algif_skcipher.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999
  1. /*
  2. * algif_skcipher: User-space interface for skcipher algorithms
  3. *
  4. * This file provides the user-space API for symmetric key ciphers.
  5. *
  6. * Copyright (c) 2010 Herbert Xu <herbert@gondor.apana.org.au>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. */
  14. #include <crypto/scatterwalk.h>
  15. #include <crypto/skcipher.h>
  16. #include <crypto/if_alg.h>
  17. #include <linux/init.h>
  18. #include <linux/list.h>
  19. #include <linux/kernel.h>
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/net.h>
  23. #include <net/sock.h>
  24. struct skcipher_sg_list {
  25. struct list_head list;
  26. int cur;
  27. struct scatterlist sg[0];
  28. };
  29. struct skcipher_tfm {
  30. struct crypto_skcipher *skcipher;
  31. bool has_key;
  32. };
  33. struct skcipher_ctx {
  34. struct list_head tsgl;
  35. struct af_alg_sgl rsgl;
  36. void *iv;
  37. struct af_alg_completion completion;
  38. atomic_t inflight;
  39. size_t used;
  40. unsigned int len;
  41. bool more;
  42. bool merge;
  43. bool enc;
  44. struct skcipher_request req;
  45. };
  46. struct skcipher_async_rsgl {
  47. struct af_alg_sgl sgl;
  48. struct list_head list;
  49. };
  50. struct skcipher_async_req {
  51. struct kiocb *iocb;
  52. struct skcipher_async_rsgl first_sgl;
  53. struct list_head list;
  54. struct scatterlist *tsg;
  55. atomic_t *inflight;
  56. struct skcipher_request req;
  57. };
  58. #define MAX_SGL_ENTS ((4096 - sizeof(struct skcipher_sg_list)) / \
  59. sizeof(struct scatterlist) - 1)
  60. static void skcipher_free_async_sgls(struct skcipher_async_req *sreq)
  61. {
  62. struct skcipher_async_rsgl *rsgl, *tmp;
  63. struct scatterlist *sgl;
  64. struct scatterlist *sg;
  65. int i, n;
  66. list_for_each_entry_safe(rsgl, tmp, &sreq->list, list) {
  67. af_alg_free_sg(&rsgl->sgl);
  68. if (rsgl != &sreq->first_sgl)
  69. kfree(rsgl);
  70. }
  71. sgl = sreq->tsg;
  72. n = sg_nents(sgl);
  73. for_each_sg(sgl, sg, n, i)
  74. put_page(sg_page(sg));
  75. kfree(sreq->tsg);
  76. }
  77. static void skcipher_async_cb(struct crypto_async_request *req, int err)
  78. {
  79. struct skcipher_async_req *sreq = req->data;
  80. struct kiocb *iocb = sreq->iocb;
  81. atomic_dec(sreq->inflight);
  82. skcipher_free_async_sgls(sreq);
  83. kzfree(sreq);
  84. iocb->ki_complete(iocb, err, err);
  85. }
  86. static inline int skcipher_sndbuf(struct sock *sk)
  87. {
  88. struct alg_sock *ask = alg_sk(sk);
  89. struct skcipher_ctx *ctx = ask->private;
  90. return max_t(int, max_t(int, sk->sk_sndbuf & PAGE_MASK, PAGE_SIZE) -
  91. ctx->used, 0);
  92. }
  93. static inline bool skcipher_writable(struct sock *sk)
  94. {
  95. return PAGE_SIZE <= skcipher_sndbuf(sk);
  96. }
  97. static int skcipher_alloc_sgl(struct sock *sk)
  98. {
  99. struct alg_sock *ask = alg_sk(sk);
  100. struct skcipher_ctx *ctx = ask->private;
  101. struct skcipher_sg_list *sgl;
  102. struct scatterlist *sg = NULL;
  103. sgl = list_entry(ctx->tsgl.prev, struct skcipher_sg_list, list);
  104. if (!list_empty(&ctx->tsgl))
  105. sg = sgl->sg;
  106. if (!sg || sgl->cur >= MAX_SGL_ENTS) {
  107. sgl = sock_kmalloc(sk, sizeof(*sgl) +
  108. sizeof(sgl->sg[0]) * (MAX_SGL_ENTS + 1),
  109. GFP_KERNEL);
  110. if (!sgl)
  111. return -ENOMEM;
  112. sg_init_table(sgl->sg, MAX_SGL_ENTS + 1);
  113. sgl->cur = 0;
  114. if (sg)
  115. sg_chain(sg, MAX_SGL_ENTS + 1, sgl->sg);
  116. list_add_tail(&sgl->list, &ctx->tsgl);
  117. }
  118. return 0;
  119. }
  120. static void skcipher_pull_sgl(struct sock *sk, size_t used, int put)
  121. {
  122. struct alg_sock *ask = alg_sk(sk);
  123. struct skcipher_ctx *ctx = ask->private;
  124. struct skcipher_sg_list *sgl;
  125. struct scatterlist *sg;
  126. int i;
  127. while (!list_empty(&ctx->tsgl)) {
  128. sgl = list_first_entry(&ctx->tsgl, struct skcipher_sg_list,
  129. list);
  130. sg = sgl->sg;
  131. for (i = 0; i < sgl->cur; i++) {
  132. size_t plen = min_t(size_t, used, sg[i].length);
  133. if (!sg_page(sg + i))
  134. continue;
  135. sg[i].length -= plen;
  136. sg[i].offset += plen;
  137. used -= plen;
  138. ctx->used -= plen;
  139. if (sg[i].length)
  140. return;
  141. if (put)
  142. put_page(sg_page(sg + i));
  143. sg_assign_page(sg + i, NULL);
  144. }
  145. list_del(&sgl->list);
  146. sock_kfree_s(sk, sgl,
  147. sizeof(*sgl) + sizeof(sgl->sg[0]) *
  148. (MAX_SGL_ENTS + 1));
  149. }
  150. if (!ctx->used)
  151. ctx->merge = 0;
  152. }
  153. static void skcipher_free_sgl(struct sock *sk)
  154. {
  155. struct alg_sock *ask = alg_sk(sk);
  156. struct skcipher_ctx *ctx = ask->private;
  157. skcipher_pull_sgl(sk, ctx->used, 1);
  158. }
  159. static int skcipher_wait_for_wmem(struct sock *sk, unsigned flags)
  160. {
  161. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  162. int err = -ERESTARTSYS;
  163. long timeout;
  164. if (flags & MSG_DONTWAIT)
  165. return -EAGAIN;
  166. sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  167. add_wait_queue(sk_sleep(sk), &wait);
  168. for (;;) {
  169. if (signal_pending(current))
  170. break;
  171. timeout = MAX_SCHEDULE_TIMEOUT;
  172. if (sk_wait_event(sk, &timeout, skcipher_writable(sk), &wait)) {
  173. err = 0;
  174. break;
  175. }
  176. }
  177. remove_wait_queue(sk_sleep(sk), &wait);
  178. return err;
  179. }
  180. static void skcipher_wmem_wakeup(struct sock *sk)
  181. {
  182. struct socket_wq *wq;
  183. if (!skcipher_writable(sk))
  184. return;
  185. rcu_read_lock();
  186. wq = rcu_dereference(sk->sk_wq);
  187. if (skwq_has_sleeper(wq))
  188. wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
  189. POLLRDNORM |
  190. POLLRDBAND);
  191. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  192. rcu_read_unlock();
  193. }
  194. static int skcipher_wait_for_data(struct sock *sk, unsigned flags)
  195. {
  196. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  197. struct alg_sock *ask = alg_sk(sk);
  198. struct skcipher_ctx *ctx = ask->private;
  199. long timeout;
  200. int err = -ERESTARTSYS;
  201. if (flags & MSG_DONTWAIT) {
  202. return -EAGAIN;
  203. }
  204. sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  205. add_wait_queue(sk_sleep(sk), &wait);
  206. for (;;) {
  207. if (signal_pending(current))
  208. break;
  209. timeout = MAX_SCHEDULE_TIMEOUT;
  210. if (sk_wait_event(sk, &timeout, ctx->used, &wait)) {
  211. err = 0;
  212. break;
  213. }
  214. }
  215. remove_wait_queue(sk_sleep(sk), &wait);
  216. sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  217. return err;
  218. }
  219. static void skcipher_data_wakeup(struct sock *sk)
  220. {
  221. struct alg_sock *ask = alg_sk(sk);
  222. struct skcipher_ctx *ctx = ask->private;
  223. struct socket_wq *wq;
  224. if (!ctx->used)
  225. return;
  226. rcu_read_lock();
  227. wq = rcu_dereference(sk->sk_wq);
  228. if (skwq_has_sleeper(wq))
  229. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  230. POLLRDNORM |
  231. POLLRDBAND);
  232. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  233. rcu_read_unlock();
  234. }
  235. static int skcipher_sendmsg(struct socket *sock, struct msghdr *msg,
  236. size_t size)
  237. {
  238. struct sock *sk = sock->sk;
  239. struct alg_sock *ask = alg_sk(sk);
  240. struct sock *psk = ask->parent;
  241. struct alg_sock *pask = alg_sk(psk);
  242. struct skcipher_ctx *ctx = ask->private;
  243. struct skcipher_tfm *skc = pask->private;
  244. struct crypto_skcipher *tfm = skc->skcipher;
  245. unsigned ivsize = crypto_skcipher_ivsize(tfm);
  246. struct skcipher_sg_list *sgl;
  247. struct af_alg_control con = {};
  248. long copied = 0;
  249. bool enc = 0;
  250. bool init = 0;
  251. int err;
  252. int i;
  253. if (msg->msg_controllen) {
  254. err = af_alg_cmsg_send(msg, &con);
  255. if (err)
  256. return err;
  257. init = 1;
  258. switch (con.op) {
  259. case ALG_OP_ENCRYPT:
  260. enc = 1;
  261. break;
  262. case ALG_OP_DECRYPT:
  263. enc = 0;
  264. break;
  265. default:
  266. return -EINVAL;
  267. }
  268. if (con.iv && con.iv->ivlen != ivsize)
  269. return -EINVAL;
  270. }
  271. err = -EINVAL;
  272. lock_sock(sk);
  273. if (!ctx->more && ctx->used)
  274. goto unlock;
  275. if (init) {
  276. ctx->enc = enc;
  277. if (con.iv)
  278. memcpy(ctx->iv, con.iv->iv, ivsize);
  279. }
  280. while (size) {
  281. struct scatterlist *sg;
  282. unsigned long len = size;
  283. size_t plen;
  284. if (ctx->merge) {
  285. sgl = list_entry(ctx->tsgl.prev,
  286. struct skcipher_sg_list, list);
  287. sg = sgl->sg + sgl->cur - 1;
  288. len = min_t(unsigned long, len,
  289. PAGE_SIZE - sg->offset - sg->length);
  290. err = memcpy_from_msg(page_address(sg_page(sg)) +
  291. sg->offset + sg->length,
  292. msg, len);
  293. if (err)
  294. goto unlock;
  295. sg->length += len;
  296. ctx->merge = (sg->offset + sg->length) &
  297. (PAGE_SIZE - 1);
  298. ctx->used += len;
  299. copied += len;
  300. size -= len;
  301. continue;
  302. }
  303. if (!skcipher_writable(sk)) {
  304. err = skcipher_wait_for_wmem(sk, msg->msg_flags);
  305. if (err)
  306. goto unlock;
  307. }
  308. len = min_t(unsigned long, len, skcipher_sndbuf(sk));
  309. err = skcipher_alloc_sgl(sk);
  310. if (err)
  311. goto unlock;
  312. sgl = list_entry(ctx->tsgl.prev, struct skcipher_sg_list, list);
  313. sg = sgl->sg;
  314. if (sgl->cur)
  315. sg_unmark_end(sg + sgl->cur - 1);
  316. do {
  317. i = sgl->cur;
  318. plen = min_t(size_t, len, PAGE_SIZE);
  319. sg_assign_page(sg + i, alloc_page(GFP_KERNEL));
  320. err = -ENOMEM;
  321. if (!sg_page(sg + i))
  322. goto unlock;
  323. err = memcpy_from_msg(page_address(sg_page(sg + i)),
  324. msg, plen);
  325. if (err) {
  326. __free_page(sg_page(sg + i));
  327. sg_assign_page(sg + i, NULL);
  328. goto unlock;
  329. }
  330. sg[i].length = plen;
  331. len -= plen;
  332. ctx->used += plen;
  333. copied += plen;
  334. size -= plen;
  335. sgl->cur++;
  336. } while (len && sgl->cur < MAX_SGL_ENTS);
  337. if (!size)
  338. sg_mark_end(sg + sgl->cur - 1);
  339. ctx->merge = plen & (PAGE_SIZE - 1);
  340. }
  341. err = 0;
  342. ctx->more = msg->msg_flags & MSG_MORE;
  343. unlock:
  344. skcipher_data_wakeup(sk);
  345. release_sock(sk);
  346. return copied ?: err;
  347. }
  348. static ssize_t skcipher_sendpage(struct socket *sock, struct page *page,
  349. int offset, size_t size, int flags)
  350. {
  351. struct sock *sk = sock->sk;
  352. struct alg_sock *ask = alg_sk(sk);
  353. struct skcipher_ctx *ctx = ask->private;
  354. struct skcipher_sg_list *sgl;
  355. int err = -EINVAL;
  356. if (flags & MSG_SENDPAGE_NOTLAST)
  357. flags |= MSG_MORE;
  358. lock_sock(sk);
  359. if (!ctx->more && ctx->used)
  360. goto unlock;
  361. if (!size)
  362. goto done;
  363. if (!skcipher_writable(sk)) {
  364. err = skcipher_wait_for_wmem(sk, flags);
  365. if (err)
  366. goto unlock;
  367. }
  368. err = skcipher_alloc_sgl(sk);
  369. if (err)
  370. goto unlock;
  371. ctx->merge = 0;
  372. sgl = list_entry(ctx->tsgl.prev, struct skcipher_sg_list, list);
  373. if (sgl->cur)
  374. sg_unmark_end(sgl->sg + sgl->cur - 1);
  375. sg_mark_end(sgl->sg + sgl->cur);
  376. get_page(page);
  377. sg_set_page(sgl->sg + sgl->cur, page, size, offset);
  378. sgl->cur++;
  379. ctx->used += size;
  380. done:
  381. ctx->more = flags & MSG_MORE;
  382. unlock:
  383. skcipher_data_wakeup(sk);
  384. release_sock(sk);
  385. return err ?: size;
  386. }
  387. static int skcipher_all_sg_nents(struct skcipher_ctx *ctx)
  388. {
  389. struct skcipher_sg_list *sgl;
  390. struct scatterlist *sg;
  391. int nents = 0;
  392. list_for_each_entry(sgl, &ctx->tsgl, list) {
  393. sg = sgl->sg;
  394. while (!sg->length)
  395. sg++;
  396. nents += sg_nents(sg);
  397. }
  398. return nents;
  399. }
  400. static int skcipher_recvmsg_async(struct socket *sock, struct msghdr *msg,
  401. int flags)
  402. {
  403. struct sock *sk = sock->sk;
  404. struct alg_sock *ask = alg_sk(sk);
  405. struct sock *psk = ask->parent;
  406. struct alg_sock *pask = alg_sk(psk);
  407. struct skcipher_ctx *ctx = ask->private;
  408. struct skcipher_tfm *skc = pask->private;
  409. struct crypto_skcipher *tfm = skc->skcipher;
  410. struct skcipher_sg_list *sgl;
  411. struct scatterlist *sg;
  412. struct skcipher_async_req *sreq;
  413. struct skcipher_request *req;
  414. struct skcipher_async_rsgl *last_rsgl = NULL;
  415. unsigned int txbufs = 0, len = 0, tx_nents;
  416. unsigned int reqsize = crypto_skcipher_reqsize(tfm);
  417. unsigned int ivsize = crypto_skcipher_ivsize(tfm);
  418. int err = -ENOMEM;
  419. bool mark = false;
  420. char *iv;
  421. sreq = kzalloc(sizeof(*sreq) + reqsize + ivsize, GFP_KERNEL);
  422. if (unlikely(!sreq))
  423. goto out;
  424. req = &sreq->req;
  425. iv = (char *)(req + 1) + reqsize;
  426. sreq->iocb = msg->msg_iocb;
  427. INIT_LIST_HEAD(&sreq->list);
  428. sreq->inflight = &ctx->inflight;
  429. lock_sock(sk);
  430. tx_nents = skcipher_all_sg_nents(ctx);
  431. sreq->tsg = kcalloc(tx_nents, sizeof(*sg), GFP_KERNEL);
  432. if (unlikely(!sreq->tsg))
  433. goto unlock;
  434. sg_init_table(sreq->tsg, tx_nents);
  435. memcpy(iv, ctx->iv, ivsize);
  436. skcipher_request_set_tfm(req, tfm);
  437. skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
  438. skcipher_async_cb, sreq);
  439. while (iov_iter_count(&msg->msg_iter)) {
  440. struct skcipher_async_rsgl *rsgl;
  441. int used;
  442. if (!ctx->used) {
  443. err = skcipher_wait_for_data(sk, flags);
  444. if (err)
  445. goto free;
  446. }
  447. sgl = list_first_entry(&ctx->tsgl,
  448. struct skcipher_sg_list, list);
  449. sg = sgl->sg;
  450. while (!sg->length)
  451. sg++;
  452. used = min_t(unsigned long, ctx->used,
  453. iov_iter_count(&msg->msg_iter));
  454. used = min_t(unsigned long, used, sg->length);
  455. if (txbufs == tx_nents) {
  456. struct scatterlist *tmp;
  457. int x;
  458. /* Ran out of tx slots in async request
  459. * need to expand */
  460. tmp = kcalloc(tx_nents * 2, sizeof(*tmp),
  461. GFP_KERNEL);
  462. if (!tmp) {
  463. err = -ENOMEM;
  464. goto free;
  465. }
  466. sg_init_table(tmp, tx_nents * 2);
  467. for (x = 0; x < tx_nents; x++)
  468. sg_set_page(&tmp[x], sg_page(&sreq->tsg[x]),
  469. sreq->tsg[x].length,
  470. sreq->tsg[x].offset);
  471. kfree(sreq->tsg);
  472. sreq->tsg = tmp;
  473. tx_nents *= 2;
  474. mark = true;
  475. }
  476. /* Need to take over the tx sgl from ctx
  477. * to the asynch req - these sgls will be freed later */
  478. sg_set_page(sreq->tsg + txbufs++, sg_page(sg), sg->length,
  479. sg->offset);
  480. if (list_empty(&sreq->list)) {
  481. rsgl = &sreq->first_sgl;
  482. list_add_tail(&rsgl->list, &sreq->list);
  483. } else {
  484. rsgl = kmalloc(sizeof(*rsgl), GFP_KERNEL);
  485. if (!rsgl) {
  486. err = -ENOMEM;
  487. goto free;
  488. }
  489. list_add_tail(&rsgl->list, &sreq->list);
  490. }
  491. used = af_alg_make_sg(&rsgl->sgl, &msg->msg_iter, used);
  492. err = used;
  493. if (used < 0)
  494. goto free;
  495. if (last_rsgl)
  496. af_alg_link_sg(&last_rsgl->sgl, &rsgl->sgl);
  497. last_rsgl = rsgl;
  498. len += used;
  499. skcipher_pull_sgl(sk, used, 0);
  500. iov_iter_advance(&msg->msg_iter, used);
  501. }
  502. if (mark)
  503. sg_mark_end(sreq->tsg + txbufs - 1);
  504. skcipher_request_set_crypt(req, sreq->tsg, sreq->first_sgl.sgl.sg,
  505. len, iv);
  506. err = ctx->enc ? crypto_skcipher_encrypt(req) :
  507. crypto_skcipher_decrypt(req);
  508. if (err == -EINPROGRESS) {
  509. atomic_inc(&ctx->inflight);
  510. err = -EIOCBQUEUED;
  511. sreq = NULL;
  512. goto unlock;
  513. }
  514. free:
  515. skcipher_free_async_sgls(sreq);
  516. unlock:
  517. skcipher_wmem_wakeup(sk);
  518. release_sock(sk);
  519. kzfree(sreq);
  520. out:
  521. return err;
  522. }
  523. static int skcipher_recvmsg_sync(struct socket *sock, struct msghdr *msg,
  524. int flags)
  525. {
  526. struct sock *sk = sock->sk;
  527. struct alg_sock *ask = alg_sk(sk);
  528. struct sock *psk = ask->parent;
  529. struct alg_sock *pask = alg_sk(psk);
  530. struct skcipher_ctx *ctx = ask->private;
  531. struct skcipher_tfm *skc = pask->private;
  532. struct crypto_skcipher *tfm = skc->skcipher;
  533. unsigned bs = crypto_skcipher_blocksize(tfm);
  534. struct skcipher_sg_list *sgl;
  535. struct scatterlist *sg;
  536. int err = -EAGAIN;
  537. int used;
  538. long copied = 0;
  539. lock_sock(sk);
  540. while (msg_data_left(msg)) {
  541. if (!ctx->used) {
  542. err = skcipher_wait_for_data(sk, flags);
  543. if (err)
  544. goto unlock;
  545. }
  546. used = min_t(unsigned long, ctx->used, msg_data_left(msg));
  547. used = af_alg_make_sg(&ctx->rsgl, &msg->msg_iter, used);
  548. err = used;
  549. if (err < 0)
  550. goto unlock;
  551. if (ctx->more || used < ctx->used)
  552. used -= used % bs;
  553. err = -EINVAL;
  554. if (!used)
  555. goto free;
  556. sgl = list_first_entry(&ctx->tsgl,
  557. struct skcipher_sg_list, list);
  558. sg = sgl->sg;
  559. while (!sg->length)
  560. sg++;
  561. skcipher_request_set_crypt(&ctx->req, sg, ctx->rsgl.sg, used,
  562. ctx->iv);
  563. err = af_alg_wait_for_completion(
  564. ctx->enc ?
  565. crypto_skcipher_encrypt(&ctx->req) :
  566. crypto_skcipher_decrypt(&ctx->req),
  567. &ctx->completion);
  568. free:
  569. af_alg_free_sg(&ctx->rsgl);
  570. if (err)
  571. goto unlock;
  572. copied += used;
  573. skcipher_pull_sgl(sk, used, 1);
  574. iov_iter_advance(&msg->msg_iter, used);
  575. }
  576. err = 0;
  577. unlock:
  578. skcipher_wmem_wakeup(sk);
  579. release_sock(sk);
  580. return copied ?: err;
  581. }
  582. static int skcipher_recvmsg(struct socket *sock, struct msghdr *msg,
  583. size_t ignored, int flags)
  584. {
  585. return (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) ?
  586. skcipher_recvmsg_async(sock, msg, flags) :
  587. skcipher_recvmsg_sync(sock, msg, flags);
  588. }
  589. static unsigned int skcipher_poll(struct file *file, struct socket *sock,
  590. poll_table *wait)
  591. {
  592. struct sock *sk = sock->sk;
  593. struct alg_sock *ask = alg_sk(sk);
  594. struct skcipher_ctx *ctx = ask->private;
  595. unsigned int mask;
  596. sock_poll_wait(file, sk_sleep(sk), wait);
  597. mask = 0;
  598. if (ctx->used)
  599. mask |= POLLIN | POLLRDNORM;
  600. if (skcipher_writable(sk))
  601. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  602. return mask;
  603. }
  604. static struct proto_ops algif_skcipher_ops = {
  605. .family = PF_ALG,
  606. .connect = sock_no_connect,
  607. .socketpair = sock_no_socketpair,
  608. .getname = sock_no_getname,
  609. .ioctl = sock_no_ioctl,
  610. .listen = sock_no_listen,
  611. .shutdown = sock_no_shutdown,
  612. .getsockopt = sock_no_getsockopt,
  613. .mmap = sock_no_mmap,
  614. .bind = sock_no_bind,
  615. .accept = sock_no_accept,
  616. .setsockopt = sock_no_setsockopt,
  617. .release = af_alg_release,
  618. .sendmsg = skcipher_sendmsg,
  619. .sendpage = skcipher_sendpage,
  620. .recvmsg = skcipher_recvmsg,
  621. .poll = skcipher_poll,
  622. };
  623. static int skcipher_check_key(struct socket *sock)
  624. {
  625. int err = 0;
  626. struct sock *psk;
  627. struct alg_sock *pask;
  628. struct skcipher_tfm *tfm;
  629. struct sock *sk = sock->sk;
  630. struct alg_sock *ask = alg_sk(sk);
  631. lock_sock(sk);
  632. if (ask->refcnt)
  633. goto unlock_child;
  634. psk = ask->parent;
  635. pask = alg_sk(ask->parent);
  636. tfm = pask->private;
  637. err = -ENOKEY;
  638. lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
  639. if (!tfm->has_key)
  640. goto unlock;
  641. if (!pask->refcnt++)
  642. sock_hold(psk);
  643. ask->refcnt = 1;
  644. sock_put(psk);
  645. err = 0;
  646. unlock:
  647. release_sock(psk);
  648. unlock_child:
  649. release_sock(sk);
  650. return err;
  651. }
  652. static int skcipher_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
  653. size_t size)
  654. {
  655. int err;
  656. err = skcipher_check_key(sock);
  657. if (err)
  658. return err;
  659. return skcipher_sendmsg(sock, msg, size);
  660. }
  661. static ssize_t skcipher_sendpage_nokey(struct socket *sock, struct page *page,
  662. int offset, size_t size, int flags)
  663. {
  664. int err;
  665. err = skcipher_check_key(sock);
  666. if (err)
  667. return err;
  668. return skcipher_sendpage(sock, page, offset, size, flags);
  669. }
  670. static int skcipher_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
  671. size_t ignored, int flags)
  672. {
  673. int err;
  674. err = skcipher_check_key(sock);
  675. if (err)
  676. return err;
  677. return skcipher_recvmsg(sock, msg, ignored, flags);
  678. }
  679. static struct proto_ops algif_skcipher_ops_nokey = {
  680. .family = PF_ALG,
  681. .connect = sock_no_connect,
  682. .socketpair = sock_no_socketpair,
  683. .getname = sock_no_getname,
  684. .ioctl = sock_no_ioctl,
  685. .listen = sock_no_listen,
  686. .shutdown = sock_no_shutdown,
  687. .getsockopt = sock_no_getsockopt,
  688. .mmap = sock_no_mmap,
  689. .bind = sock_no_bind,
  690. .accept = sock_no_accept,
  691. .setsockopt = sock_no_setsockopt,
  692. .release = af_alg_release,
  693. .sendmsg = skcipher_sendmsg_nokey,
  694. .sendpage = skcipher_sendpage_nokey,
  695. .recvmsg = skcipher_recvmsg_nokey,
  696. .poll = skcipher_poll,
  697. };
  698. static void *skcipher_bind(const char *name, u32 type, u32 mask)
  699. {
  700. struct skcipher_tfm *tfm;
  701. struct crypto_skcipher *skcipher;
  702. tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
  703. if (!tfm)
  704. return ERR_PTR(-ENOMEM);
  705. skcipher = crypto_alloc_skcipher(name, type, mask);
  706. if (IS_ERR(skcipher)) {
  707. kfree(tfm);
  708. return ERR_CAST(skcipher);
  709. }
  710. tfm->skcipher = skcipher;
  711. return tfm;
  712. }
  713. static void skcipher_release(void *private)
  714. {
  715. struct skcipher_tfm *tfm = private;
  716. crypto_free_skcipher(tfm->skcipher);
  717. kfree(tfm);
  718. }
  719. static int skcipher_setkey(void *private, const u8 *key, unsigned int keylen)
  720. {
  721. struct skcipher_tfm *tfm = private;
  722. int err;
  723. err = crypto_skcipher_setkey(tfm->skcipher, key, keylen);
  724. tfm->has_key = !err;
  725. return err;
  726. }
  727. static void skcipher_wait(struct sock *sk)
  728. {
  729. struct alg_sock *ask = alg_sk(sk);
  730. struct skcipher_ctx *ctx = ask->private;
  731. int ctr = 0;
  732. while (atomic_read(&ctx->inflight) && ctr++ < 100)
  733. msleep(100);
  734. }
  735. static void skcipher_sock_destruct(struct sock *sk)
  736. {
  737. struct alg_sock *ask = alg_sk(sk);
  738. struct skcipher_ctx *ctx = ask->private;
  739. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(&ctx->req);
  740. if (atomic_read(&ctx->inflight))
  741. skcipher_wait(sk);
  742. skcipher_free_sgl(sk);
  743. sock_kzfree_s(sk, ctx->iv, crypto_skcipher_ivsize(tfm));
  744. sock_kfree_s(sk, ctx, ctx->len);
  745. af_alg_release_parent(sk);
  746. }
  747. static int skcipher_accept_parent_nokey(void *private, struct sock *sk)
  748. {
  749. struct skcipher_ctx *ctx;
  750. struct alg_sock *ask = alg_sk(sk);
  751. struct skcipher_tfm *tfm = private;
  752. struct crypto_skcipher *skcipher = tfm->skcipher;
  753. unsigned int len = sizeof(*ctx) + crypto_skcipher_reqsize(skcipher);
  754. ctx = sock_kmalloc(sk, len, GFP_KERNEL);
  755. if (!ctx)
  756. return -ENOMEM;
  757. ctx->iv = sock_kmalloc(sk, crypto_skcipher_ivsize(skcipher),
  758. GFP_KERNEL);
  759. if (!ctx->iv) {
  760. sock_kfree_s(sk, ctx, len);
  761. return -ENOMEM;
  762. }
  763. memset(ctx->iv, 0, crypto_skcipher_ivsize(skcipher));
  764. INIT_LIST_HEAD(&ctx->tsgl);
  765. ctx->len = len;
  766. ctx->used = 0;
  767. ctx->more = 0;
  768. ctx->merge = 0;
  769. ctx->enc = 0;
  770. atomic_set(&ctx->inflight, 0);
  771. af_alg_init_completion(&ctx->completion);
  772. ask->private = ctx;
  773. skcipher_request_set_tfm(&ctx->req, skcipher);
  774. skcipher_request_set_callback(&ctx->req, CRYPTO_TFM_REQ_MAY_SLEEP |
  775. CRYPTO_TFM_REQ_MAY_BACKLOG,
  776. af_alg_complete, &ctx->completion);
  777. sk->sk_destruct = skcipher_sock_destruct;
  778. return 0;
  779. }
  780. static int skcipher_accept_parent(void *private, struct sock *sk)
  781. {
  782. struct skcipher_tfm *tfm = private;
  783. if (!tfm->has_key && crypto_skcipher_has_setkey(tfm->skcipher))
  784. return -ENOKEY;
  785. return skcipher_accept_parent_nokey(private, sk);
  786. }
  787. static const struct af_alg_type algif_type_skcipher = {
  788. .bind = skcipher_bind,
  789. .release = skcipher_release,
  790. .setkey = skcipher_setkey,
  791. .accept = skcipher_accept_parent,
  792. .accept_nokey = skcipher_accept_parent_nokey,
  793. .ops = &algif_skcipher_ops,
  794. .ops_nokey = &algif_skcipher_ops_nokey,
  795. .name = "skcipher",
  796. .owner = THIS_MODULE
  797. };
  798. static int __init algif_skcipher_init(void)
  799. {
  800. return af_alg_register_type(&algif_type_skcipher);
  801. }
  802. static void __exit algif_skcipher_exit(void)
  803. {
  804. int err = af_alg_unregister_type(&algif_type_skcipher);
  805. BUG_ON(err);
  806. }
  807. module_init(algif_skcipher_init);
  808. module_exit(algif_skcipher_exit);
  809. MODULE_LICENSE("GPL");