knav_qmss_queue.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912
  1. /*
  2. * Keystone Queue Manager subsystem driver
  3. *
  4. * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
  5. * Authors: Sandeep Nair <sandeep_n@ti.com>
  6. * Cyril Chemparathy <cyril@ti.com>
  7. * Santosh Shilimkar <santosh.shilimkar@ti.com>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * version 2 as published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. */
  18. #include <linux/debugfs.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/firmware.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include <linux/module.h>
  24. #include <linux/of_address.h>
  25. #include <linux/of_device.h>
  26. #include <linux/of_irq.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/slab.h>
  29. #include <linux/soc/ti/knav_qmss.h>
  30. #include "knav_qmss.h"
  31. static struct knav_device *kdev;
  32. static DEFINE_MUTEX(knav_dev_lock);
  33. /* Queue manager register indices in DTS */
  34. #define KNAV_QUEUE_PEEK_REG_INDEX 0
  35. #define KNAV_QUEUE_STATUS_REG_INDEX 1
  36. #define KNAV_QUEUE_CONFIG_REG_INDEX 2
  37. #define KNAV_QUEUE_REGION_REG_INDEX 3
  38. #define KNAV_QUEUE_PUSH_REG_INDEX 4
  39. #define KNAV_QUEUE_POP_REG_INDEX 5
  40. /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
  41. * There are no status and vbusm push registers on this version
  42. * of QMSS. Push registers are same as pop, So all indices above 1
  43. * are to be re-defined
  44. */
  45. #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1
  46. #define KNAV_L_QUEUE_REGION_REG_INDEX 2
  47. #define KNAV_L_QUEUE_PUSH_REG_INDEX 3
  48. /* PDSP register indices in DTS */
  49. #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
  50. #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
  51. #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
  52. #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
  53. #define knav_queue_idx_to_inst(kdev, idx) \
  54. (kdev->instances + (idx << kdev->inst_shift))
  55. #define for_each_handle_rcu(qh, inst) \
  56. list_for_each_entry_rcu(qh, &inst->handles, list)
  57. #define for_each_instance(idx, inst, kdev) \
  58. for (idx = 0, inst = kdev->instances; \
  59. idx < (kdev)->num_queues_in_use; \
  60. idx++, inst = knav_queue_idx_to_inst(kdev, idx))
  61. /* All firmware file names end up here. List the firmware file names below.
  62. * Newest followed by older ones. Search is done from start of the array
  63. * until a firmware file is found.
  64. */
  65. const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
  66. static bool device_ready;
  67. bool knav_qmss_device_ready(void)
  68. {
  69. return device_ready;
  70. }
  71. EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
  72. /**
  73. * knav_queue_notify: qmss queue notfier call
  74. *
  75. * @inst: qmss queue instance like accumulator
  76. */
  77. void knav_queue_notify(struct knav_queue_inst *inst)
  78. {
  79. struct knav_queue *qh;
  80. if (!inst)
  81. return;
  82. rcu_read_lock();
  83. for_each_handle_rcu(qh, inst) {
  84. if (atomic_read(&qh->notifier_enabled) <= 0)
  85. continue;
  86. if (WARN_ON(!qh->notifier_fn))
  87. continue;
  88. this_cpu_inc(qh->stats->notifies);
  89. qh->notifier_fn(qh->notifier_fn_arg);
  90. }
  91. rcu_read_unlock();
  92. }
  93. EXPORT_SYMBOL_GPL(knav_queue_notify);
  94. static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
  95. {
  96. struct knav_queue_inst *inst = _instdata;
  97. knav_queue_notify(inst);
  98. return IRQ_HANDLED;
  99. }
  100. static int knav_queue_setup_irq(struct knav_range_info *range,
  101. struct knav_queue_inst *inst)
  102. {
  103. unsigned queue = inst->id - range->queue_base;
  104. unsigned long cpu_map;
  105. int ret = 0, irq;
  106. if (range->flags & RANGE_HAS_IRQ) {
  107. irq = range->irqs[queue].irq;
  108. cpu_map = range->irqs[queue].cpu_map;
  109. ret = request_irq(irq, knav_queue_int_handler, 0,
  110. inst->irq_name, inst);
  111. if (ret)
  112. return ret;
  113. disable_irq(irq);
  114. if (cpu_map) {
  115. ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
  116. if (ret) {
  117. dev_warn(range->kdev->dev,
  118. "Failed to set IRQ affinity\n");
  119. return ret;
  120. }
  121. }
  122. }
  123. return ret;
  124. }
  125. static void knav_queue_free_irq(struct knav_queue_inst *inst)
  126. {
  127. struct knav_range_info *range = inst->range;
  128. unsigned queue = inst->id - inst->range->queue_base;
  129. int irq;
  130. if (range->flags & RANGE_HAS_IRQ) {
  131. irq = range->irqs[queue].irq;
  132. irq_set_affinity_hint(irq, NULL);
  133. free_irq(irq, inst);
  134. }
  135. }
  136. static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
  137. {
  138. return !list_empty(&inst->handles);
  139. }
  140. static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
  141. {
  142. return inst->range->flags & RANGE_RESERVED;
  143. }
  144. static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
  145. {
  146. struct knav_queue *tmp;
  147. rcu_read_lock();
  148. for_each_handle_rcu(tmp, inst) {
  149. if (tmp->flags & KNAV_QUEUE_SHARED) {
  150. rcu_read_unlock();
  151. return true;
  152. }
  153. }
  154. rcu_read_unlock();
  155. return false;
  156. }
  157. static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
  158. unsigned type)
  159. {
  160. if ((type == KNAV_QUEUE_QPEND) &&
  161. (inst->range->flags & RANGE_HAS_IRQ)) {
  162. return true;
  163. } else if ((type == KNAV_QUEUE_ACC) &&
  164. (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
  165. return true;
  166. } else if ((type == KNAV_QUEUE_GP) &&
  167. !(inst->range->flags &
  168. (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
  169. return true;
  170. }
  171. return false;
  172. }
  173. static inline struct knav_queue_inst *
  174. knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
  175. {
  176. struct knav_queue_inst *inst;
  177. int idx;
  178. for_each_instance(idx, inst, kdev) {
  179. if (inst->id == id)
  180. return inst;
  181. }
  182. return NULL;
  183. }
  184. static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
  185. {
  186. if (kdev->base_id <= id &&
  187. kdev->base_id + kdev->num_queues > id) {
  188. id -= kdev->base_id;
  189. return knav_queue_match_id_to_inst(kdev, id);
  190. }
  191. return NULL;
  192. }
  193. static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
  194. const char *name, unsigned flags)
  195. {
  196. struct knav_queue *qh;
  197. unsigned id;
  198. int ret = 0;
  199. qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
  200. if (!qh)
  201. return ERR_PTR(-ENOMEM);
  202. qh->stats = alloc_percpu(struct knav_queue_stats);
  203. if (!qh->stats) {
  204. ret = -ENOMEM;
  205. goto err;
  206. }
  207. qh->flags = flags;
  208. qh->inst = inst;
  209. id = inst->id - inst->qmgr->start_queue;
  210. qh->reg_push = &inst->qmgr->reg_push[id];
  211. qh->reg_pop = &inst->qmgr->reg_pop[id];
  212. qh->reg_peek = &inst->qmgr->reg_peek[id];
  213. /* first opener? */
  214. if (!knav_queue_is_busy(inst)) {
  215. struct knav_range_info *range = inst->range;
  216. inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
  217. if (range->ops && range->ops->open_queue)
  218. ret = range->ops->open_queue(range, inst, flags);
  219. if (ret)
  220. goto err;
  221. }
  222. list_add_tail_rcu(&qh->list, &inst->handles);
  223. return qh;
  224. err:
  225. if (qh->stats)
  226. free_percpu(qh->stats);
  227. devm_kfree(inst->kdev->dev, qh);
  228. return ERR_PTR(ret);
  229. }
  230. static struct knav_queue *
  231. knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
  232. {
  233. struct knav_queue_inst *inst;
  234. struct knav_queue *qh;
  235. mutex_lock(&knav_dev_lock);
  236. qh = ERR_PTR(-ENODEV);
  237. inst = knav_queue_find_by_id(id);
  238. if (!inst)
  239. goto unlock_ret;
  240. qh = ERR_PTR(-EEXIST);
  241. if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
  242. goto unlock_ret;
  243. qh = ERR_PTR(-EBUSY);
  244. if ((flags & KNAV_QUEUE_SHARED) &&
  245. (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
  246. goto unlock_ret;
  247. qh = __knav_queue_open(inst, name, flags);
  248. unlock_ret:
  249. mutex_unlock(&knav_dev_lock);
  250. return qh;
  251. }
  252. static struct knav_queue *knav_queue_open_by_type(const char *name,
  253. unsigned type, unsigned flags)
  254. {
  255. struct knav_queue_inst *inst;
  256. struct knav_queue *qh = ERR_PTR(-EINVAL);
  257. int idx;
  258. mutex_lock(&knav_dev_lock);
  259. for_each_instance(idx, inst, kdev) {
  260. if (knav_queue_is_reserved(inst))
  261. continue;
  262. if (!knav_queue_match_type(inst, type))
  263. continue;
  264. if (knav_queue_is_busy(inst))
  265. continue;
  266. qh = __knav_queue_open(inst, name, flags);
  267. goto unlock_ret;
  268. }
  269. unlock_ret:
  270. mutex_unlock(&knav_dev_lock);
  271. return qh;
  272. }
  273. static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
  274. {
  275. struct knav_range_info *range = inst->range;
  276. if (range->ops && range->ops->set_notify)
  277. range->ops->set_notify(range, inst, enabled);
  278. }
  279. static int knav_queue_enable_notifier(struct knav_queue *qh)
  280. {
  281. struct knav_queue_inst *inst = qh->inst;
  282. bool first;
  283. if (WARN_ON(!qh->notifier_fn))
  284. return -EINVAL;
  285. /* Adjust the per handle notifier count */
  286. first = (atomic_inc_return(&qh->notifier_enabled) == 1);
  287. if (!first)
  288. return 0; /* nothing to do */
  289. /* Now adjust the per instance notifier count */
  290. first = (atomic_inc_return(&inst->num_notifiers) == 1);
  291. if (first)
  292. knav_queue_set_notify(inst, true);
  293. return 0;
  294. }
  295. static int knav_queue_disable_notifier(struct knav_queue *qh)
  296. {
  297. struct knav_queue_inst *inst = qh->inst;
  298. bool last;
  299. last = (atomic_dec_return(&qh->notifier_enabled) == 0);
  300. if (!last)
  301. return 0; /* nothing to do */
  302. last = (atomic_dec_return(&inst->num_notifiers) == 0);
  303. if (last)
  304. knav_queue_set_notify(inst, false);
  305. return 0;
  306. }
  307. static int knav_queue_set_notifier(struct knav_queue *qh,
  308. struct knav_queue_notify_config *cfg)
  309. {
  310. knav_queue_notify_fn old_fn = qh->notifier_fn;
  311. if (!cfg)
  312. return -EINVAL;
  313. if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
  314. return -ENOTSUPP;
  315. if (!cfg->fn && old_fn)
  316. knav_queue_disable_notifier(qh);
  317. qh->notifier_fn = cfg->fn;
  318. qh->notifier_fn_arg = cfg->fn_arg;
  319. if (cfg->fn && !old_fn)
  320. knav_queue_enable_notifier(qh);
  321. return 0;
  322. }
  323. static int knav_gp_set_notify(struct knav_range_info *range,
  324. struct knav_queue_inst *inst,
  325. bool enabled)
  326. {
  327. unsigned queue;
  328. if (range->flags & RANGE_HAS_IRQ) {
  329. queue = inst->id - range->queue_base;
  330. if (enabled)
  331. enable_irq(range->irqs[queue].irq);
  332. else
  333. disable_irq_nosync(range->irqs[queue].irq);
  334. }
  335. return 0;
  336. }
  337. static int knav_gp_open_queue(struct knav_range_info *range,
  338. struct knav_queue_inst *inst, unsigned flags)
  339. {
  340. return knav_queue_setup_irq(range, inst);
  341. }
  342. static int knav_gp_close_queue(struct knav_range_info *range,
  343. struct knav_queue_inst *inst)
  344. {
  345. knav_queue_free_irq(inst);
  346. return 0;
  347. }
  348. struct knav_range_ops knav_gp_range_ops = {
  349. .set_notify = knav_gp_set_notify,
  350. .open_queue = knav_gp_open_queue,
  351. .close_queue = knav_gp_close_queue,
  352. };
  353. static int knav_queue_get_count(void *qhandle)
  354. {
  355. struct knav_queue *qh = qhandle;
  356. struct knav_queue_inst *inst = qh->inst;
  357. return readl_relaxed(&qh->reg_peek[0].entry_count) +
  358. atomic_read(&inst->desc_count);
  359. }
  360. static void knav_queue_debug_show_instance(struct seq_file *s,
  361. struct knav_queue_inst *inst)
  362. {
  363. struct knav_device *kdev = inst->kdev;
  364. struct knav_queue *qh;
  365. int cpu = 0;
  366. int pushes = 0;
  367. int pops = 0;
  368. int push_errors = 0;
  369. int pop_errors = 0;
  370. int notifies = 0;
  371. if (!knav_queue_is_busy(inst))
  372. return;
  373. seq_printf(s, "\tqueue id %d (%s)\n",
  374. kdev->base_id + inst->id, inst->name);
  375. for_each_handle_rcu(qh, inst) {
  376. for_each_possible_cpu(cpu) {
  377. pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
  378. pops += per_cpu_ptr(qh->stats, cpu)->pops;
  379. push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
  380. pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
  381. notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
  382. }
  383. seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
  384. qh,
  385. pushes,
  386. pops,
  387. knav_queue_get_count(qh),
  388. notifies,
  389. push_errors,
  390. pop_errors);
  391. }
  392. }
  393. static int knav_queue_debug_show(struct seq_file *s, void *v)
  394. {
  395. struct knav_queue_inst *inst;
  396. int idx;
  397. mutex_lock(&knav_dev_lock);
  398. seq_printf(s, "%s: %u-%u\n",
  399. dev_name(kdev->dev), kdev->base_id,
  400. kdev->base_id + kdev->num_queues - 1);
  401. for_each_instance(idx, inst, kdev)
  402. knav_queue_debug_show_instance(s, inst);
  403. mutex_unlock(&knav_dev_lock);
  404. return 0;
  405. }
  406. static int knav_queue_debug_open(struct inode *inode, struct file *file)
  407. {
  408. return single_open(file, knav_queue_debug_show, NULL);
  409. }
  410. static const struct file_operations knav_queue_debug_ops = {
  411. .open = knav_queue_debug_open,
  412. .read = seq_read,
  413. .llseek = seq_lseek,
  414. .release = single_release,
  415. };
  416. static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
  417. u32 flags)
  418. {
  419. unsigned long end;
  420. u32 val = 0;
  421. end = jiffies + msecs_to_jiffies(timeout);
  422. while (time_after(end, jiffies)) {
  423. val = readl_relaxed(addr);
  424. if (flags)
  425. val &= flags;
  426. if (!val)
  427. break;
  428. cpu_relax();
  429. }
  430. return val ? -ETIMEDOUT : 0;
  431. }
  432. static int knav_queue_flush(struct knav_queue *qh)
  433. {
  434. struct knav_queue_inst *inst = qh->inst;
  435. unsigned id = inst->id - inst->qmgr->start_queue;
  436. atomic_set(&inst->desc_count, 0);
  437. writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
  438. return 0;
  439. }
  440. /**
  441. * knav_queue_open() - open a hardware queue
  442. * @name - name to give the queue handle
  443. * @id - desired queue number if any or specifes the type
  444. * of queue
  445. * @flags - the following flags are applicable to queues:
  446. * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
  447. * exclusive by default.
  448. * Subsequent attempts to open a shared queue should
  449. * also have this flag.
  450. *
  451. * Returns a handle to the open hardware queue if successful. Use IS_ERR()
  452. * to check the returned value for error codes.
  453. */
  454. void *knav_queue_open(const char *name, unsigned id,
  455. unsigned flags)
  456. {
  457. struct knav_queue *qh = ERR_PTR(-EINVAL);
  458. switch (id) {
  459. case KNAV_QUEUE_QPEND:
  460. case KNAV_QUEUE_ACC:
  461. case KNAV_QUEUE_GP:
  462. qh = knav_queue_open_by_type(name, id, flags);
  463. break;
  464. default:
  465. qh = knav_queue_open_by_id(name, id, flags);
  466. break;
  467. }
  468. return qh;
  469. }
  470. EXPORT_SYMBOL_GPL(knav_queue_open);
  471. /**
  472. * knav_queue_close() - close a hardware queue handle
  473. * @qh - handle to close
  474. */
  475. void knav_queue_close(void *qhandle)
  476. {
  477. struct knav_queue *qh = qhandle;
  478. struct knav_queue_inst *inst = qh->inst;
  479. while (atomic_read(&qh->notifier_enabled) > 0)
  480. knav_queue_disable_notifier(qh);
  481. mutex_lock(&knav_dev_lock);
  482. list_del_rcu(&qh->list);
  483. mutex_unlock(&knav_dev_lock);
  484. synchronize_rcu();
  485. if (!knav_queue_is_busy(inst)) {
  486. struct knav_range_info *range = inst->range;
  487. if (range->ops && range->ops->close_queue)
  488. range->ops->close_queue(range, inst);
  489. }
  490. free_percpu(qh->stats);
  491. devm_kfree(inst->kdev->dev, qh);
  492. }
  493. EXPORT_SYMBOL_GPL(knav_queue_close);
  494. /**
  495. * knav_queue_device_control() - Perform control operations on a queue
  496. * @qh - queue handle
  497. * @cmd - control commands
  498. * @arg - command argument
  499. *
  500. * Returns 0 on success, errno otherwise.
  501. */
  502. int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
  503. unsigned long arg)
  504. {
  505. struct knav_queue *qh = qhandle;
  506. struct knav_queue_notify_config *cfg;
  507. int ret;
  508. switch ((int)cmd) {
  509. case KNAV_QUEUE_GET_ID:
  510. ret = qh->inst->kdev->base_id + qh->inst->id;
  511. break;
  512. case KNAV_QUEUE_FLUSH:
  513. ret = knav_queue_flush(qh);
  514. break;
  515. case KNAV_QUEUE_SET_NOTIFIER:
  516. cfg = (void *)arg;
  517. ret = knav_queue_set_notifier(qh, cfg);
  518. break;
  519. case KNAV_QUEUE_ENABLE_NOTIFY:
  520. ret = knav_queue_enable_notifier(qh);
  521. break;
  522. case KNAV_QUEUE_DISABLE_NOTIFY:
  523. ret = knav_queue_disable_notifier(qh);
  524. break;
  525. case KNAV_QUEUE_GET_COUNT:
  526. ret = knav_queue_get_count(qh);
  527. break;
  528. default:
  529. ret = -ENOTSUPP;
  530. break;
  531. }
  532. return ret;
  533. }
  534. EXPORT_SYMBOL_GPL(knav_queue_device_control);
  535. /**
  536. * knav_queue_push() - push data (or descriptor) to the tail of a queue
  537. * @qh - hardware queue handle
  538. * @data - data to push
  539. * @size - size of data to push
  540. * @flags - can be used to pass additional information
  541. *
  542. * Returns 0 on success, errno otherwise.
  543. */
  544. int knav_queue_push(void *qhandle, dma_addr_t dma,
  545. unsigned size, unsigned flags)
  546. {
  547. struct knav_queue *qh = qhandle;
  548. u32 val;
  549. val = (u32)dma | ((size / 16) - 1);
  550. writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
  551. this_cpu_inc(qh->stats->pushes);
  552. return 0;
  553. }
  554. EXPORT_SYMBOL_GPL(knav_queue_push);
  555. /**
  556. * knav_queue_pop() - pop data (or descriptor) from the head of a queue
  557. * @qh - hardware queue handle
  558. * @size - (optional) size of the data pop'ed.
  559. *
  560. * Returns a DMA address on success, 0 on failure.
  561. */
  562. dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
  563. {
  564. struct knav_queue *qh = qhandle;
  565. struct knav_queue_inst *inst = qh->inst;
  566. dma_addr_t dma;
  567. u32 val, idx;
  568. /* are we accumulated? */
  569. if (inst->descs) {
  570. if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
  571. atomic_inc(&inst->desc_count);
  572. return 0;
  573. }
  574. idx = atomic_inc_return(&inst->desc_head);
  575. idx &= ACC_DESCS_MASK;
  576. val = inst->descs[idx];
  577. } else {
  578. val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
  579. if (unlikely(!val))
  580. return 0;
  581. }
  582. dma = val & DESC_PTR_MASK;
  583. if (size)
  584. *size = ((val & DESC_SIZE_MASK) + 1) * 16;
  585. this_cpu_inc(qh->stats->pops);
  586. return dma;
  587. }
  588. EXPORT_SYMBOL_GPL(knav_queue_pop);
  589. /* carve out descriptors and push into queue */
  590. static void kdesc_fill_pool(struct knav_pool *pool)
  591. {
  592. struct knav_region *region;
  593. int i;
  594. region = pool->region;
  595. pool->desc_size = region->desc_size;
  596. for (i = 0; i < pool->num_desc; i++) {
  597. int index = pool->region_offset + i;
  598. dma_addr_t dma_addr;
  599. unsigned dma_size;
  600. dma_addr = region->dma_start + (region->desc_size * index);
  601. dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
  602. dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
  603. DMA_TO_DEVICE);
  604. knav_queue_push(pool->queue, dma_addr, dma_size, 0);
  605. }
  606. }
  607. /* pop out descriptors and close the queue */
  608. static void kdesc_empty_pool(struct knav_pool *pool)
  609. {
  610. dma_addr_t dma;
  611. unsigned size;
  612. void *desc;
  613. int i;
  614. if (!pool->queue)
  615. return;
  616. for (i = 0;; i++) {
  617. dma = knav_queue_pop(pool->queue, &size);
  618. if (!dma)
  619. break;
  620. desc = knav_pool_desc_dma_to_virt(pool, dma);
  621. if (!desc) {
  622. dev_dbg(pool->kdev->dev,
  623. "couldn't unmap desc, continuing\n");
  624. continue;
  625. }
  626. }
  627. WARN_ON(i != pool->num_desc);
  628. knav_queue_close(pool->queue);
  629. }
  630. /* Get the DMA address of a descriptor */
  631. dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
  632. {
  633. struct knav_pool *pool = ph;
  634. return pool->region->dma_start + (virt - pool->region->virt_start);
  635. }
  636. EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
  637. void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
  638. {
  639. struct knav_pool *pool = ph;
  640. return pool->region->virt_start + (dma - pool->region->dma_start);
  641. }
  642. EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
  643. /**
  644. * knav_pool_create() - Create a pool of descriptors
  645. * @name - name to give the pool handle
  646. * @num_desc - numbers of descriptors in the pool
  647. * @region_id - QMSS region id from which the descriptors are to be
  648. * allocated.
  649. *
  650. * Returns a pool handle on success.
  651. * Use IS_ERR_OR_NULL() to identify error values on return.
  652. */
  653. void *knav_pool_create(const char *name,
  654. int num_desc, int region_id)
  655. {
  656. struct knav_region *reg_itr, *region = NULL;
  657. struct knav_pool *pool, *pi;
  658. struct list_head *node;
  659. unsigned last_offset;
  660. bool slot_found;
  661. int ret;
  662. if (!kdev)
  663. return ERR_PTR(-EPROBE_DEFER);
  664. if (!kdev->dev)
  665. return ERR_PTR(-ENODEV);
  666. pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
  667. if (!pool) {
  668. dev_err(kdev->dev, "out of memory allocating pool\n");
  669. return ERR_PTR(-ENOMEM);
  670. }
  671. for_each_region(kdev, reg_itr) {
  672. if (reg_itr->id != region_id)
  673. continue;
  674. region = reg_itr;
  675. break;
  676. }
  677. if (!region) {
  678. dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
  679. ret = -EINVAL;
  680. goto err;
  681. }
  682. pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
  683. if (IS_ERR_OR_NULL(pool->queue)) {
  684. dev_err(kdev->dev,
  685. "failed to open queue for pool(%s), error %ld\n",
  686. name, PTR_ERR(pool->queue));
  687. ret = PTR_ERR(pool->queue);
  688. goto err;
  689. }
  690. pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
  691. pool->kdev = kdev;
  692. pool->dev = kdev->dev;
  693. mutex_lock(&knav_dev_lock);
  694. if (num_desc > (region->num_desc - region->used_desc)) {
  695. dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
  696. region_id, name);
  697. ret = -ENOMEM;
  698. goto err_unlock;
  699. }
  700. /* Region maintains a sorted (by region offset) list of pools
  701. * use the first free slot which is large enough to accomodate
  702. * the request
  703. */
  704. last_offset = 0;
  705. slot_found = false;
  706. node = &region->pools;
  707. list_for_each_entry(pi, &region->pools, region_inst) {
  708. if ((pi->region_offset - last_offset) >= num_desc) {
  709. slot_found = true;
  710. break;
  711. }
  712. last_offset = pi->region_offset + pi->num_desc;
  713. }
  714. node = &pi->region_inst;
  715. if (slot_found) {
  716. pool->region = region;
  717. pool->num_desc = num_desc;
  718. pool->region_offset = last_offset;
  719. region->used_desc += num_desc;
  720. list_add_tail(&pool->list, &kdev->pools);
  721. list_add_tail(&pool->region_inst, node);
  722. } else {
  723. dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
  724. name, region_id);
  725. ret = -ENOMEM;
  726. goto err_unlock;
  727. }
  728. mutex_unlock(&knav_dev_lock);
  729. kdesc_fill_pool(pool);
  730. return pool;
  731. err_unlock:
  732. mutex_unlock(&knav_dev_lock);
  733. err:
  734. kfree(pool->name);
  735. devm_kfree(kdev->dev, pool);
  736. return ERR_PTR(ret);
  737. }
  738. EXPORT_SYMBOL_GPL(knav_pool_create);
  739. /**
  740. * knav_pool_destroy() - Free a pool of descriptors
  741. * @pool - pool handle
  742. */
  743. void knav_pool_destroy(void *ph)
  744. {
  745. struct knav_pool *pool = ph;
  746. if (!pool)
  747. return;
  748. if (!pool->region)
  749. return;
  750. kdesc_empty_pool(pool);
  751. mutex_lock(&knav_dev_lock);
  752. pool->region->used_desc -= pool->num_desc;
  753. list_del(&pool->region_inst);
  754. list_del(&pool->list);
  755. mutex_unlock(&knav_dev_lock);
  756. kfree(pool->name);
  757. devm_kfree(kdev->dev, pool);
  758. }
  759. EXPORT_SYMBOL_GPL(knav_pool_destroy);
  760. /**
  761. * knav_pool_desc_get() - Get a descriptor from the pool
  762. * @pool - pool handle
  763. *
  764. * Returns descriptor from the pool.
  765. */
  766. void *knav_pool_desc_get(void *ph)
  767. {
  768. struct knav_pool *pool = ph;
  769. dma_addr_t dma;
  770. unsigned size;
  771. void *data;
  772. dma = knav_queue_pop(pool->queue, &size);
  773. if (unlikely(!dma))
  774. return ERR_PTR(-ENOMEM);
  775. data = knav_pool_desc_dma_to_virt(pool, dma);
  776. return data;
  777. }
  778. EXPORT_SYMBOL_GPL(knav_pool_desc_get);
  779. /**
  780. * knav_pool_desc_put() - return a descriptor to the pool
  781. * @pool - pool handle
  782. */
  783. void knav_pool_desc_put(void *ph, void *desc)
  784. {
  785. struct knav_pool *pool = ph;
  786. dma_addr_t dma;
  787. dma = knav_pool_desc_virt_to_dma(pool, desc);
  788. knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
  789. }
  790. EXPORT_SYMBOL_GPL(knav_pool_desc_put);
  791. /**
  792. * knav_pool_desc_map() - Map descriptor for DMA transfer
  793. * @pool - pool handle
  794. * @desc - address of descriptor to map
  795. * @size - size of descriptor to map
  796. * @dma - DMA address return pointer
  797. * @dma_sz - adjusted return pointer
  798. *
  799. * Returns 0 on success, errno otherwise.
  800. */
  801. int knav_pool_desc_map(void *ph, void *desc, unsigned size,
  802. dma_addr_t *dma, unsigned *dma_sz)
  803. {
  804. struct knav_pool *pool = ph;
  805. *dma = knav_pool_desc_virt_to_dma(pool, desc);
  806. size = min(size, pool->region->desc_size);
  807. size = ALIGN(size, SMP_CACHE_BYTES);
  808. *dma_sz = size;
  809. dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
  810. /* Ensure the descriptor reaches to the memory */
  811. __iowmb();
  812. return 0;
  813. }
  814. EXPORT_SYMBOL_GPL(knav_pool_desc_map);
  815. /**
  816. * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
  817. * @pool - pool handle
  818. * @dma - DMA address of descriptor to unmap
  819. * @dma_sz - size of descriptor to unmap
  820. *
  821. * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
  822. * error values on return.
  823. */
  824. void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
  825. {
  826. struct knav_pool *pool = ph;
  827. unsigned desc_sz;
  828. void *desc;
  829. desc_sz = min(dma_sz, pool->region->desc_size);
  830. desc = knav_pool_desc_dma_to_virt(pool, dma);
  831. dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
  832. prefetch(desc);
  833. return desc;
  834. }
  835. EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
  836. /**
  837. * knav_pool_count() - Get the number of descriptors in pool.
  838. * @pool - pool handle
  839. * Returns number of elements in the pool.
  840. */
  841. int knav_pool_count(void *ph)
  842. {
  843. struct knav_pool *pool = ph;
  844. return knav_queue_get_count(pool->queue);
  845. }
  846. EXPORT_SYMBOL_GPL(knav_pool_count);
  847. static void knav_queue_setup_region(struct knav_device *kdev,
  848. struct knav_region *region)
  849. {
  850. unsigned hw_num_desc, hw_desc_size, size;
  851. struct knav_reg_region __iomem *regs;
  852. struct knav_qmgr_info *qmgr;
  853. struct knav_pool *pool;
  854. int id = region->id;
  855. struct page *page;
  856. /* unused region? */
  857. if (!region->num_desc) {
  858. dev_warn(kdev->dev, "unused region %s\n", region->name);
  859. return;
  860. }
  861. /* get hardware descriptor value */
  862. hw_num_desc = ilog2(region->num_desc - 1) + 1;
  863. /* did we force fit ourselves into nothingness? */
  864. if (region->num_desc < 32) {
  865. region->num_desc = 0;
  866. dev_warn(kdev->dev, "too few descriptors in region %s\n",
  867. region->name);
  868. return;
  869. }
  870. size = region->num_desc * region->desc_size;
  871. region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
  872. GFP_DMA32);
  873. if (!region->virt_start) {
  874. region->num_desc = 0;
  875. dev_err(kdev->dev, "memory alloc failed for region %s\n",
  876. region->name);
  877. return;
  878. }
  879. region->virt_end = region->virt_start + size;
  880. page = virt_to_page(region->virt_start);
  881. region->dma_start = dma_map_page(kdev->dev, page, 0, size,
  882. DMA_BIDIRECTIONAL);
  883. if (dma_mapping_error(kdev->dev, region->dma_start)) {
  884. dev_err(kdev->dev, "dma map failed for region %s\n",
  885. region->name);
  886. goto fail;
  887. }
  888. region->dma_end = region->dma_start + size;
  889. pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
  890. if (!pool) {
  891. dev_err(kdev->dev, "out of memory allocating dummy pool\n");
  892. goto fail;
  893. }
  894. pool->num_desc = 0;
  895. pool->region_offset = region->num_desc;
  896. list_add(&pool->region_inst, &region->pools);
  897. dev_dbg(kdev->dev,
  898. "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
  899. region->name, id, region->desc_size, region->num_desc,
  900. region->link_index, &region->dma_start, &region->dma_end,
  901. region->virt_start, region->virt_end);
  902. hw_desc_size = (region->desc_size / 16) - 1;
  903. hw_num_desc -= 5;
  904. for_each_qmgr(kdev, qmgr) {
  905. regs = qmgr->reg_region + id;
  906. writel_relaxed((u32)region->dma_start, &regs->base);
  907. writel_relaxed(region->link_index, &regs->start_index);
  908. writel_relaxed(hw_desc_size << 16 | hw_num_desc,
  909. &regs->size_count);
  910. }
  911. return;
  912. fail:
  913. if (region->dma_start)
  914. dma_unmap_page(kdev->dev, region->dma_start, size,
  915. DMA_BIDIRECTIONAL);
  916. if (region->virt_start)
  917. free_pages_exact(region->virt_start, size);
  918. region->num_desc = 0;
  919. return;
  920. }
  921. static const char *knav_queue_find_name(struct device_node *node)
  922. {
  923. const char *name;
  924. if (of_property_read_string(node, "label", &name) < 0)
  925. name = node->name;
  926. if (!name)
  927. name = "unknown";
  928. return name;
  929. }
  930. static int knav_queue_setup_regions(struct knav_device *kdev,
  931. struct device_node *regions)
  932. {
  933. struct device *dev = kdev->dev;
  934. struct knav_region *region;
  935. struct device_node *child;
  936. u32 temp[2];
  937. int ret;
  938. for_each_child_of_node(regions, child) {
  939. region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
  940. if (!region) {
  941. dev_err(dev, "out of memory allocating region\n");
  942. return -ENOMEM;
  943. }
  944. region->name = knav_queue_find_name(child);
  945. of_property_read_u32(child, "id", &region->id);
  946. ret = of_property_read_u32_array(child, "region-spec", temp, 2);
  947. if (!ret) {
  948. region->num_desc = temp[0];
  949. region->desc_size = temp[1];
  950. } else {
  951. dev_err(dev, "invalid region info %s\n", region->name);
  952. devm_kfree(dev, region);
  953. continue;
  954. }
  955. if (!of_get_property(child, "link-index", NULL)) {
  956. dev_err(dev, "No link info for %s\n", region->name);
  957. devm_kfree(dev, region);
  958. continue;
  959. }
  960. ret = of_property_read_u32(child, "link-index",
  961. &region->link_index);
  962. if (ret) {
  963. dev_err(dev, "link index not found for %s\n",
  964. region->name);
  965. devm_kfree(dev, region);
  966. continue;
  967. }
  968. INIT_LIST_HEAD(&region->pools);
  969. list_add_tail(&region->list, &kdev->regions);
  970. }
  971. if (list_empty(&kdev->regions)) {
  972. dev_err(dev, "no valid region information found\n");
  973. return -ENODEV;
  974. }
  975. /* Next, we run through the regions and set things up */
  976. for_each_region(kdev, region)
  977. knav_queue_setup_region(kdev, region);
  978. return 0;
  979. }
  980. static int knav_get_link_ram(struct knav_device *kdev,
  981. const char *name,
  982. struct knav_link_ram_block *block)
  983. {
  984. struct platform_device *pdev = to_platform_device(kdev->dev);
  985. struct device_node *node = pdev->dev.of_node;
  986. u32 temp[2];
  987. /*
  988. * Note: link ram resources are specified in "entry" sized units. In
  989. * reality, although entries are ~40bits in hardware, we treat them as
  990. * 64-bit entities here.
  991. *
  992. * For example, to specify the internal link ram for Keystone-I class
  993. * devices, we would set the linkram0 resource to 0x80000-0x83fff.
  994. *
  995. * This gets a bit weird when other link rams are used. For example,
  996. * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
  997. * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
  998. * which accounts for 64-bits per entry, for 16K entries.
  999. */
  1000. if (!of_property_read_u32_array(node, name , temp, 2)) {
  1001. if (temp[0]) {
  1002. /*
  1003. * queue_base specified => using internal or onchip
  1004. * link ram WARNING - we do not "reserve" this block
  1005. */
  1006. block->dma = (dma_addr_t)temp[0];
  1007. block->virt = NULL;
  1008. block->size = temp[1];
  1009. } else {
  1010. block->size = temp[1];
  1011. /* queue_base not specific => allocate requested size */
  1012. block->virt = dmam_alloc_coherent(kdev->dev,
  1013. 8 * block->size, &block->dma,
  1014. GFP_KERNEL);
  1015. if (!block->virt) {
  1016. dev_err(kdev->dev, "failed to alloc linkram\n");
  1017. return -ENOMEM;
  1018. }
  1019. }
  1020. } else {
  1021. return -ENODEV;
  1022. }
  1023. return 0;
  1024. }
  1025. static int knav_queue_setup_link_ram(struct knav_device *kdev)
  1026. {
  1027. struct knav_link_ram_block *block;
  1028. struct knav_qmgr_info *qmgr;
  1029. for_each_qmgr(kdev, qmgr) {
  1030. block = &kdev->link_rams[0];
  1031. dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
  1032. &block->dma, block->virt, block->size);
  1033. writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
  1034. if (kdev->version == QMSS_66AK2G)
  1035. writel_relaxed(block->size,
  1036. &qmgr->reg_config->link_ram_size0);
  1037. else
  1038. writel_relaxed(block->size - 1,
  1039. &qmgr->reg_config->link_ram_size0);
  1040. block++;
  1041. if (!block->size)
  1042. continue;
  1043. dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
  1044. &block->dma, block->virt, block->size);
  1045. writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
  1046. }
  1047. return 0;
  1048. }
  1049. static int knav_setup_queue_range(struct knav_device *kdev,
  1050. struct device_node *node)
  1051. {
  1052. struct device *dev = kdev->dev;
  1053. struct knav_range_info *range;
  1054. struct knav_qmgr_info *qmgr;
  1055. u32 temp[2], start, end, id, index;
  1056. int ret, i;
  1057. range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
  1058. if (!range) {
  1059. dev_err(dev, "out of memory allocating range\n");
  1060. return -ENOMEM;
  1061. }
  1062. range->kdev = kdev;
  1063. range->name = knav_queue_find_name(node);
  1064. ret = of_property_read_u32_array(node, "qrange", temp, 2);
  1065. if (!ret) {
  1066. range->queue_base = temp[0] - kdev->base_id;
  1067. range->num_queues = temp[1];
  1068. } else {
  1069. dev_err(dev, "invalid queue range %s\n", range->name);
  1070. devm_kfree(dev, range);
  1071. return -EINVAL;
  1072. }
  1073. for (i = 0; i < RANGE_MAX_IRQS; i++) {
  1074. struct of_phandle_args oirq;
  1075. if (of_irq_parse_one(node, i, &oirq))
  1076. break;
  1077. range->irqs[i].irq = irq_create_of_mapping(&oirq);
  1078. if (range->irqs[i].irq == IRQ_NONE)
  1079. break;
  1080. range->num_irqs++;
  1081. if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3)
  1082. range->irqs[i].cpu_map =
  1083. (oirq.args[2] & 0x0000ff00) >> 8;
  1084. }
  1085. range->num_irqs = min(range->num_irqs, range->num_queues);
  1086. if (range->num_irqs)
  1087. range->flags |= RANGE_HAS_IRQ;
  1088. if (of_get_property(node, "qalloc-by-id", NULL))
  1089. range->flags |= RANGE_RESERVED;
  1090. if (of_get_property(node, "accumulator", NULL)) {
  1091. ret = knav_init_acc_range(kdev, node, range);
  1092. if (ret < 0) {
  1093. devm_kfree(dev, range);
  1094. return ret;
  1095. }
  1096. } else {
  1097. range->ops = &knav_gp_range_ops;
  1098. }
  1099. /* set threshold to 1, and flush out the queues */
  1100. for_each_qmgr(kdev, qmgr) {
  1101. start = max(qmgr->start_queue, range->queue_base);
  1102. end = min(qmgr->start_queue + qmgr->num_queues,
  1103. range->queue_base + range->num_queues);
  1104. for (id = start; id < end; id++) {
  1105. index = id - qmgr->start_queue;
  1106. writel_relaxed(THRESH_GTE | 1,
  1107. &qmgr->reg_peek[index].ptr_size_thresh);
  1108. writel_relaxed(0,
  1109. &qmgr->reg_push[index].ptr_size_thresh);
  1110. }
  1111. }
  1112. list_add_tail(&range->list, &kdev->queue_ranges);
  1113. dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
  1114. range->name, range->queue_base,
  1115. range->queue_base + range->num_queues - 1,
  1116. range->num_irqs,
  1117. (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
  1118. (range->flags & RANGE_RESERVED) ? ", reserved" : "",
  1119. (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
  1120. kdev->num_queues_in_use += range->num_queues;
  1121. return 0;
  1122. }
  1123. static int knav_setup_queue_pools(struct knav_device *kdev,
  1124. struct device_node *queue_pools)
  1125. {
  1126. struct device_node *type, *range;
  1127. int ret;
  1128. for_each_child_of_node(queue_pools, type) {
  1129. for_each_child_of_node(type, range) {
  1130. ret = knav_setup_queue_range(kdev, range);
  1131. /* return value ignored, we init the rest... */
  1132. }
  1133. }
  1134. /* ... and barf if they all failed! */
  1135. if (list_empty(&kdev->queue_ranges)) {
  1136. dev_err(kdev->dev, "no valid queue range found\n");
  1137. return -ENODEV;
  1138. }
  1139. return 0;
  1140. }
  1141. static void knav_free_queue_range(struct knav_device *kdev,
  1142. struct knav_range_info *range)
  1143. {
  1144. if (range->ops && range->ops->free_range)
  1145. range->ops->free_range(range);
  1146. list_del(&range->list);
  1147. devm_kfree(kdev->dev, range);
  1148. }
  1149. static void knav_free_queue_ranges(struct knav_device *kdev)
  1150. {
  1151. struct knav_range_info *range;
  1152. for (;;) {
  1153. range = first_queue_range(kdev);
  1154. if (!range)
  1155. break;
  1156. knav_free_queue_range(kdev, range);
  1157. }
  1158. }
  1159. static void knav_queue_free_regions(struct knav_device *kdev)
  1160. {
  1161. struct knav_region *region;
  1162. struct knav_pool *pool, *tmp;
  1163. unsigned size;
  1164. for (;;) {
  1165. region = first_region(kdev);
  1166. if (!region)
  1167. break;
  1168. list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
  1169. knav_pool_destroy(pool);
  1170. size = region->virt_end - region->virt_start;
  1171. if (size)
  1172. free_pages_exact(region->virt_start, size);
  1173. list_del(&region->list);
  1174. devm_kfree(kdev->dev, region);
  1175. }
  1176. }
  1177. static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
  1178. struct device_node *node, int index)
  1179. {
  1180. struct resource res;
  1181. void __iomem *regs;
  1182. int ret;
  1183. ret = of_address_to_resource(node, index, &res);
  1184. if (ret) {
  1185. dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
  1186. node, index);
  1187. return ERR_PTR(ret);
  1188. }
  1189. regs = devm_ioremap_resource(kdev->dev, &res);
  1190. if (IS_ERR(regs))
  1191. dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
  1192. index, node);
  1193. return regs;
  1194. }
  1195. static int knav_queue_init_qmgrs(struct knav_device *kdev,
  1196. struct device_node *qmgrs)
  1197. {
  1198. struct device *dev = kdev->dev;
  1199. struct knav_qmgr_info *qmgr;
  1200. struct device_node *child;
  1201. u32 temp[2];
  1202. int ret;
  1203. for_each_child_of_node(qmgrs, child) {
  1204. qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
  1205. if (!qmgr) {
  1206. dev_err(dev, "out of memory allocating qmgr\n");
  1207. return -ENOMEM;
  1208. }
  1209. ret = of_property_read_u32_array(child, "managed-queues",
  1210. temp, 2);
  1211. if (!ret) {
  1212. qmgr->start_queue = temp[0];
  1213. qmgr->num_queues = temp[1];
  1214. } else {
  1215. dev_err(dev, "invalid qmgr queue range\n");
  1216. devm_kfree(dev, qmgr);
  1217. continue;
  1218. }
  1219. dev_info(dev, "qmgr start queue %d, number of queues %d\n",
  1220. qmgr->start_queue, qmgr->num_queues);
  1221. qmgr->reg_peek =
  1222. knav_queue_map_reg(kdev, child,
  1223. KNAV_QUEUE_PEEK_REG_INDEX);
  1224. if (kdev->version == QMSS) {
  1225. qmgr->reg_status =
  1226. knav_queue_map_reg(kdev, child,
  1227. KNAV_QUEUE_STATUS_REG_INDEX);
  1228. }
  1229. qmgr->reg_config =
  1230. knav_queue_map_reg(kdev, child,
  1231. (kdev->version == QMSS_66AK2G) ?
  1232. KNAV_L_QUEUE_CONFIG_REG_INDEX :
  1233. KNAV_QUEUE_CONFIG_REG_INDEX);
  1234. qmgr->reg_region =
  1235. knav_queue_map_reg(kdev, child,
  1236. (kdev->version == QMSS_66AK2G) ?
  1237. KNAV_L_QUEUE_REGION_REG_INDEX :
  1238. KNAV_QUEUE_REGION_REG_INDEX);
  1239. qmgr->reg_push =
  1240. knav_queue_map_reg(kdev, child,
  1241. (kdev->version == QMSS_66AK2G) ?
  1242. KNAV_L_QUEUE_PUSH_REG_INDEX :
  1243. KNAV_QUEUE_PUSH_REG_INDEX);
  1244. if (kdev->version == QMSS) {
  1245. qmgr->reg_pop =
  1246. knav_queue_map_reg(kdev, child,
  1247. KNAV_QUEUE_POP_REG_INDEX);
  1248. }
  1249. if (IS_ERR(qmgr->reg_peek) ||
  1250. ((kdev->version == QMSS) &&
  1251. (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
  1252. IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
  1253. IS_ERR(qmgr->reg_push)) {
  1254. dev_err(dev, "failed to map qmgr regs\n");
  1255. if (kdev->version == QMSS) {
  1256. if (!IS_ERR(qmgr->reg_status))
  1257. devm_iounmap(dev, qmgr->reg_status);
  1258. if (!IS_ERR(qmgr->reg_pop))
  1259. devm_iounmap(dev, qmgr->reg_pop);
  1260. }
  1261. if (!IS_ERR(qmgr->reg_peek))
  1262. devm_iounmap(dev, qmgr->reg_peek);
  1263. if (!IS_ERR(qmgr->reg_config))
  1264. devm_iounmap(dev, qmgr->reg_config);
  1265. if (!IS_ERR(qmgr->reg_region))
  1266. devm_iounmap(dev, qmgr->reg_region);
  1267. if (!IS_ERR(qmgr->reg_push))
  1268. devm_iounmap(dev, qmgr->reg_push);
  1269. devm_kfree(dev, qmgr);
  1270. continue;
  1271. }
  1272. /* Use same push register for pop as well */
  1273. if (kdev->version == QMSS_66AK2G)
  1274. qmgr->reg_pop = qmgr->reg_push;
  1275. list_add_tail(&qmgr->list, &kdev->qmgrs);
  1276. dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
  1277. qmgr->start_queue, qmgr->num_queues,
  1278. qmgr->reg_peek, qmgr->reg_status,
  1279. qmgr->reg_config, qmgr->reg_region,
  1280. qmgr->reg_push, qmgr->reg_pop);
  1281. }
  1282. return 0;
  1283. }
  1284. static int knav_queue_init_pdsps(struct knav_device *kdev,
  1285. struct device_node *pdsps)
  1286. {
  1287. struct device *dev = kdev->dev;
  1288. struct knav_pdsp_info *pdsp;
  1289. struct device_node *child;
  1290. for_each_child_of_node(pdsps, child) {
  1291. pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
  1292. if (!pdsp) {
  1293. dev_err(dev, "out of memory allocating pdsp\n");
  1294. return -ENOMEM;
  1295. }
  1296. pdsp->name = knav_queue_find_name(child);
  1297. pdsp->iram =
  1298. knav_queue_map_reg(kdev, child,
  1299. KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
  1300. pdsp->regs =
  1301. knav_queue_map_reg(kdev, child,
  1302. KNAV_QUEUE_PDSP_REGS_REG_INDEX);
  1303. pdsp->intd =
  1304. knav_queue_map_reg(kdev, child,
  1305. KNAV_QUEUE_PDSP_INTD_REG_INDEX);
  1306. pdsp->command =
  1307. knav_queue_map_reg(kdev, child,
  1308. KNAV_QUEUE_PDSP_CMD_REG_INDEX);
  1309. if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
  1310. IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
  1311. dev_err(dev, "failed to map pdsp %s regs\n",
  1312. pdsp->name);
  1313. if (!IS_ERR(pdsp->command))
  1314. devm_iounmap(dev, pdsp->command);
  1315. if (!IS_ERR(pdsp->iram))
  1316. devm_iounmap(dev, pdsp->iram);
  1317. if (!IS_ERR(pdsp->regs))
  1318. devm_iounmap(dev, pdsp->regs);
  1319. if (!IS_ERR(pdsp->intd))
  1320. devm_iounmap(dev, pdsp->intd);
  1321. devm_kfree(dev, pdsp);
  1322. continue;
  1323. }
  1324. of_property_read_u32(child, "id", &pdsp->id);
  1325. list_add_tail(&pdsp->list, &kdev->pdsps);
  1326. dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
  1327. pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
  1328. pdsp->intd);
  1329. }
  1330. return 0;
  1331. }
  1332. static int knav_queue_stop_pdsp(struct knav_device *kdev,
  1333. struct knav_pdsp_info *pdsp)
  1334. {
  1335. u32 val, timeout = 1000;
  1336. int ret;
  1337. val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
  1338. writel_relaxed(val, &pdsp->regs->control);
  1339. ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
  1340. PDSP_CTRL_RUNNING);
  1341. if (ret < 0) {
  1342. dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
  1343. return ret;
  1344. }
  1345. pdsp->loaded = false;
  1346. pdsp->started = false;
  1347. return 0;
  1348. }
  1349. static int knav_queue_load_pdsp(struct knav_device *kdev,
  1350. struct knav_pdsp_info *pdsp)
  1351. {
  1352. int i, ret, fwlen;
  1353. const struct firmware *fw;
  1354. bool found = false;
  1355. u32 *fwdata;
  1356. for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
  1357. if (knav_acc_firmwares[i]) {
  1358. ret = request_firmware_direct(&fw,
  1359. knav_acc_firmwares[i],
  1360. kdev->dev);
  1361. if (!ret) {
  1362. found = true;
  1363. break;
  1364. }
  1365. }
  1366. }
  1367. if (!found) {
  1368. dev_err(kdev->dev, "failed to get firmware for pdsp\n");
  1369. return -ENODEV;
  1370. }
  1371. dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
  1372. knav_acc_firmwares[i]);
  1373. writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
  1374. /* download the firmware */
  1375. fwdata = (u32 *)fw->data;
  1376. fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
  1377. for (i = 0; i < fwlen; i++)
  1378. writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
  1379. release_firmware(fw);
  1380. return 0;
  1381. }
  1382. static int knav_queue_start_pdsp(struct knav_device *kdev,
  1383. struct knav_pdsp_info *pdsp)
  1384. {
  1385. u32 val, timeout = 1000;
  1386. int ret;
  1387. /* write a command for sync */
  1388. writel_relaxed(0xffffffff, pdsp->command);
  1389. while (readl_relaxed(pdsp->command) != 0xffffffff)
  1390. cpu_relax();
  1391. /* soft reset the PDSP */
  1392. val = readl_relaxed(&pdsp->regs->control);
  1393. val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
  1394. writel_relaxed(val, &pdsp->regs->control);
  1395. /* enable pdsp */
  1396. val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
  1397. writel_relaxed(val, &pdsp->regs->control);
  1398. /* wait for command register to clear */
  1399. ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
  1400. if (ret < 0) {
  1401. dev_err(kdev->dev,
  1402. "timed out on pdsp %s command register wait\n",
  1403. pdsp->name);
  1404. return ret;
  1405. }
  1406. return 0;
  1407. }
  1408. static void knav_queue_stop_pdsps(struct knav_device *kdev)
  1409. {
  1410. struct knav_pdsp_info *pdsp;
  1411. /* disable all pdsps */
  1412. for_each_pdsp(kdev, pdsp)
  1413. knav_queue_stop_pdsp(kdev, pdsp);
  1414. }
  1415. static int knav_queue_start_pdsps(struct knav_device *kdev)
  1416. {
  1417. struct knav_pdsp_info *pdsp;
  1418. int ret;
  1419. knav_queue_stop_pdsps(kdev);
  1420. /* now load them all. We return success even if pdsp
  1421. * is not loaded as acc channels are optional on having
  1422. * firmware availability in the system. We set the loaded
  1423. * and stated flag and when initialize the acc range, check
  1424. * it and init the range only if pdsp is started.
  1425. */
  1426. for_each_pdsp(kdev, pdsp) {
  1427. ret = knav_queue_load_pdsp(kdev, pdsp);
  1428. if (!ret)
  1429. pdsp->loaded = true;
  1430. }
  1431. for_each_pdsp(kdev, pdsp) {
  1432. if (pdsp->loaded) {
  1433. ret = knav_queue_start_pdsp(kdev, pdsp);
  1434. if (!ret)
  1435. pdsp->started = true;
  1436. }
  1437. }
  1438. return 0;
  1439. }
  1440. static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
  1441. {
  1442. struct knav_qmgr_info *qmgr;
  1443. for_each_qmgr(kdev, qmgr) {
  1444. if ((id >= qmgr->start_queue) &&
  1445. (id < qmgr->start_queue + qmgr->num_queues))
  1446. return qmgr;
  1447. }
  1448. return NULL;
  1449. }
  1450. static int knav_queue_init_queue(struct knav_device *kdev,
  1451. struct knav_range_info *range,
  1452. struct knav_queue_inst *inst,
  1453. unsigned id)
  1454. {
  1455. char irq_name[KNAV_NAME_SIZE];
  1456. inst->qmgr = knav_find_qmgr(id);
  1457. if (!inst->qmgr)
  1458. return -1;
  1459. INIT_LIST_HEAD(&inst->handles);
  1460. inst->kdev = kdev;
  1461. inst->range = range;
  1462. inst->irq_num = -1;
  1463. inst->id = id;
  1464. scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
  1465. inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
  1466. if (range->ops && range->ops->init_queue)
  1467. return range->ops->init_queue(range, inst);
  1468. else
  1469. return 0;
  1470. }
  1471. static int knav_queue_init_queues(struct knav_device *kdev)
  1472. {
  1473. struct knav_range_info *range;
  1474. int size, id, base_idx;
  1475. int idx = 0, ret = 0;
  1476. /* how much do we need for instance data? */
  1477. size = sizeof(struct knav_queue_inst);
  1478. /* round this up to a power of 2, keep the index to instance
  1479. * arithmetic fast.
  1480. * */
  1481. kdev->inst_shift = order_base_2(size);
  1482. size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
  1483. kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
  1484. if (!kdev->instances)
  1485. return -ENOMEM;
  1486. for_each_queue_range(kdev, range) {
  1487. if (range->ops && range->ops->init_range)
  1488. range->ops->init_range(range);
  1489. base_idx = idx;
  1490. for (id = range->queue_base;
  1491. id < range->queue_base + range->num_queues; id++, idx++) {
  1492. ret = knav_queue_init_queue(kdev, range,
  1493. knav_queue_idx_to_inst(kdev, idx), id);
  1494. if (ret < 0)
  1495. return ret;
  1496. }
  1497. range->queue_base_inst =
  1498. knav_queue_idx_to_inst(kdev, base_idx);
  1499. }
  1500. return 0;
  1501. }
  1502. /* Match table for of_platform binding */
  1503. static const struct of_device_id keystone_qmss_of_match[] = {
  1504. {
  1505. .compatible = "ti,keystone-navigator-qmss",
  1506. },
  1507. {
  1508. .compatible = "ti,66ak2g-navss-qm",
  1509. .data = (void *)QMSS_66AK2G,
  1510. },
  1511. {},
  1512. };
  1513. MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
  1514. static int knav_queue_probe(struct platform_device *pdev)
  1515. {
  1516. struct device_node *node = pdev->dev.of_node;
  1517. struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
  1518. const struct of_device_id *match;
  1519. struct device *dev = &pdev->dev;
  1520. u32 temp[2];
  1521. int ret;
  1522. if (!node) {
  1523. dev_err(dev, "device tree info unavailable\n");
  1524. return -ENODEV;
  1525. }
  1526. kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
  1527. if (!kdev) {
  1528. dev_err(dev, "memory allocation failed\n");
  1529. return -ENOMEM;
  1530. }
  1531. match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
  1532. if (match && match->data)
  1533. kdev->version = QMSS_66AK2G;
  1534. platform_set_drvdata(pdev, kdev);
  1535. kdev->dev = dev;
  1536. INIT_LIST_HEAD(&kdev->queue_ranges);
  1537. INIT_LIST_HEAD(&kdev->qmgrs);
  1538. INIT_LIST_HEAD(&kdev->pools);
  1539. INIT_LIST_HEAD(&kdev->regions);
  1540. INIT_LIST_HEAD(&kdev->pdsps);
  1541. pm_runtime_enable(&pdev->dev);
  1542. ret = pm_runtime_get_sync(&pdev->dev);
  1543. if (ret < 0) {
  1544. dev_err(dev, "Failed to enable QMSS\n");
  1545. return ret;
  1546. }
  1547. if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
  1548. dev_err(dev, "queue-range not specified\n");
  1549. ret = -ENODEV;
  1550. goto err;
  1551. }
  1552. kdev->base_id = temp[0];
  1553. kdev->num_queues = temp[1];
  1554. /* Initialize queue managers using device tree configuration */
  1555. qmgrs = of_get_child_by_name(node, "qmgrs");
  1556. if (!qmgrs) {
  1557. dev_err(dev, "queue manager info not specified\n");
  1558. ret = -ENODEV;
  1559. goto err;
  1560. }
  1561. ret = knav_queue_init_qmgrs(kdev, qmgrs);
  1562. of_node_put(qmgrs);
  1563. if (ret)
  1564. goto err;
  1565. /* get pdsp configuration values from device tree */
  1566. pdsps = of_get_child_by_name(node, "pdsps");
  1567. if (pdsps) {
  1568. ret = knav_queue_init_pdsps(kdev, pdsps);
  1569. if (ret)
  1570. goto err;
  1571. ret = knav_queue_start_pdsps(kdev);
  1572. if (ret)
  1573. goto err;
  1574. }
  1575. of_node_put(pdsps);
  1576. /* get usable queue range values from device tree */
  1577. queue_pools = of_get_child_by_name(node, "queue-pools");
  1578. if (!queue_pools) {
  1579. dev_err(dev, "queue-pools not specified\n");
  1580. ret = -ENODEV;
  1581. goto err;
  1582. }
  1583. ret = knav_setup_queue_pools(kdev, queue_pools);
  1584. of_node_put(queue_pools);
  1585. if (ret)
  1586. goto err;
  1587. ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
  1588. if (ret) {
  1589. dev_err(kdev->dev, "could not setup linking ram\n");
  1590. goto err;
  1591. }
  1592. ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
  1593. if (ret) {
  1594. /*
  1595. * nothing really, we have one linking ram already, so we just
  1596. * live within our means
  1597. */
  1598. }
  1599. ret = knav_queue_setup_link_ram(kdev);
  1600. if (ret)
  1601. goto err;
  1602. regions = of_get_child_by_name(node, "descriptor-regions");
  1603. if (!regions) {
  1604. dev_err(dev, "descriptor-regions not specified\n");
  1605. goto err;
  1606. }
  1607. ret = knav_queue_setup_regions(kdev, regions);
  1608. of_node_put(regions);
  1609. if (ret)
  1610. goto err;
  1611. ret = knav_queue_init_queues(kdev);
  1612. if (ret < 0) {
  1613. dev_err(dev, "hwqueue initialization failed\n");
  1614. goto err;
  1615. }
  1616. debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
  1617. &knav_queue_debug_ops);
  1618. device_ready = true;
  1619. return 0;
  1620. err:
  1621. knav_queue_stop_pdsps(kdev);
  1622. knav_queue_free_regions(kdev);
  1623. knav_free_queue_ranges(kdev);
  1624. pm_runtime_put_sync(&pdev->dev);
  1625. pm_runtime_disable(&pdev->dev);
  1626. return ret;
  1627. }
  1628. static int knav_queue_remove(struct platform_device *pdev)
  1629. {
  1630. /* TODO: Free resources */
  1631. pm_runtime_put_sync(&pdev->dev);
  1632. pm_runtime_disable(&pdev->dev);
  1633. return 0;
  1634. }
  1635. static struct platform_driver keystone_qmss_driver = {
  1636. .probe = knav_queue_probe,
  1637. .remove = knav_queue_remove,
  1638. .driver = {
  1639. .name = "keystone-navigator-qmss",
  1640. .of_match_table = keystone_qmss_of_match,
  1641. },
  1642. };
  1643. module_platform_driver(keystone_qmss_driver);
  1644. MODULE_LICENSE("GPL v2");
  1645. MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
  1646. MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
  1647. MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");