process.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/module.h>
  10. #include <linux/pm.h>
  11. #include <linux/clockchips.h>
  12. #include <linux/random.h>
  13. #include <linux/user-return-notifier.h>
  14. #include <linux/dmi.h>
  15. #include <linux/utsname.h>
  16. #include <linux/stackprotector.h>
  17. #include <linux/tick.h>
  18. #include <linux/cpuidle.h>
  19. #include <trace/events/power.h>
  20. #include <linux/hw_breakpoint.h>
  21. #include <asm/cpu.h>
  22. #include <asm/apic.h>
  23. #include <asm/syscalls.h>
  24. #include <asm/idle.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/i387.h>
  27. #include <asm/fpu-internal.h>
  28. #include <asm/debugreg.h>
  29. #include <asm/nmi.h>
  30. #include <asm/tlbflush.h>
  31. /*
  32. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  33. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  34. * so they are allowed to end up in the .data..cacheline_aligned
  35. * section. Since TSS's are completely CPU-local, we want them
  36. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  37. */
  38. __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
  39. .x86_tss = {
  40. .sp0 = TOP_OF_INIT_STACK,
  41. #ifdef CONFIG_X86_32
  42. .ss0 = __KERNEL_DS,
  43. .ss1 = __KERNEL_CS,
  44. .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  45. #endif
  46. },
  47. #ifdef CONFIG_X86_32
  48. /*
  49. * Note that the .io_bitmap member must be extra-big. This is because
  50. * the CPU will access an additional byte beyond the end of the IO
  51. * permission bitmap. The extra byte must be all 1 bits, and must
  52. * be within the limit.
  53. */
  54. .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
  55. #endif
  56. };
  57. EXPORT_PER_CPU_SYMBOL_GPL(cpu_tss);
  58. #ifdef CONFIG_X86_64
  59. static DEFINE_PER_CPU(unsigned char, is_idle);
  60. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  61. void idle_notifier_register(struct notifier_block *n)
  62. {
  63. atomic_notifier_chain_register(&idle_notifier, n);
  64. }
  65. EXPORT_SYMBOL_GPL(idle_notifier_register);
  66. void idle_notifier_unregister(struct notifier_block *n)
  67. {
  68. atomic_notifier_chain_unregister(&idle_notifier, n);
  69. }
  70. EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  71. #endif
  72. struct kmem_cache *task_xstate_cachep;
  73. EXPORT_SYMBOL_GPL(task_xstate_cachep);
  74. /*
  75. * this gets called so that we can store lazy state into memory and copy the
  76. * current task into the new thread.
  77. */
  78. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  79. {
  80. *dst = *src;
  81. dst->thread.fpu_counter = 0;
  82. dst->thread.fpu.has_fpu = 0;
  83. dst->thread.fpu.last_cpu = ~0;
  84. dst->thread.fpu.state = NULL;
  85. if (tsk_used_math(src)) {
  86. int err = fpu_alloc(&dst->thread.fpu);
  87. if (err)
  88. return err;
  89. fpu_copy(dst, src);
  90. }
  91. return 0;
  92. }
  93. void free_thread_xstate(struct task_struct *tsk)
  94. {
  95. fpu_free(&tsk->thread.fpu);
  96. }
  97. void arch_release_task_struct(struct task_struct *tsk)
  98. {
  99. free_thread_xstate(tsk);
  100. }
  101. void arch_task_cache_init(void)
  102. {
  103. task_xstate_cachep =
  104. kmem_cache_create("task_xstate", xstate_size,
  105. __alignof__(union thread_xstate),
  106. SLAB_PANIC | SLAB_NOTRACK, NULL);
  107. setup_xstate_comp();
  108. }
  109. /*
  110. * Free current thread data structures etc..
  111. */
  112. void exit_thread(void)
  113. {
  114. struct task_struct *me = current;
  115. struct thread_struct *t = &me->thread;
  116. unsigned long *bp = t->io_bitmap_ptr;
  117. if (bp) {
  118. struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
  119. t->io_bitmap_ptr = NULL;
  120. clear_thread_flag(TIF_IO_BITMAP);
  121. /*
  122. * Careful, clear this in the TSS too:
  123. */
  124. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  125. t->io_bitmap_max = 0;
  126. put_cpu();
  127. kfree(bp);
  128. }
  129. drop_fpu(me);
  130. }
  131. void flush_thread(void)
  132. {
  133. struct task_struct *tsk = current;
  134. flush_ptrace_hw_breakpoint(tsk);
  135. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  136. drop_init_fpu(tsk);
  137. /*
  138. * Free the FPU state for non xsave platforms. They get reallocated
  139. * lazily at the first use.
  140. */
  141. if (!use_eager_fpu())
  142. free_thread_xstate(tsk);
  143. }
  144. static void hard_disable_TSC(void)
  145. {
  146. cr4_set_bits(X86_CR4_TSD);
  147. }
  148. void disable_TSC(void)
  149. {
  150. preempt_disable();
  151. if (!test_and_set_thread_flag(TIF_NOTSC))
  152. /*
  153. * Must flip the CPU state synchronously with
  154. * TIF_NOTSC in the current running context.
  155. */
  156. hard_disable_TSC();
  157. preempt_enable();
  158. }
  159. static void hard_enable_TSC(void)
  160. {
  161. cr4_clear_bits(X86_CR4_TSD);
  162. }
  163. static void enable_TSC(void)
  164. {
  165. preempt_disable();
  166. if (test_and_clear_thread_flag(TIF_NOTSC))
  167. /*
  168. * Must flip the CPU state synchronously with
  169. * TIF_NOTSC in the current running context.
  170. */
  171. hard_enable_TSC();
  172. preempt_enable();
  173. }
  174. int get_tsc_mode(unsigned long adr)
  175. {
  176. unsigned int val;
  177. if (test_thread_flag(TIF_NOTSC))
  178. val = PR_TSC_SIGSEGV;
  179. else
  180. val = PR_TSC_ENABLE;
  181. return put_user(val, (unsigned int __user *)adr);
  182. }
  183. int set_tsc_mode(unsigned int val)
  184. {
  185. if (val == PR_TSC_SIGSEGV)
  186. disable_TSC();
  187. else if (val == PR_TSC_ENABLE)
  188. enable_TSC();
  189. else
  190. return -EINVAL;
  191. return 0;
  192. }
  193. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  194. struct tss_struct *tss)
  195. {
  196. struct thread_struct *prev, *next;
  197. prev = &prev_p->thread;
  198. next = &next_p->thread;
  199. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  200. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  201. unsigned long debugctl = get_debugctlmsr();
  202. debugctl &= ~DEBUGCTLMSR_BTF;
  203. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  204. debugctl |= DEBUGCTLMSR_BTF;
  205. update_debugctlmsr(debugctl);
  206. }
  207. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  208. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  209. /* prev and next are different */
  210. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  211. hard_disable_TSC();
  212. else
  213. hard_enable_TSC();
  214. }
  215. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  216. /*
  217. * Copy the relevant range of the IO bitmap.
  218. * Normally this is 128 bytes or less:
  219. */
  220. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  221. max(prev->io_bitmap_max, next->io_bitmap_max));
  222. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  223. /*
  224. * Clear any possible leftover bits:
  225. */
  226. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  227. }
  228. propagate_user_return_notify(prev_p, next_p);
  229. }
  230. /*
  231. * Idle related variables and functions
  232. */
  233. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  234. EXPORT_SYMBOL(boot_option_idle_override);
  235. static void (*x86_idle)(void);
  236. #ifndef CONFIG_SMP
  237. static inline void play_dead(void)
  238. {
  239. BUG();
  240. }
  241. #endif
  242. #ifdef CONFIG_X86_64
  243. void enter_idle(void)
  244. {
  245. this_cpu_write(is_idle, 1);
  246. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  247. }
  248. static void __exit_idle(void)
  249. {
  250. if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
  251. return;
  252. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  253. }
  254. /* Called from interrupts to signify idle end */
  255. void exit_idle(void)
  256. {
  257. /* idle loop has pid 0 */
  258. if (current->pid)
  259. return;
  260. __exit_idle();
  261. }
  262. #endif
  263. void arch_cpu_idle_enter(void)
  264. {
  265. local_touch_nmi();
  266. enter_idle();
  267. }
  268. void arch_cpu_idle_exit(void)
  269. {
  270. __exit_idle();
  271. }
  272. void arch_cpu_idle_dead(void)
  273. {
  274. play_dead();
  275. }
  276. /*
  277. * Called from the generic idle code.
  278. */
  279. void arch_cpu_idle(void)
  280. {
  281. x86_idle();
  282. }
  283. /*
  284. * We use this if we don't have any better idle routine..
  285. */
  286. void default_idle(void)
  287. {
  288. trace_cpu_idle_rcuidle(1, smp_processor_id());
  289. safe_halt();
  290. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  291. }
  292. #ifdef CONFIG_APM_MODULE
  293. EXPORT_SYMBOL(default_idle);
  294. #endif
  295. #ifdef CONFIG_XEN
  296. bool xen_set_default_idle(void)
  297. {
  298. bool ret = !!x86_idle;
  299. x86_idle = default_idle;
  300. return ret;
  301. }
  302. #endif
  303. void stop_this_cpu(void *dummy)
  304. {
  305. local_irq_disable();
  306. /*
  307. * Remove this CPU:
  308. */
  309. set_cpu_online(smp_processor_id(), false);
  310. disable_local_APIC();
  311. for (;;)
  312. halt();
  313. }
  314. bool amd_e400_c1e_detected;
  315. EXPORT_SYMBOL(amd_e400_c1e_detected);
  316. static cpumask_var_t amd_e400_c1e_mask;
  317. void amd_e400_remove_cpu(int cpu)
  318. {
  319. if (amd_e400_c1e_mask != NULL)
  320. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  321. }
  322. /*
  323. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  324. * pending message MSR. If we detect C1E, then we handle it the same
  325. * way as C3 power states (local apic timer and TSC stop)
  326. */
  327. static void amd_e400_idle(void)
  328. {
  329. if (!amd_e400_c1e_detected) {
  330. u32 lo, hi;
  331. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  332. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  333. amd_e400_c1e_detected = true;
  334. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  335. mark_tsc_unstable("TSC halt in AMD C1E");
  336. pr_info("System has AMD C1E enabled\n");
  337. }
  338. }
  339. if (amd_e400_c1e_detected) {
  340. int cpu = smp_processor_id();
  341. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  342. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  343. /*
  344. * Force broadcast so ACPI can not interfere.
  345. */
  346. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  347. &cpu);
  348. pr_info("Switch to broadcast mode on CPU%d\n", cpu);
  349. }
  350. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  351. default_idle();
  352. /*
  353. * The switch back from broadcast mode needs to be
  354. * called with interrupts disabled.
  355. */
  356. local_irq_disable();
  357. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  358. local_irq_enable();
  359. } else
  360. default_idle();
  361. }
  362. void select_idle_routine(const struct cpuinfo_x86 *c)
  363. {
  364. #ifdef CONFIG_SMP
  365. if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
  366. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  367. #endif
  368. if (x86_idle || boot_option_idle_override == IDLE_POLL)
  369. return;
  370. if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
  371. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  372. pr_info("using AMD E400 aware idle routine\n");
  373. x86_idle = amd_e400_idle;
  374. } else
  375. x86_idle = default_idle;
  376. }
  377. void __init init_amd_e400_c1e_mask(void)
  378. {
  379. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  380. if (x86_idle == amd_e400_idle)
  381. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  382. }
  383. static int __init idle_setup(char *str)
  384. {
  385. if (!str)
  386. return -EINVAL;
  387. if (!strcmp(str, "poll")) {
  388. pr_info("using polling idle threads\n");
  389. boot_option_idle_override = IDLE_POLL;
  390. cpu_idle_poll_ctrl(true);
  391. } else if (!strcmp(str, "halt")) {
  392. /*
  393. * When the boot option of idle=halt is added, halt is
  394. * forced to be used for CPU idle. In such case CPU C2/C3
  395. * won't be used again.
  396. * To continue to load the CPU idle driver, don't touch
  397. * the boot_option_idle_override.
  398. */
  399. x86_idle = default_idle;
  400. boot_option_idle_override = IDLE_HALT;
  401. } else if (!strcmp(str, "nomwait")) {
  402. /*
  403. * If the boot option of "idle=nomwait" is added,
  404. * it means that mwait will be disabled for CPU C2/C3
  405. * states. In such case it won't touch the variable
  406. * of boot_option_idle_override.
  407. */
  408. boot_option_idle_override = IDLE_NOMWAIT;
  409. } else
  410. return -1;
  411. return 0;
  412. }
  413. early_param("idle", idle_setup);
  414. unsigned long arch_align_stack(unsigned long sp)
  415. {
  416. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  417. sp -= get_random_int() % 8192;
  418. return sp & ~0xf;
  419. }
  420. unsigned long arch_randomize_brk(struct mm_struct *mm)
  421. {
  422. unsigned long range_end = mm->brk + 0x02000000;
  423. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  424. }