(start2 >= start && start2 < end);
  2110. BUG_ON(end2 <= end && end2 > start);
  2111. }
  2112. }
  2113. last_end = offsets[last_area] + sizes[last_area];
  2114. if (vmalloc_end - vmalloc_start < last_end) {
  2115. WARN_ON(true);
  2116. return NULL;
  2117. }
  2118. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2119. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2120. if (!vas || !vms)
  2121. goto err_free2;
  2122. for (area = 0; area < nr_vms; area++) {
  2123. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2124. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2125. if (!vas[area] || !vms[area])
  2126. goto err_free;
  2127. }
  2128. retry:
  2129. spin_lock(&vmap_area_lock);
  2130. /* start scanning - we scan from the top, begin with the last area */
  2131. area = term_area = last_area;
  2132. start = offsets[area];
  2133. end = start + sizes[area];
  2134. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2135. base = vmalloc_end - last_end;
  2136. goto found;
  2137. }
  2138. base = pvm_determine_end(&next, &prev, align) - end;
  2139. while (true) {
  2140. BUG_ON(next && next->va_end <= base + end);
  2141. BUG_ON(prev && prev->va_end > base + end);
  2142. /*
  2143. * base might have underflowed, add last_end before
  2144. * comparing.
  2145. */
  2146. if (base + last_end < vmalloc_start + last_end) {
  2147. spin_unlock(&vmap_area_lock);
  2148. if (!purged) {
  2149. purge_vmap_area_lazy();
  2150. purged = true;
  2151. goto retry;
  2152. }
  2153. goto err_free;
  2154. }
  2155. /*
  2156. * If next overlaps, move base downwards so that it's
  2157. * right below next and then recheck.
  2158. */
  2159. if (next && next->va_start < base + end) {
  2160. base = pvm_determine_end(&next, &prev, align) - end;
  2161. term_area = area;
  2162. continue;
  2163. }
  2164. /*
  2165. * If prev overlaps, shift down next and prev and move
  2166. * base so that it's right below new next and then
  2167. * recheck.
  2168. */
  2169. if (prev && prev->va_end > base + start) {
  2170. next = prev;
  2171. prev = node_to_va(rb_prev(&next->rb_node));
  2172. base = pvm_determine_end(&next, &prev, align) - end;
  2173. term_area = area;
  2174. continue;
  2175. }
  2176. /*
  2177. * This area fits, move on to the previous one. If
  2178. * the previous one is the terminal one, we're done.
  2179. */
  2180. area = (area + nr_vms - 1) % nr_vms;
  2181. if (area == term_area)
  2182. break;
  2183. start = offsets[area];
  2184. end = start + sizes[area];
  2185. pvm_find_next_prev(base + end, &next, &prev);
  2186. }
  2187. found:
  2188. /* we've found a fitting base, insert all va's */
  2189. for (area = 0; area < nr_vms; area++) {
  2190. struct vmap_area *va = vas[area];
  2191. va->va_start = base + offsets[area];
  2192. va->va_end = va->va_start + sizes[area];
  2193. __insert_vmap_area(va);
  2194. }
  2195. vmap_area_pcpu_hole = base + offsets[last_area];
  2196. spin_unlock(&vmap_area_lock);
  2197. /* insert all vm's */
  2198. for (area = 0; area < nr_vms; area++)
  2199. setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2200. pcpu_get_vm_areas);
  2201. kfree(vas);
  2202. return vms;
  2203. err_free:
  2204. for (area = 0; area < nr_vms; area++) {
  2205. kfree(vas[area]);
  2206. kfree(vms[area]);
  2207. }
  2208. err_free2:
  2209. kfree(vas);
  2210. kfree(vms);
  2211. return NULL;
  2212. }
  2213. /**
  2214. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2215. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2216. * @nr_vms: the number of allocated areas
  2217. *
  2218. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2219. */
  2220. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2221. {
  2222. int i;
  2223. for (i = 0; i < nr_vms; i++)
  2224. free_vm_area(vms[i]);
  2225. kfree(vms);
  2226. }
  2227. #endif /* CONFIG_SMP */
  2228. #ifdef CONFIG_PROC_FS
  2229. static void *s_start(struct seq_file *m, loff_t *pos)
  2230. __acquires(&vmap_area_lock)
  2231. {
  2232. loff_t n = *pos;
  2233. struct vmap_area *va;
  2234. spin_lock(&vmap_area_lock);
  2235. va = list_first_entry(&vmap_area_list, typeof(*va), list);
  2236. while (n > 0 && &va->list != &vmap_area_list) {
  2237. n--;
  2238. va = list_next_entry(va, list);
  2239. }
  2240. if (!n && &va->list != &vmap_area_list)
  2241. return va;
  2242. return NULL;
  2243. }
  2244. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2245. {
  2246. struct vmap_area *va = p, *next;
  2247. ++*pos;
  2248. next = list_next_entry(va, list);
  2249. if (&next->list != &vmap_area_list)
  2250. return next;
  2251. return NULL;
  2252. }
  2253. static void s_stop(struct seq_file *m, void *p)
  2254. __releases(&vmap_area_lock)
  2255. {
  2256. spin_unlock(&vmap_area_lock);
  2257. }
  2258. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2259. {
  2260. if (IS_ENABLED(CONFIG_NUMA)) {
  2261. unsigned int nr, *counters = m->private;
  2262. if (!counters)
  2263. return;
  2264. if (v->flags & VM_UNINITIALIZED)
  2265. return;
  2266. /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
  2267. smp_rmb();
  2268. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2269. for (nr = 0; nr < v->nr_pages; nr++)
  2270. counters[page_to_nid(v->pages[nr])]++;
  2271. for_each_node_state(nr, N_HIGH_MEMORY)
  2272. if (counters[nr])
  2273. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2274. }
  2275. }
  2276. static int s_show(struct seq_file *m, void *p)
  2277. {
  2278. struct vmap_area *va = p;
  2279. struct vm_struct *v;
  2280. /*
  2281. * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
  2282. * behalf of vmap area is being tear down or vm_map_ram allocation.
  2283. */
  2284. if (!(va->flags & VM_VM_AREA))
  2285. return 0;
  2286. v = va->vm;
  2287. seq_printf(m, "0x%pK-0x%pK %7ld",
  2288. v->addr, v->addr + v->size, v->size);
  2289. if (v->caller)
  2290. seq_printf(m, " %pS", v->caller);
  2291. if (v->nr_pages)
  2292. seq_printf(m, " pages=%d", v->nr_pages);
  2293. if (v->phys_addr)
  2294. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2295. if (v->flags & VM_IOREMAP)
  2296. seq_puts(m, " ioremap");
  2297. if (v->flags & VM_ALLOC)
  2298. seq_puts(m, " vmalloc");
  2299. if (v->flags & VM_MAP)
  2300. seq_puts(m, " vmap");
  2301. if (v->flags & VM_USERMAP)
  2302. seq_puts(m, " user");
  2303. if (is_vmalloc_addr(v->pages))
  2304. seq_puts(m, " vpages");
  2305. show_numa_info(m, v);
  2306. seq_putc(m, '\n');
  2307. return 0;
  2308. }
  2309. static const struct seq_operations vmalloc_op = {
  2310. .start = s_start,
  2311. .next = s_next,
  2312. .stop = s_stop,
  2313. .show = s_show,
  2314. };
  2315. static int vmalloc_open(struct inode *inode, struct file *file)
  2316. {
  2317. if (IS_ENABLED(CONFIG_NUMA))
  2318. return seq_open_private(file, &vmalloc_op,
  2319. nr_node_ids * sizeof(unsigned int));
  2320. else
  2321. return seq_open(file, &vmalloc_op);
  2322. }
  2323. static const struct file_operations proc_vmalloc_operations = {
  2324. .open = vmalloc_open,
  2325. .read = seq_read,
  2326. .llseek = seq_lseek,
  2327. .release = seq_release_private,
  2328. };
  2329. static int __init proc_vmalloc_init(void)
  2330. {
  2331. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2332. return 0;
  2333. }
  2334. module_init(proc_vmalloc_init);
  2335. #endif