hugetlb.c 119 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448
  1. /*
  2. * Generic hugetlb support.
  3. * (C) Nadia Yvette Chambers, April 2004
  4. */
  5. #include <linux/list.h>
  6. #include <linux/init.h>
  7. #include <linux/mm.h>
  8. #include <linux/seq_file.h>
  9. #include <linux/sysctl.h>
  10. #include <linux/highmem.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/compiler.h>
  16. #include <linux/cpuset.h>
  17. #include <linux/mutex.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/sysfs.h>
  20. #include <linux/slab.h>
  21. #include <linux/rmap.h>
  22. #include <linux/swap.h>
  23. #include <linux/swapops.h>
  24. #include <linux/page-isolation.h>
  25. #include <linux/jhash.h>
  26. #include <asm/page.h>
  27. #include <asm/pgtable.h>
  28. #include <asm/tlb.h>
  29. #include <linux/io.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/hugetlb_cgroup.h>
  32. #include <linux/node.h>
  33. #include "internal.h"
  34. int hugepages_treat_as_movable;
  35. int hugetlb_max_hstate __read_mostly;
  36. unsigned int default_hstate_idx;
  37. struct hstate hstates[HUGE_MAX_HSTATE];
  38. /*
  39. * Minimum page order among possible hugepage sizes, set to a proper value
  40. * at boot time.
  41. */
  42. static unsigned int minimum_order __read_mostly = UINT_MAX;
  43. __initdata LIST_HEAD(huge_boot_pages);
  44. /* for command line parsing */
  45. static struct hstate * __initdata parsed_hstate;
  46. static unsigned long __initdata default_hstate_max_huge_pages;
  47. static unsigned long __initdata default_hstate_size;
  48. static bool __initdata parsed_valid_hugepagesz = true;
  49. /*
  50. * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  51. * free_huge_pages, and surplus_huge_pages.
  52. */
  53. DEFINE_SPINLOCK(hugetlb_lock);
  54. /*
  55. * Serializes faults on the same logical page. This is used to
  56. * prevent spurious OOMs when the hugepage pool is fully utilized.
  57. */
  58. static int num_fault_mutexes;
  59. struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  60. /* Forward declaration */
  61. static int hugetlb_acct_memory(struct hstate *h, long delta);
  62. static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  63. {
  64. bool free = (spool->count == 0) && (spool->used_hpages == 0);
  65. spin_unlock(&spool->lock);
  66. /* If no pages are used, and no other handles to the subpool
  67. * remain, give up any reservations mased on minimum size and
  68. * free the subpool */
  69. if (free) {
  70. if (spool->min_hpages != -1)
  71. hugetlb_acct_memory(spool->hstate,
  72. -spool->min_hpages);
  73. kfree(spool);
  74. }
  75. }
  76. struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  77. long min_hpages)
  78. {
  79. struct hugepage_subpool *spool;
  80. spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  81. if (!spool)
  82. return NULL;
  83. spin_lock_init(&spool->lock);
  84. spool->count = 1;
  85. spool->max_hpages = max_hpages;
  86. spool->hstate = h;
  87. spool->min_hpages = min_hpages;
  88. if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
  89. kfree(spool);
  90. return NULL;
  91. }
  92. spool->rsv_hpages = min_hpages;
  93. return spool;
  94. }
  95. void hugepage_put_subpool(struct hugepage_subpool *spool)
  96. {
  97. spin_lock(&spool->lock);
  98. BUG_ON(!spool->count);
  99. spool->count--;
  100. unlock_or_release_subpool(spool);
  101. }
  102. /*
  103. * Subpool accounting for allocating and reserving pages.
  104. * Return -ENOMEM if there are not enough resources to satisfy the
  105. * the request. Otherwise, return the number of pages by which the
  106. * global pools must be adjusted (upward). The returned value may
  107. * only be different than the passed value (delta) in the case where
  108. * a subpool minimum size must be manitained.
  109. */
  110. static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
  111. long delta)
  112. {
  113. long ret = delta;
  114. if (!spool)
  115. return ret;
  116. spin_lock(&spool->lock);
  117. if (spool->max_hpages != -1) { /* maximum size accounting */
  118. if ((spool->used_hpages + delta) <= spool->max_hpages)
  119. spool->used_hpages += delta;
  120. else {
  121. ret = -ENOMEM;
  122. goto unlock_ret;
  123. }
  124. }
  125. /* minimum size accounting */
  126. if (spool->min_hpages != -1 && spool->rsv_hpages) {
  127. if (delta > spool->rsv_hpages) {
  128. /*
  129. * Asking for more reserves than those already taken on
  130. * behalf of subpool. Return difference.
  131. */
  132. ret = delta - spool->rsv_hpages;
  133. spool->rsv_hpages = 0;
  134. } else {
  135. ret = 0; /* reserves already accounted for */
  136. spool->rsv_hpages -= delta;
  137. }
  138. }
  139. unlock_ret:
  140. spin_unlock(&spool->lock);
  141. return ret;
  142. }
  143. /*
  144. * Subpool accounting for freeing and unreserving pages.
  145. * Return the number of global page reservations that must be dropped.
  146. * The return value may only be different than the passed value (delta)
  147. * in the case where a subpool minimum size must be maintained.
  148. */
  149. static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
  150. long delta)
  151. {
  152. long ret = delta;
  153. if (!spool)
  154. return delta;
  155. spin_lock(&spool->lock);
  156. if (spool->max_hpages != -1) /* maximum size accounting */
  157. spool->used_hpages -= delta;
  158. /* minimum size accounting */
  159. if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
  160. if (spool->rsv_hpages + delta <= spool->min_hpages)
  161. ret = 0;
  162. else
  163. ret = spool->rsv_hpages + delta - spool->min_hpages;
  164. spool->rsv_hpages += delta;
  165. if (spool->rsv_hpages > spool->min_hpages)
  166. spool->rsv_hpages = spool->min_hpages;
  167. }
  168. /*
  169. * If hugetlbfs_put_super couldn't free spool due to an outstanding
  170. * quota reference, free it now.
  171. */
  172. unlock_or_release_subpool(spool);
  173. return ret;
  174. }
  175. static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
  176. {
  177. return HUGETLBFS_SB(inode->i_sb)->spool;
  178. }
  179. static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
  180. {
  181. return subpool_inode(file_inode(vma->vm_file));
  182. }
  183. /*
  184. * Region tracking -- allows tracking of reservations and instantiated pages
  185. * across the pages in a mapping.
  186. *
  187. * The region data structures are embedded into a resv_map and protected
  188. * by a resv_map's lock. The set of regions within the resv_map represent
  189. * reservations for huge pages, or huge pages that have already been
  190. * instantiated within the map. The from and to elements are huge page
  191. * indicies into the associated mapping. from indicates the starting index
  192. * of the region. to represents the first index past the end of the region.
  193. *
  194. * For example, a file region structure with from == 0 and to == 4 represents
  195. * four huge pages in a mapping. It is important to note that the to element
  196. * represents the first element past the end of the region. This is used in
  197. * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
  198. *
  199. * Interval notation of the form [from, to) will be used to indicate that
  200. * the endpoint from is inclusive and to is exclusive.
  201. */
  202. struct file_region {
  203. struct list_head link;
  204. long from;
  205. long to;
  206. };
  207. /*
  208. * Add the huge page range represented by [f, t) to the reserve
  209. * map. In the normal case, existing regions will be expanded
  210. * to accommodate the specified range. Sufficient regions should
  211. * exist for expansion due to the previous call to region_chg
  212. * with the same range. However, it is possible that region_del
  213. * could have been called after region_chg and modifed the map
  214. * in such a way that no region exists to be expanded. In this
  215. * case, pull a region descriptor from the cache associated with
  216. * the map and use that for the new range.
  217. *
  218. * Return the number of new huge pages added to the map. This
  219. * number is greater than or equal to zero.
  220. */
  221. static long region_add(struct resv_map *resv, long f, long t)
  222. {
  223. struct list_head *head = &resv->regions;
  224. struct file_region *rg, *nrg, *trg;
  225. long add = 0;
  226. spin_lock(&resv->lock);
  227. /* Locate the region we are either in or before. */
  228. list_for_each_entry(rg, head, link)
  229. if (f <= rg->to)
  230. break;
  231. /*
  232. * If no region exists which can be expanded to include the
  233. * specified range, the list must have been modified by an
  234. * interleving call to region_del(). Pull a region descriptor
  235. * from the cache and use it for this range.
  236. */
  237. if (&rg->link == head || t < rg->from) {
  238. VM_BUG_ON(resv->region_cache_count <= 0);
  239. resv->region_cache_count--;
  240. nrg = list_first_entry(&resv->region_cache, struct file_region,
  241. link);
  242. list_del(&nrg->link);
  243. nrg->from = f;
  244. nrg->to = t;
  245. list_add(&nrg->link, rg->link.prev);
  246. add += t - f;
  247. goto out_locked;
  248. }
  249. /* Round our left edge to the current segment if it encloses us. */
  250. if (f > rg->from)
  251. f = rg->from;
  252. /* Check for and consume any regions we now overlap with. */
  253. nrg = rg;
  254. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  255. if (&rg->link == head)
  256. break;
  257. if (rg->from > t)
  258. break;
  259. /* If this area reaches higher then extend our area to
  260. * include it completely. If this is not the first area
  261. * which we intend to reuse, free it. */
  262. if (rg->to > t)
  263. t = rg->to;
  264. if (rg != nrg) {
  265. /* Decrement return value by the deleted range.
  266. * Another range will span this area so that by
  267. * end of routine add will be >= zero
  268. */
  269. add -= (rg->to - rg->from);
  270. list_del(&rg->link);
  271. kfree(rg);
  272. }
  273. }
  274. add += (nrg->from - f); /* Added to beginning of region */
  275. nrg->from = f;
  276. add += t - nrg->to; /* Added to end of region */
  277. nrg->to = t;
  278. out_locked:
  279. resv->adds_in_progress--;
  280. spin_unlock(&resv->lock);
  281. VM_BUG_ON(add < 0);
  282. return add;
  283. }
  284. /*
  285. * Examine the existing reserve map and determine how many
  286. * huge pages in the specified range [f, t) are NOT currently
  287. * represented. This routine is called before a subsequent
  288. * call to region_add that will actually modify the reserve
  289. * map to add the specified range [f, t). region_chg does
  290. * not change the number of huge pages represented by the
  291. * map. However, if the existing regions in the map can not
  292. * be expanded to represent the new range, a new file_region
  293. * structure is added to the map as a placeholder. This is
  294. * so that the subsequent region_add call will have all the
  295. * regions it needs and will not fail.
  296. *
  297. * Upon entry, region_chg will also examine the cache of region descriptors
  298. * associated with the map. If there are not enough descriptors cached, one
  299. * will be allocated for the in progress add operation.
  300. *
  301. * Returns the number of huge pages that need to be added to the existing
  302. * reservation map for the range [f, t). This number is greater or equal to
  303. * zero. -ENOMEM is returned if a new file_region structure or cache entry
  304. * is needed and can not be allocated.
  305. */
  306. static long region_chg(struct resv_map *resv, long f, long t)
  307. {
  308. struct list_head *head = &resv->regions;
  309. struct file_region *rg, *nrg = NULL;
  310. long chg = 0;
  311. retry:
  312. spin_lock(&resv->lock);
  313. retry_locked:
  314. resv->adds_in_progress++;
  315. /*
  316. * Check for sufficient descriptors in the cache to accommodate
  317. * the number of in progress add operations.
  318. */
  319. if (resv->adds_in_progress > resv->region_cache_count) {
  320. struct file_region *trg;
  321. VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
  322. /* Must drop lock to allocate a new descriptor. */
  323. resv->adds_in_progress--;
  324. spin_unlock(&resv->lock);
  325. trg = kmalloc(sizeof(*trg), GFP_KERNEL);
  326. if (!trg) {
  327. kfree(nrg);
  328. return -ENOMEM;
  329. }
  330. spin_lock(&resv->lock);
  331. list_add(&trg->link, &resv->region_cache);
  332. resv->region_cache_count++;
  333. goto retry_locked;
  334. }
  335. /* Locate the region we are before or in. */
  336. list_for_each_entry(rg, head, link)
  337. if (f <= rg->to)
  338. break;
  339. /* If we are below the current region then a new region is required.
  340. * Subtle, allocate a new region at the position but make it zero
  341. * size such that we can guarantee to record the reservation. */
  342. if (&rg->link == head || t < rg->from) {
  343. if (!nrg) {
  344. resv->adds_in_progress--;
  345. spin_unlock(&resv->lock);
  346. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  347. if (!nrg)
  348. return -ENOMEM;
  349. nrg->from = f;
  350. nrg->to = f;
  351. INIT_LIST_HEAD(&nrg->link);
  352. goto retry;
  353. }
  354. list_add(&nrg->link, rg->link.prev);
  355. chg = t - f;
  356. goto out_nrg;
  357. }
  358. /* Round our left edge to the current segment if it encloses us. */
  359. if (f > rg->from)
  360. f = rg->from;
  361. chg = t - f;
  362. /* Check for and consume any regions we now overlap with. */
  363. list_for_each_entry(rg, rg->link.prev, link) {
  364. if (&rg->link == head)
  365. break;
  366. if (rg->from > t)
  367. goto out;
  368. /* We overlap with this area, if it extends further than
  369. * us then we must extend ourselves. Account for its
  370. * existing reservation. */
  371. if (rg->to > t) {
  372. chg += rg->to - t;
  373. t = rg->to;
  374. }
  375. chg -= rg->to - rg->from;
  376. }
  377. out:
  378. spin_unlock(&resv->lock);
  379. /* We already know we raced and no longer need the new region */
  380. kfree(nrg);
  381. return chg;
  382. out_nrg:
  383. spin_unlock(&resv->lock);
  384. return chg;
  385. }
  386. /*
  387. * Abort the in progress add operation. The adds_in_progress field
  388. * of the resv_map keeps track of the operations in progress between
  389. * calls to region_chg and region_add. Operations are sometimes
  390. * aborted after the call to region_chg. In such cases, region_abort
  391. * is called to decrement the adds_in_progress counter.
  392. *
  393. * NOTE: The range arguments [f, t) are not needed or used in this
  394. * routine. They are kept to make reading the calling code easier as
  395. * arguments will match the associated region_chg call.
  396. */
  397. static void region_abort(struct resv_map *resv, long f, long t)
  398. {
  399. spin_lock(&resv->lock);
  400. VM_BUG_ON(!resv->region_cache_count);
  401. resv->adds_in_progress--;
  402. spin_unlock(&resv->lock);
  403. }
  404. /*
  405. * Delete the specified range [f, t) from the reserve map. If the
  406. * t parameter is LONG_MAX, this indicates that ALL regions after f
  407. * should be deleted. Locate the regions which intersect [f, t)
  408. * and either trim, delete or split the existing regions.
  409. *
  410. * Returns the number of huge pages deleted from the reserve map.
  411. * In the normal case, the return value is zero or more. In the
  412. * case where a region must be split, a new region descriptor must
  413. * be allocated. If the allocation fails, -ENOMEM will be returned.
  414. * NOTE: If the parameter t == LONG_MAX, then we will never split
  415. * a region and possibly return -ENOMEM. Callers specifying
  416. * t == LONG_MAX do not need to check for -ENOMEM error.
  417. */
  418. static long region_del(struct resv_map *resv, long f, long t)
  419. {
  420. struct list_head *head = &resv->regions;
  421. struct file_region *rg, *trg;
  422. struct file_region *nrg = NULL;
  423. long del = 0;
  424. retry:
  425. spin_lock(&resv->lock);
  426. list_for_each_entry_safe(rg, trg, head, link) {
  427. /*
  428. * Skip regions before the range to be deleted. file_region
  429. * ranges are normally of the form [from, to). However, there
  430. * may be a "placeholder" entry in the map which is of the form
  431. * (from, to) with from == to. Check for placeholder entries
  432. * at the beginning of the range to be deleted.
  433. */
  434. if (rg->to <= f && (rg->to != rg->from || rg->to != f))
  435. continue;
  436. if (rg->from >= t)
  437. break;
  438. if (f > rg->from && t < rg->to) { /* Must split region */
  439. /*
  440. * Check for an entry in the cache before dropping
  441. * lock and attempting allocation.
  442. */
  443. if (!nrg &&
  444. resv->region_cache_count > resv->adds_in_progress) {
  445. nrg = list_first_entry(&resv->region_cache,
  446. struct file_region,
  447. link);
  448. list_del(&nrg->link);
  449. resv->region_cache_count--;
  450. }
  451. if (!nrg) {
  452. spin_unlock(&resv->lock);
  453. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  454. if (!nrg)
  455. return -ENOMEM;
  456. goto retry;
  457. }
  458. del += t - f;
  459. /* New entry for end of split region */
  460. nrg->from = t;
  461. nrg->to = rg->to;
  462. INIT_LIST_HEAD(&nrg->link);
  463. /* Original entry is trimmed */
  464. rg->to = f;
  465. list_add(&nrg->link, &rg->link);
  466. nrg = NULL;
  467. break;
  468. }
  469. if (f <= rg->from && t >= rg->to) { /* Remove entire region */
  470. del += rg->to - rg->from;
  471. list_del(&rg->link);
  472. kfree(rg);
  473. continue;
  474. }
  475. if (f <= rg->from) { /* Trim beginning of region */
  476. del += t - rg->from;
  477. rg->from = t;
  478. } else { /* Trim end of region */
  479. del += rg->to - f;
  480. rg->to = f;
  481. }
  482. }
  483. spin_unlock(&resv->lock);
  484. kfree(nrg);
  485. return del;
  486. }
  487. /*
  488. * A rare out of memory error was encountered which prevented removal of
  489. * the reserve map region for a page. The huge page itself was free'ed
  490. * and removed from the page cache. This routine will adjust the subpool
  491. * usage count, and the global reserve count if needed. By incrementing
  492. * these counts, the reserve map entry which could not be deleted will
  493. * appear as a "reserved" entry instead of simply dangling with incorrect
  494. * counts.
  495. */
  496. void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
  497. {
  498. struct hugepage_subpool *spool = subpool_inode(inode);
  499. long rsv_adjust;
  500. rsv_adjust = hugepage_subpool_get_pages(spool, 1);
  501. if (restore_reserve && rsv_adjust) {
  502. struct hstate *h = hstate_inode(inode);
  503. hugetlb_acct_memory(h, 1);
  504. }
  505. }
  506. /*
  507. * Count and return the number of huge pages in the reserve map
  508. * that intersect with the range [f, t).
  509. */
  510. static long region_count(struct resv_map *resv, long f, long t)
  511. {
  512. struct list_head *head = &resv->regions;
  513. struct file_region *rg;
  514. long chg = 0;
  515. spin_lock(&resv->lock);
  516. /* Locate each segment we overlap with, and count that overlap. */
  517. list_for_each_entry(rg, head, link) {
  518. long seg_from;
  519. long seg_to;
  520. if (rg->to <= f)
  521. continue;
  522. if (rg->from >= t)
  523. break;
  524. seg_from = max(rg->from, f);
  525. seg_to = min(rg->to, t);
  526. chg += seg_to - seg_from;
  527. }
  528. spin_unlock(&resv->lock);
  529. return chg;
  530. }
  531. /*
  532. * Convert the address within this vma to the page offset within
  533. * the mapping, in pagecache page units; huge pages here.
  534. */
  535. static pgoff_t vma_hugecache_offset(struct hstate *h,
  536. struct vm_area_struct *vma, unsigned long address)
  537. {
  538. return ((address - vma->vm_start) >> huge_page_shift(h)) +
  539. (vma->vm_pgoff >> huge_page_order(h));
  540. }
  541. pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
  542. unsigned long address)
  543. {
  544. return vma_hugecache_offset(hstate_vma(vma), vma, address);
  545. }
  546. EXPORT_SYMBOL_GPL(linear_hugepage_index);
  547. /*
  548. * Return the size of the pages allocated when backing a VMA. In the majority
  549. * cases this will be same size as used by the page table entries.
  550. */
  551. unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
  552. {
  553. struct hstate *hstate;
  554. if (!is_vm_hugetlb_page(vma))
  555. return PAGE_SIZE;
  556. hstate = hstate_vma(vma);
  557. return 1UL << huge_page_shift(hstate);
  558. }
  559. EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
  560. /*
  561. * Return the page size being used by the MMU to back a VMA. In the majority
  562. * of cases, the page size used by the kernel matches the MMU size. On
  563. * architectures where it differs, an architecture-specific version of this
  564. * function is required.
  565. */
  566. #ifndef vma_mmu_pagesize
  567. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  568. {
  569. return vma_kernel_pagesize(vma);
  570. }
  571. #endif
  572. /*
  573. * Flags for MAP_PRIVATE reservations. These are stored in the bottom
  574. * bits of the reservation map pointer, which are always clear due to
  575. * alignment.
  576. */
  577. #define HPAGE_RESV_OWNER (1UL << 0)
  578. #define HPAGE_RESV_UNMAPPED (1UL << 1)
  579. #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
  580. /*
  581. * These helpers are used to track how many pages are reserved for
  582. * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
  583. * is guaranteed to have their future faults succeed.
  584. *
  585. * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
  586. * the reserve counters are updated with the hugetlb_lock held. It is safe
  587. * to reset the VMA at fork() time as it is not in use yet and there is no
  588. * chance of the global counters getting corrupted as a result of the values.
  589. *
  590. * The private mapping reservation is represented in a subtly different
  591. * manner to a shared mapping. A shared mapping has a region map associated
  592. * with the underlying file, this region map represents the backing file
  593. * pages which have ever had a reservation assigned which this persists even
  594. * after the page is instantiated. A private mapping has a region map
  595. * associated with the original mmap which is attached to all VMAs which
  596. * reference it, this region map represents those offsets which have consumed
  597. * reservation ie. where pages have been instantiated.
  598. */
  599. static unsigned long get_vma_private_data(struct vm_area_struct *vma)
  600. {
  601. return (unsigned long)vma->vm_private_data;
  602. }
  603. static void set_vma_private_data(struct vm_area_struct *vma,
  604. unsigned long value)
  605. {
  606. vma->vm_private_data = (void *)value;
  607. }
  608. struct resv_map *resv_map_alloc(void)
  609. {
  610. struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
  611. struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
  612. if (!resv_map || !rg) {
  613. kfree(resv_map);
  614. kfree(rg);
  615. return NULL;
  616. }
  617. kref_init(&resv_map->refs);
  618. spin_lock_init(&resv_map->lock);
  619. INIT_LIST_HEAD(&resv_map->regions);
  620. resv_map->adds_in_progress = 0;
  621. INIT_LIST_HEAD(&resv_map->region_cache);
  622. list_add(&rg->link, &resv_map->region_cache);
  623. resv_map->region_cache_count = 1;
  624. return resv_map;
  625. }
  626. void resv_map_release(struct kref *ref)
  627. {
  628. struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
  629. struct list_head *head = &resv_map->region_cache;
  630. struct file_region *rg, *trg;
  631. /* Clear out any active regions before we release the map. */
  632. region_del(resv_map, 0, LONG_MAX);
  633. /* ... and any entries left in the cache */
  634. list_for_each_entry_safe(rg, trg, head, link) {
  635. list_del(&rg->link);
  636. kfree(rg);
  637. }
  638. VM_BUG_ON(resv_map->adds_in_progress);
  639. kfree(resv_map);
  640. }
  641. static inline struct resv_map *inode_resv_map(struct inode *inode)
  642. {
  643. return inode->i_mapping->private_data;
  644. }
  645. static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
  646. {
  647. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  648. if (vma->vm_flags & VM_MAYSHARE) {
  649. struct address_space *mapping = vma->vm_file->f_mapping;
  650. struct inode *inode = mapping->host;
  651. return inode_resv_map(inode);
  652. } else {
  653. return (struct resv_map *)(get_vma_private_data(vma) &
  654. ~HPAGE_RESV_MASK);
  655. }
  656. }
  657. static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
  658. {
  659. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  660. VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
  661. set_vma_private_data(vma, (get_vma_private_data(vma) &
  662. HPAGE_RESV_MASK) | (unsigned long)map);
  663. }
  664. static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
  665. {
  666. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  667. VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
  668. set_vma_private_data(vma, get_vma_private_data(vma) | flags);
  669. }
  670. static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
  671. {
  672. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  673. return (get_vma_private_data(vma) & flag) != 0;
  674. }
  675. /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
  676. void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
  677. {
  678. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  679. if (!(vma->vm_flags & VM_MAYSHARE))
  680. vma->vm_private_data = (void *)0;
  681. }
  682. /* Returns true if the VMA has associated reserve pages */
  683. static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
  684. {
  685. if (vma->vm_flags & VM_NORESERVE) {
  686. /*
  687. * This address is already reserved by other process(chg == 0),
  688. * so, we should decrement reserved count. Without decrementing,
  689. * reserve count remains after releasing inode, because this
  690. * allocated page will go into page cache and is regarded as
  691. * coming from reserved pool in releasing step. Currently, we
  692. * don't have any other solution to deal with this situation
  693. * properly, so add work-around here.
  694. */
  695. if (vma->vm_flags & VM_MAYSHARE && chg == 0)
  696. return true;
  697. else
  698. return false;
  699. }
  700. /* Shared mappings always use reserves */
  701. if (vma->vm_flags & VM_MAYSHARE) {
  702. /*
  703. * We know VM_NORESERVE is not set. Therefore, there SHOULD
  704. * be a region map for all pages. The only situation where
  705. * there is no region map is if a hole was punched via
  706. * fallocate. In this case, there really are no reverves to
  707. * use. This situation is indicated if chg != 0.
  708. */
  709. if (chg)
  710. return false;
  711. else
  712. return true;
  713. }
  714. /*
  715. * Only the process that called mmap() has reserves for
  716. * private mappings.
  717. */
  718. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  719. /*
  720. * Like the shared case above, a hole punch or truncate
  721. * could have been performed on the private mapping.
  722. * Examine the value of chg to determine if reserves
  723. * actually exist or were previously consumed.
  724. * Very Subtle - The value of chg comes from a previous
  725. * call to vma_needs_reserves(). The reserve map for
  726. * private mappings has different (opposite) semantics
  727. * than that of shared mappings. vma_needs_reserves()
  728. * has already taken this difference in semantics into
  729. * account. Therefore, the meaning of chg is the same
  730. * as in the shared case above. Code could easily be
  731. * combined, but keeping it separate draws attention to
  732. * subtle differences.
  733. */
  734. if (chg)
  735. return false;
  736. else
  737. return true;
  738. }
  739. return false;
  740. }
  741. static void enqueue_huge_page(struct hstate *h, struct page *page)
  742. {
  743. int nid = page_to_nid(page);
  744. list_move(&page->lru, &h->hugepage_freelists[nid]);
  745. h->free_huge_pages++;
  746. h->free_huge_pages_node[nid]++;
  747. }
  748. static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
  749. {
  750. struct page *page;
  751. list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
  752. if (!is_migrate_isolate_page(page))
  753. break;
  754. /*
  755. * if 'non-isolated free hugepage' not found on the list,
  756. * the allocation fails.
  757. */
  758. if (&h->hugepage_freelists[nid] == &page->lru)
  759. return NULL;
  760. list_move(&page->lru, &h->hugepage_activelist);
  761. set_page_refcounted(page);
  762. h->free_huge_pages--;
  763. h->free_huge_pages_node[nid]--;
  764. return page;
  765. }
  766. /* Movability of hugepages depends on migration support. */
  767. static inline gfp_t htlb_alloc_mask(struct hstate *h)
  768. {
  769. if (hugepages_treat_as_movable || hugepage_migration_supported(h))
  770. return GFP_HIGHUSER_MOVABLE;
  771. else
  772. return GFP_HIGHUSER;
  773. }
  774. static struct page *dequeue_huge_page_vma(struct hstate *h,
  775. struct vm_area_struct *vma,
  776. unsigned long address, int avoid_reserve,
  777. long chg)
  778. {
  779. struct page *page = NULL;
  780. struct mempolicy *mpol;
  781. nodemask_t *nodemask;
  782. struct zonelist *zonelist;
  783. struct zone *zone;
  784. struct zoneref *z;
  785. unsigned int cpuset_mems_cookie;
  786. /*
  787. * A child process with MAP_PRIVATE mappings created by their parent
  788. * have no page reserves. This check ensures that reservations are
  789. * not "stolen". The child may still get SIGKILLed
  790. */
  791. if (!vma_has_reserves(vma, chg) &&
  792. h->free_huge_pages - h->resv_huge_pages == 0)
  793. goto err;
  794. /* If reserves cannot be used, ensure enough pages are in the pool */
  795. if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
  796. goto err;
  797. retry_cpuset:
  798. cpuset_mems_cookie = read_mems_allowed_begin();
  799. zonelist = huge_zonelist(vma, address,
  800. htlb_alloc_mask(h), &mpol, &nodemask);
  801. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  802. MAX_NR_ZONES - 1, nodemask) {
  803. if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
  804. page = dequeue_huge_page_node(h, zone_to_nid(zone));
  805. if (page) {
  806. if (avoid_reserve)
  807. break;
  808. if (!vma_has_reserves(vma, chg))
  809. break;
  810. SetPagePrivate(page);
  811. h->resv_huge_pages--;
  812. break;
  813. }
  814. }
  815. }
  816. mpol_cond_put(mpol);
  817. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  818. goto retry_cpuset;
  819. return page;
  820. err:
  821. return NULL;
  822. }
  823. /*
  824. * common helper functions for hstate_next_node_to_{alloc|free}.
  825. * We may have allocated or freed a huge page based on a different
  826. * nodes_allowed previously, so h->next_node_to_{alloc|free} might
  827. * be outside of *nodes_allowed. Ensure that we use an allowed
  828. * node for alloc or free.
  829. */
  830. static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
  831. {
  832. nid = next_node_in(nid, *nodes_allowed);
  833. VM_BUG_ON(nid >= MAX_NUMNODES);
  834. return nid;
  835. }
  836. static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
  837. {
  838. if (!node_isset(nid, *nodes_allowed))
  839. nid = next_node_allowed(nid, nodes_allowed);
  840. return nid;
  841. }
  842. /*
  843. * returns the previously saved node ["this node"] from which to
  844. * allocate a persistent huge page for the pool and advance the
  845. * next node from which to allocate, handling wrap at end of node
  846. * mask.
  847. */
  848. static int hstate_next_node_to_alloc(struct hstate *h,
  849. nodemask_t *nodes_allowed)
  850. {
  851. int nid;
  852. VM_BUG_ON(!nodes_allowed);
  853. nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
  854. h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
  855. return nid;
  856. }
  857. /*
  858. * helper for free_pool_huge_page() - return the previously saved
  859. * node ["this node"] from which to free a huge page. Advance the
  860. * next node id whether or not we find a free huge page to free so
  861. * that the next attempt to free addresses the next node.
  862. */
  863. static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
  864. {
  865. int nid;
  866. VM_BUG_ON(!nodes_allowed);
  867. nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
  868. h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
  869. return nid;
  870. }
  871. #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
  872. for (nr_nodes = nodes_weight(*mask); \
  873. nr_nodes > 0 && \
  874. ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
  875. nr_nodes--)
  876. #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
  877. for (nr_nodes = nodes_weight(*mask); \
  878. nr_nodes > 0 && \
  879. ((node = hstate_next_node_to_free(hs, mask)) || 1); \
  880. nr_nodes--)
  881. #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
  882. static void destroy_compound_gigantic_page(struct page *page,
  883. unsigned int order)
  884. {
  885. int i;
  886. int nr_pages = 1 << order;
  887. struct page *p = page + 1;
  888. atomic_set(compound_mapcount_ptr(page), 0);
  889. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  890. clear_compound_head(p);
  891. set_page_refcounted(p);
  892. }
  893. set_compound_order(page, 0);
  894. __ClearPageHead(page);
  895. }
  896. static void free_gigantic_page(struct page *page, unsigned int order)
  897. {
  898. free_contig_range(page_to_pfn(page), 1 << order);
  899. }
  900. static int __alloc_gigantic_page(unsigned long start_pfn,
  901. unsigned long nr_pages)
  902. {
  903. unsigned long end_pfn = start_pfn + nr_pages;
  904. return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
  905. }
  906. static bool pfn_range_valid_gigantic(struct zone *z,
  907. unsigned long start_pfn, unsigned long nr_pages)
  908. {
  909. unsigned long i, end_pfn = start_pfn + nr_pages;
  910. struct page *page;
  911. for (i = start_pfn; i < end_pfn; i++) {
  912. if (!pfn_valid(i))
  913. return false;
  914. page = pfn_to_page(i);
  915. if (page_zone(page) != z)
  916. return false;
  917. if (PageReserved(page))
  918. return false;
  919. if (page_count(page) > 0)
  920. return false;
  921. if (PageHuge(page))
  922. return false;
  923. }
  924. return true;
  925. }
  926. static bool zone_spans_last_pfn(const struct zone *zone,
  927. unsigned long start_pfn, unsigned long nr_pages)
  928. {
  929. unsigned long last_pfn = start_pfn + nr_pages - 1;
  930. return zone_spans_pfn(zone, last_pfn);
  931. }
  932. static struct page *alloc_gigantic_page(int nid, unsigned int order)
  933. {
  934. unsigned long nr_pages = 1 << order;
  935. unsigned long ret, pfn, flags;
  936. struct zone *z;
  937. z = NODE_DATA(nid)->node_zones;
  938. for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
  939. spin_lock_irqsave(&z->lock, flags);
  940. pfn = ALIGN(z->zone_start_pfn, nr_pages);
  941. while (zone_spans_last_pfn(z, pfn, nr_pages)) {
  942. if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
  943. /*
  944. * We release the zone lock here because
  945. * alloc_contig_range() will also lock the zone
  946. * at some point. If there's an allocation
  947. * spinning on this lock, it may win the race
  948. * and cause alloc_contig_range() to fail...
  949. */
  950. spin_unlock_irqrestore(&z->lock, flags);
  951. ret = __alloc_gigantic_page(pfn, nr_pages);
  952. if (!ret)
  953. return pfn_to_page(pfn);
  954. spin_lock_irqsave(&z->lock, flags);
  955. }
  956. pfn += nr_pages;
  957. }
  958. spin_unlock_irqrestore(&z->lock, flags);
  959. }
  960. return NULL;
  961. }
  962. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
  963. static void prep_compound_gigantic_page(struct page *page, unsigned int order);
  964. static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
  965. {
  966. struct page *page;
  967. page = alloc_gigantic_page(nid, huge_page_order(h));
  968. if (page) {
  969. prep_compound_gigantic_page(page, huge_page_order(h));
  970. prep_new_huge_page(h, page, nid);
  971. }
  972. return page;
  973. }
  974. static int alloc_fresh_gigantic_page(struct hstate *h,
  975. nodemask_t *nodes_allowed)
  976. {
  977. struct page *page = NULL;
  978. int nr_nodes, node;
  979. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  980. page = alloc_fresh_gigantic_page_node(h, node);
  981. if (page)
  982. return 1;
  983. }
  984. return 0;
  985. }
  986. static inline bool gigantic_page_supported(void) { return true; }
  987. #else
  988. static inline bool gigantic_page_supported(void) { return false; }
  989. static inline void free_gigantic_page(struct page *page, unsigned int order) { }
  990. static inline void destroy_compound_gigantic_page(struct page *page,
  991. unsigned int order) { }
  992. static inline int alloc_fresh_gigantic_page(struct hstate *h,
  993. nodemask_t *nodes_allowed) { return 0; }
  994. #endif
  995. static void update_and_free_page(struct hstate *h, struct page *page)
  996. {
  997. int i;
  998. if (hstate_is_gigantic(h) && !gigantic_page_supported())
  999. return;
  1000. h->nr_huge_pages--;
  1001. h->nr_huge_pages_node[page_to_nid(page)]--;
  1002. for (i = 0; i < pages_per_huge_page(h); i++) {
  1003. page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
  1004. 1 << PG_referenced | 1 << PG_dirty |
  1005. 1 << PG_active | 1 << PG_private |
  1006. 1 << PG_writeback);
  1007. }
  1008. VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
  1009. set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
  1010. set_page_refcounted(page);
  1011. if (hstate_is_gigantic(h)) {
  1012. destroy_compound_gigantic_page(page, huge_page_order(h));
  1013. free_gigantic_page(page, huge_page_order(h));
  1014. } else {
  1015. __free_pages(page, huge_page_order(h));
  1016. }
  1017. }
  1018. struct hstate *size_to_hstate(unsigned long size)
  1019. {
  1020. struct hstate *h;
  1021. for_each_hstate(h) {
  1022. if (huge_page_size(h) == size)
  1023. return h;
  1024. }
  1025. return NULL;
  1026. }
  1027. /*
  1028. * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
  1029. * to hstate->hugepage_activelist.)
  1030. *
  1031. * This function can be called for tail pages, but never returns true for them.
  1032. */
  1033. bool page_huge_active(struct page *page)
  1034. {
  1035. VM_BUG_ON_PAGE(!PageHuge(page), page);
  1036. return PageHead(page) && PagePrivate(&page[1]);
  1037. }
  1038. /* never called for tail page */
  1039. static void set_page_huge_active(struct page *page)
  1040. {
  1041. VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
  1042. SetPagePrivate(&page[1]);
  1043. }
  1044. static void clear_page_huge_active(struct page *page)
  1045. {
  1046. VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
  1047. ClearPagePrivate(&page[1]);
  1048. }
  1049. void free_huge_page(struct page *page)
  1050. {
  1051. /*
  1052. * Can't pass hstate in here because it is called from the
  1053. * compound page destructor.
  1054. */
  1055. struct hstate *h = page_hstate(page);
  1056. int nid = page_to_nid(page);
  1057. struct hugepage_subpool *spool =
  1058. (struct hugepage_subpool *)page_private(page);
  1059. bool restore_reserve;
  1060. set_page_private(page, 0);
  1061. page->mapping = NULL;
  1062. VM_BUG_ON_PAGE(page_count(page), page);
  1063. VM_BUG_ON_PAGE(page_mapcount(page), page);
  1064. restore_reserve = PagePrivate(page);
  1065. ClearPagePrivate(page);
  1066. /*
  1067. * A return code of zero implies that the subpool will be under its
  1068. * minimum size if the reservation is not restored after page is free.
  1069. * Therefore, force restore_reserve operation.
  1070. */
  1071. if (hugepage_subpool_put_pages(spool, 1) == 0)
  1072. restore_reserve = true;
  1073. spin_lock(&hugetlb_lock);
  1074. clear_page_huge_active(page);
  1075. hugetlb_cgroup_uncharge_page(hstate_index(h),
  1076. pages_per_huge_page(h), page);
  1077. if (restore_reserve)
  1078. h->resv_huge_pages++;
  1079. if (h->surplus_huge_pages_node[nid]) {
  1080. /* remove the page from active list */
  1081. list_del(&page->lru);
  1082. update_and_free_page(h, page);
  1083. h->surplus_huge_pages--;
  1084. h->surplus_huge_pages_node[nid]--;
  1085. } else {
  1086. arch_clear_hugepage_flags(page);
  1087. enqueue_huge_page(h, page);
  1088. }
  1089. spin_unlock(&hugetlb_lock);
  1090. }
  1091. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
  1092. {
  1093. INIT_LIST_HEAD(&page->lru);
  1094. set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
  1095. spin_lock(&hugetlb_lock);
  1096. set_hugetlb_cgroup(page, NULL);
  1097. h->nr_huge_pages++;
  1098. h->nr_huge_pages_node[nid]++;
  1099. spin_unlock(&hugetlb_lock);
  1100. put_page(page); /* free it into the hugepage allocator */
  1101. }
  1102. static void prep_compound_gigantic_page(struct page *page, unsigned int order)
  1103. {
  1104. int i;
  1105. int nr_pages = 1 << order;
  1106. struct page *p = page + 1;
  1107. /* we rely on prep_new_huge_page to set the destructor */
  1108. set_compound_order(page, order);
  1109. __ClearPageReserved(page);
  1110. __SetPageHead(page);
  1111. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  1112. /*
  1113. * For gigantic hugepages allocated through bootmem at
  1114. * boot, it's safer to be consistent with the not-gigantic
  1115. * hugepages and clear the PG_reserved bit from all tail pages
  1116. * too. Otherwse drivers using get_user_pages() to access tail
  1117. * pages may get the reference counting wrong if they see
  1118. * PG_reserved set on a tail page (despite the head page not
  1119. * having PG_reserved set). Enforcing this consistency between
  1120. * head and tail pages allows drivers to optimize away a check
  1121. * on the head page when they need know if put_page() is needed
  1122. * after get_user_pages().
  1123. */
  1124. __ClearPageReserved(p);
  1125. set_page_count(p, 0);
  1126. set_compound_head(p, page);
  1127. }
  1128. atomic_set(compound_mapcount_ptr(page), -1);
  1129. }
  1130. /*
  1131. * PageHuge() only returns true for hugetlbfs pages, but not for normal or
  1132. * transparent huge pages. See the PageTransHuge() documentation for more
  1133. * details.
  1134. */
  1135. int PageHuge(struct page *page)
  1136. {
  1137. if (!PageCompound(page))
  1138. return 0;
  1139. page = compound_head(page);
  1140. return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
  1141. }
  1142. EXPORT_SYMBOL_GPL(PageHuge);
  1143. /*
  1144. * PageHeadHuge() only returns true for hugetlbfs head page, but not for
  1145. * normal or transparent huge pages.
  1146. */
  1147. int PageHeadHuge(struct page *page_head)
  1148. {
  1149. if (!PageHead(page_head))
  1150. return 0;
  1151. return get_compound_page_dtor(page_head) == free_huge_page;
  1152. }
  1153. pgoff_t __basepage_index(struct page *page)
  1154. {
  1155. struct page *page_head = compound_head(page);
  1156. pgoff_t index = page_index(page_head);
  1157. unsigned long compound_idx;
  1158. if (!PageHuge(page_head))
  1159. return page_index(page);
  1160. if (compound_order(page_head) >= MAX_ORDER)
  1161. compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
  1162. else
  1163. compound_idx = page - page_head;
  1164. return (index << compound_order(page_head)) + compound_idx;
  1165. }
  1166. static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
  1167. {
  1168. struct page *page;
  1169. page = __alloc_pages_node(nid,
  1170. htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
  1171. __GFP_REPEAT|__GFP_NOWARN,
  1172. huge_page_order(h));
  1173. if (page) {
  1174. prep_new_huge_page(h, page, nid);
  1175. }
  1176. return page;
  1177. }
  1178. static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
  1179. {
  1180. struct page *page;
  1181. int nr_nodes, node;
  1182. int ret = 0;
  1183. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  1184. page = alloc_fresh_huge_page_node(h, node);
  1185. if (page) {
  1186. ret = 1;
  1187. break;
  1188. }
  1189. }
  1190. if (ret)
  1191. count_vm_event(HTLB_BUDDY_PGALLOC);
  1192. else
  1193. count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  1194. return ret;
  1195. }
  1196. /*
  1197. * Free huge page from pool from next node to free.
  1198. * Attempt to keep persistent huge pages more or less
  1199. * balanced over allowed nodes.
  1200. * Called with hugetlb_lock locked.
  1201. */
  1202. static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
  1203. bool acct_surplus)
  1204. {
  1205. int nr_nodes, node;
  1206. int ret = 0;
  1207. for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
  1208. /*
  1209. * If we're returning unused surplus pages, only examine
  1210. * nodes with surplus pages.
  1211. */
  1212. if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
  1213. !list_empty(&h->hugepage_freelists[node])) {
  1214. struct page *page =
  1215. list_entry(h->hugepage_freelists[node].next,
  1216. struct page, lru);
  1217. list_del(&page->lru);
  1218. h->free_huge_pages--;
  1219. h->free_huge_pages_node[node]--;
  1220. if (acct_surplus) {
  1221. h->surplus_huge_pages--;
  1222. h->surplus_huge_pages_node[node]--;
  1223. }
  1224. update_and_free_page(h, page);
  1225. ret = 1;
  1226. break;
  1227. }
  1228. }
  1229. return ret;
  1230. }
  1231. /*
  1232. * Dissolve a given free hugepage into free buddy pages. This function does
  1233. * nothing for in-use (including surplus) hugepages.
  1234. */
  1235. static void dissolve_free_huge_page(struct page *page)
  1236. {
  1237. spin_lock(&hugetlb_lock);
  1238. if (PageHuge(page) && !page_count(page)) {
  1239. struct hstate *h = page_hstate(page);
  1240. int nid = page_to_nid(page);
  1241. list_del(&page->lru);
  1242. h->free_huge_pages--;
  1243. h->free_huge_pages_node[nid]--;
  1244. update_and_free_page(h, page);
  1245. }
  1246. spin_unlock(&hugetlb_lock);
  1247. }
  1248. /*
  1249. * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
  1250. * make specified memory blocks removable from the system.
  1251. * Note that start_pfn should aligned with (minimum) hugepage size.
  1252. */
  1253. void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
  1254. {
  1255. unsigned long pfn;
  1256. if (!hugepages_supported())
  1257. return;
  1258. VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
  1259. for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
  1260. dissolve_free_huge_page(pfn_to_page(pfn));
  1261. }
  1262. /*
  1263. * There are 3 ways this can get called:
  1264. * 1. With vma+addr: we use the VMA's memory policy
  1265. * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
  1266. * page from any node, and let the buddy allocator itself figure
  1267. * it out.
  1268. * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
  1269. * strictly from 'nid'
  1270. */
  1271. static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
  1272. struct vm_area_struct *vma, unsigned long addr, int nid)
  1273. {
  1274. int order = huge_page_order(h);
  1275. gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
  1276. unsigned int cpuset_mems_cookie;
  1277. /*
  1278. * We need a VMA to get a memory policy. If we do not
  1279. * have one, we use the 'nid' argument.
  1280. *
  1281. * The mempolicy stuff below has some non-inlined bits
  1282. * and calls ->vm_ops. That makes it hard to optimize at
  1283. * compile-time, even when NUMA is off and it does
  1284. * nothing. This helps the compiler optimize it out.
  1285. */
  1286. if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
  1287. /*
  1288. * If a specific node is requested, make sure to
  1289. * get memory from there, but only when a node
  1290. * is explicitly specified.
  1291. */
  1292. if (nid != NUMA_NO_NODE)
  1293. gfp |= __GFP_THISNODE;
  1294. /*
  1295. * Make sure to call something that can handle
  1296. * nid=NUMA_NO_NODE
  1297. */
  1298. return alloc_pages_node(nid, gfp, order);
  1299. }
  1300. /*
  1301. * OK, so we have a VMA. Fetch the mempolicy and try to
  1302. * allocate a huge page with it. We will only reach this
  1303. * when CONFIG_NUMA=y.
  1304. */
  1305. do {
  1306. struct page *page;
  1307. struct mempolicy *mpol;
  1308. struct zonelist *zl;
  1309. nodemask_t *nodemask;
  1310. cpuset_mems_cookie = read_mems_allowed_begin();
  1311. zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
  1312. mpol_cond_put(mpol);
  1313. page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
  1314. if (page)
  1315. return page;
  1316. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  1317. return NULL;
  1318. }
  1319. /*
  1320. * There are two ways to allocate a huge page:
  1321. * 1. When you have a VMA and an address (like a fault)
  1322. * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
  1323. *
  1324. * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
  1325. * this case which signifies that the allocation should be done with
  1326. * respect for the VMA's memory policy.
  1327. *
  1328. * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
  1329. * implies that memory policies will not be taken in to account.
  1330. */
  1331. static struct page *__alloc_buddy_huge_page(struct hstate *h,
  1332. struct vm_area_struct *vma, unsigned long addr, int nid)
  1333. {
  1334. struct page *page;
  1335. unsigned int r_nid;
  1336. if (hstate_is_gigantic(h))
  1337. return NULL;
  1338. /*
  1339. * Make sure that anyone specifying 'nid' is not also specifying a VMA.
  1340. * This makes sure the caller is picking _one_ of the modes with which
  1341. * we can call this function, not both.
  1342. */
  1343. if (vma || (addr != -1)) {
  1344. VM_WARN_ON_ONCE(addr == -1);
  1345. VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
  1346. }
  1347. /*
  1348. * Assume we will successfully allocate the surplus page to
  1349. * prevent racing processes from causing the surplus to exceed
  1350. * overcommit
  1351. *
  1352. * This however introduces a different race, where a process B
  1353. * tries to grow the static hugepage pool while alloc_pages() is
  1354. * called by process A. B will only examine the per-node
  1355. * counters in determining if surplus huge pages can be
  1356. * converted to normal huge pages in adjust_pool_surplus(). A
  1357. * won't be able to increment the per-node counter, until the
  1358. * lock is dropped by B, but B doesn't drop hugetlb_lock until
  1359. * no more huge pages can be converted from surplus to normal
  1360. * state (and doesn't try to convert again). Thus, we have a
  1361. * case where a surplus huge page exists, the pool is grown, and
  1362. * the surplus huge page still exists after, even though it
  1363. * should just have been converted to a normal huge page. This
  1364. * does not leak memory, though, as the hugepage will be freed
  1365. * once it is out of use. It also does not allow the counters to
  1366. * go out of whack in adjust_pool_surplus() as we don't modify
  1367. * the node values until we've gotten the hugepage and only the
  1368. * per-node value is checked there.
  1369. */
  1370. spin_lock(&hugetlb_lock);
  1371. if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
  1372. spin_unlock(&hugetlb_lock);
  1373. return NULL;
  1374. } else {
  1375. h->nr_huge_pages++;
  1376. h->surplus_huge_pages++;
  1377. }
  1378. spin_unlock(&hugetlb_lock);
  1379. page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
  1380. spin_lock(&hugetlb_lock);
  1381. if (page) {
  1382. INIT_LIST_HEAD(&page->lru);
  1383. r_nid = page_to_nid(page);
  1384. set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
  1385. set_hugetlb_cgroup(page, NULL);
  1386. /*
  1387. * We incremented the global counters already
  1388. */
  1389. h->nr_huge_pages_node[r_nid]++;
  1390. h->surplus_huge_pages_node[r_nid]++;
  1391. __count_vm_event(HTLB_BUDDY_PGALLOC);
  1392. } else {
  1393. h->nr_huge_pages--;
  1394. h->surplus_huge_pages--;
  1395. __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  1396. }
  1397. spin_unlock(&hugetlb_lock);
  1398. return page;
  1399. }
  1400. /*
  1401. * Allocate a huge page from 'nid'. Note, 'nid' may be
  1402. * NUMA_NO_NODE, which means that it may be allocated
  1403. * anywhere.
  1404. */
  1405. static
  1406. struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
  1407. {
  1408. unsigned long addr = -1;
  1409. return __alloc_buddy_huge_page(h, NULL, addr, nid);
  1410. }
  1411. /*
  1412. * Use the VMA's mpolicy to allocate a huge page from the buddy.
  1413. */
  1414. static
  1415. struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
  1416. struct vm_area_struct *vma, unsigned long addr)
  1417. {
  1418. return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
  1419. }
  1420. /*
  1421. * This allocation function is useful in the context where vma is irrelevant.
  1422. * E.g. soft-offlining uses this function because it only cares physical
  1423. * address of error page.
  1424. */
  1425. struct page *alloc_huge_page_node(struct hstate *h, int nid)
  1426. {
  1427. struct page *page = NULL;
  1428. spin_lock(&hugetlb_lock);
  1429. if (h->free_huge_pages - h->resv_huge_pages > 0)
  1430. page = dequeue_huge_page_node(h, nid);
  1431. spin_unlock(&hugetlb_lock);
  1432. if (!page)
  1433. page = __alloc_buddy_huge_page_no_mpol(h, nid);
  1434. return page;
  1435. }
  1436. /*
  1437. * Increase the hugetlb pool such that it can accommodate a reservation
  1438. * of size 'delta'.
  1439. */
  1440. static int gather_surplus_pages(struct hstate *h, int delta)
  1441. {
  1442. struct list_head surplus_list;
  1443. struct page *page, *tmp;
  1444. int ret, i;
  1445. int needed, allocated;
  1446. bool alloc_ok = true;
  1447. needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
  1448. if (needed <= 0) {
  1449. h->resv_huge_pages += delta;
  1450. return 0;
  1451. }
  1452. allocated = 0;
  1453. INIT_LIST_HEAD(&surplus_list);
  1454. ret = -ENOMEM;
  1455. retry:
  1456. spin_unlock(&hugetlb_lock);
  1457. for (i = 0; i < needed; i++) {
  1458. page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
  1459. if (!page) {
  1460. alloc_ok = false;
  1461. break;
  1462. }
  1463. list_add(&page->lru, &surplus_list);
  1464. }
  1465. allocated += i;
  1466. /*
  1467. * After retaking hugetlb_lock, we need to recalculate 'needed'
  1468. * because either resv_huge_pages or free_huge_pages may have changed.
  1469. */
  1470. spin_lock(&hugetlb_lock);
  1471. needed = (h->resv_huge_pages + delta) -
  1472. (h->free_huge_pages + allocated);
  1473. if (needed > 0) {
  1474. if (alloc_ok)
  1475. goto retry;
  1476. /*
  1477. * We were not able to allocate enough pages to
  1478. * satisfy the entire reservation so we free what
  1479. * we've allocated so far.
  1480. */
  1481. goto free;
  1482. }
  1483. /*
  1484. * The surplus_list now contains _at_least_ the number of extra pages
  1485. * needed to accommodate the reservation. Add the appropriate number
  1486. * of pages to the hugetlb pool and free the extras back to the buddy
  1487. * allocator. Commit the entire reservation here to prevent another
  1488. * process from stealing the pages as they are added to the pool but
  1489. * before they are reserved.
  1490. */
  1491. needed += allocated;
  1492. h->resv_huge_pages += delta;
  1493. ret = 0;
  1494. /* Free the needed pages to the hugetlb pool */
  1495. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  1496. if ((--needed) < 0)
  1497. break;
  1498. /*
  1499. * This page is now managed by the hugetlb allocator and has
  1500. * no users -- drop the buddy allocator's reference.
  1501. */
  1502. put_page_testzero(page);
  1503. VM_BUG_ON_PAGE(page_count(page), page);
  1504. enqueue_huge_page(h, page);
  1505. }
  1506. free:
  1507. spin_unlock(&hugetlb_lock);
  1508. /* Free unnecessary surplus pages to the buddy allocator */
  1509. list_for_each_entry_safe(page, tmp, &surplus_list, lru)
  1510. put_page(page);
  1511. spin_lock(&hugetlb_lock);
  1512. return ret;
  1513. }
  1514. /*
  1515. * When releasing a hugetlb pool reservation, any surplus pages that were
  1516. * allocated to satisfy the reservation must be explicitly freed if they were
  1517. * never used.
  1518. * Called with hugetlb_lock held.
  1519. */
  1520. static void return_unused_surplus_pages(struct hstate *h,
  1521. unsigned long unused_resv_pages)
  1522. {
  1523. unsigned long nr_pages;
  1524. /* Uncommit the reservation */
  1525. h->resv_huge_pages -= unused_resv_pages;
  1526. /* Cannot return gigantic pages currently */
  1527. if (hstate_is_gigantic(h))
  1528. return;
  1529. nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
  1530. /*
  1531. * We want to release as many surplus pages as possible, spread
  1532. * evenly across all nodes with memory. Iterate across these nodes
  1533. * until we can no longer free unreserved surplus pages. This occurs
  1534. * when the nodes with surplus pages have no free pages.
  1535. * free_pool_huge_page() will balance the the freed pages across the
  1536. * on-line nodes with memory and will handle the hstate accounting.
  1537. */
  1538. while (nr_pages--) {
  1539. if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
  1540. break;
  1541. cond_resched_lock(&hugetlb_lock);
  1542. }
  1543. }
  1544. /*
  1545. * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
  1546. * are used by the huge page allocation routines to manage reservations.
  1547. *
  1548. * vma_needs_reservation is called to determine if the huge page at addr
  1549. * within the vma has an associated reservation. If a reservation is
  1550. * needed, the value 1 is returned. The caller is then responsible for
  1551. * managing the global reservation and subpool usage counts. After
  1552. * the huge page has been allocated, vma_commit_reservation is called
  1553. * to add the page to the reservation map. If the page allocation fails,
  1554. * the reservation must be ended instead of committed. vma_end_reservation
  1555. * is called in such cases.
  1556. *
  1557. * In the normal case, vma_commit_reservation returns the same value
  1558. * as the preceding vma_needs_reservation call. The only time this
  1559. * is not the case is if a reserve map was changed between calls. It
  1560. * is the responsibility of the caller to notice the difference and
  1561. * take appropriate action.
  1562. */
  1563. enum vma_resv_mode {
  1564. VMA_NEEDS_RESV,
  1565. VMA_COMMIT_RESV,
  1566. VMA_END_RESV,
  1567. };
  1568. static long __vma_reservation_common(struct hstate *h,
  1569. struct vm_area_struct *vma, unsigned long addr,
  1570. enum vma_resv_mode mode)
  1571. {
  1572. struct resv_map *resv;
  1573. pgoff_t idx;
  1574. long ret;
  1575. resv = vma_resv_map(vma);
  1576. if (!resv)
  1577. return 1;
  1578. idx = vma_hugecache_offset(h, vma, addr);
  1579. switch (mode) {
  1580. case VMA_NEEDS_RESV:
  1581. ret = region_chg(resv, idx, idx + 1);
  1582. break;
  1583. case VMA_COMMIT_RESV:
  1584. ret = region_add(resv, idx, idx + 1);
  1585. break;
  1586. case VMA_END_RESV:
  1587. region_abort(resv, idx, idx + 1);
  1588. ret = 0;
  1589. break;
  1590. default:
  1591. BUG();
  1592. }
  1593. if (vma->vm_flags & VM_MAYSHARE)
  1594. return ret;
  1595. else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
  1596. /*
  1597. * In most cases, reserves always exist for private mappings.
  1598. * However, a file associated with mapping could have been
  1599. * hole punched or truncated after reserves were consumed.
  1600. * As subsequent fault on such a range will not use reserves.
  1601. * Subtle - The reserve map for private mappings has the
  1602. * opposite meaning than that of shared mappings. If NO
  1603. * entry is in the reserve map, it means a reservation exists.
  1604. * If an entry exists in the reserve map, it means the
  1605. * reservation has already been consumed. As a result, the
  1606. * return value of this routine is the opposite of the
  1607. * value returned from reserve map manipulation routines above.
  1608. */
  1609. if (ret)
  1610. return 0;
  1611. else
  1612. return 1;
  1613. }
  1614. else
  1615. return ret < 0 ? ret : 0;
  1616. }
  1617. static long vma_needs_reservation(struct hstate *h,
  1618. struct vm_area_struct *vma, unsigned long addr)
  1619. {
  1620. return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
  1621. }
  1622. static long vma_commit_reservation(struct hstate *h,
  1623. struct vm_area_struct *vma, unsigned long addr)
  1624. {
  1625. return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
  1626. }
  1627. static void vma_end_reservation(struct hstate *h,
  1628. struct vm_area_struct *vma, unsigned long addr)
  1629. {
  1630. (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
  1631. }
  1632. struct page *alloc_huge_page(struct vm_area_struct *vma,
  1633. unsigned long addr, int avoid_reserve)
  1634. {
  1635. struct hugepage_subpool *spool = subpool_vma(vma);
  1636. struct hstate *h = hstate_vma(vma);
  1637. struct page *page;
  1638. long map_chg, map_commit;
  1639. long gbl_chg;
  1640. int ret, idx;
  1641. struct hugetlb_cgroup *h_cg;
  1642. idx = hstate_index(h);
  1643. /*
  1644. * Examine the region/reserve map to determine if the process
  1645. * has a reservation for the page to be allocated. A return
  1646. * code of zero indicates a reservation exists (no change).
  1647. */
  1648. map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
  1649. if (map_chg < 0)
  1650. return ERR_PTR(-ENOMEM);
  1651. /*
  1652. * Processes that did not create the mapping will have no
  1653. * reserves as indicated by the region/reserve map. Check
  1654. * that the allocation will not exceed the subpool limit.
  1655. * Allocations for MAP_NORESERVE mappings also need to be
  1656. * checked against any subpool limit.
  1657. */
  1658. if (map_chg || avoid_reserve) {
  1659. gbl_chg = hugepage_subpool_get_pages(spool, 1);
  1660. if (gbl_chg < 0) {
  1661. vma_end_reservation(h, vma, addr);
  1662. return ERR_PTR(-ENOSPC);
  1663. }
  1664. /*
  1665. * Even though there was no reservation in the region/reserve
  1666. * map, there could be reservations associated with the
  1667. * subpool that can be used. This would be indicated if the
  1668. * return value of hugepage_subpool_get_pages() is zero.
  1669. * However, if avoid_reserve is specified we still avoid even
  1670. * the subpool reservations.
  1671. */
  1672. if (avoid_reserve)
  1673. gbl_chg = 1;
  1674. }
  1675. ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
  1676. if (ret)
  1677. goto out_subpool_put;
  1678. spin_lock(&hugetlb_lock);
  1679. /*
  1680. * glb_chg is passed to indicate whether or not a page must be taken
  1681. * from the global free pool (global change). gbl_chg == 0 indicates
  1682. * a reservation exists for the allocation.
  1683. */
  1684. page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
  1685. if (!page) {
  1686. spin_unlock(&hugetlb_lock);
  1687. page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
  1688. if (!page)
  1689. goto out_uncharge_cgroup;
  1690. if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
  1691. SetPagePrivate(page);
  1692. h->resv_huge_pages--;
  1693. }
  1694. spin_lock(&hugetlb_lock);
  1695. list_move(&page->lru, &h->hugepage_activelist);
  1696. /* Fall through */
  1697. }
  1698. hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
  1699. spin_unlock(&hugetlb_lock);
  1700. set_page_private(page, (unsigned long)spool);
  1701. map_commit = vma_commit_reservation(h, vma, addr);
  1702. if (unlikely(map_chg > map_commit)) {
  1703. /*
  1704. * The page was added to the reservation map between
  1705. * vma_needs_reservation and vma_commit_reservation.
  1706. * This indicates a race with hugetlb_reserve_pages.
  1707. * Adjust for the subpool count incremented above AND
  1708. * in hugetlb_reserve_pages for the same page. Also,
  1709. * the reservation count added in hugetlb_reserve_pages
  1710. * no longer applies.
  1711. */
  1712. long rsv_adjust;
  1713. rsv_adjust = hugepage_subpool_put_pages(spool, 1);
  1714. hugetlb_acct_memory(h, -rsv_adjust);
  1715. }
  1716. return page;
  1717. out_uncharge_cgroup:
  1718. hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
  1719. out_subpool_put:
  1720. if (map_chg || avoid_reserve)
  1721. hugepage_subpool_put_pages(spool, 1);
  1722. vma_end_reservation(h, vma, addr);
  1723. return ERR_PTR(-ENOSPC);
  1724. }
  1725. /*
  1726. * alloc_huge_page()'s wrapper which simply returns the page if allocation
  1727. * succeeds, otherwise NULL. This function is called from new_vma_page(),
  1728. * where no ERR_VALUE is expected to be returned.
  1729. */
  1730. struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
  1731. unsigned long addr, int avoid_reserve)
  1732. {
  1733. struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
  1734. if (IS_ERR(page))
  1735. page = NULL;
  1736. return page;
  1737. }
  1738. int __weak alloc_bootmem_huge_page(struct hstate *h)
  1739. {
  1740. struct huge_bootmem_page *m;
  1741. int nr_nodes, node;
  1742. for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
  1743. void *addr;
  1744. addr = memblock_virt_alloc_try_nid_nopanic(
  1745. huge_page_size(h), huge_page_size(h),
  1746. 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
  1747. if (addr) {
  1748. /*
  1749. * Use the beginning of the huge page to store the
  1750. * huge_bootmem_page struct (until gather_bootmem
  1751. * puts them into the mem_map).
  1752. */
  1753. m = addr;
  1754. goto found;
  1755. }
  1756. }
  1757. return 0;
  1758. found:
  1759. BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
  1760. /* Put them into a private list first because mem_map is not up yet */
  1761. list_add(&m->list, &huge_boot_pages);
  1762. m->hstate = h;
  1763. return 1;
  1764. }
  1765. static void __init prep_compound_huge_page(struct page *page,
  1766. unsigned int order)
  1767. {
  1768. if (unlikely(order > (MAX_ORDER - 1)))
  1769. prep_compound_gigantic_page(page, order);
  1770. else
  1771. prep_compound_page(page, order);
  1772. }
  1773. /* Put bootmem huge pages into the standard lists after mem_map is up */
  1774. static void __init gather_bootmem_prealloc(void)
  1775. {
  1776. struct huge_bootmem_page *m;
  1777. list_for_each_entry(m, &huge_boot_pages, list) {
  1778. struct hstate *h = m->hstate;
  1779. struct page *page;
  1780. #ifdef CONFIG_HIGHMEM
  1781. page = pfn_to_page(m->phys >> PAGE_SHIFT);
  1782. memblock_free_late(__pa(m),
  1783. sizeof(struct huge_bootmem_page));
  1784. #else
  1785. page = virt_to_page(m);
  1786. #endif
  1787. WARN_ON(page_count(page) != 1);
  1788. prep_compound_huge_page(page, h->order);
  1789. WARN_ON(PageReserved(page));
  1790. prep_new_huge_page(h, page, page_to_nid(page));
  1791. /*
  1792. * If we had gigantic hugepages allocated at boot time, we need
  1793. * to restore the 'stolen' pages to totalram_pages in order to
  1794. * fix confusing memory reports from free(1) and another
  1795. * side-effects, like CommitLimit going negative.
  1796. */
  1797. if (hstate_is_gigantic(h))
  1798. adjust_managed_page_count(page, 1 << h->order);
  1799. }
  1800. }
  1801. static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
  1802. {
  1803. unsigned long i;
  1804. for (i = 0; i < h->max_huge_pages; ++i) {
  1805. if (hstate_is_gigantic(h)) {
  1806. if (!alloc_bootmem_huge_page(h))
  1807. break;
  1808. } else if (!alloc_fresh_huge_page(h,
  1809. &node_states[N_MEMORY]))
  1810. break;
  1811. }
  1812. h->max_huge_pages = i;
  1813. }
  1814. static void __init hugetlb_init_hstates(void)
  1815. {
  1816. struct hstate *h;
  1817. for_each_hstate(h) {
  1818. if (minimum_order > huge_page_order(h))
  1819. minimum_order = huge_page_order(h);
  1820. /* oversize hugepages were init'ed in early boot */
  1821. if (!hstate_is_gigantic(h))
  1822. hugetlb_hstate_alloc_pages(h);
  1823. }
  1824. VM_BUG_ON(minimum_order == UINT_MAX);
  1825. }
  1826. static char * __init memfmt(char *buf, unsigned long n)
  1827. {
  1828. if (n >= (1UL << 30))
  1829. sprintf(buf, "%lu GB", n >> 30);
  1830. else if (n >= (1UL << 20))
  1831. sprintf(buf, "%lu MB", n >> 20);
  1832. else
  1833. sprintf(buf, "%lu KB", n >> 10);
  1834. return buf;
  1835. }
  1836. static void __init report_hugepages(void)
  1837. {
  1838. struct hstate *h;
  1839. for_each_hstate(h) {
  1840. char buf[32];
  1841. pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
  1842. memfmt(buf, huge_page_size(h)),
  1843. h->free_huge_pages);
  1844. }
  1845. }
  1846. #ifdef CONFIG_HIGHMEM
  1847. static void try_to_free_low(struct hstate *h, unsigned long count,
  1848. nodemask_t *nodes_allowed)
  1849. {
  1850. int i;
  1851. if (hstate_is_gigantic(h))
  1852. return;
  1853. for_each_node_mask(i, *nodes_allowed) {
  1854. struct page *page, *next;
  1855. struct list_head *freel = &h->hugepage_freelists[i];
  1856. list_for_each_entry_safe(page, next, freel, lru) {
  1857. if (count >= h->nr_huge_pages)
  1858. return;
  1859. if (PageHighMem(page))
  1860. continue;
  1861. list_del(&page->lru);
  1862. update_and_free_page(h, page);
  1863. h->free_huge_pages--;
  1864. h->free_huge_pages_node[page_to_nid(page)]--;
  1865. }
  1866. }
  1867. }
  1868. #else
  1869. static inline void try_to_free_low(struct hstate *h, unsigned long count,
  1870. nodemask_t *nodes_allowed)
  1871. {
  1872. }
  1873. #endif
  1874. /*
  1875. * Increment or decrement surplus_huge_pages. Keep node-specific counters
  1876. * balanced by operating on them in a round-robin fashion.
  1877. * Returns 1 if an adjustment was made.
  1878. */
  1879. static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
  1880. int delta)
  1881. {
  1882. int nr_nodes, node;
  1883. VM_BUG_ON(delta != -1 && delta != 1);
  1884. if (delta < 0) {
  1885. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  1886. if (h->surplus_huge_pages_node[node])
  1887. goto found;
  1888. }
  1889. } else {
  1890. for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
  1891. if (h->surplus_huge_pages_node[node] <
  1892. h->nr_huge_pages_node[node])
  1893. goto found;
  1894. }
  1895. }
  1896. return 0;
  1897. found:
  1898. h->surplus_huge_pages += delta;
  1899. h->surplus_huge_pages_node[node] += delta;
  1900. return 1;
  1901. }
  1902. #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
  1903. static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
  1904. nodemask_t *nodes_allowed)
  1905. {
  1906. unsigned long min_count, ret;
  1907. if (hstate_is_gigantic(h) && !gigantic_page_supported())
  1908. return h->max_huge_pages;
  1909. /*
  1910. * Increase the pool size
  1911. * First take pages out of surplus state. Then make up the
  1912. * remaining difference by allocating fresh huge pages.
  1913. *
  1914. * We might race with __alloc_buddy_huge_page() here and be unable
  1915. * to convert a surplus huge page to a normal huge page. That is
  1916. * not critical, though, it just means the overall size of the
  1917. * pool might be one hugepage larger than it needs to be, but
  1918. * within all the constraints specified by the sysctls.
  1919. */
  1920. spin_lock(&hugetlb_lock);
  1921. while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
  1922. if (!adjust_pool_surplus(h, nodes_allowed, -1))
  1923. break;
  1924. }
  1925. while (count > persistent_huge_pages(h)) {
  1926. /*
  1927. * If this allocation races such that we no longer need the
  1928. * page, free_huge_page will handle it by freeing the page
  1929. * and reducing the surplus.
  1930. */
  1931. spin_unlock(&hugetlb_lock);
  1932. if (hstate_is_gigantic(h))
  1933. ret = alloc_fresh_gigantic_page(h, nodes_allowed);
  1934. else
  1935. ret = alloc_fresh_huge_page(h, nodes_allowed);
  1936. spin_lock(&hugetlb_lock);
  1937. if (!ret)
  1938. goto out;
  1939. /* Bail for signals. Probably ctrl-c from user */
  1940. if (signal_pending(current))
  1941. goto out;
  1942. }
  1943. /*
  1944. * Decrease the pool size
  1945. * First return free pages to the buddy allocator (being careful
  1946. * to keep enough around to satisfy reservations). Then place
  1947. * pages into surplus state as needed so the pool will shrink
  1948. * to the desired size as pages become free.
  1949. *
  1950. * By placing pages into the surplus state independent of the
  1951. * overcommit value, we are allowing the surplus pool size to
  1952. * exceed overcommit. There are few sane options here. Since
  1953. * __alloc_buddy_huge_page() is checking the global counter,
  1954. * though, we'll note that we're not allowed to exceed surplus
  1955. * and won't grow the pool anywhere else. Not until one of the
  1956. * sysctls are changed, or the surplus pages go out of use.
  1957. */
  1958. min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
  1959. min_count = max(count, min_count);
  1960. try_to_free_low(h, min_count, nodes_allowed);
  1961. while (min_count < persistent_huge_pages(h)) {
  1962. if (!free_pool_huge_page(h, nodes_allowed, 0))
  1963. break;
  1964. cond_resched_lock(&hugetlb_lock);
  1965. }
  1966. while (count < persistent_huge_pages(h)) {
  1967. if (!adjust_pool_surplus(h, nodes_allowed, 1))
  1968. break;
  1969. }
  1970. out:
  1971. ret = persistent_huge_pages(h);
  1972. spin_unlock(&hugetlb_lock);
  1973. return ret;
  1974. }
  1975. #define HSTATE_ATTR_RO(_name) \
  1976. static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
  1977. #define HSTATE_ATTR(_name) \
  1978. static struct kobj_attribute _name##_attr = \
  1979. __ATTR(_name, 0644, _name##_show, _name##_store)
  1980. static struct kobject *hugepages_kobj;
  1981. static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1982. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
  1983. static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
  1984. {
  1985. int i;
  1986. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1987. if (hstate_kobjs[i] == kobj) {
  1988. if (nidp)
  1989. *nidp = NUMA_NO_NODE;
  1990. return &hstates[i];
  1991. }
  1992. return kobj_to_node_hstate(kobj, nidp);
  1993. }
  1994. static ssize_t nr_hugepages_show_common(struct kobject *kobj,
  1995. struct kobj_attribute *attr, char *buf)
  1996. {
  1997. struct hstate *h;
  1998. unsigned long nr_huge_pages;
  1999. int nid;
  2000. h = kobj_to_hstate(kobj, &nid);
  2001. if (nid == NUMA_NO_NODE)
  2002. nr_huge_pages = h->nr_huge_pages;
  2003. else
  2004. nr_huge_pages = h->nr_huge_pages_node[nid];
  2005. return sprintf(buf, "%lu\n", nr_huge_pages);
  2006. }
  2007. static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
  2008. struct hstate *h, int nid,
  2009. unsigned long count, size_t len)
  2010. {
  2011. int err;
  2012. NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
  2013. if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
  2014. err = -EINVAL;
  2015. goto out;
  2016. }
  2017. if (nid == NUMA_NO_NODE) {
  2018. /*
  2019. * global hstate attribute
  2020. */
  2021. if (!(obey_mempolicy &&
  2022. init_nodemask_of_mempolicy(nodes_allowed))) {
  2023. NODEMASK_FREE(nodes_allowed);
  2024. nodes_allowed = &node_states[N_MEMORY];
  2025. }
  2026. } else if (nodes_allowed) {
  2027. /*
  2028. * per node hstate attribute: adjust count to global,
  2029. * but restrict alloc/free to the specified node.
  2030. */
  2031. count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
  2032. init_nodemask_of_node(nodes_allowed, nid);
  2033. } else
  2034. nodes_allowed = &node_states[N_MEMORY];
  2035. h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
  2036. if (nodes_allowed != &node_states[N_MEMORY])
  2037. NODEMASK_FREE(nodes_allowed);
  2038. return len;
  2039. out:
  2040. NODEMASK_FREE(nodes_allowed);
  2041. return err;
  2042. }
  2043. static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
  2044. struct kobject *kobj, const char *buf,
  2045. size_t len)
  2046. {
  2047. struct hstate *h;
  2048. unsigned long count;
  2049. int nid;
  2050. int err;
  2051. err = kstrtoul(buf, 10, &count);
  2052. if (err)
  2053. return err;
  2054. h = kobj_to_hstate(kobj, &nid);
  2055. return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
  2056. }
  2057. static ssize_t nr_hugepages_show(struct kobject *kobj,
  2058. struct kobj_attribute *attr, char *buf)
  2059. {
  2060. return nr_hugepages_show_common(kobj, attr, buf);
  2061. }
  2062. static ssize_t nr_hugepages_store(struct kobject *kobj,
  2063. struct kobj_attribute *attr, const char *buf, size_t len)
  2064. {
  2065. return nr_hugepages_store_common(false, kobj, buf, len);
  2066. }
  2067. HSTATE_ATTR(nr_hugepages);
  2068. #ifdef CONFIG_NUMA
  2069. /*
  2070. * hstate attribute for optionally mempolicy-based constraint on persistent
  2071. * huge page alloc/free.
  2072. */
  2073. static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
  2074. struct kobj_attribute *attr, char *buf)
  2075. {
  2076. return nr_hugepages_show_common(kobj, attr, buf);
  2077. }
  2078. static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
  2079. struct kobj_attribute *attr, const char *buf, size_t len)
  2080. {
  2081. return nr_hugepages_store_common(true, kobj, buf, len);
  2082. }
  2083. HSTATE_ATTR(nr_hugepages_mempolicy);
  2084. #endif
  2085. static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
  2086. struct kobj_attribute *attr, char *buf)
  2087. {
  2088. struct hstate *h = kobj_to_hstate(kobj, NULL);
  2089. return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
  2090. }
  2091. static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
  2092. struct kobj_attribute *attr, const char *buf, size_t count)
  2093. {
  2094. int err;
  2095. unsigned long input;
  2096. struct hstate *h = kobj_to_hstate(kobj, NULL);
  2097. if (hstate_is_gigantic(h))
  2098. return -EINVAL;
  2099. err = kstrtoul(buf, 10, &input);
  2100. if (err)
  2101. return err;
  2102. spin_lock(&hugetlb_lock);
  2103. h->nr_overcommit_huge_pages = input;
  2104. spin_unlock(&hugetlb_lock);
  2105. return count;
  2106. }
  2107. HSTATE_ATTR(nr_overcommit_hugepages);
  2108. static ssize_t free_hugepages_show(struct kobject *kobj,
  2109. struct kobj_attribute *attr, char *buf)
  2110. {
  2111. struct hstate *h;
  2112. unsigned long free_huge_pages;
  2113. int nid;
  2114. h = kobj_to_hstate(kobj, &nid);
  2115. if (nid == NUMA_NO_NODE)
  2116. free_huge_pages = h->free_huge_pages;
  2117. else
  2118. free_huge_pages = h->free_huge_pages_node[nid];
  2119. return sprintf(buf, "%lu\n", free_huge_pages);
  2120. }
  2121. HSTATE_ATTR_RO(free_hugepages);
  2122. static ssize_t resv_hugepages_show(struct kobject *kobj,
  2123. struct kobj_attribute *attr, char *buf)
  2124. {
  2125. struct hstate *h = kobj_to_hstate(kobj, NULL);
  2126. return sprintf(buf, "%lu\n", h->resv_huge_pages);
  2127. }
  2128. HSTATE_ATTR_RO(resv_hugepages);
  2129. static ssize_t surplus_hugepages_show(struct kobject *kobj,
  2130. struct kobj_attribute *attr, char *buf)
  2131. {
  2132. struct hstate *h;
  2133. unsigned long surplus_huge_pages;
  2134. int nid;
  2135. h = kobj_to_hstate(kobj, &nid);
  2136. if (nid == NUMA_NO_NODE)
  2137. surplus_huge_pages = h->surplus_huge_pages;
  2138. else
  2139. surplus_huge_pages = h->surplus_huge_pages_node[nid];
  2140. return sprintf(buf, "%lu\n", surplus_huge_pages);
  2141. }
  2142. HSTATE_ATTR_RO(surplus_hugepages);
  2143. static struct attribute *hstate_attrs[] = {
  2144. &nr_hugepages_attr.attr,
  2145. &nr_overcommit_hugepages_attr.attr,
  2146. &free_hugepages_attr.attr,
  2147. &resv_hugepages_attr.attr,
  2148. &surplus_hugepages_attr.attr,
  2149. #ifdef CONFIG_NUMA
  2150. &nr_hugepages_mempolicy_attr.attr,
  2151. #endif
  2152. NULL,
  2153. };
  2154. static struct attribute_group hstate_attr_group = {
  2155. .attrs = hstate_attrs,
  2156. };
  2157. static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
  2158. struct kobject **hstate_kobjs,
  2159. struct attribute_group *hstate_attr_group)
  2160. {
  2161. int retval;
  2162. int hi = hstate_index(h);
  2163. hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
  2164. if (!hstate_kobjs[hi])
  2165. return -ENOMEM;
  2166. retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
  2167. if (retval)
  2168. kobject_put(hstate_kobjs[hi]);
  2169. return retval;
  2170. }
  2171. static void __init hugetlb_sysfs_init(void)
  2172. {
  2173. struct hstate *h;
  2174. int err;
  2175. hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
  2176. if (!hugepages_kobj)
  2177. return;
  2178. for_each_hstate(h) {
  2179. err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
  2180. hstate_kobjs, &hstate_attr_group);
  2181. if (err)
  2182. pr_err("Hugetlb: Unable to add hstate %s", h->name);
  2183. }
  2184. }
  2185. #ifdef CONFIG_NUMA
  2186. /*
  2187. * node_hstate/s - associate per node hstate attributes, via their kobjects,
  2188. * with node devices in node_devices[] using a parallel array. The array
  2189. * index of a node device or _hstate == node id.
  2190. * This is here to avoid any static dependency of the node device driver, in
  2191. * the base kernel, on the hugetlb module.
  2192. */
  2193. struct node_hstate {
  2194. struct kobject *hugepages_kobj;
  2195. struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  2196. };
  2197. static struct node_hstate node_hstates[MAX_NUMNODES];
  2198. /*
  2199. * A subset of global hstate attributes for node devices
  2200. */
  2201. static struct attribute *per_node_hstate_attrs[] = {
  2202. &nr_hugepages_attr.attr,
  2203. &free_hugepages_attr.attr,
  2204. &surplus_hugepages_attr.attr,
  2205. NULL,
  2206. };
  2207. static struct attribute_group per_node_hstate_attr_group = {
  2208. .attrs = per_node_hstate_attrs,
  2209. };
  2210. /*
  2211. * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
  2212. * Returns node id via non-NULL nidp.
  2213. */
  2214. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  2215. {
  2216. int nid;
  2217. for (nid = 0; nid < nr_node_ids; nid++) {
  2218. struct node_hstate *nhs = &node_hstates[nid];
  2219. int i;
  2220. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  2221. if (nhs->hstate_kobjs[i] == kobj) {
  2222. if (nidp)
  2223. *nidp = nid;
  2224. return &hstates[i];
  2225. }
  2226. }
  2227. BUG();
  2228. return NULL;
  2229. }
  2230. /*
  2231. * Unregister hstate attributes from a single node device.
  2232. * No-op if no hstate attributes attached.
  2233. */
  2234. static void hugetlb_unregister_node(struct node *node)
  2235. {
  2236. struct hstate *h;
  2237. struct node_hstate *nhs = &node_hstates[node->dev.id];
  2238. if (!nhs->hugepages_kobj)
  2239. return; /* no hstate attributes */
  2240. for_each_hstate(h) {
  2241. int idx = hstate_index(h);
  2242. if (nhs->hstate_kobjs[idx]) {
  2243. kobject_put(nhs->hstate_kobjs[idx]);
  2244. nhs->hstate_kobjs[idx] = NULL;
  2245. }
  2246. }
  2247. kobject_put(nhs->hugepages_kobj);
  2248. nhs->hugepages_kobj = NULL;
  2249. }
  2250. /*
  2251. * Register hstate attributes for a single node device.
  2252. * No-op if attributes already registered.
  2253. */
  2254. static void hugetlb_register_node(struct node *node)
  2255. {
  2256. struct hstate *h;
  2257. struct node_hstate *nhs = &node_hstates[node->dev.id];
  2258. int err;
  2259. if (nhs->hugepages_kobj)
  2260. return; /* already allocated */
  2261. nhs->hugepages_kobj = kobject_create_and_add("hugepages",
  2262. &node->dev.kobj);
  2263. if (!nhs->hugepages_kobj)
  2264. return;
  2265. for_each_hstate(h) {
  2266. err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
  2267. nhs->hstate_kobjs,
  2268. &per_node_hstate_attr_group);
  2269. if (err) {
  2270. pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
  2271. h->name, node->dev.id);
  2272. hugetlb_unregister_node(node);
  2273. break;
  2274. }
  2275. }
  2276. }
  2277. /*
  2278. * hugetlb init time: register hstate attributes for all registered node
  2279. * devices of nodes that have memory. All on-line nodes should have
  2280. * registered their associated device by this time.
  2281. */
  2282. static void __init hugetlb_register_all_nodes(void)
  2283. {
  2284. int nid;
  2285. for_each_node_state(nid, N_MEMORY) {
  2286. struct node *node = node_devices[nid];
  2287. if (node->dev.id == nid)
  2288. hugetlb_register_node(node);
  2289. }
  2290. /*
  2291. * Let the node device driver know we're here so it can
  2292. * [un]register hstate attributes on node hotplug.
  2293. */
  2294. register_hugetlbfs_with_node(hugetlb_register_node,
  2295. hugetlb_unregister_node);
  2296. }
  2297. #else /* !CONFIG_NUMA */
  2298. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  2299. {
  2300. BUG();
  2301. if (nidp)
  2302. *nidp = -1;
  2303. return NULL;
  2304. }
  2305. static void hugetlb_register_all_nodes(void) { }
  2306. #endif
  2307. static int __init hugetlb_init(void)
  2308. {
  2309. int i;
  2310. if (!hugepages_supported())
  2311. return 0;
  2312. if (!size_to_hstate(default_hstate_size)) {
  2313. default_hstate_size = HPAGE_SIZE;
  2314. if (!size_to_hstate(default_hstate_size))
  2315. hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
  2316. }
  2317. default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
  2318. if (default_hstate_max_huge_pages) {
  2319. if (!default_hstate.max_huge_pages)
  2320. default_hstate.max_huge_pages = default_hstate_max_huge_pages;
  2321. }
  2322. hugetlb_init_hstates();
  2323. gather_bootmem_prealloc();
  2324. report_hugepages();
  2325. hugetlb_sysfs_init();
  2326. hugetlb_register_all_nodes();
  2327. hugetlb_cgroup_file_init();
  2328. #ifdef CONFIG_SMP
  2329. num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
  2330. #else
  2331. num_fault_mutexes = 1;
  2332. #endif
  2333. hugetlb_fault_mutex_table =
  2334. kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
  2335. BUG_ON(!hugetlb_fault_mutex_table);
  2336. for (i = 0; i < num_fault_mutexes; i++)
  2337. mutex_init(&hugetlb_fault_mutex_table[i]);
  2338. return 0;
  2339. }
  2340. subsys_initcall(hugetlb_init);
  2341. /* Should be called on processing a hugepagesz=... option */
  2342. void __init hugetlb_bad_size(void)
  2343. {
  2344. parsed_valid_hugepagesz = false;
  2345. }
  2346. void __init hugetlb_add_hstate(unsigned int order)
  2347. {
  2348. struct hstate *h;
  2349. unsigned long i;
  2350. if (size_to_hstate(PAGE_SIZE << order)) {
  2351. pr_warn("hugepagesz= specified twice, ignoring\n");
  2352. return;
  2353. }
  2354. BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
  2355. BUG_ON(order == 0);
  2356. h = &hstates[hugetlb_max_hstate++];
  2357. h->order = order;
  2358. h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
  2359. h->nr_huge_pages = 0;
  2360. h->free_huge_pages = 0;
  2361. for (i = 0; i < MAX_NUMNODES; ++i)
  2362. INIT_LIST_HEAD(&h->hugepage_freelists[i]);
  2363. INIT_LIST_HEAD(&h->hugepage_activelist);
  2364. h->next_nid_to_alloc = first_memory_node;
  2365. h->next_nid_to_free = first_memory_node;
  2366. snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
  2367. huge_page_size(h)/1024);
  2368. parsed_hstate = h;
  2369. }
  2370. static int __init hugetlb_nrpages_setup(char *s)
  2371. {
  2372. unsigned long *mhp;
  2373. static unsigned long *last_mhp;
  2374. if (!parsed_valid_hugepagesz) {
  2375. pr_warn("hugepages = %s preceded by "
  2376. "an unsupported hugepagesz, ignoring\n", s);
  2377. parsed_valid_hugepagesz = true;
  2378. return 1;
  2379. }
  2380. /*
  2381. * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
  2382. * so this hugepages= parameter goes to the "default hstate".
  2383. */
  2384. else if (!hugetlb_max_hstate)
  2385. mhp = &default_hstate_max_huge_pages;
  2386. else
  2387. mhp = &parsed_hstate->max_huge_pages;
  2388. if (mhp == last_mhp) {
  2389. pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
  2390. return 1;
  2391. }
  2392. if (sscanf(s, "%lu", mhp) <= 0)
  2393. *mhp = 0;
  2394. /*
  2395. * Global state is always initialized later in hugetlb_init.
  2396. * But we need to allocate >= MAX_ORDER hstates here early to still
  2397. * use the bootmem allocator.
  2398. */
  2399. if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
  2400. hugetlb_hstate_alloc_pages(parsed_hstate);
  2401. last_mhp = mhp;
  2402. return 1;
  2403. }
  2404. __setup("hugepages=", hugetlb_nrpages_setup);
  2405. static int __init hugetlb_default_setup(char *s)
  2406. {
  2407. default_hstate_size = memparse(s, &s);
  2408. return 1;
  2409. }
  2410. __setup("default_hugepagesz=", hugetlb_default_setup);
  2411. static unsigned int cpuset_mems_nr(unsigned int *array)
  2412. {
  2413. int node;
  2414. unsigned int nr = 0;
  2415. for_each_node_mask(node, cpuset_current_mems_allowed)
  2416. nr += array[node];
  2417. return nr;
  2418. }
  2419. #ifdef CONFIG_SYSCTL
  2420. static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
  2421. struct ctl_table *table, int write,
  2422. void __user *buffer, size_t *length, loff_t *ppos)
  2423. {
  2424. struct hstate *h = &default_hstate;
  2425. unsigned long tmp = h->max_huge_pages;
  2426. int ret;
  2427. if (!hugepages_supported())
  2428. return -EOPNOTSUPP;
  2429. table->data = &tmp;
  2430. table->maxlen = sizeof(unsigned long);
  2431. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  2432. if (ret)
  2433. goto out;
  2434. if (write)
  2435. ret = __nr_hugepages_store_common(obey_mempolicy, h,
  2436. NUMA_NO_NODE, tmp, *length);
  2437. out:
  2438. return ret;
  2439. }
  2440. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  2441. void __user *buffer, size_t *length, loff_t *ppos)
  2442. {
  2443. return hugetlb_sysctl_handler_common(false, table, write,
  2444. buffer, length, ppos);
  2445. }
  2446. #ifdef CONFIG_NUMA
  2447. int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
  2448. void __user *buffer, size_t *length, loff_t *ppos)
  2449. {
  2450. return hugetlb_sysctl_handler_common(true, table, write,
  2451. buffer, length, ppos);
  2452. }
  2453. #endif /* CONFIG_NUMA */
  2454. int hugetlb_overcommit_handler(struct ctl_table *table, int write,
  2455. void __user *buffer,
  2456. size_t *length, loff_t *ppos)
  2457. {
  2458. struct hstate *h = &default_hstate;
  2459. unsigned long tmp;
  2460. int ret;
  2461. if (!hugepages_supported())
  2462. return -EOPNOTSUPP;
  2463. tmp = h->nr_overcommit_huge_pages;
  2464. if (write && hstate_is_gigantic(h))
  2465. return -EINVAL;
  2466. table->data = &tmp;
  2467. table->maxlen = sizeof(unsigned long);
  2468. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  2469. if (ret)
  2470. goto out;
  2471. if (write) {
  2472. spin_lock(&hugetlb_lock);
  2473. h->nr_overcommit_huge_pages = tmp;
  2474. spin_unlock(&hugetlb_lock);
  2475. }
  2476. out:
  2477. return ret;
  2478. }
  2479. #endif /* CONFIG_SYSCTL */
  2480. void hugetlb_report_meminfo(struct seq_file *m)
  2481. {
  2482. struct hstate *h = &default_hstate;
  2483. if (!hugepages_supported())
  2484. return;
  2485. seq_printf(m,
  2486. "HugePages_Total: %5lu\n"
  2487. "HugePages_Free: %5lu\n"
  2488. "HugePages_Rsvd: %5lu\n"
  2489. "HugePages_Surp: %5lu\n"
  2490. "Hugepagesize: %8lu kB\n",
  2491. h->nr_huge_pages,
  2492. h->free_huge_pages,
  2493. h->resv_huge_pages,
  2494. h->surplus_huge_pages,
  2495. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  2496. }
  2497. int hugetlb_report_node_meminfo(int nid, char *buf)
  2498. {
  2499. struct hstate *h = &default_hstate;
  2500. if (!hugepages_supported())
  2501. return 0;
  2502. return sprintf(buf,
  2503. "Node %d HugePages_Total: %5u\n"
  2504. "Node %d HugePages_Free: %5u\n"
  2505. "Node %d HugePages_Surp: %5u\n",
  2506. nid, h->nr_huge_pages_node[nid],
  2507. nid, h->free_huge_pages_node[nid],
  2508. nid, h->surplus_huge_pages_node[nid]);
  2509. }
  2510. void hugetlb_show_meminfo(void)
  2511. {
  2512. struct hstate *h;
  2513. int nid;
  2514. if (!hugepages_supported())
  2515. return;
  2516. for_each_node_state(nid, N_MEMORY)
  2517. for_each_hstate(h)
  2518. pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
  2519. nid,
  2520. h->nr_huge_pages_node[nid],
  2521. h->free_huge_pages_node[nid],
  2522. h->surplus_huge_pages_node[nid],
  2523. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  2524. }
  2525. void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
  2526. {
  2527. seq_printf(m, "HugetlbPages:\t%8lu kB\n",
  2528. atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
  2529. }
  2530. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  2531. unsigned long hugetlb_total_pages(void)
  2532. {
  2533. struct hstate *h;
  2534. unsigned long nr_total_pages = 0;
  2535. for_each_hstate(h)
  2536. nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
  2537. return nr_total_pages;
  2538. }
  2539. static int hugetlb_acct_memory(struct hstate *h, long delta)
  2540. {
  2541. int ret = -ENOMEM;
  2542. spin_lock(&hugetlb_lock);
  2543. /*
  2544. * When cpuset is configured, it breaks the strict hugetlb page
  2545. * reservation as the accounting is done on a global variable. Such
  2546. * reservation is completely rubbish in the presence of cpuset because
  2547. * the reservation is not checked against page availability for the
  2548. * current cpuset. Application can still potentially OOM'ed by kernel
  2549. * with lack of free htlb page in cpuset that the task is in.
  2550. * Attempt to enforce strict accounting with cpuset is almost
  2551. * impossible (or too ugly) because cpuset is too fluid that
  2552. * task or memory node can be dynamically moved between cpusets.
  2553. *
  2554. * The change of semantics for shared hugetlb mapping with cpuset is
  2555. * undesirable. However, in order to preserve some of the semantics,
  2556. * we fall back to check against current free page availability as
  2557. * a best attempt and hopefully to minimize the impact of changing
  2558. * semantics that cpuset has.
  2559. */
  2560. if (delta > 0) {
  2561. if (gather_surplus_pages(h, delta) < 0)
  2562. goto out;
  2563. if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
  2564. return_unused_surplus_pages(h, delta);
  2565. goto out;
  2566. }
  2567. }
  2568. ret = 0;
  2569. if (delta < 0)
  2570. return_unused_surplus_pages(h, (unsigned long) -delta);
  2571. out:
  2572. spin_unlock(&hugetlb_lock);
  2573. return ret;
  2574. }
  2575. static void hugetlb_vm_op_open(struct vm_area_struct *vma)
  2576. {
  2577. struct resv_map *resv = vma_resv_map(vma);
  2578. /*
  2579. * This new VMA should share its siblings reservation map if present.
  2580. * The VMA will only ever have a valid reservation map pointer where
  2581. * it is being copied for another still existing VMA. As that VMA
  2582. * has a reference to the reservation map it cannot disappear until
  2583. * after this open call completes. It is therefore safe to take a
  2584. * new reference here without additional locking.
  2585. */
  2586. if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  2587. kref_get(&resv->refs);
  2588. }
  2589. static void hugetlb_vm_op_close(struct vm_area_struct *vma)
  2590. {
  2591. struct hstate *h = hstate_vma(vma);
  2592. struct resv_map *resv = vma_resv_map(vma);
  2593. struct hugepage_subpool *spool = subpool_vma(vma);
  2594. unsigned long reserve, start, end;
  2595. long gbl_reserve;
  2596. if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  2597. return;
  2598. start = vma_hugecache_offset(h, vma, vma->vm_start);
  2599. end = vma_hugecache_offset(h, vma, vma->vm_end);
  2600. reserve = (end - start) - region_count(resv, start, end);
  2601. kref_put(&resv->refs, resv_map_release);
  2602. if (reserve) {
  2603. /*
  2604. * Decrement reserve counts. The global reserve count may be
  2605. * adjusted if the subpool has a minimum size.
  2606. */
  2607. gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
  2608. hugetlb_acct_memory(h, -gbl_reserve);
  2609. }
  2610. }
  2611. /*
  2612. * We cannot handle pagefaults against hugetlb pages at all. They cause
  2613. * handle_mm_fault() to try to instantiate regular-sized pages in the
  2614. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  2615. * this far.
  2616. */
  2617. static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  2618. {
  2619. BUG();
  2620. return 0;
  2621. }
  2622. const struct vm_operations_struct hugetlb_vm_ops = {
  2623. .fault = hugetlb_vm_op_fault,
  2624. .open = hugetlb_vm_op_open,
  2625. .close = hugetlb_vm_op_close,
  2626. };
  2627. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  2628. int writable)
  2629. {
  2630. pte_t entry;
  2631. if (writable) {
  2632. entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
  2633. vma->vm_page_prot)));
  2634. } else {
  2635. entry = huge_pte_wrprotect(mk_huge_pte(page,
  2636. vma->vm_page_prot));
  2637. }
  2638. entry = pte_mkyoung(entry);
  2639. entry = pte_mkhuge(entry);
  2640. entry = arch_make_huge_pte(entry, vma, page, writable);
  2641. return entry;
  2642. }
  2643. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  2644. unsigned long address, pte_t *ptep)
  2645. {
  2646. pte_t entry;
  2647. entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
  2648. if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
  2649. update_mmu_cache(vma, address, ptep);
  2650. }
  2651. static int is_hugetlb_entry_migration(pte_t pte)
  2652. {
  2653. swp_entry_t swp;
  2654. if (huge_pte_none(pte) || pte_present(pte))
  2655. return 0;
  2656. swp = pte_to_swp_entry(pte);
  2657. if (non_swap_entry(swp) && is_migration_entry(swp))
  2658. return 1;
  2659. else
  2660. return 0;
  2661. }
  2662. static int is_hugetlb_entry_hwpoisoned(pte_t pte)
  2663. {
  2664. swp_entry_t swp;
  2665. if (huge_pte_none(pte) || pte_present(pte))
  2666. return 0;
  2667. swp = pte_to_swp_entry(pte);
  2668. if (non_swap_entry(swp) && is_hwpoison_entry(swp))
  2669. return 1;
  2670. else
  2671. return 0;
  2672. }
  2673. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  2674. struct vm_area_struct *vma)
  2675. {
  2676. pte_t *src_pte, *dst_pte, entry;
  2677. struct page *ptepage;
  2678. unsigned long addr;
  2679. int cow;
  2680. struct hstate *h = hstate_vma(vma);
  2681. unsigned long sz = huge_page_size(h);
  2682. unsigned long mmun_start; /* For mmu_notifiers */
  2683. unsigned long mmun_end; /* For mmu_notifiers */
  2684. int ret = 0;
  2685. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  2686. mmun_start = vma->vm_start;
  2687. mmun_end = vma->vm_end;
  2688. if (cow)
  2689. mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
  2690. for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
  2691. spinlock_t *src_ptl, *dst_ptl;
  2692. src_pte = huge_pte_offset(src, addr);
  2693. if (!src_pte)
  2694. continue;
  2695. dst_pte = huge_pte_alloc(dst, addr, sz);
  2696. if (!dst_pte) {
  2697. ret = -ENOMEM;
  2698. break;
  2699. }
  2700. /* If the pagetables are shared don't copy or take references */
  2701. if (dst_pte == src_pte)
  2702. continue;
  2703. dst_ptl = huge_pte_lock(h, dst, dst_pte);
  2704. src_ptl = huge_pte_lockptr(h, src, src_pte);
  2705. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  2706. entry = huge_ptep_get(src_pte);
  2707. if (huge_pte_none(entry)) { /* skip none entry */
  2708. ;
  2709. } else if (unlikely(is_hugetlb_entry_migration(entry) ||
  2710. is_hugetlb_entry_hwpoisoned(entry))) {
  2711. swp_entry_t swp_entry = pte_to_swp_entry(entry);
  2712. if (is_write_migration_entry(swp_entry) && cow) {
  2713. /*
  2714. * COW mappings require pages in both
  2715. * parent and child to be set to read.
  2716. */
  2717. make_migration_entry_read(&swp_entry);
  2718. entry = swp_entry_to_pte(swp_entry);
  2719. set_huge_pte_at(src, addr, src_pte, entry);
  2720. }
  2721. set_huge_pte_at(dst, addr, dst_pte, entry);
  2722. } else {
  2723. if (cow) {
  2724. huge_ptep_set_wrprotect(src, addr, src_pte);
  2725. mmu_notifier_invalidate_range(src, mmun_start,
  2726. mmun_end);
  2727. }
  2728. entry = huge_ptep_get(src_pte);
  2729. ptepage = pte_page(entry);
  2730. get_page(ptepage);
  2731. page_dup_rmap(ptepage, true);
  2732. set_huge_pte_at(dst, addr, dst_pte, entry);
  2733. hugetlb_count_add(pages_per_huge_page(h), dst);
  2734. }
  2735. spin_unlock(src_ptl);
  2736. spin_unlock(dst_ptl);
  2737. }
  2738. if (cow)
  2739. mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
  2740. return ret;
  2741. }
  2742. void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
  2743. unsigned long start, unsigned long end,
  2744. struct page *ref_page)
  2745. {
  2746. struct mm_struct *mm = vma->vm_mm;
  2747. unsigned long address;
  2748. pte_t *ptep;
  2749. pte_t pte;
  2750. spinlock_t *ptl;
  2751. struct page *page;
  2752. struct hstate *h = hstate_vma(vma);
  2753. unsigned long sz = huge_page_size(h);
  2754. const unsigned long mmun_start = start; /* For mmu_notifiers */
  2755. const unsigned long mmun_end = end; /* For mmu_notifiers */
  2756. WARN_ON(!is_vm_hugetlb_page(vma));
  2757. BUG_ON(start & ~huge_page_mask(h));
  2758. BUG_ON(end & ~huge_page_mask(h));
  2759. tlb_start_vma(tlb, vma);
  2760. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2761. address = start;
  2762. for (; address < end; address += sz) {
  2763. ptep = huge_pte_offset(mm, address);
  2764. if (!ptep)
  2765. continue;
  2766. ptl = huge_pte_lock(h, mm, ptep);
  2767. if (huge_pmd_unshare(mm, &address, ptep)) {
  2768. spin_unlock(ptl);
  2769. continue;
  2770. }
  2771. pte = huge_ptep_get(ptep);
  2772. if (huge_pte_none(pte)) {
  2773. spin_unlock(ptl);
  2774. continue;
  2775. }
  2776. /*
  2777. * Migrating hugepage or HWPoisoned hugepage is already
  2778. * unmapped and its refcount is dropped, so just clear pte here.
  2779. */
  2780. if (unlikely(!pte_present(pte))) {
  2781. huge_pte_clear(mm, address, ptep);
  2782. spin_unlock(ptl);
  2783. continue;
  2784. }
  2785. page = pte_page(pte);
  2786. /*
  2787. * If a reference page is supplied, it is because a specific
  2788. * page is being unmapped, not a range. Ensure the page we
  2789. * are about to unmap is the actual page of interest.
  2790. */
  2791. if (ref_page) {
  2792. if (page != ref_page) {
  2793. spin_unlock(ptl);
  2794. continue;
  2795. }
  2796. /*
  2797. * Mark the VMA as having unmapped its page so that
  2798. * future faults in this VMA will fail rather than
  2799. * looking like data was lost
  2800. */
  2801. set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
  2802. }
  2803. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2804. tlb_remove_tlb_entry(tlb, ptep, address);
  2805. if (huge_pte_dirty(pte))
  2806. set_page_dirty(page);
  2807. hugetlb_count_sub(pages_per_huge_page(h), mm);
  2808. page_remove_rmap(page, true);
  2809. spin_unlock(ptl);
  2810. tlb_remove_page_size(tlb, page, huge_page_size(h));
  2811. /*
  2812. * Bail out after unmapping reference page if supplied
  2813. */
  2814. if (ref_page)
  2815. break;
  2816. }
  2817. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2818. tlb_end_vma(tlb, vma);
  2819. }
  2820. void __unmap_hugepage_range_final(struct mmu_gather *tlb,
  2821. struct vm_area_struct *vma, unsigned long start,
  2822. unsigned long end, struct page *ref_page)
  2823. {
  2824. __unmap_hugepage_range(tlb, vma, start, end, ref_page);
  2825. /*
  2826. * Clear this flag so that x86's huge_pmd_share page_table_shareable
  2827. * test will fail on a vma being torn down, and not grab a page table
  2828. * on its way out. We're lucky that the flag has such an appropriate
  2829. * name, and can in fact be safely cleared here. We could clear it
  2830. * before the __unmap_hugepage_range above, but all that's necessary
  2831. * is to clear it before releasing the i_mmap_rwsem. This works
  2832. * because in the context this is called, the VMA is about to be
  2833. * destroyed and the i_mmap_rwsem is held.
  2834. */
  2835. vma->vm_flags &= ~VM_MAYSHARE;
  2836. }
  2837. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  2838. unsigned long end, struct page *ref_page)
  2839. {
  2840. struct mm_struct *mm;
  2841. struct mmu_gather tlb;
  2842. mm = vma->vm_mm;
  2843. tlb_gather_mmu(&tlb, mm, start, end);
  2844. __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
  2845. tlb_finish_mmu(&tlb, start, end);
  2846. }
  2847. /*
  2848. * This is called when the original mapper is failing to COW a MAP_PRIVATE
  2849. * mappping it owns the reserve page for. The intention is to unmap the page
  2850. * from other VMAs and let the children be SIGKILLed if they are faulting the
  2851. * same region.
  2852. */
  2853. static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
  2854. struct page *page, unsigned long address)
  2855. {
  2856. struct hstate *h = hstate_vma(vma);
  2857. struct vm_area_struct *iter_vma;
  2858. struct address_space *mapping;
  2859. pgoff_t pgoff;
  2860. /*
  2861. * vm_pgoff is in PAGE_SIZE units, hence the different calculation
  2862. * from page cache lookup which is in HPAGE_SIZE units.
  2863. */
  2864. address = address & huge_page_mask(h);
  2865. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
  2866. vma->vm_pgoff;
  2867. mapping = file_inode(vma->vm_file)->i_mapping;
  2868. /*
  2869. * Take the mapping lock for the duration of the table walk. As
  2870. * this mapping should be shared between all the VMAs,
  2871. * __unmap_hugepage_range() is called as the lock is already held
  2872. */
  2873. i_mmap_lock_write(mapping);
  2874. vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
  2875. /* Do not unmap the current VMA */
  2876. if (iter_vma == vma)
  2877. continue;
  2878. /*
  2879. * Shared VMAs have their own reserves and do not affect
  2880. * MAP_PRIVATE accounting but it is possible that a shared
  2881. * VMA is using the same page so check and skip such VMAs.
  2882. */
  2883. if (iter_vma->vm_flags & VM_MAYSHARE)
  2884. continue;
  2885. /*
  2886. * Unmap the page from other VMAs without their own reserves.
  2887. * They get marked to be SIGKILLed if they fault in these
  2888. * areas. This is because a future no-page fault on this VMA
  2889. * could insert a zeroed page instead of the data existing
  2890. * from the time of fork. This would look like data corruption
  2891. */
  2892. if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
  2893. unmap_hugepage_range(iter_vma, address,
  2894. address + huge_page_size(h), page);
  2895. }
  2896. i_mmap_unlock_write(mapping);
  2897. }
  2898. /*
  2899. * Hugetlb_cow() should be called with page lock of the original hugepage held.
  2900. * Called with hugetlb_instantiation_mutex held and pte_page locked so we
  2901. * cannot race with other handlers or page migration.
  2902. * Keep the pte_same checks anyway to make transition from the mutex easier.
  2903. */
  2904. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  2905. unsigned long address, pte_t *ptep, pte_t pte,
  2906. struct page *pagecache_page, spinlock_t *ptl)
  2907. {
  2908. struct hstate *h = hstate_vma(vma);
  2909. struct page *old_page, *new_page;
  2910. int ret = 0, outside_reserve = 0;
  2911. unsigned long mmun_start; /* For mmu_notifiers */
  2912. unsigned long mmun_end; /* For mmu_notifiers */
  2913. old_page = pte_page(pte);
  2914. retry_avoidcopy:
  2915. /* If no-one else is actually using this page, avoid the copy
  2916. * and just make the page writable */
  2917. if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
  2918. page_move_anon_rmap(old_page, vma);
  2919. set_huge_ptep_writable(vma, address, ptep);
  2920. return 0;
  2921. }
  2922. /*
  2923. * If the process that created a MAP_PRIVATE mapping is about to
  2924. * perform a COW due to a shared page count, attempt to satisfy
  2925. * the allocation without using the existing reserves. The pagecache
  2926. * page is used to determine if the reserve at this address was
  2927. * consumed or not. If reserves were used, a partial faulted mapping
  2928. * at the time of fork() could consume its reserves on COW instead
  2929. * of the full address range.
  2930. */
  2931. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
  2932. old_page != pagecache_page)
  2933. outside_reserve = 1;
  2934. get_page(old_page);
  2935. /*
  2936. * Drop page table lock as buddy allocator may be called. It will
  2937. * be acquired again before returning to the caller, as expected.
  2938. */
  2939. spin_unlock(ptl);
  2940. new_page = alloc_huge_page(vma, address, outside_reserve);
  2941. if (IS_ERR(new_page)) {
  2942. /*
  2943. * If a process owning a MAP_PRIVATE mapping fails to COW,
  2944. * it is due to references held by a child and an insufficient
  2945. * huge page pool. To guarantee the original mappers
  2946. * reliability, unmap the page from child processes. The child
  2947. * may get SIGKILLed if it later faults.
  2948. */
  2949. if (outside_reserve) {
  2950. put_page(old_page);
  2951. BUG_ON(huge_pte_none(pte));
  2952. unmap_ref_private(mm, vma, old_page, address);
  2953. BUG_ON(huge_pte_none(pte));
  2954. spin_lock(ptl);
  2955. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2956. if (likely(ptep &&
  2957. pte_same(huge_ptep_get(ptep), pte)))
  2958. goto retry_avoidcopy;
  2959. /*
  2960. * race occurs while re-acquiring page table
  2961. * lock, and our job is done.
  2962. */
  2963. return 0;
  2964. }
  2965. ret = (PTR_ERR(new_page) == -ENOMEM) ?
  2966. VM_FAULT_OOM : VM_FAULT_SIGBUS;
  2967. goto out_release_old;
  2968. }
  2969. /*
  2970. * When the original hugepage is shared one, it does not have
  2971. * anon_vma prepared.
  2972. */
  2973. if (unlikely(anon_vma_prepare(vma))) {
  2974. ret = VM_FAULT_OOM;
  2975. goto out_release_all;
  2976. }
  2977. copy_user_huge_page(new_page, old_page, address, vma,
  2978. pages_per_huge_page(h));
  2979. __SetPageUptodate(new_page);
  2980. set_page_huge_active(new_page);
  2981. mmun_start = address & huge_page_mask(h);
  2982. mmun_end = mmun_start + huge_page_size(h);
  2983. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2984. /*
  2985. * Retake the page table lock to check for racing updates
  2986. * before the page tables are altered
  2987. */
  2988. spin_lock(ptl);
  2989. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2990. if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
  2991. ClearPagePrivate(new_page);
  2992. /* Break COW */
  2993. huge_ptep_clear_flush(vma, address, ptep);
  2994. mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
  2995. set_huge_pte_at(mm, address, ptep,
  2996. make_huge_pte(vma, new_page, 1));
  2997. page_remove_rmap(old_page, true);
  2998. hugepage_add_new_anon_rmap(new_page, vma, address);
  2999. /* Make the old page be freed below */
  3000. new_page = old_page;
  3001. }
  3002. spin_unlock(ptl);
  3003. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  3004. out_release_all:
  3005. put_page(new_page);
  3006. out_release_old:
  3007. put_page(old_page);
  3008. spin_lock(ptl); /* Caller expects lock to be held */
  3009. return ret;
  3010. }
  3011. /* Return the pagecache page at a given address within a VMA */
  3012. static struct page *hugetlbfs_pagecache_page(struct hstate *h,
  3013. struct vm_area_struct *vma, unsigned long address)
  3014. {
  3015. struct address_space *mapping;
  3016. pgoff_t idx;
  3017. mapping = vma->vm_file->f_mapping;
  3018. idx = vma_hugecache_offset(h, vma, address);
  3019. return find_lock_page(mapping, idx);
  3020. }
  3021. /*
  3022. * Return whether there is a pagecache page to back given address within VMA.
  3023. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
  3024. */
  3025. static bool hugetlbfs_pagecache_present(struct hstate *h,
  3026. struct vm_area_struct *vma, unsigned long address)
  3027. {
  3028. struct address_space *mapping;
  3029. pgoff_t idx;
  3030. struct page *page;
  3031. mapping = vma->vm_file->f_mapping;
  3032. idx = vma_hugecache_offset(h, vma, address);
  3033. page = find_get_page(mapping, idx);
  3034. if (page)
  3035. put_page(page);
  3036. return page != NULL;
  3037. }
  3038. int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
  3039. pgoff_t idx)
  3040. {
  3041. struct inode *inode = mapping->host;
  3042. struct hstate *h = hstate_inode(inode);
  3043. int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  3044. if (err)
  3045. return err;
  3046. ClearPagePrivate(page);
  3047. spin_lock(&inode->i_lock);
  3048. inode->i_blocks += blocks_per_huge_page(h);
  3049. spin_unlock(&inode->i_lock);
  3050. return 0;
  3051. }
  3052. static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3053. struct address_space *mapping, pgoff_t idx,
  3054. unsigned long address, pte_t *ptep, unsigned int flags)
  3055. {
  3056. struct hstate *h = hstate_vma(vma);
  3057. int ret = VM_FAULT_SIGBUS;
  3058. int anon_rmap = 0;
  3059. unsigned long size;
  3060. struct page *page;
  3061. pte_t new_pte;
  3062. spinlock_t *ptl;
  3063. /*
  3064. * Currently, we are forced to kill the process in the event the
  3065. * original mapper has unmapped pages from the child due to a failed
  3066. * COW. Warn that such a situation has occurred as it may not be obvious
  3067. */
  3068. if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
  3069. pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
  3070. current->pid);
  3071. return ret;
  3072. }
  3073. /*
  3074. * Use page lock to guard against racing truncation
  3075. * before we get page_table_lock.
  3076. */
  3077. retry:
  3078. page = find_lock_page(mapping, idx);
  3079. if (!page) {
  3080. size = i_size_read(mapping->host) >> huge_page_shift(h);
  3081. if (idx >= size)
  3082. goto out;
  3083. page = alloc_huge_page(vma, address, 0);
  3084. if (IS_ERR(page)) {
  3085. ret = PTR_ERR(page);
  3086. if (ret == -ENOMEM)
  3087. ret = VM_FAULT_OOM;
  3088. else
  3089. ret = VM_FAULT_SIGBUS;
  3090. goto out;
  3091. }
  3092. clear_huge_page(page, address, pages_per_huge_page(h));
  3093. __SetPageUptodate(page);
  3094. set_page_huge_active(page);
  3095. if (vma->vm_flags & VM_MAYSHARE) {
  3096. int err = huge_add_to_page_cache(page, mapping, idx);
  3097. if (err) {
  3098. put_page(page);
  3099. if (err == -EEXIST)
  3100. goto retry;
  3101. goto out;
  3102. }
  3103. } else {
  3104. lock_page(page);
  3105. if (unlikely(anon_vma_prepare(vma))) {
  3106. ret = VM_FAULT_OOM;
  3107. goto backout_unlocked;
  3108. }
  3109. anon_rmap = 1;
  3110. }
  3111. } else {
  3112. /*
  3113. * If memory error occurs between mmap() and fault, some process
  3114. * don't have hwpoisoned swap entry for errored virtual address.
  3115. * So we need to block hugepage fault by PG_hwpoison bit check.
  3116. */
  3117. if (unlikely(PageHWPoison(page))) {
  3118. ret = VM_FAULT_HWPOISON |
  3119. VM_FAULT_SET_HINDEX(hstate_index(h));
  3120. goto backout_unlocked;
  3121. }
  3122. }
  3123. /*
  3124. * If we are going to COW a private mapping later, we examine the
  3125. * pending reservations for this page now. This will ensure that
  3126. * any allocations necessary to record that reservation occur outside
  3127. * the spinlock.
  3128. */
  3129. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  3130. if (vma_needs_reservation(h, vma, address) < 0) {
  3131. ret = VM_FAULT_OOM;
  3132. goto backout_unlocked;
  3133. }
  3134. /* Just decrements count, does not deallocate */
  3135. vma_end_reservation(h, vma, address);
  3136. }
  3137. ptl = huge_pte_lockptr(h, mm, ptep);
  3138. spin_lock(ptl);
  3139. size = i_size_read(mapping->host) >> huge_page_shift(h);
  3140. if (idx >= size)
  3141. goto backout;
  3142. ret = 0;
  3143. if (!huge_pte_none(huge_ptep_get(ptep)))
  3144. goto backout;
  3145. if (anon_rmap) {
  3146. ClearPagePrivate(page);
  3147. hugepage_add_new_anon_rmap(page, vma, address);
  3148. } else
  3149. page_dup_rmap(page, true);
  3150. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  3151. && (vma->vm_flags & VM_SHARED)));
  3152. set_huge_pte_at(mm, address, ptep, new_pte);
  3153. hugetlb_count_add(pages_per_huge_page(h), mm);
  3154. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  3155. /* Optimization, do the COW without a second fault */
  3156. ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
  3157. }
  3158. spin_unlock(ptl);
  3159. unlock_page(page);
  3160. out:
  3161. return ret;
  3162. backout:
  3163. spin_unlock(ptl);
  3164. backout_unlocked:
  3165. unlock_page(page);
  3166. put_page(page);
  3167. goto out;
  3168. }
  3169. #ifdef CONFIG_SMP
  3170. u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
  3171. struct vm_area_struct *vma,
  3172. struct address_space *mapping,
  3173. pgoff_t idx, unsigned long address)
  3174. {
  3175. unsigned long key[2];
  3176. u32 hash;
  3177. if (vma->vm_flags & VM_SHARED) {
  3178. key[0] = (unsigned long) mapping;
  3179. key[1] = idx;
  3180. } else {
  3181. key[0] = (unsigned long) mm;
  3182. key[1] = address >> huge_page_shift(h);
  3183. }
  3184. hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
  3185. return hash & (num_fault_mutexes - 1);
  3186. }
  3187. #else
  3188. /*
  3189. * For uniprocesor systems we always use a single mutex, so just
  3190. * return 0 and avoid the hashing overhead.
  3191. */
  3192. u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
  3193. struct vm_area_struct *vma,
  3194. struct address_space *mapping,
  3195. pgoff_t idx, unsigned long address)
  3196. {
  3197. return 0;
  3198. }
  3199. #endif
  3200. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3201. unsigned long address, unsigned int flags)
  3202. {
  3203. pte_t *ptep, entry;
  3204. spinlock_t *ptl;
  3205. int ret;
  3206. u32 hash;
  3207. pgoff_t idx;
  3208. struct page *page = NULL;
  3209. struct page *pagecache_page = NULL;
  3210. struct hstate *h = hstate_vma(vma);
  3211. struct address_space *mapping;
  3212. int need_wait_lock = 0;
  3213. address &= huge_page_mask(h);
  3214. ptep = huge_pte_offset(mm, address);
  3215. if (ptep) {
  3216. entry = huge_ptep_get(ptep);
  3217. if (unlikely(is_hugetlb_entry_migration(entry))) {
  3218. migration_entry_wait_huge(vma, mm, ptep);
  3219. return 0;
  3220. } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
  3221. return VM_FAULT_HWPOISON_LARGE |
  3222. VM_FAULT_SET_HINDEX(hstate_index(h));
  3223. } else {
  3224. ptep = huge_pte_alloc(mm, address, huge_page_size(h));
  3225. if (!ptep)
  3226. return VM_FAULT_OOM;
  3227. }
  3228. mapping = vma->vm_file->f_mapping;
  3229. idx = vma_hugecache_offset(h, vma, address);
  3230. /*
  3231. * Serialize hugepage allocation and instantiation, so that we don't
  3232. * get spurious allocation failures if two CPUs race to instantiate
  3233. * the same page in the page cache.
  3234. */
  3235. hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
  3236. mutex_lock(&hugetlb_fault_mutex_table[hash]);
  3237. entry = huge_ptep_get(ptep);
  3238. if (huge_pte_none(entry)) {
  3239. ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
  3240. goto out_mutex;
  3241. }
  3242. ret = 0;
  3243. /*
  3244. * entry could be a migration/hwpoison entry at this point, so this
  3245. * check prevents the kernel from going below assuming that we have
  3246. * a active hugepage in pagecache. This goto expects the 2nd page fault,
  3247. * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
  3248. * handle it.
  3249. */
  3250. if (!pte_present(entry))
  3251. goto out_mutex;
  3252. /*
  3253. * If we are going to COW the mapping later, we examine the pending
  3254. * reservations for this page now. This will ensure that any
  3255. * allocations necessary to record that reservation occur outside the
  3256. * spinlock. For private mappings, we also lookup the pagecache
  3257. * page now as it is used to determine if a reservation has been
  3258. * consumed.
  3259. */
  3260. if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
  3261. if (vma_needs_reservation(h, vma, address) < 0) {
  3262. ret = VM_FAULT_OOM;
  3263. goto out_mutex;
  3264. }
  3265. /* Just decrements count, does not deallocate */
  3266. vma_end_reservation(h, vma, address);
  3267. if (!(vma->vm_flags & VM_MAYSHARE))
  3268. pagecache_page = hugetlbfs_pagecache_page(h,
  3269. vma, address);
  3270. }
  3271. ptl = huge_pte_lock(h, mm, ptep);
  3272. /* Check for a racing update before calling hugetlb_cow */
  3273. if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
  3274. goto out_ptl;
  3275. /*
  3276. * hugetlb_cow() requires page locks of pte_page(entry) and
  3277. * pagecache_page, so here we need take the former one
  3278. * when page != pagecache_page or !pagecache_page.
  3279. */
  3280. page = pte_page(entry);
  3281. if (page != pagecache_page)
  3282. if (!trylock_page(page)) {
  3283. need_wait_lock = 1;
  3284. goto out_ptl;
  3285. }
  3286. get_page(page);
  3287. if (flags & FAULT_FLAG_WRITE) {
  3288. if (!huge_pte_write(entry)) {
  3289. ret = hugetlb_cow(mm, vma, address, ptep, entry,
  3290. pagecache_page, ptl);
  3291. goto out_put_page;
  3292. }
  3293. entry = huge_pte_mkdirty(entry);
  3294. }
  3295. entry = pte_mkyoung(entry);
  3296. if (huge_ptep_set_access_flags(vma, address, ptep, entry,
  3297. flags & FAULT_FLAG_WRITE))
  3298. update_mmu_cache(vma, address, ptep);
  3299. out_put_page:
  3300. if (page != pagecache_page)
  3301. unlock_page(page);
  3302. put_page(page);
  3303. out_ptl:
  3304. spin_unlock(ptl);
  3305. if (pagecache_page) {
  3306. unlock_page(pagecache_page);
  3307. put_page(pagecache_page);
  3308. }
  3309. out_mutex:
  3310. mutex_unlock(&hugetlb_fault_mutex_table[hash]);
  3311. /*
  3312. * Generally it's safe to hold refcount during waiting page lock. But
  3313. * here we just wait to defer the next page fault to avoid busy loop and
  3314. * the page is not used after unlocked before returning from the current
  3315. * page fault. So we are safe from accessing freed page, even if we wait
  3316. * here without taking refcount.
  3317. */
  3318. if (need_wait_lock)
  3319. wait_on_page_locked(page);
  3320. return ret;
  3321. }
  3322. long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3323. struct page **pages, struct vm_area_struct **vmas,
  3324. unsigned long *position, unsigned long *nr_pages,
  3325. long i, unsigned int flags)
  3326. {
  3327. unsigned long pfn_offset;
  3328. unsigned long vaddr = *position;
  3329. unsigned long remainder = *nr_pages;
  3330. struct hstate *h = hstate_vma(vma);
  3331. while (vaddr < vma->vm_end && remainder) {
  3332. pte_t *pte;
  3333. spinlock_t *ptl = NULL;
  3334. int absent;
  3335. struct page *page;
  3336. /*
  3337. * If we have a pending SIGKILL, don't keep faulting pages and
  3338. * potentially allocating memory.
  3339. */
  3340. if (unlikely(fatal_signal_pending(current))) {
  3341. remainder = 0;
  3342. break;
  3343. }
  3344. /*
  3345. * Some archs (sparc64, sh*) have multiple pte_ts to
  3346. * each hugepage. We have to make sure we get the
  3347. * first, for the page indexing below to work.
  3348. *
  3349. * Note that page table lock is not held when pte is null.
  3350. */
  3351. pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
  3352. if (pte)
  3353. ptl = huge_pte_lock(h, mm, pte);
  3354. absent = !pte || huge_pte_none(huge_ptep_get(pte));
  3355. /*
  3356. * When coredumping, it suits get_dump_page if we just return
  3357. * an error where there's an empty slot with no huge pagecache
  3358. * to back it. This way, we avoid allocating a hugepage, and
  3359. * the sparse dumpfile avoids allocating disk blocks, but its
  3360. * huge holes still show up with zeroes where they need to be.
  3361. */
  3362. if (absent && (flags & FOLL_DUMP) &&
  3363. !hugetlbfs_pagecache_present(h, vma, vaddr)) {
  3364. if (pte)
  3365. spin_unlock(ptl);
  3366. remainder = 0;
  3367. break;
  3368. }
  3369. /*
  3370. * We need call hugetlb_fault for both hugepages under migration
  3371. * (in which case hugetlb_fault waits for the migration,) and
  3372. * hwpoisoned hugepages (in which case we need to prevent the
  3373. * caller from accessing to them.) In order to do this, we use
  3374. * here is_swap_pte instead of is_hugetlb_entry_migration and
  3375. * is_hugetlb_entry_hwpoisoned. This is because it simply covers
  3376. * both cases, and because we can't follow correct pages
  3377. * directly from any kind of swap entries.
  3378. */
  3379. if (absent || is_swap_pte(huge_ptep_get(pte)) ||
  3380. ((flags & FOLL_WRITE) &&
  3381. !huge_pte_write(huge_ptep_get(pte)))) {
  3382. int ret;
  3383. if (pte)
  3384. spin_unlock(ptl);
  3385. ret = hugetlb_fault(mm, vma, vaddr,
  3386. (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
  3387. if (!(ret & VM_FAULT_ERROR))
  3388. continue;
  3389. remainder = 0;
  3390. break;
  3391. }
  3392. pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
  3393. page = pte_page(huge_ptep_get(pte));
  3394. same_page:
  3395. if (pages) {
  3396. pages[i] = mem_map_offset(page, pfn_offset);
  3397. get_page(pages[i]);
  3398. }
  3399. if (vmas)
  3400. vmas[i] = vma;
  3401. vaddr += PAGE_SIZE;
  3402. ++pfn_offset;
  3403. --remainder;
  3404. ++i;
  3405. if (vaddr < vma->vm_end && remainder &&
  3406. pfn_offset < pages_per_huge_page(h)) {
  3407. /*
  3408. * We use pfn_offset to avoid touching the pageframes
  3409. * of this compound page.
  3410. */
  3411. goto same_page;
  3412. }
  3413. spin_unlock(ptl);
  3414. }
  3415. *nr_pages = remainder;
  3416. *position = vaddr;
  3417. return i ? i : -EFAULT;
  3418. }
  3419. unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
  3420. unsigned long address, unsigned long end, pgprot_t newprot)
  3421. {
  3422. struct mm_struct *mm = vma->vm_mm;
  3423. unsigned long start = address;
  3424. pte_t *ptep;
  3425. pte_t pte;
  3426. struct hstate *h = hstate_vma(vma);
  3427. unsigned long pages = 0;
  3428. BUG_ON(address >= end);
  3429. flush_cache_range(vma, address, end);
  3430. mmu_notifier_invalidate_range_start(mm, start, end);
  3431. i_mmap_lock_write(vma->vm_file->f_mapping);
  3432. for (; address < end; address += huge_page_size(h)) {
  3433. spinlock_t *ptl;
  3434. ptep = huge_pte_offset(mm, address);
  3435. if (!ptep)
  3436. continue;
  3437. ptl = huge_pte_lock(h, mm, ptep);
  3438. if (huge_pmd_unshare(mm, &address, ptep)) {
  3439. pages++;
  3440. spin_unlock(ptl);
  3441. continue;
  3442. }
  3443. pte = huge_ptep_get(ptep);
  3444. if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
  3445. spin_unlock(ptl);
  3446. continue;
  3447. }
  3448. if (unlikely(is_hugetlb_entry_migration(pte))) {
  3449. swp_entry_t entry = pte_to_swp_entry(pte);
  3450. if (is_write_migration_entry(entry)) {
  3451. pte_t newpte;
  3452. make_migration_entry_read(&entry);
  3453. newpte = swp_entry_to_pte(entry);
  3454. set_huge_pte_at(mm, address, ptep, newpte);
  3455. pages++;
  3456. }
  3457. spin_unlock(ptl);
  3458. continue;
  3459. }
  3460. if (!huge_pte_none(pte)) {
  3461. pte = huge_ptep_get_and_clear(mm, address, ptep);
  3462. pte = pte_mkhuge(huge_pte_modify(pte, newprot));
  3463. pte = arch_make_huge_pte(pte, vma, NULL, 0);
  3464. set_huge_pte_at(mm, address, ptep, pte);
  3465. pages++;
  3466. }
  3467. spin_unlock(ptl);
  3468. }
  3469. /*
  3470. * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
  3471. * may have cleared our pud entry and done put_page on the page table:
  3472. * once we release i_mmap_rwsem, another task can do the final put_page
  3473. * and that page table be reused and filled with junk.
  3474. */
  3475. flush_tlb_range(vma, start, end);
  3476. mmu_notifier_invalidate_range(mm, start, end);
  3477. i_mmap_unlock_write(vma->vm_file->f_mapping);
  3478. mmu_notifier_invalidate_range_end(mm, start, end);
  3479. return pages << h->order;
  3480. }
  3481. int hugetlb_reserve_pages(struct inode *inode,
  3482. long from, long to,
  3483. struct vm_area_struct *vma,
  3484. vm_flags_t vm_flags)
  3485. {
  3486. long ret, chg;
  3487. struct hstate *h = hstate_inode(inode);
  3488. struct hugepage_subpool *spool = subpool_inode(inode);
  3489. struct resv_map *resv_map;
  3490. long gbl_reserve;
  3491. /*
  3492. * Only apply hugepage reservation if asked. At fault time, an
  3493. * attempt will be made for VM_NORESERVE to allocate a page
  3494. * without using reserves
  3495. */
  3496. if (vm_flags & VM_NORESERVE)
  3497. return 0;
  3498. /*
  3499. * Shared mappings base their reservation on the number of pages that
  3500. * are already allocated on behalf of the file. Private mappings need
  3501. * to reserve the full area even if read-only as mprotect() may be
  3502. * called to make the mapping read-write. Assume !vma is a shm mapping
  3503. */
  3504. if (!vma || vma->vm_flags & VM_MAYSHARE) {
  3505. resv_map = inode_resv_map(inode);
  3506. chg = region_chg(resv_map, from, to);
  3507. } else {
  3508. resv_map = resv_map_alloc();
  3509. if (!resv_map)
  3510. return -ENOMEM;
  3511. chg = to - from;
  3512. set_vma_resv_map(vma, resv_map);
  3513. set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
  3514. }
  3515. if (chg < 0) {
  3516. ret = chg;
  3517. goto out_err;
  3518. }
  3519. /*
  3520. * There must be enough pages in the subpool for the mapping. If
  3521. * the subpool has a minimum size, there may be some global
  3522. * reservations already in place (gbl_reserve).
  3523. */
  3524. gbl_reserve = hugepage_subpool_get_pages(spool, chg);
  3525. if (gbl_reserve < 0) {
  3526. ret = -ENOSPC;
  3527. goto out_err;
  3528. }
  3529. /*
  3530. * Check enough hugepages are available for the reservation.
  3531. * Hand the pages back to the subpool if there are not
  3532. */
  3533. ret = hugetlb_acct_memory(h, gbl_reserve);
  3534. if (ret < 0) {
  3535. /* put back original number of pages, chg */
  3536. (void)hugepage_subpool_put_pages(spool, chg);
  3537. goto out_err;
  3538. }
  3539. /*
  3540. * Account for the reservations made. Shared mappings record regions
  3541. * that have reservations as they are shared by multiple VMAs.
  3542. * When the last VMA disappears, the region map says how much
  3543. * the reservation was and the page cache tells how much of
  3544. * the reservation was consumed. Private mappings are per-VMA and
  3545. * only the consumed reservations are tracked. When the VMA
  3546. * disappears, the original reservation is the VMA size and the
  3547. * consumed reservations are stored in the map. Hence, nothing
  3548. * else has to be done for private mappings here
  3549. */
  3550. if (!vma || vma->vm_flags & VM_MAYSHARE) {
  3551. long add = region_add(resv_map, from, to);
  3552. if (unlikely(chg > add)) {
  3553. /*
  3554. * pages in this range were added to the reserve
  3555. * map between region_chg and region_add. This
  3556. * indicates a race with alloc_huge_page. Adjust
  3557. * the subpool and reserve counts modified above
  3558. * based on the difference.
  3559. */
  3560. long rsv_adjust;
  3561. rsv_adjust = hugepage_subpool_put_pages(spool,
  3562. chg - add);
  3563. hugetlb_acct_memory(h, -rsv_adjust);
  3564. }
  3565. }
  3566. return 0;
  3567. out_err:
  3568. if (!vma || vma->vm_flags & VM_MAYSHARE)
  3569. region_abort(resv_map, from, to);
  3570. if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  3571. kref_put(&resv_map->refs, resv_map_release);
  3572. return ret;
  3573. }
  3574. long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
  3575. long freed)
  3576. {
  3577. struct hstate *h = hstate_inode(inode);
  3578. struct resv_map *resv_map = inode_resv_map(inode);
  3579. long chg = 0;
  3580. struct hugepage_subpool *spool = subpool_inode(inode);
  3581. long gbl_reserve;
  3582. if (resv_map) {
  3583. chg = region_del(resv_map, start, end);
  3584. /*
  3585. * region_del() can fail in the rare case where a region
  3586. * must be split and another region descriptor can not be
  3587. * allocated. If end == LONG_MAX, it will not fail.
  3588. */
  3589. if (chg < 0)
  3590. return chg;
  3591. }
  3592. spin_lock(&inode->i_lock);
  3593. inode->i_blocks -= (blocks_per_huge_page(h) * freed);
  3594. spin_unlock(&inode->i_lock);
  3595. /*
  3596. * If the subpool has a minimum size, the number of global
  3597. * reservations to be released may be adjusted.
  3598. */
  3599. gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
  3600. hugetlb_acct_memory(h, -gbl_reserve);
  3601. return 0;
  3602. }
  3603. #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
  3604. static unsigned long page_table_shareable(struct vm_area_struct *svma,
  3605. struct vm_area_struct *vma,
  3606. unsigned long addr, pgoff_t idx)
  3607. {
  3608. unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
  3609. svma->vm_start;
  3610. unsigned long sbase = saddr & PUD_MASK;
  3611. unsigned long s_end = sbase + PUD_SIZE;
  3612. /* Allow segments to share if only one is marked locked */
  3613. unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
  3614. unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
  3615. /*
  3616. * match the virtual addresses, permission and the alignment of the
  3617. * page table page.
  3618. */
  3619. if (pmd_index(addr) != pmd_index(saddr) ||
  3620. vm_flags != svm_flags ||
  3621. sbase < svma->vm_start || svma->vm_end < s_end)
  3622. return 0;
  3623. return saddr;
  3624. }
  3625. static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
  3626. {
  3627. unsigned long base = addr & PUD_MASK;
  3628. unsigned long end = base + PUD_SIZE;
  3629. /*
  3630. * check on proper vm_flags and page table alignment
  3631. */
  3632. if (vma->vm_flags & VM_MAYSHARE &&
  3633. vma->vm_start <= base && end <= vma->vm_end)
  3634. return true;
  3635. return false;
  3636. }
  3637. /*
  3638. * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
  3639. * and returns the corresponding pte. While this is not necessary for the
  3640. * !shared pmd case because we can allocate the pmd later as well, it makes the
  3641. * code much cleaner. pmd allocation is essential for the shared case because
  3642. * pud has to be populated inside the same i_mmap_rwsem section - otherwise
  3643. * racing tasks could either miss the sharing (see huge_pte_offset) or select a
  3644. * bad pmd for sharing.
  3645. */
  3646. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  3647. {
  3648. struct vm_area_struct *vma = find_vma(mm, addr);
  3649. struct address_space *mapping = vma->vm_file->f_mapping;
  3650. pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  3651. vma->vm_pgoff;
  3652. struct vm_area_struct *svma;
  3653. unsigned long saddr;
  3654. pte_t *spte = NULL;
  3655. pte_t *pte;
  3656. spinlock_t *ptl;
  3657. if (!vma_shareable(vma, addr))
  3658. return (pte_t *)pmd_alloc(mm, pud, addr);
  3659. i_mmap_lock_write(mapping);
  3660. vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
  3661. if (svma == vma)
  3662. continue;
  3663. saddr = page_table_shareable(svma, vma, addr, idx);
  3664. if (saddr) {
  3665. spte = huge_pte_offset(svma->vm_mm, saddr);
  3666. if (spte) {
  3667. get_page(virt_to_page(spte));
  3668. break;
  3669. }
  3670. }
  3671. }
  3672. if (!spte)
  3673. goto out;
  3674. ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
  3675. spin_lock(ptl);
  3676. if (pud_none(*pud)) {
  3677. pud_populate(mm, pud,
  3678. (pmd_t *)((unsigned long)spte & PAGE_MASK));
  3679. mm_inc_nr_pmds(mm);
  3680. } else {
  3681. put_page(virt_to_page(spte));
  3682. }
  3683. spin_unlock(ptl);
  3684. out:
  3685. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  3686. i_mmap_unlock_write(mapping);
  3687. return pte;
  3688. }
  3689. /*
  3690. * unmap huge page backed by shared pte.
  3691. *
  3692. * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
  3693. * indicated by page_count > 1, unmap is achieved by clearing pud and
  3694. * decrementing the ref count. If count == 1, the pte page is not shared.
  3695. *
  3696. * called with page table lock held.
  3697. *
  3698. * returns: 1 successfully unmapped a shared pte page
  3699. * 0 the underlying pte page is not shared, or it is the last user
  3700. */
  3701. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  3702. {
  3703. pgd_t *pgd = pgd_offset(mm, *addr);
  3704. pud_t *pud = pud_offset(pgd, *addr);
  3705. BUG_ON(page_count(virt_to_page(ptep)) == 0);
  3706. if (page_count(virt_to_page(ptep)) == 1)
  3707. return 0;
  3708. pud_clear(pud);
  3709. put_page(virt_to_page(ptep));
  3710. mm_dec_nr_pmds(mm);
  3711. *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
  3712. return 1;
  3713. }
  3714. #define want_pmd_share() (1)
  3715. #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  3716. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  3717. {
  3718. return NULL;
  3719. }
  3720. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  3721. {
  3722. return 0;
  3723. }
  3724. #define want_pmd_share() (0)
  3725. #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  3726. #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
  3727. pte_t *huge_pte_alloc(struct mm_struct *mm,
  3728. unsigned long addr, unsigned long sz)
  3729. {
  3730. pgd_t *pgd;
  3731. pud_t *pud;
  3732. pte_t *pte = NULL;
  3733. pgd = pgd_offset(mm, addr);
  3734. pud = pud_alloc(mm, pgd, addr);
  3735. if (pud) {
  3736. if (sz == PUD_SIZE) {
  3737. pte = (pte_t *)pud;
  3738. } else {
  3739. BUG_ON(sz != PMD_SIZE);
  3740. if (want_pmd_share() && pud_none(*pud))
  3741. pte = huge_pmd_share(mm, addr, pud);
  3742. else
  3743. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  3744. }
  3745. }
  3746. BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
  3747. return pte;
  3748. }
  3749. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  3750. {
  3751. pgd_t *pgd;
  3752. pud_t *pud;
  3753. pmd_t *pmd = NULL;
  3754. pgd = pgd_offset(mm, addr);
  3755. if (pgd_present(*pgd)) {
  3756. pud = pud_offset(pgd, addr);
  3757. if (pud_present(*pud)) {
  3758. if (pud_huge(*pud))
  3759. return (pte_t *)pud;
  3760. pmd = pmd_offset(pud, addr);
  3761. }
  3762. }
  3763. return (pte_t *) pmd;
  3764. }
  3765. #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
  3766. /*
  3767. * These functions are overwritable if your architecture needs its own
  3768. * behavior.
  3769. */
  3770. struct page * __weak
  3771. follow_huge_addr(struct mm_struct *mm, unsigned long address,
  3772. int write)
  3773. {
  3774. return ERR_PTR(-EINVAL);
  3775. }
  3776. struct page * __weak
  3777. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  3778. pmd_t *pmd, int flags)
  3779. {
  3780. struct page *page = NULL;
  3781. spinlock_t *ptl;
  3782. retry:
  3783. ptl = pmd_lockptr(mm, pmd);
  3784. spin_lock(ptl);
  3785. /*
  3786. * make sure that the address range covered by this pmd is not
  3787. * unmapped from other threads.
  3788. */
  3789. if (!pmd_huge(*pmd))
  3790. goto out;
  3791. if (pmd_present(*pmd)) {
  3792. page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
  3793. if (flags & FOLL_GET)
  3794. get_page(page);
  3795. } else {
  3796. if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
  3797. spin_unlock(ptl);
  3798. __migration_entry_wait(mm, (pte_t *)pmd, ptl);
  3799. goto retry;
  3800. }
  3801. /*
  3802. * hwpoisoned entry is treated as no_page_table in
  3803. * follow_page_mask().
  3804. */
  3805. }
  3806. out:
  3807. spin_unlock(ptl);
  3808. return page;
  3809. }
  3810. struct page * __weak
  3811. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  3812. pud_t *pud, int flags)
  3813. {
  3814. if (flags & FOLL_GET)
  3815. return NULL;
  3816. return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
  3817. }
  3818. #ifdef CONFIG_MEMORY_FAILURE
  3819. /*
  3820. * This function is called from memory failure code.
  3821. * Assume the caller holds page lock of the head page.
  3822. */
  3823. int dequeue_hwpoisoned_huge_page(struct page *hpage)
  3824. {
  3825. struct hstate *h = page_hstate(hpage);
  3826. int nid = page_to_nid(hpage);
  3827. int ret = -EBUSY;
  3828. spin_lock(&hugetlb_lock);
  3829. /*
  3830. * Just checking !page_huge_active is not enough, because that could be
  3831. * an isolated/hwpoisoned hugepage (which have >0 refcount).
  3832. */
  3833. if (!page_huge_active(hpage) && !page_count(hpage)) {
  3834. /*
  3835. * Hwpoisoned hugepage isn't linked to activelist or freelist,
  3836. * but dangling hpage->lru can trigger list-debug warnings
  3837. * (this happens when we call unpoison_memory() on it),
  3838. * so let it point to itself with list_del_init().
  3839. */
  3840. list_del_init(&hpage->lru);
  3841. set_page_refcounted(hpage);
  3842. h->free_huge_pages--;
  3843. h->free_huge_pages_node[nid]--;
  3844. ret = 0;
  3845. }
  3846. spin_unlock(&hugetlb_lock);
  3847. return ret;
  3848. }
  3849. #endif
  3850. bool isolate_huge_page(struct page *page, struct list_head *list)
  3851. {
  3852. bool ret = true;
  3853. VM_BUG_ON_PAGE(!PageHead(page), page);
  3854. spin_lock(&hugetlb_lock);
  3855. if (!page_huge_active(page) || !get_page_unless_zero(page)) {
  3856. ret = false;
  3857. goto unlock;
  3858. }
  3859. clear_page_huge_active(page);
  3860. list_move_tail(&page->lru, list);
  3861. unlock:
  3862. spin_unlock(&hugetlb_lock);
  3863. return ret;
  3864. }
  3865. void putback_active_hugepage(struct page *page)
  3866. {
  3867. VM_BUG_ON_PAGE(!PageHead(page), page);
  3868. spin_lock(&hugetlb_lock);
  3869. set_page_huge_active(page);
  3870. list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
  3871. spin_unlock(&hugetlb_lock);
  3872. put_page(page);
  3873. }