dp83640.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494
  1. /*
  2. * Driver for the National Semiconductor DP83640 PHYTER
  3. *
  4. * Copyright (C) 2010 OMICRON electronics GmbH
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21. #include <linux/ethtool.h>
  22. #include <linux/kernel.h>
  23. #include <linux/list.h>
  24. #include <linux/mii.h>
  25. #include <linux/module.h>
  26. #include <linux/net_tstamp.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/if_vlan.h>
  29. #include <linux/phy.h>
  30. #include <linux/ptp_classify.h>
  31. #include <linux/ptp_clock_kernel.h>
  32. #include "dp83640_reg.h"
  33. #define DP83640_PHY_ID 0x20005ce1
  34. #define PAGESEL 0x13
  35. #define LAYER4 0x02
  36. #define LAYER2 0x01
  37. #define MAX_RXTS 64
  38. #define N_EXT_TS 6
  39. #define N_PER_OUT 7
  40. #define PSF_PTPVER 2
  41. #define PSF_EVNT 0x4000
  42. #define PSF_RX 0x2000
  43. #define PSF_TX 0x1000
  44. #define EXT_EVENT 1
  45. #define CAL_EVENT 7
  46. #define CAL_TRIGGER 7
  47. #define DP83640_N_PINS 12
  48. #define MII_DP83640_MICR 0x11
  49. #define MII_DP83640_MISR 0x12
  50. #define MII_DP83640_MICR_OE 0x1
  51. #define MII_DP83640_MICR_IE 0x2
  52. #define MII_DP83640_MISR_RHF_INT_EN 0x01
  53. #define MII_DP83640_MISR_FHF_INT_EN 0x02
  54. #define MII_DP83640_MISR_ANC_INT_EN 0x04
  55. #define MII_DP83640_MISR_DUP_INT_EN 0x08
  56. #define MII_DP83640_MISR_SPD_INT_EN 0x10
  57. #define MII_DP83640_MISR_LINK_INT_EN 0x20
  58. #define MII_DP83640_MISR_ED_INT_EN 0x40
  59. #define MII_DP83640_MISR_LQ_INT_EN 0x80
  60. /* phyter seems to miss the mark by 16 ns */
  61. #define ADJTIME_FIX 16
  62. #if defined(__BIG_ENDIAN)
  63. #define ENDIAN_FLAG 0
  64. #elif defined(__LITTLE_ENDIAN)
  65. #define ENDIAN_FLAG PSF_ENDIAN
  66. #endif
  67. struct dp83640_skb_info {
  68. int ptp_type;
  69. unsigned long tmo;
  70. };
  71. struct phy_rxts {
  72. u16 ns_lo; /* ns[15:0] */
  73. u16 ns_hi; /* overflow[1:0], ns[29:16] */
  74. u16 sec_lo; /* sec[15:0] */
  75. u16 sec_hi; /* sec[31:16] */
  76. u16 seqid; /* sequenceId[15:0] */
  77. u16 msgtype; /* messageType[3:0], hash[11:0] */
  78. };
  79. struct phy_txts {
  80. u16 ns_lo; /* ns[15:0] */
  81. u16 ns_hi; /* overflow[1:0], ns[29:16] */
  82. u16 sec_lo; /* sec[15:0] */
  83. u16 sec_hi; /* sec[31:16] */
  84. };
  85. struct rxts {
  86. struct list_head list;
  87. unsigned long tmo;
  88. u64 ns;
  89. u16 seqid;
  90. u8 msgtype;
  91. u16 hash;
  92. };
  93. struct dp83640_clock;
  94. struct dp83640_private {
  95. struct list_head list;
  96. struct dp83640_clock *clock;
  97. struct phy_device *phydev;
  98. struct work_struct ts_work;
  99. int hwts_tx_en;
  100. int hwts_rx_en;
  101. int layer;
  102. int version;
  103. /* remember state of cfg0 during calibration */
  104. int cfg0;
  105. /* remember the last event time stamp */
  106. struct phy_txts edata;
  107. /* list of rx timestamps */
  108. struct list_head rxts;
  109. struct list_head rxpool;
  110. struct rxts rx_pool_data[MAX_RXTS];
  111. /* protects above three fields from concurrent access */
  112. spinlock_t rx_lock;
  113. /* queues of incoming and outgoing packets */
  114. struct sk_buff_head rx_queue;
  115. struct sk_buff_head tx_queue;
  116. };
  117. struct dp83640_clock {
  118. /* keeps the instance in the 'phyter_clocks' list */
  119. struct list_head list;
  120. /* we create one clock instance per MII bus */
  121. struct mii_bus *bus;
  122. /* protects extended registers from concurrent access */
  123. struct mutex extreg_lock;
  124. /* remembers which page was last selected */
  125. int page;
  126. /* our advertised capabilities */
  127. struct ptp_clock_info caps;
  128. /* protects the three fields below from concurrent access */
  129. struct mutex clock_lock;
  130. /* the one phyter from which we shall read */
  131. struct dp83640_private *chosen;
  132. /* list of the other attached phyters, not chosen */
  133. struct list_head phylist;
  134. /* reference to our PTP hardware clock */
  135. struct ptp_clock *ptp_clock;
  136. };
  137. /* globals */
  138. enum {
  139. CALIBRATE_GPIO,
  140. PEROUT_GPIO,
  141. EXTTS0_GPIO,
  142. EXTTS1_GPIO,
  143. EXTTS2_GPIO,
  144. EXTTS3_GPIO,
  145. EXTTS4_GPIO,
  146. EXTTS5_GPIO,
  147. GPIO_TABLE_SIZE
  148. };
  149. static int chosen_phy = -1;
  150. static ushort gpio_tab[GPIO_TABLE_SIZE] = {
  151. 1, 2, 3, 4, 8, 9, 10, 11
  152. };
  153. module_param(chosen_phy, int, 0444);
  154. module_param_array(gpio_tab, ushort, NULL, 0444);
  155. MODULE_PARM_DESC(chosen_phy, \
  156. "The address of the PHY to use for the ancillary clock features");
  157. MODULE_PARM_DESC(gpio_tab, \
  158. "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
  159. static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
  160. {
  161. int i, index;
  162. for (i = 0; i < DP83640_N_PINS; i++) {
  163. snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
  164. pd[i].index = i;
  165. }
  166. for (i = 0; i < GPIO_TABLE_SIZE; i++) {
  167. if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
  168. pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
  169. return;
  170. }
  171. }
  172. index = gpio_tab[CALIBRATE_GPIO] - 1;
  173. pd[index].func = PTP_PF_PHYSYNC;
  174. pd[index].chan = 0;
  175. index = gpio_tab[PEROUT_GPIO] - 1;
  176. pd[index].func = PTP_PF_PEROUT;
  177. pd[index].chan = 0;
  178. for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
  179. index = gpio_tab[i] - 1;
  180. pd[index].func = PTP_PF_EXTTS;
  181. pd[index].chan = i - EXTTS0_GPIO;
  182. }
  183. }
  184. /* a list of clocks and a mutex to protect it */
  185. static LIST_HEAD(phyter_clocks);
  186. static DEFINE_MUTEX(phyter_clocks_lock);
  187. static void rx_timestamp_work(struct work_struct *work);
  188. /* extended register access functions */
  189. #define BROADCAST_ADDR 31
  190. static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val)
  191. {
  192. return mdiobus_write(bus, BROADCAST_ADDR, regnum, val);
  193. }
  194. /* Caller must hold extreg_lock. */
  195. static int ext_read(struct phy_device *phydev, int page, u32 regnum)
  196. {
  197. struct dp83640_private *dp83640 = phydev->priv;
  198. int val;
  199. if (dp83640->clock->page != page) {
  200. broadcast_write(phydev->bus, PAGESEL, page);
  201. dp83640->clock->page = page;
  202. }
  203. val = phy_read(phydev, regnum);
  204. return val;
  205. }
  206. /* Caller must hold extreg_lock. */
  207. static void ext_write(int broadcast, struct phy_device *phydev,
  208. int page, u32 regnum, u16 val)
  209. {
  210. struct dp83640_private *dp83640 = phydev->priv;
  211. if (dp83640->clock->page != page) {
  212. broadcast_write(phydev->bus, PAGESEL, page);
  213. dp83640->clock->page = page;
  214. }
  215. if (broadcast)
  216. broadcast_write(phydev->bus, regnum, val);
  217. else
  218. phy_write(phydev, regnum, val);
  219. }
  220. /* Caller must hold extreg_lock. */
  221. static int tdr_write(int bc, struct phy_device *dev,
  222. const struct timespec64 *ts, u16 cmd)
  223. {
  224. ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */
  225. ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */
  226. ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
  227. ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/
  228. ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
  229. return 0;
  230. }
  231. /* convert phy timestamps into driver timestamps */
  232. static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
  233. {
  234. u32 sec;
  235. sec = p->sec_lo;
  236. sec |= p->sec_hi << 16;
  237. rxts->ns = p->ns_lo;
  238. rxts->ns |= (p->ns_hi & 0x3fff) << 16;
  239. rxts->ns += ((u64)sec) * 1000000000ULL;
  240. rxts->seqid = p->seqid;
  241. rxts->msgtype = (p->msgtype >> 12) & 0xf;
  242. rxts->hash = p->msgtype & 0x0fff;
  243. rxts->tmo = jiffies + 2;
  244. }
  245. static u64 phy2txts(struct phy_txts *p)
  246. {
  247. u64 ns;
  248. u32 sec;
  249. sec = p->sec_lo;
  250. sec |= p->sec_hi << 16;
  251. ns = p->ns_lo;
  252. ns |= (p->ns_hi & 0x3fff) << 16;
  253. ns += ((u64)sec) * 1000000000ULL;
  254. return ns;
  255. }
  256. static int periodic_output(struct dp83640_clock *clock,
  257. struct ptp_clock_request *clkreq, bool on,
  258. int trigger)
  259. {
  260. struct dp83640_private *dp83640 = clock->chosen;
  261. struct phy_device *phydev = dp83640->phydev;
  262. u32 sec, nsec, pwidth;
  263. u16 gpio, ptp_trig, val;
  264. if (on) {
  265. gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT,
  266. trigger);
  267. if (gpio < 1)
  268. return -EINVAL;
  269. } else {
  270. gpio = 0;
  271. }
  272. ptp_trig = TRIG_WR |
  273. (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
  274. (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
  275. TRIG_PER |
  276. TRIG_PULSE;
  277. val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
  278. if (!on) {
  279. val |= TRIG_DIS;
  280. mutex_lock(&clock->extreg_lock);
  281. ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
  282. ext_write(0, phydev, PAGE4, PTP_CTL, val);
  283. mutex_unlock(&clock->extreg_lock);
  284. return 0;
  285. }
  286. sec = clkreq->perout.start.sec;
  287. nsec = clkreq->perout.start.nsec;
  288. pwidth = clkreq->perout.period.sec * 1000000000UL;
  289. pwidth += clkreq->perout.period.nsec;
  290. pwidth /= 2;
  291. mutex_lock(&clock->extreg_lock);
  292. ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
  293. /*load trigger*/
  294. val |= TRIG_LOAD;
  295. ext_write(0, phydev, PAGE4, PTP_CTL, val);
  296. ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */
  297. ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */
  298. ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */
  299. ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */
  300. ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
  301. ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */
  302. /* Triggers 0 and 1 has programmable pulsewidth2 */
  303. if (trigger < 2) {
  304. ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff);
  305. ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);
  306. }
  307. /*enable trigger*/
  308. val &= ~TRIG_LOAD;
  309. val |= TRIG_EN;
  310. ext_write(0, phydev, PAGE4, PTP_CTL, val);
  311. mutex_unlock(&clock->extreg_lock);
  312. return 0;
  313. }
  314. /* ptp clock methods */
  315. static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
  316. {
  317. struct dp83640_clock *clock =
  318. container_of(ptp, struct dp83640_clock, caps);
  319. struct phy_device *phydev = clock->chosen->phydev;
  320. u64 rate;
  321. int neg_adj = 0;
  322. u16 hi, lo;
  323. if (ppb < 0) {
  324. neg_adj = 1;
  325. ppb = -ppb;
  326. }
  327. rate = ppb;
  328. rate <<= 26;
  329. rate = div_u64(rate, 1953125);
  330. hi = (rate >> 16) & PTP_RATE_HI_MASK;
  331. if (neg_adj)
  332. hi |= PTP_RATE_DIR;
  333. lo = rate & 0xffff;
  334. mutex_lock(&clock->extreg_lock);
  335. ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
  336. ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
  337. mutex_unlock(&clock->extreg_lock);
  338. return 0;
  339. }
  340. static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
  341. {
  342. struct dp83640_clock *clock =
  343. container_of(ptp, struct dp83640_clock, caps);
  344. struct phy_device *phydev = clock->chosen->phydev;
  345. struct timespec64 ts;
  346. int err;
  347. delta += ADJTIME_FIX;
  348. ts = ns_to_timespec64(delta);
  349. mutex_lock(&clock->extreg_lock);
  350. err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
  351. mutex_unlock(&clock->extreg_lock);
  352. return err;
  353. }
  354. static int ptp_dp83640_gettime(struct ptp_clock_info *ptp,
  355. struct timespec64 *ts)
  356. {
  357. struct dp83640_clock *clock =
  358. container_of(ptp, struct dp83640_clock, caps);
  359. struct phy_device *phydev = clock->chosen->phydev;
  360. unsigned int val[4];
  361. mutex_lock(&clock->extreg_lock);
  362. ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
  363. val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
  364. val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
  365. val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
  366. val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
  367. mutex_unlock(&clock->extreg_lock);
  368. ts->tv_nsec = val[0] | (val[1] << 16);
  369. ts->tv_sec = val[2] | (val[3] << 16);
  370. return 0;
  371. }
  372. static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
  373. const struct timespec64 *ts)
  374. {
  375. struct dp83640_clock *clock =
  376. container_of(ptp, struct dp83640_clock, caps);
  377. struct phy_device *phydev = clock->chosen->phydev;
  378. int err;
  379. mutex_lock(&clock->extreg_lock);
  380. err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
  381. mutex_unlock(&clock->extreg_lock);
  382. return err;
  383. }
  384. static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
  385. struct ptp_clock_request *rq, int on)
  386. {
  387. struct dp83640_clock *clock =
  388. container_of(ptp, struct dp83640_clock, caps);
  389. struct phy_device *phydev = clock->chosen->phydev;
  390. unsigned int index;
  391. u16 evnt, event_num, gpio_num;
  392. switch (rq->type) {
  393. case PTP_CLK_REQ_EXTTS:
  394. index = rq->extts.index;
  395. if (index >= N_EXT_TS)
  396. return -EINVAL;
  397. event_num = EXT_EVENT + index;
  398. evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
  399. if (on) {
  400. gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
  401. PTP_PF_EXTTS, index);
  402. if (gpio_num < 1)
  403. return -EINVAL;
  404. evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
  405. if (rq->extts.flags & PTP_FALLING_EDGE)
  406. evnt |= EVNT_FALL;
  407. else
  408. evnt |= EVNT_RISE;
  409. }
  410. ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
  411. return 0;
  412. case PTP_CLK_REQ_PEROUT:
  413. if (rq->perout.index >= N_PER_OUT)
  414. return -EINVAL;
  415. return periodic_output(clock, rq, on, rq->perout.index);
  416. default:
  417. break;
  418. }
  419. return -EOPNOTSUPP;
  420. }
  421. static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
  422. enum ptp_pin_function func, unsigned int chan)
  423. {
  424. struct dp83640_clock *clock =
  425. container_of(ptp, struct dp83640_clock, caps);
  426. if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC &&
  427. !list_empty(&clock->phylist))
  428. return 1;
  429. if (func == PTP_PF_PHYSYNC)
  430. return 1;
  431. return 0;
  432. }
  433. static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
  434. static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
  435. static void enable_status_frames(struct phy_device *phydev, bool on)
  436. {
  437. u16 cfg0 = 0, ver;
  438. if (on)
  439. cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
  440. ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
  441. ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
  442. ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
  443. if (!phydev->attached_dev) {
  444. pr_warn("expected to find an attached netdevice\n");
  445. return;
  446. }
  447. if (on) {
  448. if (dev_mc_add(phydev->attached_dev, status_frame_dst))
  449. pr_warn("failed to add mc address\n");
  450. } else {
  451. if (dev_mc_del(phydev->attached_dev, status_frame_dst))
  452. pr_warn("failed to delete mc address\n");
  453. }
  454. }
  455. static bool is_status_frame(struct sk_buff *skb, int type)
  456. {
  457. struct ethhdr *h = eth_hdr(skb);
  458. if (PTP_CLASS_V2_L2 == type &&
  459. !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
  460. return true;
  461. else
  462. return false;
  463. }
  464. static int expired(struct rxts *rxts)
  465. {
  466. return time_after(jiffies, rxts->tmo);
  467. }
  468. /* Caller must hold rx_lock. */
  469. static void prune_rx_ts(struct dp83640_private *dp83640)
  470. {
  471. struct list_head *this, *next;
  472. struct rxts *rxts;
  473. list_for_each_safe(this, next, &dp83640->rxts) {
  474. rxts = list_entry(this, struct rxts, list);
  475. if (expired(rxts)) {
  476. list_del_init(&rxts->list);
  477. list_add(&rxts->list, &dp83640->rxpool);
  478. }
  479. }
  480. }
  481. /* synchronize the phyters so they act as one clock */
  482. static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
  483. {
  484. int val;
  485. phy_write(phydev, PAGESEL, 0);
  486. val = phy_read(phydev, PHYCR2);
  487. if (on)
  488. val |= BC_WRITE;
  489. else
  490. val &= ~BC_WRITE;
  491. phy_write(phydev, PHYCR2, val);
  492. phy_write(phydev, PAGESEL, init_page);
  493. }
  494. static void recalibrate(struct dp83640_clock *clock)
  495. {
  496. s64 now, diff;
  497. struct phy_txts event_ts;
  498. struct timespec64 ts;
  499. struct list_head *this;
  500. struct dp83640_private *tmp;
  501. struct phy_device *master = clock->chosen->phydev;
  502. u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
  503. trigger = CAL_TRIGGER;
  504. cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0);
  505. if (cal_gpio < 1) {
  506. pr_err("PHY calibration pin not available - PHY is not calibrated.");
  507. return;
  508. }
  509. mutex_lock(&clock->extreg_lock);
  510. /*
  511. * enable broadcast, disable status frames, enable ptp clock
  512. */
  513. list_for_each(this, &clock->phylist) {
  514. tmp = list_entry(this, struct dp83640_private, list);
  515. enable_broadcast(tmp->phydev, clock->page, 1);
  516. tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
  517. ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
  518. ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
  519. }
  520. enable_broadcast(master, clock->page, 1);
  521. cfg0 = ext_read(master, PAGE5, PSF_CFG0);
  522. ext_write(0, master, PAGE5, PSF_CFG0, 0);
  523. ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
  524. /*
  525. * enable an event timestamp
  526. */
  527. evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
  528. evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
  529. evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
  530. list_for_each(this, &clock->phylist) {
  531. tmp = list_entry(this, struct dp83640_private, list);
  532. ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
  533. }
  534. ext_write(0, master, PAGE5, PTP_EVNT, evnt);
  535. /*
  536. * configure a trigger
  537. */
  538. ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
  539. ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
  540. ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
  541. ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
  542. /* load trigger */
  543. val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
  544. val |= TRIG_LOAD;
  545. ext_write(0, master, PAGE4, PTP_CTL, val);
  546. /* enable trigger */
  547. val &= ~TRIG_LOAD;
  548. val |= TRIG_EN;
  549. ext_write(0, master, PAGE4, PTP_CTL, val);
  550. /* disable trigger */
  551. val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
  552. val |= TRIG_DIS;
  553. ext_write(0, master, PAGE4, PTP_CTL, val);
  554. /*
  555. * read out and correct offsets
  556. */
  557. val = ext_read(master, PAGE4, PTP_STS);
  558. pr_info("master PTP_STS 0x%04hx\n", val);
  559. val = ext_read(master, PAGE4, PTP_ESTS);
  560. pr_info("master PTP_ESTS 0x%04hx\n", val);
  561. event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA);
  562. event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA);
  563. event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
  564. event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
  565. now = phy2txts(&event_ts);
  566. list_for_each(this, &clock->phylist) {
  567. tmp = list_entry(this, struct dp83640_private, list);
  568. val = ext_read(tmp->phydev, PAGE4, PTP_STS);
  569. pr_info("slave PTP_STS 0x%04hx\n", val);
  570. val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
  571. pr_info("slave PTP_ESTS 0x%04hx\n", val);
  572. event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
  573. event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
  574. event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
  575. event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
  576. diff = now - (s64) phy2txts(&event_ts);
  577. pr_info("slave offset %lld nanoseconds\n", diff);
  578. diff += ADJTIME_FIX;
  579. ts = ns_to_timespec64(diff);
  580. tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
  581. }
  582. /*
  583. * restore status frames
  584. */
  585. list_for_each(this, &clock->phylist) {
  586. tmp = list_entry(this, struct dp83640_private, list);
  587. ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
  588. }
  589. ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
  590. mutex_unlock(&clock->extreg_lock);
  591. }
  592. /* time stamping methods */
  593. static inline u16 exts_chan_to_edata(int ch)
  594. {
  595. return 1 << ((ch + EXT_EVENT) * 2);
  596. }
  597. static int decode_evnt(struct dp83640_private *dp83640,
  598. void *data, int len, u16 ests)
  599. {
  600. struct phy_txts *phy_txts;
  601. struct ptp_clock_event event;
  602. int i, parsed;
  603. int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
  604. u16 ext_status = 0;
  605. /* calculate length of the event timestamp status message */
  606. if (ests & MULT_EVNT)
  607. parsed = (words + 2) * sizeof(u16);
  608. else
  609. parsed = (words + 1) * sizeof(u16);
  610. /* check if enough data is available */
  611. if (len < parsed)
  612. return len;
  613. if (ests & MULT_EVNT) {
  614. ext_status = *(u16 *) data;
  615. data += sizeof(ext_status);
  616. }
  617. phy_txts = data;
  618. switch (words) { /* fall through in every case */
  619. case 3:
  620. dp83640->edata.sec_hi = phy_txts->sec_hi;
  621. case 2:
  622. dp83640->edata.sec_lo = phy_txts->sec_lo;
  623. case 1:
  624. dp83640->edata.ns_hi = phy_txts->ns_hi;
  625. case 0:
  626. dp83640->edata.ns_lo = phy_txts->ns_lo;
  627. }
  628. if (!ext_status) {
  629. i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
  630. ext_status = exts_chan_to_edata(i);
  631. }
  632. event.type = PTP_CLOCK_EXTTS;
  633. event.timestamp = phy2txts(&dp83640->edata);
  634. /* Compensate for input path and synchronization delays */
  635. event.timestamp -= 35;
  636. for (i = 0; i < N_EXT_TS; i++) {
  637. if (ext_status & exts_chan_to_edata(i)) {
  638. event.index = i;
  639. ptp_clock_event(dp83640->clock->ptp_clock, &event);
  640. }
  641. }
  642. return parsed;
  643. }
  644. static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
  645. {
  646. u16 *seqid;
  647. unsigned int offset = 0;
  648. u8 *msgtype, *data = skb_mac_header(skb);
  649. /* check sequenceID, messageType, 12 bit hash of offset 20-29 */
  650. if (type & PTP_CLASS_VLAN)
  651. offset += VLAN_HLEN;
  652. switch (type & PTP_CLASS_PMASK) {
  653. case PTP_CLASS_IPV4:
  654. offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
  655. break;
  656. case PTP_CLASS_IPV6:
  657. offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
  658. break;
  659. case PTP_CLASS_L2:
  660. offset += ETH_HLEN;
  661. break;
  662. default:
  663. return 0;
  664. }
  665. if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
  666. return 0;
  667. if (unlikely(type & PTP_CLASS_V1))
  668. msgtype = data + offset + OFF_PTP_CONTROL;
  669. else
  670. msgtype = data + offset;
  671. seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
  672. return rxts->msgtype == (*msgtype & 0xf) &&
  673. rxts->seqid == ntohs(*seqid);
  674. }
  675. static void decode_rxts(struct dp83640_private *dp83640,
  676. struct phy_rxts *phy_rxts)
  677. {
  678. struct rxts *rxts;
  679. struct skb_shared_hwtstamps *shhwtstamps = NULL;
  680. struct sk_buff *skb;
  681. unsigned long flags;
  682. spin_lock_irqsave(&dp83640->rx_lock, flags);
  683. prune_rx_ts(dp83640);
  684. if (list_empty(&dp83640->rxpool)) {
  685. pr_debug("rx timestamp pool is empty\n");
  686. goto out;
  687. }
  688. rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
  689. list_del_init(&rxts->list);
  690. phy2rxts(phy_rxts, rxts);
  691. spin_lock_irqsave(&dp83640->rx_queue.lock, flags);
  692. skb_queue_walk(&dp83640->rx_queue, skb) {
  693. struct dp83640_skb_info *skb_info;
  694. skb_info = (struct dp83640_skb_info *)skb->cb;
  695. if (match(skb, skb_info->ptp_type, rxts)) {
  696. __skb_unlink(skb, &dp83640->rx_queue);
  697. shhwtstamps = skb_hwtstamps(skb);
  698. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  699. shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
  700. netif_rx_ni(skb);
  701. list_add(&rxts->list, &dp83640->rxpool);
  702. break;
  703. }
  704. }
  705. spin_unlock_irqrestore(&dp83640->rx_queue.lock, flags);
  706. if (!shhwtstamps)
  707. list_add_tail(&rxts->list, &dp83640->rxts);
  708. out:
  709. spin_unlock_irqrestore(&dp83640->rx_lock, flags);
  710. }
  711. static void decode_txts(struct dp83640_private *dp83640,
  712. struct phy_txts *phy_txts)
  713. {
  714. struct skb_shared_hwtstamps shhwtstamps;
  715. struct sk_buff *skb;
  716. u64 ns;
  717. /* We must already have the skb that triggered this. */
  718. skb = skb_dequeue(&dp83640->tx_queue);
  719. if (!skb) {
  720. pr_debug("have timestamp but tx_queue empty\n");
  721. return;
  722. }
  723. ns = phy2txts(phy_txts);
  724. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  725. shhwtstamps.hwtstamp = ns_to_ktime(ns);
  726. skb_complete_tx_timestamp(skb, &shhwtstamps);
  727. }
  728. static void decode_status_frame(struct dp83640_private *dp83640,
  729. struct sk_buff *skb)
  730. {
  731. struct phy_rxts *phy_rxts;
  732. struct phy_txts *phy_txts;
  733. u8 *ptr;
  734. int len, size;
  735. u16 ests, type;
  736. ptr = skb->data + 2;
  737. for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
  738. type = *(u16 *)ptr;
  739. ests = type & 0x0fff;
  740. type = type & 0xf000;
  741. len -= sizeof(type);
  742. ptr += sizeof(type);
  743. if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
  744. phy_rxts = (struct phy_rxts *) ptr;
  745. decode_rxts(dp83640, phy_rxts);
  746. size = sizeof(*phy_rxts);
  747. } else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
  748. phy_txts = (struct phy_txts *) ptr;
  749. decode_txts(dp83640, phy_txts);
  750. size = sizeof(*phy_txts);
  751. } else if (PSF_EVNT == type) {
  752. size = decode_evnt(dp83640, ptr, len, ests);
  753. } else {
  754. size = 0;
  755. break;
  756. }
  757. ptr += size;
  758. }
  759. }
  760. static int is_sync(struct sk_buff *skb, int type)
  761. {
  762. u8 *data = skb->data, *msgtype;
  763. unsigned int offset = 0;
  764. if (type & PTP_CLASS_VLAN)
  765. offset += VLAN_HLEN;
  766. switch (type & PTP_CLASS_PMASK) {
  767. case PTP_CLASS_IPV4:
  768. offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
  769. break;
  770. case PTP_CLASS_IPV6:
  771. offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
  772. break;
  773. case PTP_CLASS_L2:
  774. offset += ETH_HLEN;
  775. break;
  776. default:
  777. return 0;
  778. }
  779. if (type & PTP_CLASS_V1)
  780. offset += OFF_PTP_CONTROL;
  781. if (skb->len < offset + 1)
  782. return 0;
  783. msgtype = data + offset;
  784. return (*msgtype & 0xf) == 0;
  785. }
  786. static void dp83640_free_clocks(void)
  787. {
  788. struct dp83640_clock *clock;
  789. struct list_head *this, *next;
  790. mutex_lock(&phyter_clocks_lock);
  791. list_for_each_safe(this, next, &phyter_clocks) {
  792. clock = list_entry(this, struct dp83640_clock, list);
  793. if (!list_empty(&clock->phylist)) {
  794. pr_warn("phy list non-empty while unloading\n");
  795. BUG();
  796. }
  797. list_del(&clock->list);
  798. mutex_destroy(&clock->extreg_lock);
  799. mutex_destroy(&clock->clock_lock);
  800. put_device(&clock->bus->dev);
  801. kfree(clock->caps.pin_config);
  802. kfree(clock);
  803. }
  804. mutex_unlock(&phyter_clocks_lock);
  805. }
  806. static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
  807. {
  808. INIT_LIST_HEAD(&clock->list);
  809. clock->bus = bus;
  810. mutex_init(&clock->extreg_lock);
  811. mutex_init(&clock->clock_lock);
  812. INIT_LIST_HEAD(&clock->phylist);
  813. clock->caps.owner = THIS_MODULE;
  814. sprintf(clock->caps.name, "dp83640 timer");
  815. clock->caps.max_adj = 1953124;
  816. clock->caps.n_alarm = 0;
  817. clock->caps.n_ext_ts = N_EXT_TS;
  818. clock->caps.n_per_out = N_PER_OUT;
  819. clock->caps.n_pins = DP83640_N_PINS;
  820. clock->caps.pps = 0;
  821. clock->caps.adjfreq = ptp_dp83640_adjfreq;
  822. clock->caps.adjtime = ptp_dp83640_adjtime;
  823. clock->caps.gettime64 = ptp_dp83640_gettime;
  824. clock->caps.settime64 = ptp_dp83640_settime;
  825. clock->caps.enable = ptp_dp83640_enable;
  826. clock->caps.verify = ptp_dp83640_verify;
  827. /*
  828. * Convert the module param defaults into a dynamic pin configuration.
  829. */
  830. dp83640_gpio_defaults(clock->caps.pin_config);
  831. /*
  832. * Get a reference to this bus instance.
  833. */
  834. get_device(&bus->dev);
  835. }
  836. static int choose_this_phy(struct dp83640_clock *clock,
  837. struct phy_device *phydev)
  838. {
  839. if (chosen_phy == -1 && !clock->chosen)
  840. return 1;
  841. if (chosen_phy == phydev->addr)
  842. return 1;
  843. return 0;
  844. }
  845. static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
  846. {
  847. if (clock)
  848. mutex_lock(&clock->clock_lock);
  849. return clock;
  850. }
  851. /*
  852. * Look up and lock a clock by bus instance.
  853. * If there is no clock for this bus, then create it first.
  854. */
  855. static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
  856. {
  857. struct dp83640_clock *clock = NULL, *tmp;
  858. struct list_head *this;
  859. mutex_lock(&phyter_clocks_lock);
  860. list_for_each(this, &phyter_clocks) {
  861. tmp = list_entry(this, struct dp83640_clock, list);
  862. if (tmp->bus == bus) {
  863. clock = tmp;
  864. break;
  865. }
  866. }
  867. if (clock)
  868. goto out;
  869. clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
  870. if (!clock)
  871. goto out;
  872. clock->caps.pin_config = kzalloc(sizeof(struct ptp_pin_desc) *
  873. DP83640_N_PINS, GFP_KERNEL);
  874. if (!clock->caps.pin_config) {
  875. kfree(clock);
  876. clock = NULL;
  877. goto out;
  878. }
  879. dp83640_clock_init(clock, bus);
  880. list_add_tail(&phyter_clocks, &clock->list);
  881. out:
  882. mutex_unlock(&phyter_clocks_lock);
  883. return dp83640_clock_get(clock);
  884. }
  885. static void dp83640_clock_put(struct dp83640_clock *clock)
  886. {
  887. mutex_unlock(&clock->clock_lock);
  888. }
  889. static int dp83640_probe(struct phy_device *phydev)
  890. {
  891. struct dp83640_clock *clock;
  892. struct dp83640_private *dp83640;
  893. int err = -ENOMEM, i;
  894. if (phydev->addr == BROADCAST_ADDR)
  895. return 0;
  896. clock = dp83640_clock_get_bus(phydev->bus);
  897. if (!clock)
  898. goto no_clock;
  899. dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
  900. if (!dp83640)
  901. goto no_memory;
  902. dp83640->phydev = phydev;
  903. INIT_WORK(&dp83640->ts_work, rx_timestamp_work);
  904. INIT_LIST_HEAD(&dp83640->rxts);
  905. INIT_LIST_HEAD(&dp83640->rxpool);
  906. for (i = 0; i < MAX_RXTS; i++)
  907. list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
  908. phydev->priv = dp83640;
  909. spin_lock_init(&dp83640->rx_lock);
  910. skb_queue_head_init(&dp83640->rx_queue);
  911. skb_queue_head_init(&dp83640->tx_queue);
  912. dp83640->clock = clock;
  913. if (choose_this_phy(clock, phydev)) {
  914. clock->chosen = dp83640;
  915. clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev);
  916. if (IS_ERR(clock->ptp_clock)) {
  917. err = PTR_ERR(clock->ptp_clock);
  918. goto no_register;
  919. }
  920. } else
  921. list_add_tail(&dp83640->list, &clock->phylist);
  922. dp83640_clock_put(clock);
  923. return 0;
  924. no_register:
  925. clock->chosen = NULL;
  926. kfree(dp83640);
  927. no_memory:
  928. dp83640_clock_put(clock);
  929. no_clock:
  930. return err;
  931. }
  932. static void dp83640_remove(struct phy_device *phydev)
  933. {
  934. struct dp83640_clock *clock;
  935. struct list_head *this, *next;
  936. struct dp83640_private *tmp, *dp83640 = phydev->priv;
  937. if (phydev->addr == BROADCAST_ADDR)
  938. return;
  939. enable_status_frames(phydev, false);
  940. cancel_work_sync(&dp83640->ts_work);
  941. skb_queue_purge(&dp83640->rx_queue);
  942. skb_queue_purge(&dp83640->tx_queue);
  943. clock = dp83640_clock_get(dp83640->clock);
  944. if (dp83640 == clock->chosen) {
  945. ptp_clock_unregister(clock->ptp_clock);
  946. clock->chosen = NULL;
  947. } else {
  948. list_for_each_safe(this, next, &clock->phylist) {
  949. tmp = list_entry(this, struct dp83640_private, list);
  950. if (tmp == dp83640) {
  951. list_del_init(&tmp->list);
  952. break;
  953. }
  954. }
  955. }
  956. dp83640_clock_put(clock);
  957. kfree(dp83640);
  958. }
  959. static int dp83640_config_init(struct phy_device *phydev)
  960. {
  961. struct dp83640_private *dp83640 = phydev->priv;
  962. struct dp83640_clock *clock = dp83640->clock;
  963. if (clock->chosen && !list_empty(&clock->phylist))
  964. recalibrate(clock);
  965. else
  966. enable_broadcast(phydev, clock->page, 1);
  967. enable_status_frames(phydev, true);
  968. ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
  969. return 0;
  970. }
  971. static int dp83640_ack_interrupt(struct phy_device *phydev)
  972. {
  973. int err = phy_read(phydev, MII_DP83640_MISR);
  974. if (err < 0)
  975. return err;
  976. return 0;
  977. }
  978. static int dp83640_config_intr(struct phy_device *phydev)
  979. {
  980. int micr;
  981. int misr;
  982. int err;
  983. if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
  984. misr = phy_read(phydev, MII_DP83640_MISR);
  985. if (misr < 0)
  986. return misr;
  987. misr |=
  988. (MII_DP83640_MISR_ANC_INT_EN |
  989. MII_DP83640_MISR_DUP_INT_EN |
  990. MII_DP83640_MISR_SPD_INT_EN |
  991. MII_DP83640_MISR_LINK_INT_EN);
  992. err = phy_write(phydev, MII_DP83640_MISR, misr);
  993. if (err < 0)
  994. return err;
  995. micr = phy_read(phydev, MII_DP83640_MICR);
  996. if (micr < 0)
  997. return micr;
  998. micr |=
  999. (MII_DP83640_MICR_OE |
  1000. MII_DP83640_MICR_IE);
  1001. return phy_write(phydev, MII_DP83640_MICR, micr);
  1002. } else {
  1003. micr = phy_read(phydev, MII_DP83640_MICR);
  1004. if (micr < 0)
  1005. return micr;
  1006. micr &=
  1007. ~(MII_DP83640_MICR_OE |
  1008. MII_DP83640_MICR_IE);
  1009. err = phy_write(phydev, MII_DP83640_MICR, micr);
  1010. if (err < 0)
  1011. return err;
  1012. misr = phy_read(phydev, MII_DP83640_MISR);
  1013. if (misr < 0)
  1014. return misr;
  1015. misr &=
  1016. ~(MII_DP83640_MISR_ANC_INT_EN |
  1017. MII_DP83640_MISR_DUP_INT_EN |
  1018. MII_DP83640_MISR_SPD_INT_EN |
  1019. MII_DP83640_MISR_LINK_INT_EN);
  1020. return phy_write(phydev, MII_DP83640_MISR, misr);
  1021. }
  1022. }
  1023. static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
  1024. {
  1025. struct dp83640_private *dp83640 = phydev->priv;
  1026. struct hwtstamp_config cfg;
  1027. u16 txcfg0, rxcfg0;
  1028. if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
  1029. return -EFAULT;
  1030. if (cfg.flags) /* reserved for future extensions */
  1031. return -EINVAL;
  1032. if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
  1033. return -ERANGE;
  1034. dp83640->hwts_tx_en = cfg.tx_type;
  1035. switch (cfg.rx_filter) {
  1036. case HWTSTAMP_FILTER_NONE:
  1037. dp83640->hwts_rx_en = 0;
  1038. dp83640->layer = 0;
  1039. dp83640->version = 0;
  1040. break;
  1041. case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
  1042. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  1043. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  1044. dp83640->hwts_rx_en = 1;
  1045. dp83640->layer = LAYER4;
  1046. dp83640->version = 1;
  1047. break;
  1048. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  1049. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  1050. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  1051. dp83640->hwts_rx_en = 1;
  1052. dp83640->layer = LAYER4;
  1053. dp83640->version = 2;
  1054. break;
  1055. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  1056. case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
  1057. case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
  1058. dp83640->hwts_rx_en = 1;
  1059. dp83640->layer = LAYER2;
  1060. dp83640->version = 2;
  1061. break;
  1062. case HWTSTAMP_FILTER_PTP_V2_EVENT:
  1063. case HWTSTAMP_FILTER_PTP_V2_SYNC:
  1064. case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
  1065. dp83640->hwts_rx_en = 1;
  1066. dp83640->layer = LAYER4|LAYER2;
  1067. dp83640->version = 2;
  1068. break;
  1069. default:
  1070. return -ERANGE;
  1071. }
  1072. txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
  1073. rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
  1074. if (dp83640->layer & LAYER2) {
  1075. txcfg0 |= TX_L2_EN;
  1076. rxcfg0 |= RX_L2_EN;
  1077. }
  1078. if (dp83640->layer & LAYER4) {
  1079. txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
  1080. rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
  1081. }
  1082. if (dp83640->hwts_tx_en)
  1083. txcfg0 |= TX_TS_EN;
  1084. if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
  1085. txcfg0 |= SYNC_1STEP | CHK_1STEP;
  1086. if (dp83640->hwts_rx_en)
  1087. rxcfg0 |= RX_TS_EN;
  1088. mutex_lock(&dp83640->clock->extreg_lock);
  1089. ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
  1090. ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
  1091. mutex_unlock(&dp83640->clock->extreg_lock);
  1092. return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
  1093. }
  1094. static void rx_timestamp_work(struct work_struct *work)
  1095. {
  1096. struct dp83640_private *dp83640 =
  1097. container_of(work, struct dp83640_private, ts_work);
  1098. struct sk_buff *skb;
  1099. /* Deliver expired packets. */
  1100. while ((skb = skb_dequeue(&dp83640->rx_queue))) {
  1101. struct dp83640_skb_info *skb_info;
  1102. skb_info = (struct dp83640_skb_info *)skb->cb;
  1103. if (!time_after(jiffies, skb_info->tmo)) {
  1104. skb_queue_head(&dp83640->rx_queue, skb);
  1105. break;
  1106. }
  1107. netif_rx_ni(skb);
  1108. }
  1109. if (!skb_queue_empty(&dp83640->rx_queue))
  1110. schedule_work(&dp83640->ts_work);
  1111. }
  1112. static bool dp83640_rxtstamp(struct phy_device *phydev,
  1113. struct sk_buff *skb, int type)
  1114. {
  1115. struct dp83640_private *dp83640 = phydev->priv;
  1116. struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
  1117. struct list_head *this, *next;
  1118. struct rxts *rxts;
  1119. struct skb_shared_hwtstamps *shhwtstamps = NULL;
  1120. unsigned long flags;
  1121. if (is_status_frame(skb, type)) {
  1122. decode_status_frame(dp83640, skb);
  1123. kfree_skb(skb);
  1124. return true;
  1125. }
  1126. if (!dp83640->hwts_rx_en)
  1127. return false;
  1128. spin_lock_irqsave(&dp83640->rx_lock, flags);
  1129. list_for_each_safe(this, next, &dp83640->rxts) {
  1130. rxts = list_entry(this, struct rxts, list);
  1131. if (match(skb, type, rxts)) {
  1132. shhwtstamps = skb_hwtstamps(skb);
  1133. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  1134. shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
  1135. netif_rx_ni(skb);
  1136. list_del_init(&rxts->list);
  1137. list_add(&rxts->list, &dp83640->rxpool);
  1138. break;
  1139. }
  1140. }
  1141. spin_unlock_irqrestore(&dp83640->rx_lock, flags);
  1142. if (!shhwtstamps) {
  1143. skb_info->ptp_type = type;
  1144. skb_info->tmo = jiffies + 2;
  1145. skb_queue_tail(&dp83640->rx_queue, skb);
  1146. schedule_work(&dp83640->ts_work);
  1147. }
  1148. return true;
  1149. }
  1150. static void dp83640_txtstamp(struct phy_device *phydev,
  1151. struct sk_buff *skb, int type)
  1152. {
  1153. struct dp83640_private *dp83640 = phydev->priv;
  1154. switch (dp83640->hwts_tx_en) {
  1155. case HWTSTAMP_TX_ONESTEP_SYNC:
  1156. if (is_sync(skb, type)) {
  1157. kfree_skb(skb);
  1158. return;
  1159. }
  1160. /* fall through */
  1161. case HWTSTAMP_TX_ON:
  1162. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  1163. skb_queue_tail(&dp83640->tx_queue, skb);
  1164. break;
  1165. case HWTSTAMP_TX_OFF:
  1166. default:
  1167. kfree_skb(skb);
  1168. break;
  1169. }
  1170. }
  1171. static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
  1172. {
  1173. struct dp83640_private *dp83640 = dev->priv;
  1174. info->so_timestamping =
  1175. SOF_TIMESTAMPING_TX_HARDWARE |
  1176. SOF_TIMESTAMPING_RX_HARDWARE |
  1177. SOF_TIMESTAMPING_RAW_HARDWARE;
  1178. info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
  1179. info->tx_types =
  1180. (1 << HWTSTAMP_TX_OFF) |
  1181. (1 << HWTSTAMP_TX_ON) |
  1182. (1 << HWTSTAMP_TX_ONESTEP_SYNC);
  1183. info->rx_filters =
  1184. (1 << HWTSTAMP_FILTER_NONE) |
  1185. (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
  1186. (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
  1187. (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
  1188. (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
  1189. (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
  1190. (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
  1191. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  1192. (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
  1193. (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
  1194. (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
  1195. (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
  1196. (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ);
  1197. return 0;
  1198. }
  1199. static struct phy_driver dp83640_driver = {
  1200. .phy_id = DP83640_PHY_ID,
  1201. .phy_id_mask = 0xfffffff0,
  1202. .name = "NatSemi DP83640",
  1203. .features = PHY_BASIC_FEATURES,
  1204. .flags = PHY_HAS_INTERRUPT,
  1205. .probe = dp83640_probe,
  1206. .remove = dp83640_remove,
  1207. .config_init = dp83640_config_init,
  1208. .config_aneg = genphy_config_aneg,
  1209. .read_status = genphy_read_status,
  1210. .ack_interrupt = dp83640_ack_interrupt,
  1211. .config_intr = dp83640_config_intr,
  1212. .ts_info = dp83640_ts_info,
  1213. .hwtstamp = dp83640_hwtstamp,
  1214. .rxtstamp = dp83640_rxtstamp,
  1215. .txtstamp = dp83640_txtstamp,
  1216. .driver = {.owner = THIS_MODULE,}
  1217. };
  1218. static int __init dp83640_init(void)
  1219. {
  1220. return phy_driver_register(&dp83640_driver);
  1221. }
  1222. static void __exit dp83640_exit(void)
  1223. {
  1224. dp83640_free_clocks();
  1225. phy_driver_unregister(&dp83640_driver);
  1226. }
  1227. MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
  1228. MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
  1229. MODULE_LICENSE("GPL");
  1230. module_init(dp83640_init);
  1231. module_exit(dp83640_exit);
  1232. static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
  1233. { DP83640_PHY_ID, 0xfffffff0 },
  1234. { }
  1235. };
  1236. MODULE_DEVICE_TABLE(mdio, dp83640_tbl);