init.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757
  1. #include <linux/gfp.h>
  2. #include <linux/initrd.h>
  3. #include <linux/ioport.h>
  4. #include <linux/swap.h>
  5. #include <linux/memblock.h>
  6. #include <linux/bootmem.h> /* for max_low_pfn */
  7. #include <asm/cacheflush.h>
  8. #include <asm/e820.h>
  9. #include <asm/init.h>
  10. #include <asm/page.h>
  11. #include <asm/page_types.h>
  12. #include <asm/sections.h>
  13. #include <asm/setup.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/tlb.h>
  16. #include <asm/proto.h>
  17. #include <asm/dma.h> /* for MAX_DMA_PFN */
  18. #include <asm/microcode.h>
  19. /*
  20. * We need to define the tracepoints somewhere, and tlb.c
  21. * is only compied when SMP=y.
  22. */
  23. #define CREATE_TRACE_POINTS
  24. #include <trace/events/tlb.h>
  25. #include "mm_internal.h"
  26. /*
  27. * Tables translating between page_cache_type_t and pte encoding.
  28. * Minimal supported modes are defined statically, modified if more supported
  29. * cache modes are available.
  30. * Index into __cachemode2pte_tbl is the cachemode.
  31. * Index into __pte2cachemode_tbl are the caching attribute bits of the pte
  32. * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  33. */
  34. uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  35. [_PAGE_CACHE_MODE_WB] = 0,
  36. [_PAGE_CACHE_MODE_WC] = _PAGE_PWT,
  37. [_PAGE_CACHE_MODE_UC_MINUS] = _PAGE_PCD,
  38. [_PAGE_CACHE_MODE_UC] = _PAGE_PCD | _PAGE_PWT,
  39. [_PAGE_CACHE_MODE_WT] = _PAGE_PCD,
  40. [_PAGE_CACHE_MODE_WP] = _PAGE_PCD,
  41. };
  42. EXPORT_SYMBOL(__cachemode2pte_tbl);
  43. uint8_t __pte2cachemode_tbl[8] = {
  44. [__pte2cm_idx(0)] = _PAGE_CACHE_MODE_WB,
  45. [__pte2cm_idx(_PAGE_PWT)] = _PAGE_CACHE_MODE_WC,
  46. [__pte2cm_idx(_PAGE_PCD)] = _PAGE_CACHE_MODE_UC_MINUS,
  47. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD)] = _PAGE_CACHE_MODE_UC,
  48. [__pte2cm_idx(_PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  49. [__pte2cm_idx(_PAGE_PWT | _PAGE_PAT)] = _PAGE_CACHE_MODE_WC,
  50. [__pte2cm_idx(_PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  51. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  52. };
  53. EXPORT_SYMBOL(__pte2cachemode_tbl);
  54. static unsigned long __initdata pgt_buf_start;
  55. static unsigned long __initdata pgt_buf_end;
  56. static unsigned long __initdata pgt_buf_top;
  57. static unsigned long min_pfn_mapped;
  58. static bool __initdata can_use_brk_pgt = true;
  59. /*
  60. * Pages returned are already directly mapped.
  61. *
  62. * Changing that is likely to break Xen, see commit:
  63. *
  64. * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  65. *
  66. * for detailed information.
  67. */
  68. __ref void *alloc_low_pages(unsigned int num)
  69. {
  70. unsigned long pfn;
  71. int i;
  72. if (after_bootmem) {
  73. unsigned int order;
  74. order = get_order((unsigned long)num << PAGE_SHIFT);
  75. return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
  76. __GFP_ZERO, order);
  77. }
  78. if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  79. unsigned long ret;
  80. if (min_pfn_mapped >= max_pfn_mapped)
  81. panic("alloc_low_pages: ran out of memory");
  82. ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
  83. max_pfn_mapped << PAGE_SHIFT,
  84. PAGE_SIZE * num , PAGE_SIZE);
  85. if (!ret)
  86. panic("alloc_low_pages: can not alloc memory");
  87. memblock_reserve(ret, PAGE_SIZE * num);
  88. pfn = ret >> PAGE_SHIFT;
  89. } else {
  90. pfn = pgt_buf_end;
  91. pgt_buf_end += num;
  92. printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
  93. pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
  94. }
  95. for (i = 0; i < num; i++) {
  96. void *adr;
  97. adr = __va((pfn + i) << PAGE_SHIFT);
  98. clear_page(adr);
  99. }
  100. return __va(pfn << PAGE_SHIFT);
  101. }
  102. /* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
  103. #define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
  104. RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
  105. void __init early_alloc_pgt_buf(void)
  106. {
  107. unsigned long tables = INIT_PGT_BUF_SIZE;
  108. phys_addr_t base;
  109. base = __pa(extend_brk(tables, PAGE_SIZE));
  110. pgt_buf_start = base >> PAGE_SHIFT;
  111. pgt_buf_end = pgt_buf_start;
  112. pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
  113. }
  114. int after_bootmem;
  115. int direct_gbpages
  116. #ifdef CONFIG_DIRECT_GBPAGES
  117. = 1
  118. #endif
  119. ;
  120. static void __init init_gbpages(void)
  121. {
  122. #ifdef CONFIG_X86_64
  123. if (direct_gbpages && cpu_has_gbpages)
  124. printk(KERN_INFO "Using GB pages for direct mapping\n");
  125. else
  126. direct_gbpages = 0;
  127. #endif
  128. }
  129. struct map_range {
  130. unsigned long start;
  131. unsigned long end;
  132. unsigned page_size_mask;
  133. };
  134. static int page_size_mask;
  135. static void __init probe_page_size_mask(void)
  136. {
  137. init_gbpages();
  138. #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
  139. /*
  140. * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
  141. * This will simplify cpa(), which otherwise needs to support splitting
  142. * large pages into small in interrupt context, etc.
  143. */
  144. if (direct_gbpages)
  145. page_size_mask |= 1 << PG_LEVEL_1G;
  146. if (cpu_has_pse)
  147. page_size_mask |= 1 << PG_LEVEL_2M;
  148. #endif
  149. /* Enable PSE if available */
  150. if (cpu_has_pse)
  151. cr4_set_bits_and_update_boot(X86_CR4_PSE);
  152. /* Enable PGE if available */
  153. if (cpu_has_pge) {
  154. cr4_set_bits_and_update_boot(X86_CR4_PGE);
  155. __supported_pte_mask |= _PAGE_GLOBAL;
  156. } else
  157. __supported_pte_mask &= ~_PAGE_GLOBAL;
  158. }
  159. #ifdef CONFIG_X86_32
  160. #define NR_RANGE_MR 3
  161. #else /* CONFIG_X86_64 */
  162. #define NR_RANGE_MR 5
  163. #endif
  164. static int __meminit save_mr(struct map_range *mr, int nr_range,
  165. unsigned long start_pfn, unsigned long end_pfn,
  166. unsigned long page_size_mask)
  167. {
  168. if (start_pfn < end_pfn) {
  169. if (nr_range >= NR_RANGE_MR)
  170. panic("run out of range for init_memory_mapping\n");
  171. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  172. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  173. mr[nr_range].page_size_mask = page_size_mask;
  174. nr_range++;
  175. }
  176. return nr_range;
  177. }
  178. /*
  179. * adjust the page_size_mask for small range to go with
  180. * big page size instead small one if nearby are ram too.
  181. */
  182. static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
  183. int nr_range)
  184. {
  185. int i;
  186. for (i = 0; i < nr_range; i++) {
  187. if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
  188. !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
  189. unsigned long start = round_down(mr[i].start, PMD_SIZE);
  190. unsigned long end = round_up(mr[i].end, PMD_SIZE);
  191. #ifdef CONFIG_X86_32
  192. if ((end >> PAGE_SHIFT) > max_low_pfn)
  193. continue;
  194. #endif
  195. if (memblock_is_region_memory(start, end - start))
  196. mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
  197. }
  198. if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
  199. !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
  200. unsigned long start = round_down(mr[i].start, PUD_SIZE);
  201. unsigned long end = round_up(mr[i].end, PUD_SIZE);
  202. if (memblock_is_region_memory(start, end - start))
  203. mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
  204. }
  205. }
  206. }
  207. static const char *page_size_string(struct map_range *mr)
  208. {
  209. static const char str_1g[] = "1G";
  210. static const char str_2m[] = "2M";
  211. static const char str_4m[] = "4M";
  212. static const char str_4k[] = "4k";
  213. if (mr->page_size_mask & (1<<PG_LEVEL_1G))
  214. return str_1g;
  215. /*
  216. * 32-bit without PAE has a 4M large page size.
  217. * PG_LEVEL_2M is misnamed, but we can at least
  218. * print out the right size in the string.
  219. */
  220. if (IS_ENABLED(CONFIG_X86_32) &&
  221. !IS_ENABLED(CONFIG_X86_PAE) &&
  222. mr->page_size_mask & (1<<PG_LEVEL_2M))
  223. return str_4m;
  224. if (mr->page_size_mask & (1<<PG_LEVEL_2M))
  225. return str_2m;
  226. return str_4k;
  227. }
  228. static int __meminit split_mem_range(struct map_range *mr, int nr_range,
  229. unsigned long start,
  230. unsigned long end)
  231. {
  232. unsigned long start_pfn, end_pfn, limit_pfn;
  233. unsigned long pfn;
  234. int i;
  235. limit_pfn = PFN_DOWN(end);
  236. /* head if not big page alignment ? */
  237. pfn = start_pfn = PFN_DOWN(start);
  238. #ifdef CONFIG_X86_32
  239. /*
  240. * Don't use a large page for the first 2/4MB of memory
  241. * because there are often fixed size MTRRs in there
  242. * and overlapping MTRRs into large pages can cause
  243. * slowdowns.
  244. */
  245. if (pfn == 0)
  246. end_pfn = PFN_DOWN(PMD_SIZE);
  247. else
  248. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  249. #else /* CONFIG_X86_64 */
  250. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  251. #endif
  252. if (end_pfn > limit_pfn)
  253. end_pfn = limit_pfn;
  254. if (start_pfn < end_pfn) {
  255. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  256. pfn = end_pfn;
  257. }
  258. /* big page (2M) range */
  259. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  260. #ifdef CONFIG_X86_32
  261. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  262. #else /* CONFIG_X86_64 */
  263. end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  264. if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
  265. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  266. #endif
  267. if (start_pfn < end_pfn) {
  268. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  269. page_size_mask & (1<<PG_LEVEL_2M));
  270. pfn = end_pfn;
  271. }
  272. #ifdef CONFIG_X86_64
  273. /* big page (1G) range */
  274. start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  275. end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
  276. if (start_pfn < end_pfn) {
  277. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  278. page_size_mask &
  279. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  280. pfn = end_pfn;
  281. }
  282. /* tail is not big page (1G) alignment */
  283. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  284. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  285. if (start_pfn < end_pfn) {
  286. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  287. page_size_mask & (1<<PG_LEVEL_2M));
  288. pfn = end_pfn;
  289. }
  290. #endif
  291. /* tail is not big page (2M) alignment */
  292. start_pfn = pfn;
  293. end_pfn = limit_pfn;
  294. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  295. if (!after_bootmem)
  296. adjust_range_page_size_mask(mr, nr_range);
  297. /* try to merge same page size and continuous */
  298. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  299. unsigned long old_start;
  300. if (mr[i].end != mr[i+1].start ||
  301. mr[i].page_size_mask != mr[i+1].page_size_mask)
  302. continue;
  303. /* move it */
  304. old_start = mr[i].start;
  305. memmove(&mr[i], &mr[i+1],
  306. (nr_range - 1 - i) * sizeof(struct map_range));
  307. mr[i--].start = old_start;
  308. nr_range--;
  309. }
  310. for (i = 0; i < nr_range; i++)
  311. printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
  312. mr[i].start, mr[i].end - 1,
  313. page_size_string(&mr[i]));
  314. return nr_range;
  315. }
  316. struct range pfn_mapped[E820_X_MAX];
  317. int nr_pfn_mapped;
  318. static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
  319. {
  320. nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
  321. nr_pfn_mapped, start_pfn, end_pfn);
  322. nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
  323. max_pfn_mapped = max(max_pfn_mapped, end_pfn);
  324. if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
  325. max_low_pfn_mapped = max(max_low_pfn_mapped,
  326. min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
  327. }
  328. bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
  329. {
  330. int i;
  331. for (i = 0; i < nr_pfn_mapped; i++)
  332. if ((start_pfn >= pfn_mapped[i].start) &&
  333. (end_pfn <= pfn_mapped[i].end))
  334. return true;
  335. return false;
  336. }
  337. /*
  338. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  339. * This runs before bootmem is initialized and gets pages directly from
  340. * the physical memory. To access them they are temporarily mapped.
  341. */
  342. unsigned long __init_refok init_memory_mapping(unsigned long start,
  343. unsigned long end)
  344. {
  345. struct map_range mr[NR_RANGE_MR];
  346. unsigned long ret = 0;
  347. int nr_range, i;
  348. pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
  349. start, end - 1);
  350. memset(mr, 0, sizeof(mr));
  351. nr_range = split_mem_range(mr, 0, start, end);
  352. for (i = 0; i < nr_range; i++)
  353. ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
  354. mr[i].page_size_mask);
  355. add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
  356. return ret >> PAGE_SHIFT;
  357. }
  358. /*
  359. * We need to iterate through the E820 memory map and create direct mappings
  360. * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
  361. * create direct mappings for all pfns from [0 to max_low_pfn) and
  362. * [4GB to max_pfn) because of possible memory holes in high addresses
  363. * that cannot be marked as UC by fixed/variable range MTRRs.
  364. * Depending on the alignment of E820 ranges, this may possibly result
  365. * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
  366. *
  367. * init_mem_mapping() calls init_range_memory_mapping() with big range.
  368. * That range would have hole in the middle or ends, and only ram parts
  369. * will be mapped in init_range_memory_mapping().
  370. */
  371. static unsigned long __init init_range_memory_mapping(
  372. unsigned long r_start,
  373. unsigned long r_end)
  374. {
  375. unsigned long start_pfn, end_pfn;
  376. unsigned long mapped_ram_size = 0;
  377. int i;
  378. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  379. u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
  380. u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
  381. if (start >= end)
  382. continue;
  383. /*
  384. * if it is overlapping with brk pgt, we need to
  385. * alloc pgt buf from memblock instead.
  386. */
  387. can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
  388. min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
  389. init_memory_mapping(start, end);
  390. mapped_ram_size += end - start;
  391. can_use_brk_pgt = true;
  392. }
  393. return mapped_ram_size;
  394. }
  395. static unsigned long __init get_new_step_size(unsigned long step_size)
  396. {
  397. /*
  398. * Initial mapped size is PMD_SIZE (2M).
  399. * We can not set step_size to be PUD_SIZE (1G) yet.
  400. * In worse case, when we cross the 1G boundary, and
  401. * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
  402. * to map 1G range with PTE. Hence we use one less than the
  403. * difference of page table level shifts.
  404. *
  405. * Don't need to worry about overflow in the top-down case, on 32bit,
  406. * when step_size is 0, round_down() returns 0 for start, and that
  407. * turns it into 0x100000000ULL.
  408. * In the bottom-up case, round_up(x, 0) returns 0 though too, which
  409. * needs to be taken into consideration by the code below.
  410. */
  411. return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
  412. }
  413. /**
  414. * memory_map_top_down - Map [map_start, map_end) top down
  415. * @map_start: start address of the target memory range
  416. * @map_end: end address of the target memory range
  417. *
  418. * This function will setup direct mapping for memory range
  419. * [map_start, map_end) in top-down. That said, the page tables
  420. * will be allocated at the end of the memory, and we map the
  421. * memory in top-down.
  422. */
  423. static void __init memory_map_top_down(unsigned long map_start,
  424. unsigned long map_end)
  425. {
  426. unsigned long real_end, start, last_start;
  427. unsigned long step_size;
  428. unsigned long addr;
  429. unsigned long mapped_ram_size = 0;
  430. /* xen has big range in reserved near end of ram, skip it at first.*/
  431. addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
  432. real_end = addr + PMD_SIZE;
  433. /* step_size need to be small so pgt_buf from BRK could cover it */
  434. step_size = PMD_SIZE;
  435. max_pfn_mapped = 0; /* will get exact value next */
  436. min_pfn_mapped = real_end >> PAGE_SHIFT;
  437. last_start = start = real_end;
  438. /*
  439. * We start from the top (end of memory) and go to the bottom.
  440. * The memblock_find_in_range() gets us a block of RAM from the
  441. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  442. * for page table.
  443. */
  444. while (last_start > map_start) {
  445. if (last_start > step_size) {
  446. start = round_down(last_start - 1, step_size);
  447. if (start < map_start)
  448. start = map_start;
  449. } else
  450. start = map_start;
  451. mapped_ram_size += init_range_memory_mapping(start,
  452. last_start);
  453. last_start = start;
  454. min_pfn_mapped = last_start >> PAGE_SHIFT;
  455. if (mapped_ram_size >= step_size)
  456. step_size = get_new_step_size(step_size);
  457. }
  458. if (real_end < map_end)
  459. init_range_memory_mapping(real_end, map_end);
  460. }
  461. /**
  462. * memory_map_bottom_up - Map [map_start, map_end) bottom up
  463. * @map_start: start address of the target memory range
  464. * @map_end: end address of the target memory range
  465. *
  466. * This function will setup direct mapping for memory range
  467. * [map_start, map_end) in bottom-up. Since we have limited the
  468. * bottom-up allocation above the kernel, the page tables will
  469. * be allocated just above the kernel and we map the memory
  470. * in [map_start, map_end) in bottom-up.
  471. */
  472. static void __init memory_map_bottom_up(unsigned long map_start,
  473. unsigned long map_end)
  474. {
  475. unsigned long next, start;
  476. unsigned long mapped_ram_size = 0;
  477. /* step_size need to be small so pgt_buf from BRK could cover it */
  478. unsigned long step_size = PMD_SIZE;
  479. start = map_start;
  480. min_pfn_mapped = start >> PAGE_SHIFT;
  481. /*
  482. * We start from the bottom (@map_start) and go to the top (@map_end).
  483. * The memblock_find_in_range() gets us a block of RAM from the
  484. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  485. * for page table.
  486. */
  487. while (start < map_end) {
  488. if (step_size && map_end - start > step_size) {
  489. next = round_up(start + 1, step_size);
  490. if (next > map_end)
  491. next = map_end;
  492. } else {
  493. next = map_end;
  494. }
  495. mapped_ram_size += init_range_memory_mapping(start, next);
  496. start = next;
  497. if (mapped_ram_size >= step_size)
  498. step_size = get_new_step_size(step_size);
  499. }
  500. }
  501. void __init init_mem_mapping(void)
  502. {
  503. unsigned long end;
  504. probe_page_size_mask();
  505. #ifdef CONFIG_X86_64
  506. end = max_pfn << PAGE_SHIFT;
  507. #else
  508. end = max_low_pfn << PAGE_SHIFT;
  509. #endif
  510. /* the ISA range is always mapped regardless of memory holes */
  511. init_memory_mapping(0, ISA_END_ADDRESS);
  512. /*
  513. * If the allocation is in bottom-up direction, we setup direct mapping
  514. * in bottom-up, otherwise we setup direct mapping in top-down.
  515. */
  516. if (memblock_bottom_up()) {
  517. unsigned long kernel_end = __pa_symbol(_end);
  518. /*
  519. * we need two separate calls here. This is because we want to
  520. * allocate page tables above the kernel. So we first map
  521. * [kernel_end, end) to make memory above the kernel be mapped
  522. * as soon as possible. And then use page tables allocated above
  523. * the kernel to map [ISA_END_ADDRESS, kernel_end).
  524. */
  525. memory_map_bottom_up(kernel_end, end);
  526. memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
  527. } else {
  528. memory_map_top_down(ISA_END_ADDRESS, end);
  529. }
  530. #ifdef CONFIG_X86_64
  531. if (max_pfn > max_low_pfn) {
  532. /* can we preseve max_low_pfn ?*/
  533. max_low_pfn = max_pfn;
  534. }
  535. #else
  536. early_ioremap_page_table_range_init();
  537. #endif
  538. load_cr3(swapper_pg_dir);
  539. __flush_tlb_all();
  540. early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
  541. }
  542. /*
  543. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  544. * is valid. The argument is a physical page number.
  545. *
  546. *
  547. * On x86, access has to be given to the first megabyte of ram because that area
  548. * contains BIOS code and data regions used by X and dosemu and similar apps.
  549. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  550. * mmio resources as well as potential bios/acpi data regions.
  551. */
  552. int devmem_is_allowed(unsigned long pagenr)
  553. {
  554. if (pagenr < 256)
  555. return 1;
  556. if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
  557. return 0;
  558. if (!page_is_ram(pagenr))
  559. return 1;
  560. return 0;
  561. }
  562. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  563. {
  564. unsigned long begin_aligned, end_aligned;
  565. /* Make sure boundaries are page aligned */
  566. begin_aligned = PAGE_ALIGN(begin);
  567. end_aligned = end & PAGE_MASK;
  568. if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
  569. begin = begin_aligned;
  570. end = end_aligned;
  571. }
  572. if (begin >= end)
  573. return;
  574. /*
  575. * If debugging page accesses then do not free this memory but
  576. * mark them not present - any buggy init-section access will
  577. * create a kernel page fault:
  578. */
  579. #ifdef CONFIG_DEBUG_PAGEALLOC
  580. printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
  581. begin, end - 1);
  582. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  583. #else
  584. /*
  585. * We just marked the kernel text read only above, now that
  586. * we are going to free part of that, we need to make that
  587. * writeable and non-executable first.
  588. */
  589. set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
  590. set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
  591. free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
  592. #endif
  593. }
  594. void free_initmem(void)
  595. {
  596. free_init_pages("unused kernel",
  597. (unsigned long)(&__init_begin),
  598. (unsigned long)(&__init_end));
  599. }
  600. #ifdef CONFIG_BLK_DEV_INITRD
  601. void __init free_initrd_mem(unsigned long start, unsigned long end)
  602. {
  603. #ifdef CONFIG_MICROCODE_EARLY
  604. /*
  605. * Remember, initrd memory may contain microcode or other useful things.
  606. * Before we lose initrd mem, we need to find a place to hold them
  607. * now that normal virtual memory is enabled.
  608. */
  609. save_microcode_in_initrd();
  610. #endif
  611. /*
  612. * end could be not aligned, and We can not align that,
  613. * decompresser could be confused by aligned initrd_end
  614. * We already reserve the end partial page before in
  615. * - i386_start_kernel()
  616. * - x86_64_start_kernel()
  617. * - relocate_initrd()
  618. * So here We can do PAGE_ALIGN() safely to get partial page to be freed
  619. */
  620. free_init_pages("initrd", start, PAGE_ALIGN(end));
  621. }
  622. #endif
  623. void __init zone_sizes_init(void)
  624. {
  625. unsigned long max_zone_pfns[MAX_NR_ZONES];
  626. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  627. #ifdef CONFIG_ZONE_DMA
  628. max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
  629. #endif
  630. #ifdef CONFIG_ZONE_DMA32
  631. max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
  632. #endif
  633. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  634. #ifdef CONFIG_HIGHMEM
  635. max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
  636. #endif
  637. free_area_init_nodes(max_zone_pfns);
  638. }
  639. DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
  640. #ifdef CONFIG_SMP
  641. .active_mm = &init_mm,
  642. .state = 0,
  643. #endif
  644. .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
  645. };
  646. EXPORT_SYMBOL_GPL(cpu_tlbstate);
  647. void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
  648. {
  649. /* entry 0 MUST be WB (hardwired to speed up translations) */
  650. BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
  651. __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
  652. __pte2cachemode_tbl[entry] = cache;
  653. }