tsb.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540
  1. /* arch/sparc64/mm/tsb.c
  2. *
  3. * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/preempt.h>
  7. #include <linux/slab.h>
  8. #include <asm/page.h>
  9. #include <asm/pgtable.h>
  10. #include <asm/mmu_context.h>
  11. #include <asm/setup.h>
  12. #include <asm/tsb.h>
  13. #include <asm/tlb.h>
  14. #include <asm/oplib.h>
  15. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  16. static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
  17. {
  18. vaddr >>= hash_shift;
  19. return vaddr & (nentries - 1);
  20. }
  21. static inline int tag_compare(unsigned long tag, unsigned long vaddr)
  22. {
  23. return (tag == (vaddr >> 22));
  24. }
  25. /* TSB flushes need only occur on the processor initiating the address
  26. * space modification, not on each cpu the address space has run on.
  27. * Only the TLB flush needs that treatment.
  28. */
  29. void flush_tsb_kernel_range(unsigned long start, unsigned long end)
  30. {
  31. unsigned long v;
  32. for (v = start; v < end; v += PAGE_SIZE) {
  33. unsigned long hash = tsb_hash(v, PAGE_SHIFT,
  34. KERNEL_TSB_NENTRIES);
  35. struct tsb *ent = &swapper_tsb[hash];
  36. if (tag_compare(ent->tag, v))
  37. ent->tag = (1UL << TSB_TAG_INVALID_BIT);
  38. }
  39. }
  40. static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
  41. unsigned long hash_shift,
  42. unsigned long nentries)
  43. {
  44. unsigned long tag, ent, hash;
  45. v &= ~0x1UL;
  46. hash = tsb_hash(v, hash_shift, nentries);
  47. ent = tsb + (hash * sizeof(struct tsb));
  48. tag = (v >> 22UL);
  49. tsb_flush(ent, tag);
  50. }
  51. static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
  52. unsigned long tsb, unsigned long nentries)
  53. {
  54. unsigned long i;
  55. for (i = 0; i < tb->tlb_nr; i++)
  56. __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
  57. }
  58. void flush_tsb_user(struct tlb_batch *tb)
  59. {
  60. struct mm_struct *mm = tb->mm;
  61. unsigned long nentries, base, flags;
  62. spin_lock_irqsave(&mm->context.lock, flags);
  63. if (!tb->huge) {
  64. base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
  65. nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
  66. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  67. base = __pa(base);
  68. __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
  69. }
  70. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  71. if (tb->huge && mm->context.tsb_block[MM_TSB_HUGE].tsb) {
  72. base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
  73. nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
  74. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  75. base = __pa(base);
  76. __flush_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries);
  77. }
  78. #endif
  79. spin_unlock_irqrestore(&mm->context.lock, flags);
  80. }
  81. void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr, bool huge)
  82. {
  83. unsigned long nentries, base, flags;
  84. spin_lock_irqsave(&mm->context.lock, flags);
  85. if (!huge) {
  86. base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
  87. nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
  88. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  89. base = __pa(base);
  90. __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
  91. }
  92. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  93. if (huge && mm->context.tsb_block[MM_TSB_HUGE].tsb) {
  94. base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
  95. nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
  96. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  97. base = __pa(base);
  98. __flush_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT, nentries);
  99. }
  100. #endif
  101. spin_unlock_irqrestore(&mm->context.lock, flags);
  102. }
  103. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
  104. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
  105. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  106. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
  107. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
  108. #endif
  109. static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
  110. {
  111. unsigned long tsb_reg, base, tsb_paddr;
  112. unsigned long page_sz, tte;
  113. mm->context.tsb_block[tsb_idx].tsb_nentries =
  114. tsb_bytes / sizeof(struct tsb);
  115. switch (tsb_idx) {
  116. case MM_TSB_BASE:
  117. base = TSBMAP_8K_BASE;
  118. break;
  119. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  120. case MM_TSB_HUGE:
  121. base = TSBMAP_4M_BASE;
  122. break;
  123. #endif
  124. default:
  125. BUG();
  126. }
  127. tte = pgprot_val(PAGE_KERNEL_LOCKED);
  128. tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
  129. BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
  130. /* Use the smallest page size that can map the whole TSB
  131. * in one TLB entry.
  132. */
  133. switch (tsb_bytes) {
  134. case 8192 << 0:
  135. tsb_reg = 0x0UL;
  136. #ifdef DCACHE_ALIASING_POSSIBLE
  137. base += (tsb_paddr & 8192);
  138. #endif
  139. page_sz = 8192;
  140. break;
  141. case 8192 << 1:
  142. tsb_reg = 0x1UL;
  143. page_sz = 64 * 1024;
  144. break;
  145. case 8192 << 2:
  146. tsb_reg = 0x2UL;
  147. page_sz = 64 * 1024;
  148. break;
  149. case 8192 << 3:
  150. tsb_reg = 0x3UL;
  151. page_sz = 64 * 1024;
  152. break;
  153. case 8192 << 4:
  154. tsb_reg = 0x4UL;
  155. page_sz = 512 * 1024;
  156. break;
  157. case 8192 << 5:
  158. tsb_reg = 0x5UL;
  159. page_sz = 512 * 1024;
  160. break;
  161. case 8192 << 6:
  162. tsb_reg = 0x6UL;
  163. page_sz = 512 * 1024;
  164. break;
  165. case 8192 << 7:
  166. tsb_reg = 0x7UL;
  167. page_sz = 4 * 1024 * 1024;
  168. break;
  169. default:
  170. printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
  171. current->comm, current->pid, tsb_bytes);
  172. do_exit(SIGSEGV);
  173. }
  174. tte |= pte_sz_bits(page_sz);
  175. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  176. /* Physical mapping, no locked TLB entry for TSB. */
  177. tsb_reg |= tsb_paddr;
  178. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  179. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
  180. mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
  181. } else {
  182. tsb_reg |= base;
  183. tsb_reg |= (tsb_paddr & (page_sz - 1UL));
  184. tte |= (tsb_paddr & ~(page_sz - 1UL));
  185. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  186. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
  187. mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
  188. }
  189. /* Setup the Hypervisor TSB descriptor. */
  190. if (tlb_type == hypervisor) {
  191. struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
  192. switch (tsb_idx) {
  193. case MM_TSB_BASE:
  194. hp->pgsz_idx = HV_PGSZ_IDX_BASE;
  195. break;
  196. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  197. case MM_TSB_HUGE:
  198. hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
  199. break;
  200. #endif
  201. default:
  202. BUG();
  203. }
  204. hp->assoc = 1;
  205. hp->num_ttes = tsb_bytes / 16;
  206. hp->ctx_idx = 0;
  207. switch (tsb_idx) {
  208. case MM_TSB_BASE:
  209. hp->pgsz_mask = HV_PGSZ_MASK_BASE;
  210. break;
  211. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  212. case MM_TSB_HUGE:
  213. hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
  214. break;
  215. #endif
  216. default:
  217. BUG();
  218. }
  219. hp->tsb_base = tsb_paddr;
  220. hp->resv = 0;
  221. }
  222. }
  223. struct kmem_cache *pgtable_cache __read_mostly;
  224. static struct kmem_cache *tsb_caches[8] __read_mostly;
  225. static const char *tsb_cache_names[8] = {
  226. "tsb_8KB",
  227. "tsb_16KB",
  228. "tsb_32KB",
  229. "tsb_64KB",
  230. "tsb_128KB",
  231. "tsb_256KB",
  232. "tsb_512KB",
  233. "tsb_1MB",
  234. };
  235. void __init pgtable_cache_init(void)
  236. {
  237. unsigned long i;
  238. pgtable_cache = kmem_cache_create("pgtable_cache",
  239. PAGE_SIZE, PAGE_SIZE,
  240. 0,
  241. _clear_page);
  242. if (!pgtable_cache) {
  243. prom_printf("pgtable_cache_init(): Could not create!\n");
  244. prom_halt();
  245. }
  246. for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
  247. unsigned long size = 8192 << i;
  248. const char *name = tsb_cache_names[i];
  249. tsb_caches[i] = kmem_cache_create(name,
  250. size, size,
  251. 0, NULL);
  252. if (!tsb_caches[i]) {
  253. prom_printf("Could not create %s cache\n", name);
  254. prom_halt();
  255. }
  256. }
  257. }
  258. int sysctl_tsb_ratio = -2;
  259. static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
  260. {
  261. unsigned long num_ents = (new_size / sizeof(struct tsb));
  262. if (sysctl_tsb_ratio < 0)
  263. return num_ents - (num_ents >> -sysctl_tsb_ratio);
  264. else
  265. return num_ents + (num_ents >> sysctl_tsb_ratio);
  266. }
  267. /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
  268. * do_sparc64_fault() invokes this routine to try and grow it.
  269. *
  270. * When we reach the maximum TSB size supported, we stick ~0UL into
  271. * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
  272. * will not trigger any longer.
  273. *
  274. * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
  275. * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
  276. * must be 512K aligned. It also must be physically contiguous, so we
  277. * cannot use vmalloc().
  278. *
  279. * The idea here is to grow the TSB when the RSS of the process approaches
  280. * the number of entries that the current TSB can hold at once. Currently,
  281. * we trigger when the RSS hits 3/4 of the TSB capacity.
  282. */
  283. void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
  284. {
  285. unsigned long max_tsb_size = 1 * 1024 * 1024;
  286. unsigned long new_size, old_size, flags;
  287. struct tsb *old_tsb, *new_tsb;
  288. unsigned long new_cache_index, old_cache_index;
  289. unsigned long new_rss_limit;
  290. gfp_t gfp_flags;
  291. if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
  292. max_tsb_size = (PAGE_SIZE << MAX_ORDER);
  293. new_cache_index = 0;
  294. for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
  295. new_rss_limit = tsb_size_to_rss_limit(new_size);
  296. if (new_rss_limit > rss)
  297. break;
  298. new_cache_index++;
  299. }
  300. if (new_size == max_tsb_size)
  301. new_rss_limit = ~0UL;
  302. retry_tsb_alloc:
  303. gfp_flags = GFP_KERNEL;
  304. if (new_size > (PAGE_SIZE * 2))
  305. gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
  306. new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
  307. gfp_flags, numa_node_id());
  308. if (unlikely(!new_tsb)) {
  309. /* Not being able to fork due to a high-order TSB
  310. * allocation failure is very bad behavior. Just back
  311. * down to a 0-order allocation and force no TSB
  312. * growing for this address space.
  313. */
  314. if (mm->context.tsb_block[tsb_index].tsb == NULL &&
  315. new_cache_index > 0) {
  316. new_cache_index = 0;
  317. new_size = 8192;
  318. new_rss_limit = ~0UL;
  319. goto retry_tsb_alloc;
  320. }
  321. /* If we failed on a TSB grow, we are under serious
  322. * memory pressure so don't try to grow any more.
  323. */
  324. if (mm->context.tsb_block[tsb_index].tsb != NULL)
  325. mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
  326. return;
  327. }
  328. /* Mark all tags as invalid. */
  329. tsb_init(new_tsb, new_size);
  330. /* Ok, we are about to commit the changes. If we are
  331. * growing an existing TSB the locking is very tricky,
  332. * so WATCH OUT!
  333. *
  334. * We have to hold mm->context.lock while committing to the
  335. * new TSB, this synchronizes us with processors in
  336. * flush_tsb_user() and switch_mm() for this address space.
  337. *
  338. * But even with that lock held, processors run asynchronously
  339. * accessing the old TSB via TLB miss handling. This is OK
  340. * because those actions are just propagating state from the
  341. * Linux page tables into the TSB, page table mappings are not
  342. * being changed. If a real fault occurs, the processor will
  343. * synchronize with us when it hits flush_tsb_user(), this is
  344. * also true for the case where vmscan is modifying the page
  345. * tables. The only thing we need to be careful with is to
  346. * skip any locked TSB entries during copy_tsb().
  347. *
  348. * When we finish committing to the new TSB, we have to drop
  349. * the lock and ask all other cpus running this address space
  350. * to run tsb_context_switch() to see the new TSB table.
  351. */
  352. spin_lock_irqsave(&mm->context.lock, flags);
  353. old_tsb = mm->context.tsb_block[tsb_index].tsb;
  354. old_cache_index =
  355. (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
  356. old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
  357. sizeof(struct tsb));
  358. /* Handle multiple threads trying to grow the TSB at the same time.
  359. * One will get in here first, and bump the size and the RSS limit.
  360. * The others will get in here next and hit this check.
  361. */
  362. if (unlikely(old_tsb &&
  363. (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
  364. spin_unlock_irqrestore(&mm->context.lock, flags);
  365. kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
  366. return;
  367. }
  368. mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
  369. if (old_tsb) {
  370. extern void copy_tsb(unsigned long old_tsb_base,
  371. unsigned long old_tsb_size,
  372. unsigned long new_tsb_base,
  373. unsigned long new_tsb_size);
  374. unsigned long old_tsb_base = (unsigned long) old_tsb;
  375. unsigned long new_tsb_base = (unsigned long) new_tsb;
  376. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  377. old_tsb_base = __pa(old_tsb_base);
  378. new_tsb_base = __pa(new_tsb_base);
  379. }
  380. copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
  381. }
  382. mm->context.tsb_block[tsb_index].tsb = new_tsb;
  383. setup_tsb_params(mm, tsb_index, new_size);
  384. spin_unlock_irqrestore(&mm->context.lock, flags);
  385. /* If old_tsb is NULL, we're being invoked for the first time
  386. * from init_new_context().
  387. */
  388. if (old_tsb) {
  389. /* Reload it on the local cpu. */
  390. tsb_context_switch(mm);
  391. /* Now force other processors to do the same. */
  392. preempt_disable();
  393. smp_tsb_sync(mm);
  394. preempt_enable();
  395. /* Now it is safe to free the old tsb. */
  396. kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
  397. }
  398. }
  399. int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  400. {
  401. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  402. unsigned long huge_pte_count;
  403. #endif
  404. unsigned int i;
  405. spin_lock_init(&mm->context.lock);
  406. mm->context.sparc64_ctx_val = 0UL;
  407. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  408. /* We reset it to zero because the fork() page copying
  409. * will re-increment the counters as the parent PTEs are
  410. * copied into the child address space.
  411. */
  412. huge_pte_count = mm->context.huge_pte_count;
  413. mm->context.huge_pte_count = 0;
  414. #endif
  415. /* copy_mm() copies over the parent's mm_struct before calling
  416. * us, so we need to zero out the TSB pointer or else tsb_grow()
  417. * will be confused and think there is an older TSB to free up.
  418. */
  419. for (i = 0; i < MM_NUM_TSBS; i++)
  420. mm->context.tsb_block[i].tsb = NULL;
  421. /* If this is fork, inherit the parent's TSB size. We would
  422. * grow it to that size on the first page fault anyways.
  423. */
  424. tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
  425. #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
  426. if (unlikely(huge_pte_count))
  427. tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
  428. #endif
  429. if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
  430. return -ENOMEM;
  431. return 0;
  432. }
  433. static void tsb_destroy_one(struct tsb_config *tp)
  434. {
  435. unsigned long cache_index;
  436. if (!tp->tsb)
  437. return;
  438. cache_index = tp->tsb_reg_val & 0x7UL;
  439. kmem_cache_free(tsb_caches[cache_index], tp->tsb);
  440. tp->tsb = NULL;
  441. tp->tsb_reg_val = 0UL;
  442. }
  443. void destroy_context(struct mm_struct *mm)
  444. {
  445. unsigned long flags, i;
  446. for (i = 0; i < MM_NUM_TSBS; i++)
  447. tsb_destroy_one(&mm->context.tsb_block[i]);
  448. spin_lock_irqsave(&ctx_alloc_lock, flags);
  449. if (CTX_VALID(mm->context)) {
  450. unsigned long nr = CTX_NRBITS(mm->context);
  451. mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
  452. }
  453. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  454. }