slub.c 125 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/notifier.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kmemcheck.h>
  23. #include <linux/cpu.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/mempolicy.h>
  26. #include <linux/ctype.h>
  27. #include <linux/debugobjects.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/memory.h>
  30. #include <linux/math64.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/stacktrace.h>
  33. #include <linux/prefetch.h>
  34. #include <linux/memcontrol.h>
  35. #include <trace/events/kmem.h>
  36. #include "internal.h"
  37. /*
  38. * Lock order:
  39. * 1. slab_mutex (Global Mutex)
  40. * 2. node->list_lock
  41. * 3. slab_lock(page) (Only on some arches and for debugging)
  42. *
  43. * slab_mutex
  44. *
  45. * The role of the slab_mutex is to protect the list of all the slabs
  46. * and to synchronize major metadata changes to slab cache structures.
  47. *
  48. * The slab_lock is only used for debugging and on arches that do not
  49. * have the ability to do a cmpxchg_double. It only protects the second
  50. * double word in the page struct. Meaning
  51. * A. page->freelist -> List of object free in a page
  52. * B. page->counters -> Counters of objects
  53. * C. page->frozen -> frozen state
  54. *
  55. * If a slab is frozen then it is exempt from list management. It is not
  56. * on any list. The processor that froze the slab is the one who can
  57. * perform list operations on the page. Other processors may put objects
  58. * onto the freelist but the processor that froze the slab is the only
  59. * one that can retrieve the objects from the page's freelist.
  60. *
  61. * The list_lock protects the partial and full list on each node and
  62. * the partial slab counter. If taken then no new slabs may be added or
  63. * removed from the lists nor make the number of partial slabs be modified.
  64. * (Note that the total number of slabs is an atomic value that may be
  65. * modified without taking the list lock).
  66. *
  67. * The list_lock is a centralized lock and thus we avoid taking it as
  68. * much as possible. As long as SLUB does not have to handle partial
  69. * slabs, operations can continue without any centralized lock. F.e.
  70. * allocating a long series of objects that fill up slabs does not require
  71. * the list lock.
  72. * Interrupts are disabled during allocation and deallocation in order to
  73. * make the slab allocator safe to use in the context of an irq. In addition
  74. * interrupts are disabled to ensure that the processor does not change
  75. * while handling per_cpu slabs, due to kernel preemption.
  76. *
  77. * SLUB assigns one slab for allocation to each processor.
  78. * Allocations only occur from these slabs called cpu slabs.
  79. *
  80. * Slabs with free elements are kept on a partial list and during regular
  81. * operations no list for full slabs is used. If an object in a full slab is
  82. * freed then the slab will show up again on the partial lists.
  83. * We track full slabs for debugging purposes though because otherwise we
  84. * cannot scan all objects.
  85. *
  86. * Slabs are freed when they become empty. Teardown and setup is
  87. * minimal so we rely on the page allocators per cpu caches for
  88. * fast frees and allocs.
  89. *
  90. * Overloading of page flags that are otherwise used for LRU management.
  91. *
  92. * PageActive The slab is frozen and exempt from list processing.
  93. * This means that the slab is dedicated to a purpose
  94. * such as satisfying allocations for a specific
  95. * processor. Objects may be freed in the slab while
  96. * it is frozen but slab_free will then skip the usual
  97. * list operations. It is up to the processor holding
  98. * the slab to integrate the slab into the slab lists
  99. * when the slab is no longer needed.
  100. *
  101. * One use of this flag is to mark slabs that are
  102. * used for allocations. Then such a slab becomes a cpu
  103. * slab. The cpu slab may be equipped with an additional
  104. * freelist that allows lockless access to
  105. * free objects in addition to the regular freelist
  106. * that requires the slab lock.
  107. *
  108. * PageError Slab requires special handling due to debug
  109. * options set. This moves slab handling out of
  110. * the fast path and disables lockless freelists.
  111. */
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
  121. {
  122. #ifdef CONFIG_SLUB_CPU_PARTIAL
  123. return !kmem_cache_debug(s);
  124. #else
  125. return false;
  126. #endif
  127. }
  128. /*
  129. * Issues still to be resolved:
  130. *
  131. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  132. *
  133. * - Variable sizing of the per node arrays
  134. */
  135. /* Enable to test recovery from slab corruption on boot */
  136. #undef SLUB_RESILIENCY_TEST
  137. /* Enable to log cmpxchg failures */
  138. #undef SLUB_DEBUG_CMPXCHG
  139. /*
  140. * Mininum number of partial slabs. These will be left on the partial
  141. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  142. */
  143. #define MIN_PARTIAL 5
  144. /*
  145. * Maximum number of desirable partial slabs.
  146. * The existence of more partial slabs makes kmem_cache_shrink
  147. * sort the partial list by the number of objects in use.
  148. */
  149. #define MAX_PARTIAL 10
  150. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  151. SLAB_POISON | SLAB_STORE_USER)
  152. /*
  153. * Debugging flags that require metadata to be stored in the slab. These get
  154. * disabled when slub_debug=O is used and a cache's min order increases with
  155. * metadata.
  156. */
  157. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  158. #define OO_SHIFT 16
  159. #define OO_MASK ((1 << OO_SHIFT) - 1)
  160. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  161. /* Internal SLUB flags */
  162. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  163. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  164. #ifdef CONFIG_SMP
  165. static struct notifier_block slab_notifier;
  166. #endif
  167. /*
  168. * Tracking user of a slab.
  169. */
  170. #define TRACK_ADDRS_COUNT 16
  171. struct track {
  172. unsigned long addr; /* Called from address */
  173. #ifdef CONFIG_STACKTRACE
  174. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  175. #endif
  176. int cpu; /* Was running on cpu */
  177. int pid; /* Pid context */
  178. unsigned long when; /* When did the operation occur */
  179. };
  180. enum track_item { TRACK_ALLOC, TRACK_FREE };
  181. #ifdef CONFIG_SYSFS
  182. static int sysfs_slab_add(struct kmem_cache *);
  183. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  184. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  185. #else
  186. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  187. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  188. { return 0; }
  189. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  190. #endif
  191. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  192. {
  193. #ifdef CONFIG_SLUB_STATS
  194. /*
  195. * The rmw is racy on a preemptible kernel but this is acceptable, so
  196. * avoid this_cpu_add()'s irq-disable overhead.
  197. */
  198. raw_cpu_inc(s->cpu_slab->stat[si]);
  199. #endif
  200. }
  201. /********************************************************************
  202. * Core slab cache functions
  203. *******************************************************************/
  204. /* Verify that a pointer has an address that is valid within a slab page */
  205. static inline int check_valid_pointer(struct kmem_cache *s,
  206. struct page *page, const void *object)
  207. {
  208. void *base;
  209. if (!object)
  210. return 1;
  211. base = page_address(page);
  212. if (object < base || object >= base + page->objects * s->size ||
  213. (object - base) % s->size) {
  214. return 0;
  215. }
  216. return 1;
  217. }
  218. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  219. {
  220. return *(void **)(object + s->offset);
  221. }
  222. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  223. {
  224. prefetch(object + s->offset);
  225. }
  226. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  227. {
  228. void *p;
  229. #ifdef CONFIG_DEBUG_PAGEALLOC
  230. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  231. #else
  232. p = get_freepointer(s, object);
  233. #endif
  234. return p;
  235. }
  236. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  237. {
  238. *(void **)(object + s->offset) = fp;
  239. }
  240. /* Loop over all objects in a slab */
  241. #define for_each_object(__p, __s, __addr, __objects) \
  242. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  243. __p += (__s)->size)
  244. #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
  245. for (__p = (__addr), __idx = 1; __idx <= __objects;\
  246. __p += (__s)->size, __idx++)
  247. /* Determine object index from a given position */
  248. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  249. {
  250. return (p - addr) / s->size;
  251. }
  252. static inline size_t slab_ksize(const struct kmem_cache *s)
  253. {
  254. #ifdef CONFIG_SLUB_DEBUG
  255. /*
  256. * Debugging requires use of the padding between object
  257. * and whatever may come after it.
  258. */
  259. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  260. return s->object_size;
  261. #endif
  262. /*
  263. * If we have the need to store the freelist pointer
  264. * back there or track user information then we can
  265. * only use the space before that information.
  266. */
  267. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  268. return s->inuse;
  269. /*
  270. * Else we can use all the padding etc for the allocation
  271. */
  272. return s->size;
  273. }
  274. static inline int order_objects(int order, unsigned long size, int reserved)
  275. {
  276. return ((PAGE_SIZE << order) - reserved) / size;
  277. }
  278. static inline struct kmem_cache_order_objects oo_make(int order,
  279. unsigned long size, int reserved)
  280. {
  281. struct kmem_cache_order_objects x = {
  282. (order << OO_SHIFT) + order_objects(order, size, reserved)
  283. };
  284. return x;
  285. }
  286. static inline int oo_order(struct kmem_cache_order_objects x)
  287. {
  288. return x.x >> OO_SHIFT;
  289. }
  290. static inline int oo_objects(struct kmem_cache_order_objects x)
  291. {
  292. return x.x & OO_MASK;
  293. }
  294. /*
  295. * Per slab locking using the pagelock
  296. */
  297. static __always_inline void slab_lock(struct page *page)
  298. {
  299. bit_spin_lock(PG_locked, &page->flags);
  300. }
  301. static __always_inline void slab_unlock(struct page *page)
  302. {
  303. __bit_spin_unlock(PG_locked, &page->flags);
  304. }
  305. static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
  306. {
  307. struct page tmp;
  308. tmp.counters = counters_new;
  309. /*
  310. * page->counters can cover frozen/inuse/objects as well
  311. * as page->_count. If we assign to ->counters directly
  312. * we run the risk of losing updates to page->_count, so
  313. * be careful and only assign to the fields we need.
  314. */
  315. page->frozen = tmp.frozen;
  316. page->inuse = tmp.inuse;
  317. page->objects = tmp.objects;
  318. }
  319. /* Interrupts must be disabled (for the fallback code to work right) */
  320. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  321. void *freelist_old, unsigned long counters_old,
  322. void *freelist_new, unsigned long counters_new,
  323. const char *n)
  324. {
  325. VM_BUG_ON(!irqs_disabled());
  326. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  327. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  328. if (s->flags & __CMPXCHG_DOUBLE) {
  329. if (cmpxchg_double(&page->freelist, &page->counters,
  330. freelist_old, counters_old,
  331. freelist_new, counters_new))
  332. return 1;
  333. } else
  334. #endif
  335. {
  336. slab_lock(page);
  337. if (page->freelist == freelist_old &&
  338. page->counters == counters_old) {
  339. page->freelist = freelist_new;
  340. set_page_slub_counters(page, counters_new);
  341. slab_unlock(page);
  342. return 1;
  343. }
  344. slab_unlock(page);
  345. }
  346. cpu_relax();
  347. stat(s, CMPXCHG_DOUBLE_FAIL);
  348. #ifdef SLUB_DEBUG_CMPXCHG
  349. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  350. #endif
  351. return 0;
  352. }
  353. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  354. void *freelist_old, unsigned long counters_old,
  355. void *freelist_new, unsigned long counters_new,
  356. const char *n)
  357. {
  358. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  359. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  360. if (s->flags & __CMPXCHG_DOUBLE) {
  361. if (cmpxchg_double(&page->freelist, &page->counters,
  362. freelist_old, counters_old,
  363. freelist_new, counters_new))
  364. return 1;
  365. } else
  366. #endif
  367. {
  368. unsigned long flags;
  369. local_irq_save(flags);
  370. slab_lock(page);
  371. if (page->freelist == freelist_old &&
  372. page->counters == counters_old) {
  373. page->freelist = freelist_new;
  374. set_page_slub_counters(page, counters_new);
  375. slab_unlock(page);
  376. local_irq_restore(flags);
  377. return 1;
  378. }
  379. slab_unlock(page);
  380. local_irq_restore(flags);
  381. }
  382. cpu_relax();
  383. stat(s, CMPXCHG_DOUBLE_FAIL);
  384. #ifdef SLUB_DEBUG_CMPXCHG
  385. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  386. #endif
  387. return 0;
  388. }
  389. #ifdef CONFIG_SLUB_DEBUG
  390. /*
  391. * Determine a map of object in use on a page.
  392. *
  393. * Node listlock must be held to guarantee that the page does
  394. * not vanish from under us.
  395. */
  396. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  397. {
  398. void *p;
  399. void *addr = page_address(page);
  400. for (p = page->freelist; p; p = get_freepointer(s, p))
  401. set_bit(slab_index(p, s, addr), map);
  402. }
  403. /*
  404. * Debug settings:
  405. */
  406. #ifdef CONFIG_SLUB_DEBUG_ON
  407. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  408. #else
  409. static int slub_debug;
  410. #endif
  411. static char *slub_debug_slabs;
  412. static int disable_higher_order_debug;
  413. /*
  414. * Object debugging
  415. */
  416. static void print_section(char *text, u8 *addr, unsigned int length)
  417. {
  418. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  419. length, 1);
  420. }
  421. static struct track *get_track(struct kmem_cache *s, void *object,
  422. enum track_item alloc)
  423. {
  424. struct track *p;
  425. if (s->offset)
  426. p = object + s->offset + sizeof(void *);
  427. else
  428. p = object + s->inuse;
  429. return p + alloc;
  430. }
  431. static void set_track(struct kmem_cache *s, void *object,
  432. enum track_item alloc, unsigned long addr)
  433. {
  434. struct track *p = get_track(s, object, alloc);
  435. if (addr) {
  436. #ifdef CONFIG_STACKTRACE
  437. struct stack_trace trace;
  438. int i;
  439. trace.nr_entries = 0;
  440. trace.max_entries = TRACK_ADDRS_COUNT;
  441. trace.entries = p->addrs;
  442. trace.skip = 3;
  443. save_stack_trace(&trace);
  444. /* See rant in lockdep.c */
  445. if (trace.nr_entries != 0 &&
  446. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  447. trace.nr_entries--;
  448. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  449. p->addrs[i] = 0;
  450. #endif
  451. p->addr = addr;
  452. p->cpu = smp_processor_id();
  453. p->pid = current->pid;
  454. p->when = jiffies;
  455. } else
  456. memset(p, 0, sizeof(struct track));
  457. }
  458. static void init_tracking(struct kmem_cache *s, void *object)
  459. {
  460. if (!(s->flags & SLAB_STORE_USER))
  461. return;
  462. set_track(s, object, TRACK_FREE, 0UL);
  463. set_track(s, object, TRACK_ALLOC, 0UL);
  464. }
  465. static void print_track(const char *s, struct track *t)
  466. {
  467. if (!t->addr)
  468. return;
  469. pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  470. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  471. #ifdef CONFIG_STACKTRACE
  472. {
  473. int i;
  474. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  475. if (t->addrs[i])
  476. pr_err("\t%pS\n", (void *)t->addrs[i]);
  477. else
  478. break;
  479. }
  480. #endif
  481. }
  482. static void print_tracking(struct kmem_cache *s, void *object)
  483. {
  484. if (!(s->flags & SLAB_STORE_USER))
  485. return;
  486. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  487. print_track("Freed", get_track(s, object, TRACK_FREE));
  488. }
  489. static void print_page_info(struct page *page)
  490. {
  491. pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  492. page, page->objects, page->inuse, page->freelist, page->flags);
  493. }
  494. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  495. {
  496. struct va_format vaf;
  497. va_list args;
  498. va_start(args, fmt);
  499. vaf.fmt = fmt;
  500. vaf.va = &args;
  501. pr_err("=============================================================================\n");
  502. pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
  503. pr_err("-----------------------------------------------------------------------------\n\n");
  504. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  505. va_end(args);
  506. }
  507. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  508. {
  509. struct va_format vaf;
  510. va_list args;
  511. va_start(args, fmt);
  512. vaf.fmt = fmt;
  513. vaf.va = &args;
  514. pr_err("FIX %s: %pV\n", s->name, &vaf);
  515. va_end(args);
  516. }
  517. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  518. {
  519. unsigned int off; /* Offset of last byte */
  520. u8 *addr = page_address(page);
  521. print_tracking(s, p);
  522. print_page_info(page);
  523. pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  524. p, p - addr, get_freepointer(s, p));
  525. if (p > addr + 16)
  526. print_section("Bytes b4 ", p - 16, 16);
  527. print_section("Object ", p, min_t(unsigned long, s->object_size,
  528. PAGE_SIZE));
  529. if (s->flags & SLAB_RED_ZONE)
  530. print_section("Redzone ", p + s->object_size,
  531. s->inuse - s->object_size);
  532. if (s->offset)
  533. off = s->offset + sizeof(void *);
  534. else
  535. off = s->inuse;
  536. if (s->flags & SLAB_STORE_USER)
  537. off += 2 * sizeof(struct track);
  538. if (off != s->size)
  539. /* Beginning of the filler is the free pointer */
  540. print_section("Padding ", p + off, s->size - off);
  541. dump_stack();
  542. }
  543. static void object_err(struct kmem_cache *s, struct page *page,
  544. u8 *object, char *reason)
  545. {
  546. slab_bug(s, "%s", reason);
  547. print_trailer(s, page, object);
  548. }
  549. static void slab_err(struct kmem_cache *s, struct page *page,
  550. const char *fmt, ...)
  551. {
  552. va_list args;
  553. char buf[100];
  554. va_start(args, fmt);
  555. vsnprintf(buf, sizeof(buf), fmt, args);
  556. va_end(args);
  557. slab_bug(s, "%s", buf);
  558. print_page_info(page);
  559. dump_stack();
  560. }
  561. static void init_object(struct kmem_cache *s, void *object, u8 val)
  562. {
  563. u8 *p = object;
  564. if (s->flags & __OBJECT_POISON) {
  565. memset(p, POISON_FREE, s->object_size - 1);
  566. p[s->object_size - 1] = POISON_END;
  567. }
  568. if (s->flags & SLAB_RED_ZONE)
  569. memset(p + s->object_size, val, s->inuse - s->object_size);
  570. }
  571. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  572. void *from, void *to)
  573. {
  574. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  575. memset(from, data, to - from);
  576. }
  577. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  578. u8 *object, char *what,
  579. u8 *start, unsigned int value, unsigned int bytes)
  580. {
  581. u8 *fault;
  582. u8 *end;
  583. fault = memchr_inv(start, value, bytes);
  584. if (!fault)
  585. return 1;
  586. end = start + bytes;
  587. while (end > fault && end[-1] == value)
  588. end--;
  589. slab_bug(s, "%s overwritten", what);
  590. pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  591. fault, end - 1, fault[0], value);
  592. print_trailer(s, page, object);
  593. restore_bytes(s, what, value, fault, end);
  594. return 0;
  595. }
  596. /*
  597. * Object layout:
  598. *
  599. * object address
  600. * Bytes of the object to be managed.
  601. * If the freepointer may overlay the object then the free
  602. * pointer is the first word of the object.
  603. *
  604. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  605. * 0xa5 (POISON_END)
  606. *
  607. * object + s->object_size
  608. * Padding to reach word boundary. This is also used for Redzoning.
  609. * Padding is extended by another word if Redzoning is enabled and
  610. * object_size == inuse.
  611. *
  612. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  613. * 0xcc (RED_ACTIVE) for objects in use.
  614. *
  615. * object + s->inuse
  616. * Meta data starts here.
  617. *
  618. * A. Free pointer (if we cannot overwrite object on free)
  619. * B. Tracking data for SLAB_STORE_USER
  620. * C. Padding to reach required alignment boundary or at mininum
  621. * one word if debugging is on to be able to detect writes
  622. * before the word boundary.
  623. *
  624. * Padding is done using 0x5a (POISON_INUSE)
  625. *
  626. * object + s->size
  627. * Nothing is used beyond s->size.
  628. *
  629. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  630. * ignored. And therefore no slab options that rely on these boundaries
  631. * may be used with merged slabcaches.
  632. */
  633. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  634. {
  635. unsigned long off = s->inuse; /* The end of info */
  636. if (s->offset)
  637. /* Freepointer is placed after the object. */
  638. off += sizeof(void *);
  639. if (s->flags & SLAB_STORE_USER)
  640. /* We also have user information there */
  641. off += 2 * sizeof(struct track);
  642. if (s->size == off)
  643. return 1;
  644. return check_bytes_and_report(s, page, p, "Object padding",
  645. p + off, POISON_INUSE, s->size - off);
  646. }
  647. /* Check the pad bytes at the end of a slab page */
  648. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  649. {
  650. u8 *start;
  651. u8 *fault;
  652. u8 *end;
  653. int length;
  654. int remainder;
  655. if (!(s->flags & SLAB_POISON))
  656. return 1;
  657. start = page_address(page);
  658. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  659. end = start + length;
  660. remainder = length % s->size;
  661. if (!remainder)
  662. return 1;
  663. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  664. if (!fault)
  665. return 1;
  666. while (end > fault && end[-1] == POISON_INUSE)
  667. end--;
  668. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  669. print_section("Padding ", end - remainder, remainder);
  670. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  671. return 0;
  672. }
  673. static int check_object(struct kmem_cache *s, struct page *page,
  674. void *object, u8 val)
  675. {
  676. u8 *p = object;
  677. u8 *endobject = object + s->object_size;
  678. if (s->flags & SLAB_RED_ZONE) {
  679. if (!check_bytes_and_report(s, page, object, "Redzone",
  680. endobject, val, s->inuse - s->object_size))
  681. return 0;
  682. } else {
  683. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  684. check_bytes_and_report(s, page, p, "Alignment padding",
  685. endobject, POISON_INUSE,
  686. s->inuse - s->object_size);
  687. }
  688. }
  689. if (s->flags & SLAB_POISON) {
  690. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  691. (!check_bytes_and_report(s, page, p, "Poison", p,
  692. POISON_FREE, s->object_size - 1) ||
  693. !check_bytes_and_report(s, page, p, "Poison",
  694. p + s->object_size - 1, POISON_END, 1)))
  695. return 0;
  696. /*
  697. * check_pad_bytes cleans up on its own.
  698. */
  699. check_pad_bytes(s, page, p);
  700. }
  701. if (!s->offset && val == SLUB_RED_ACTIVE)
  702. /*
  703. * Object and freepointer overlap. Cannot check
  704. * freepointer while object is allocated.
  705. */
  706. return 1;
  707. /* Check free pointer validity */
  708. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  709. object_err(s, page, p, "Freepointer corrupt");
  710. /*
  711. * No choice but to zap it and thus lose the remainder
  712. * of the free objects in this slab. May cause
  713. * another error because the object count is now wrong.
  714. */
  715. set_freepointer(s, p, NULL);
  716. return 0;
  717. }
  718. return 1;
  719. }
  720. static int check_slab(struct kmem_cache *s, struct page *page)
  721. {
  722. int maxobj;
  723. VM_BUG_ON(!irqs_disabled());
  724. if (!PageSlab(page)) {
  725. slab_err(s, page, "Not a valid slab page");
  726. return 0;
  727. }
  728. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  729. if (page->objects > maxobj) {
  730. slab_err(s, page, "objects %u > max %u",
  731. page->objects, maxobj);
  732. return 0;
  733. }
  734. if (page->inuse > page->objects) {
  735. slab_err(s, page, "inuse %u > max %u",
  736. page->inuse, page->objects);
  737. return 0;
  738. }
  739. /* Slab_pad_check fixes things up after itself */
  740. slab_pad_check(s, page);
  741. return 1;
  742. }
  743. /*
  744. * Determine if a certain object on a page is on the freelist. Must hold the
  745. * slab lock to guarantee that the chains are in a consistent state.
  746. */
  747. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  748. {
  749. int nr = 0;
  750. void *fp;
  751. void *object = NULL;
  752. int max_objects;
  753. fp = page->freelist;
  754. while (fp && nr <= page->objects) {
  755. if (fp == search)
  756. return 1;
  757. if (!check_valid_pointer(s, page, fp)) {
  758. if (object) {
  759. object_err(s, page, object,
  760. "Freechain corrupt");
  761. set_freepointer(s, object, NULL);
  762. } else {
  763. slab_err(s, page, "Freepointer corrupt");
  764. page->freelist = NULL;
  765. page->inuse = page->objects;
  766. slab_fix(s, "Freelist cleared");
  767. return 0;
  768. }
  769. break;
  770. }
  771. object = fp;
  772. fp = get_freepointer(s, object);
  773. nr++;
  774. }
  775. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  776. if (max_objects > MAX_OBJS_PER_PAGE)
  777. max_objects = MAX_OBJS_PER_PAGE;
  778. if (page->objects != max_objects) {
  779. slab_err(s, page, "Wrong number of objects. Found %d but "
  780. "should be %d", page->objects, max_objects);
  781. page->objects = max_objects;
  782. slab_fix(s, "Number of objects adjusted.");
  783. }
  784. if (page->inuse != page->objects - nr) {
  785. slab_err(s, page, "Wrong object count. Counter is %d but "
  786. "counted were %d", page->inuse, page->objects - nr);
  787. page->inuse = page->objects - nr;
  788. slab_fix(s, "Object count adjusted.");
  789. }
  790. return search == NULL;
  791. }
  792. static void trace(struct kmem_cache *s, struct page *page, void *object,
  793. int alloc)
  794. {
  795. if (s->flags & SLAB_TRACE) {
  796. pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  797. s->name,
  798. alloc ? "alloc" : "free",
  799. object, page->inuse,
  800. page->freelist);
  801. if (!alloc)
  802. print_section("Object ", (void *)object,
  803. s->object_size);
  804. dump_stack();
  805. }
  806. }
  807. /*
  808. * Tracking of fully allocated slabs for debugging purposes.
  809. */
  810. static void add_full(struct kmem_cache *s,
  811. struct kmem_cache_node *n, struct page *page)
  812. {
  813. if (!(s->flags & SLAB_STORE_USER))
  814. return;
  815. lockdep_assert_held(&n->list_lock);
  816. list_add(&page->lru, &n->full);
  817. }
  818. static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
  819. {
  820. if (!(s->flags & SLAB_STORE_USER))
  821. return;
  822. lockdep_assert_held(&n->list_lock);
  823. list_del(&page->lru);
  824. }
  825. /* Tracking of the number of slabs for debugging purposes */
  826. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  827. {
  828. struct kmem_cache_node *n = get_node(s, node);
  829. return atomic_long_read(&n->nr_slabs);
  830. }
  831. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  832. {
  833. return atomic_long_read(&n->nr_slabs);
  834. }
  835. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  836. {
  837. struct kmem_cache_node *n = get_node(s, node);
  838. /*
  839. * May be called early in order to allocate a slab for the
  840. * kmem_cache_node structure. Solve the chicken-egg
  841. * dilemma by deferring the increment of the count during
  842. * bootstrap (see early_kmem_cache_node_alloc).
  843. */
  844. if (likely(n)) {
  845. atomic_long_inc(&n->nr_slabs);
  846. atomic_long_add(objects, &n->total_objects);
  847. }
  848. }
  849. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  850. {
  851. struct kmem_cache_node *n = get_node(s, node);
  852. atomic_long_dec(&n->nr_slabs);
  853. atomic_long_sub(objects, &n->total_objects);
  854. }
  855. /* Object debug checks for alloc/free paths */
  856. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  857. void *object)
  858. {
  859. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  860. return;
  861. init_object(s, object, SLUB_RED_INACTIVE);
  862. init_tracking(s, object);
  863. }
  864. static noinline int alloc_debug_processing(struct kmem_cache *s,
  865. struct page *page,
  866. void *object, unsigned long addr)
  867. {
  868. if (!check_slab(s, page))
  869. goto bad;
  870. if (!check_valid_pointer(s, page, object)) {
  871. object_err(s, page, object, "Freelist Pointer check fails");
  872. goto bad;
  873. }
  874. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  875. goto bad;
  876. /* Success perform special debug activities for allocs */
  877. if (s->flags & SLAB_STORE_USER)
  878. set_track(s, object, TRACK_ALLOC, addr);
  879. trace(s, page, object, 1);
  880. init_object(s, object, SLUB_RED_ACTIVE);
  881. return 1;
  882. bad:
  883. if (PageSlab(page)) {
  884. /*
  885. * If this is a slab page then lets do the best we can
  886. * to avoid issues in the future. Marking all objects
  887. * as used avoids touching the remaining objects.
  888. */
  889. slab_fix(s, "Marking all objects used");
  890. page->inuse = page->objects;
  891. page->freelist = NULL;
  892. }
  893. return 0;
  894. }
  895. static noinline struct kmem_cache_node *free_debug_processing(
  896. struct kmem_cache *s, struct page *page, void *object,
  897. unsigned long addr, unsigned long *flags)
  898. {
  899. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  900. spin_lock_irqsave(&n->list_lock, *flags);
  901. slab_lock(page);
  902. if (!check_slab(s, page))
  903. goto fail;
  904. if (!check_valid_pointer(s, page, object)) {
  905. slab_err(s, page, "Invalid object pointer 0x%p", object);
  906. goto fail;
  907. }
  908. if (on_freelist(s, page, object)) {
  909. object_err(s, page, object, "Object already free");
  910. goto fail;
  911. }
  912. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  913. goto out;
  914. if (unlikely(s != page->slab_cache)) {
  915. if (!PageSlab(page)) {
  916. slab_err(s, page, "Attempt to free object(0x%p) "
  917. "outside of slab", object);
  918. } else if (!page->slab_cache) {
  919. pr_err("SLUB <none>: no slab for object 0x%p.\n",
  920. object);
  921. dump_stack();
  922. } else
  923. object_err(s, page, object,
  924. "page slab pointer corrupt.");
  925. goto fail;
  926. }
  927. if (s->flags & SLAB_STORE_USER)
  928. set_track(s, object, TRACK_FREE, addr);
  929. trace(s, page, object, 0);
  930. init_object(s, object, SLUB_RED_INACTIVE);
  931. out:
  932. slab_unlock(page);
  933. /*
  934. * Keep node_lock to preserve integrity
  935. * until the object is actually freed
  936. */
  937. return n;
  938. fail:
  939. slab_unlock(page);
  940. spin_unlock_irqrestore(&n->list_lock, *flags);
  941. slab_fix(s, "Object at 0x%p not freed", object);
  942. return NULL;
  943. }
  944. static int __init setup_slub_debug(char *str)
  945. {
  946. slub_debug = DEBUG_DEFAULT_FLAGS;
  947. if (*str++ != '=' || !*str)
  948. /*
  949. * No options specified. Switch on full debugging.
  950. */
  951. goto out;
  952. if (*str == ',')
  953. /*
  954. * No options but restriction on slabs. This means full
  955. * debugging for slabs matching a pattern.
  956. */
  957. goto check_slabs;
  958. if (tolower(*str) == 'o') {
  959. /*
  960. * Avoid enabling debugging on caches if its minimum order
  961. * would increase as a result.
  962. */
  963. disable_higher_order_debug = 1;
  964. goto out;
  965. }
  966. slub_debug = 0;
  967. if (*str == '-')
  968. /*
  969. * Switch off all debugging measures.
  970. */
  971. goto out;
  972. /*
  973. * Determine which debug features should be switched on
  974. */
  975. for (; *str && *str != ','; str++) {
  976. switch (tolower(*str)) {
  977. case 'f':
  978. slub_debug |= SLAB_DEBUG_FREE;
  979. break;
  980. case 'z':
  981. slub_debug |= SLAB_RED_ZONE;
  982. break;
  983. case 'p':
  984. slub_debug |= SLAB_POISON;
  985. break;
  986. case 'u':
  987. slub_debug |= SLAB_STORE_USER;
  988. break;
  989. case 't':
  990. slub_debug |= SLAB_TRACE;
  991. break;
  992. case 'a':
  993. slub_debug |= SLAB_FAILSLAB;
  994. break;
  995. default:
  996. pr_err("slub_debug option '%c' unknown. skipped\n",
  997. *str);
  998. }
  999. }
  1000. check_slabs:
  1001. if (*str == ',')
  1002. slub_debug_slabs = str + 1;
  1003. out:
  1004. return 1;
  1005. }
  1006. __setup("slub_debug", setup_slub_debug);
  1007. unsigned long kmem_cache_flags(unsigned long object_size,
  1008. unsigned long flags, const char *name,
  1009. void (*ctor)(void *))
  1010. {
  1011. /*
  1012. * Enable debugging if selected on the kernel commandline.
  1013. */
  1014. if (slub_debug && (!slub_debug_slabs || (name &&
  1015. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
  1016. flags |= slub_debug;
  1017. return flags;
  1018. }
  1019. #else
  1020. static inline void setup_object_debug(struct kmem_cache *s,
  1021. struct page *page, void *object) {}
  1022. static inline int alloc_debug_processing(struct kmem_cache *s,
  1023. struct page *page, void *object, unsigned long addr) { return 0; }
  1024. static inline struct kmem_cache_node *free_debug_processing(
  1025. struct kmem_cache *s, struct page *page, void *object,
  1026. unsigned long addr, unsigned long *flags) { return NULL; }
  1027. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1028. { return 1; }
  1029. static inline int check_object(struct kmem_cache *s, struct page *page,
  1030. void *object, u8 val) { return 1; }
  1031. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1032. struct page *page) {}
  1033. static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1034. struct page *page) {}
  1035. unsigned long kmem_cache_flags(unsigned long object_size,
  1036. unsigned long flags, const char *name,
  1037. void (*ctor)(void *))
  1038. {
  1039. return flags;
  1040. }
  1041. #define slub_debug 0
  1042. #define disable_higher_order_debug 0
  1043. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1044. { return 0; }
  1045. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1046. { return 0; }
  1047. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1048. int objects) {}
  1049. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1050. int objects) {}
  1051. #endif /* CONFIG_SLUB_DEBUG */
  1052. /*
  1053. * Hooks for other subsystems that check memory allocations. In a typical
  1054. * production configuration these hooks all should produce no code at all.
  1055. */
  1056. static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
  1057. {
  1058. kmemleak_alloc(ptr, size, 1, flags);
  1059. }
  1060. static inline void kfree_hook(const void *x)
  1061. {
  1062. kmemleak_free(x);
  1063. }
  1064. static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
  1065. gfp_t flags)
  1066. {
  1067. flags &= gfp_allowed_mask;
  1068. lockdep_trace_alloc(flags);
  1069. might_sleep_if(flags & __GFP_WAIT);
  1070. if (should_failslab(s->object_size, flags, s->flags))
  1071. return NULL;
  1072. return memcg_kmem_get_cache(s, flags);
  1073. }
  1074. static inline void slab_post_alloc_hook(struct kmem_cache *s,
  1075. gfp_t flags, void *object)
  1076. {
  1077. flags &= gfp_allowed_mask;
  1078. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  1079. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  1080. memcg_kmem_put_cache(s);
  1081. }
  1082. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  1083. {
  1084. kmemleak_free_recursive(x, s->flags);
  1085. /*
  1086. * Trouble is that we may no longer disable interrupts in the fast path
  1087. * So in order to make the debug calls that expect irqs to be
  1088. * disabled we need to disable interrupts temporarily.
  1089. */
  1090. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  1091. {
  1092. unsigned long flags;
  1093. local_irq_save(flags);
  1094. kmemcheck_slab_free(s, x, s->object_size);
  1095. debug_check_no_locks_freed(x, s->object_size);
  1096. local_irq_restore(flags);
  1097. }
  1098. #endif
  1099. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1100. debug_check_no_obj_freed(x, s->object_size);
  1101. }
  1102. /*
  1103. * Slab allocation and freeing
  1104. */
  1105. static inline struct page *alloc_slab_page(struct kmem_cache *s,
  1106. gfp_t flags, int node, struct kmem_cache_order_objects oo)
  1107. {
  1108. struct page *page;
  1109. int order = oo_order(oo);
  1110. flags |= __GFP_NOTRACK;
  1111. if (memcg_charge_slab(s, flags, order))
  1112. return NULL;
  1113. if (node == NUMA_NO_NODE)
  1114. page = alloc_pages(flags, order);
  1115. else
  1116. page = alloc_pages_exact_node(node, flags, order);
  1117. if (!page)
  1118. memcg_uncharge_slab(s, order);
  1119. return page;
  1120. }
  1121. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1122. {
  1123. struct page *page;
  1124. struct kmem_cache_order_objects oo = s->oo;
  1125. gfp_t alloc_gfp;
  1126. flags &= gfp_allowed_mask;
  1127. if (flags & __GFP_WAIT)
  1128. local_irq_enable();
  1129. flags |= s->allocflags;
  1130. /*
  1131. * Let the initial higher-order allocation fail under memory pressure
  1132. * so we fall-back to the minimum order allocation.
  1133. */
  1134. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1135. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1136. if (unlikely(!page)) {
  1137. oo = s->min;
  1138. alloc_gfp = flags;
  1139. /*
  1140. * Allocation may have failed due to fragmentation.
  1141. * Try a lower order alloc if possible
  1142. */
  1143. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1144. if (page)
  1145. stat(s, ORDER_FALLBACK);
  1146. }
  1147. if (kmemcheck_enabled && page
  1148. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1149. int pages = 1 << oo_order(oo);
  1150. kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
  1151. /*
  1152. * Objects from caches that have a constructor don't get
  1153. * cleared when they're allocated, so we need to do it here.
  1154. */
  1155. if (s->ctor)
  1156. kmemcheck_mark_uninitialized_pages(page, pages);
  1157. else
  1158. kmemcheck_mark_unallocated_pages(page, pages);
  1159. }
  1160. if (flags & __GFP_WAIT)
  1161. local_irq_disable();
  1162. if (!page)
  1163. return NULL;
  1164. page->objects = oo_objects(oo);
  1165. mod_zone_page_state(page_zone(page),
  1166. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1167. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1168. 1 << oo_order(oo));
  1169. return page;
  1170. }
  1171. static void setup_object(struct kmem_cache *s, struct page *page,
  1172. void *object)
  1173. {
  1174. setup_object_debug(s, page, object);
  1175. if (unlikely(s->ctor))
  1176. s->ctor(object);
  1177. }
  1178. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1179. {
  1180. struct page *page;
  1181. void *start;
  1182. void *p;
  1183. int order;
  1184. int idx;
  1185. if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
  1186. pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
  1187. BUG();
  1188. }
  1189. page = allocate_slab(s,
  1190. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1191. if (!page)
  1192. goto out;
  1193. order = compound_order(page);
  1194. inc_slabs_node(s, page_to_nid(page), page->objects);
  1195. page->slab_cache = s;
  1196. __SetPageSlab(page);
  1197. if (page->pfmemalloc)
  1198. SetPageSlabPfmemalloc(page);
  1199. start = page_address(page);
  1200. if (unlikely(s->flags & SLAB_POISON))
  1201. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1202. for_each_object_idx(p, idx, s, start, page->objects) {
  1203. setup_object(s, page, p);
  1204. if (likely(idx < page->objects))
  1205. set_freepointer(s, p, p + s->size);
  1206. else
  1207. set_freepointer(s, p, NULL);
  1208. }
  1209. page->freelist = start;
  1210. page->inuse = page->objects;
  1211. page->frozen = 1;
  1212. out:
  1213. return page;
  1214. }
  1215. static void __free_slab(struct kmem_cache *s, struct page *page)
  1216. {
  1217. int order = compound_order(page);
  1218. int pages = 1 << order;
  1219. if (kmem_cache_debug(s)) {
  1220. void *p;
  1221. slab_pad_check(s, page);
  1222. for_each_object(p, s, page_address(page),
  1223. page->objects)
  1224. check_object(s, page, p, SLUB_RED_INACTIVE);
  1225. }
  1226. kmemcheck_free_shadow(page, compound_order(page));
  1227. mod_zone_page_state(page_zone(page),
  1228. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1229. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1230. -pages);
  1231. __ClearPageSlabPfmemalloc(page);
  1232. __ClearPageSlab(page);
  1233. page_mapcount_reset(page);
  1234. if (current->reclaim_state)
  1235. current->reclaim_state->reclaimed_slab += pages;
  1236. __free_pages(page, order);
  1237. memcg_uncharge_slab(s, order);
  1238. }
  1239. #define need_reserve_slab_rcu \
  1240. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1241. static void rcu_free_slab(struct rcu_head *h)
  1242. {
  1243. struct page *page;
  1244. if (need_reserve_slab_rcu)
  1245. page = virt_to_head_page(h);
  1246. else
  1247. page = container_of((struct list_head *)h, struct page, lru);
  1248. __free_slab(page->slab_cache, page);
  1249. }
  1250. static void free_slab(struct kmem_cache *s, struct page *page)
  1251. {
  1252. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1253. struct rcu_head *head;
  1254. if (need_reserve_slab_rcu) {
  1255. int order = compound_order(page);
  1256. int offset = (PAGE_SIZE << order) - s->reserved;
  1257. VM_BUG_ON(s->reserved != sizeof(*head));
  1258. head = page_address(page) + offset;
  1259. } else {
  1260. /*
  1261. * RCU free overloads the RCU head over the LRU
  1262. */
  1263. head = (void *)&page->lru;
  1264. }
  1265. call_rcu(head, rcu_free_slab);
  1266. } else
  1267. __free_slab(s, page);
  1268. }
  1269. static void discard_slab(struct kmem_cache *s, struct page *page)
  1270. {
  1271. dec_slabs_node(s, page_to_nid(page), page->objects);
  1272. free_slab(s, page);
  1273. }
  1274. /*
  1275. * Management of partially allocated slabs.
  1276. */
  1277. static inline void
  1278. __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
  1279. {
  1280. n->nr_partial++;
  1281. if (tail == DEACTIVATE_TO_TAIL)
  1282. list_add_tail(&page->lru, &n->partial);
  1283. else
  1284. list_add(&page->lru, &n->partial);
  1285. }
  1286. static inline void add_partial(struct kmem_cache_node *n,
  1287. struct page *page, int tail)
  1288. {
  1289. lockdep_assert_held(&n->list_lock);
  1290. __add_partial(n, page, tail);
  1291. }
  1292. static inline void
  1293. __remove_partial(struct kmem_cache_node *n, struct page *page)
  1294. {
  1295. list_del(&page->lru);
  1296. n->nr_partial--;
  1297. }
  1298. static inline void remove_partial(struct kmem_cache_node *n,
  1299. struct page *page)
  1300. {
  1301. lockdep_assert_held(&n->list_lock);
  1302. __remove_partial(n, page);
  1303. }
  1304. /*
  1305. * Remove slab from the partial list, freeze it and
  1306. * return the pointer to the freelist.
  1307. *
  1308. * Returns a list of objects or NULL if it fails.
  1309. */
  1310. static inline void *acquire_slab(struct kmem_cache *s,
  1311. struct kmem_cache_node *n, struct page *page,
  1312. int mode, int *objects)
  1313. {
  1314. void *freelist;
  1315. unsigned long counters;
  1316. struct page new;
  1317. lockdep_assert_held(&n->list_lock);
  1318. /*
  1319. * Zap the freelist and set the frozen bit.
  1320. * The old freelist is the list of objects for the
  1321. * per cpu allocation list.
  1322. */
  1323. freelist = page->freelist;
  1324. counters = page->counters;
  1325. new.counters = counters;
  1326. *objects = new.objects - new.inuse;
  1327. if (mode) {
  1328. new.inuse = page->objects;
  1329. new.freelist = NULL;
  1330. } else {
  1331. new.freelist = freelist;
  1332. }
  1333. VM_BUG_ON(new.frozen);
  1334. new.frozen = 1;
  1335. if (!__cmpxchg_double_slab(s, page,
  1336. freelist, counters,
  1337. new.freelist, new.counters,
  1338. "acquire_slab"))
  1339. return NULL;
  1340. remove_partial(n, page);
  1341. WARN_ON(!freelist);
  1342. return freelist;
  1343. }
  1344. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1345. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1346. /*
  1347. * Try to allocate a partial slab from a specific node.
  1348. */
  1349. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1350. struct kmem_cache_cpu *c, gfp_t flags)
  1351. {
  1352. struct page *page, *page2;
  1353. void *object = NULL;
  1354. int available = 0;
  1355. int objects;
  1356. /*
  1357. * Racy check. If we mistakenly see no partial slabs then we
  1358. * just allocate an empty slab. If we mistakenly try to get a
  1359. * partial slab and there is none available then get_partials()
  1360. * will return NULL.
  1361. */
  1362. if (!n || !n->nr_partial)
  1363. return NULL;
  1364. spin_lock(&n->list_lock);
  1365. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1366. void *t;
  1367. if (!pfmemalloc_match(page, flags))
  1368. continue;
  1369. t = acquire_slab(s, n, page, object == NULL, &objects);
  1370. if (!t)
  1371. break;
  1372. available += objects;
  1373. if (!object) {
  1374. c->page = page;
  1375. stat(s, ALLOC_FROM_PARTIAL);
  1376. object = t;
  1377. } else {
  1378. put_cpu_partial(s, page, 0);
  1379. stat(s, CPU_PARTIAL_NODE);
  1380. }
  1381. if (!kmem_cache_has_cpu_partial(s)
  1382. || available > s->cpu_partial / 2)
  1383. break;
  1384. }
  1385. spin_unlock(&n->list_lock);
  1386. return object;
  1387. }
  1388. /*
  1389. * Get a page from somewhere. Search in increasing NUMA distances.
  1390. */
  1391. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1392. struct kmem_cache_cpu *c)
  1393. {
  1394. #ifdef CONFIG_NUMA
  1395. struct zonelist *zonelist;
  1396. struct zoneref *z;
  1397. struct zone *zone;
  1398. enum zone_type high_zoneidx = gfp_zone(flags);
  1399. void *object;
  1400. unsigned int cpuset_mems_cookie;
  1401. /*
  1402. * The defrag ratio allows a configuration of the tradeoffs between
  1403. * inter node defragmentation and node local allocations. A lower
  1404. * defrag_ratio increases the tendency to do local allocations
  1405. * instead of attempting to obtain partial slabs from other nodes.
  1406. *
  1407. * If the defrag_ratio is set to 0 then kmalloc() always
  1408. * returns node local objects. If the ratio is higher then kmalloc()
  1409. * may return off node objects because partial slabs are obtained
  1410. * from other nodes and filled up.
  1411. *
  1412. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1413. * defrag_ratio = 1000) then every (well almost) allocation will
  1414. * first attempt to defrag slab caches on other nodes. This means
  1415. * scanning over all nodes to look for partial slabs which may be
  1416. * expensive if we do it every time we are trying to find a slab
  1417. * with available objects.
  1418. */
  1419. if (!s->remote_node_defrag_ratio ||
  1420. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1421. return NULL;
  1422. do {
  1423. cpuset_mems_cookie = read_mems_allowed_begin();
  1424. zonelist = node_zonelist(mempolicy_slab_node(), flags);
  1425. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1426. struct kmem_cache_node *n;
  1427. n = get_node(s, zone_to_nid(zone));
  1428. if (n && cpuset_zone_allowed(zone, flags) &&
  1429. n->nr_partial > s->min_partial) {
  1430. object = get_partial_node(s, n, c, flags);
  1431. if (object) {
  1432. /*
  1433. * Don't check read_mems_allowed_retry()
  1434. * here - if mems_allowed was updated in
  1435. * parallel, that was a harmless race
  1436. * between allocation and the cpuset
  1437. * update
  1438. */
  1439. return object;
  1440. }
  1441. }
  1442. }
  1443. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  1444. #endif
  1445. return NULL;
  1446. }
  1447. /*
  1448. * Get a partial page, lock it and return it.
  1449. */
  1450. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1451. struct kmem_cache_cpu *c)
  1452. {
  1453. void *object;
  1454. int searchnode = node;
  1455. if (node == NUMA_NO_NODE)
  1456. searchnode = numa_mem_id();
  1457. else if (!node_present_pages(node))
  1458. searchnode = node_to_mem_node(node);
  1459. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1460. if (object || node != NUMA_NO_NODE)
  1461. return object;
  1462. return get_any_partial(s, flags, c);
  1463. }
  1464. #ifdef CONFIG_PREEMPT
  1465. /*
  1466. * Calculate the next globally unique transaction for disambiguiation
  1467. * during cmpxchg. The transactions start with the cpu number and are then
  1468. * incremented by CONFIG_NR_CPUS.
  1469. */
  1470. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1471. #else
  1472. /*
  1473. * No preemption supported therefore also no need to check for
  1474. * different cpus.
  1475. */
  1476. #define TID_STEP 1
  1477. #endif
  1478. static inline unsigned long next_tid(unsigned long tid)
  1479. {
  1480. return tid + TID_STEP;
  1481. }
  1482. static inline unsigned int tid_to_cpu(unsigned long tid)
  1483. {
  1484. return tid % TID_STEP;
  1485. }
  1486. static inline unsigned long tid_to_event(unsigned long tid)
  1487. {
  1488. return tid / TID_STEP;
  1489. }
  1490. static inline unsigned int init_tid(int cpu)
  1491. {
  1492. return cpu;
  1493. }
  1494. static inline void note_cmpxchg_failure(const char *n,
  1495. const struct kmem_cache *s, unsigned long tid)
  1496. {
  1497. #ifdef SLUB_DEBUG_CMPXCHG
  1498. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1499. pr_info("%s %s: cmpxchg redo ", n, s->name);
  1500. #ifdef CONFIG_PREEMPT
  1501. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1502. pr_warn("due to cpu change %d -> %d\n",
  1503. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1504. else
  1505. #endif
  1506. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1507. pr_warn("due to cpu running other code. Event %ld->%ld\n",
  1508. tid_to_event(tid), tid_to_event(actual_tid));
  1509. else
  1510. pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1511. actual_tid, tid, next_tid(tid));
  1512. #endif
  1513. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1514. }
  1515. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1516. {
  1517. int cpu;
  1518. for_each_possible_cpu(cpu)
  1519. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1520. }
  1521. /*
  1522. * Remove the cpu slab
  1523. */
  1524. static void deactivate_slab(struct kmem_cache *s, struct page *page,
  1525. void *freelist)
  1526. {
  1527. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1528. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1529. int lock = 0;
  1530. enum slab_modes l = M_NONE, m = M_NONE;
  1531. void *nextfree;
  1532. int tail = DEACTIVATE_TO_HEAD;
  1533. struct page new;
  1534. struct page old;
  1535. if (page->freelist) {
  1536. stat(s, DEACTIVATE_REMOTE_FREES);
  1537. tail = DEACTIVATE_TO_TAIL;
  1538. }
  1539. /*
  1540. * Stage one: Free all available per cpu objects back
  1541. * to the page freelist while it is still frozen. Leave the
  1542. * last one.
  1543. *
  1544. * There is no need to take the list->lock because the page
  1545. * is still frozen.
  1546. */
  1547. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1548. void *prior;
  1549. unsigned long counters;
  1550. do {
  1551. prior = page->freelist;
  1552. counters = page->counters;
  1553. set_freepointer(s, freelist, prior);
  1554. new.counters = counters;
  1555. new.inuse--;
  1556. VM_BUG_ON(!new.frozen);
  1557. } while (!__cmpxchg_double_slab(s, page,
  1558. prior, counters,
  1559. freelist, new.counters,
  1560. "drain percpu freelist"));
  1561. freelist = nextfree;
  1562. }
  1563. /*
  1564. * Stage two: Ensure that the page is unfrozen while the
  1565. * list presence reflects the actual number of objects
  1566. * during unfreeze.
  1567. *
  1568. * We setup the list membership and then perform a cmpxchg
  1569. * with the count. If there is a mismatch then the page
  1570. * is not unfrozen but the page is on the wrong list.
  1571. *
  1572. * Then we restart the process which may have to remove
  1573. * the page from the list that we just put it on again
  1574. * because the number of objects in the slab may have
  1575. * changed.
  1576. */
  1577. redo:
  1578. old.freelist = page->freelist;
  1579. old.counters = page->counters;
  1580. VM_BUG_ON(!old.frozen);
  1581. /* Determine target state of the slab */
  1582. new.counters = old.counters;
  1583. if (freelist) {
  1584. new.inuse--;
  1585. set_freepointer(s, freelist, old.freelist);
  1586. new.freelist = freelist;
  1587. } else
  1588. new.freelist = old.freelist;
  1589. new.frozen = 0;
  1590. if (!new.inuse && n->nr_partial >= s->min_partial)
  1591. m = M_FREE;
  1592. else if (new.freelist) {
  1593. m = M_PARTIAL;
  1594. if (!lock) {
  1595. lock = 1;
  1596. /*
  1597. * Taking the spinlock removes the possiblity
  1598. * that acquire_slab() will see a slab page that
  1599. * is frozen
  1600. */
  1601. spin_lock(&n->list_lock);
  1602. }
  1603. } else {
  1604. m = M_FULL;
  1605. if (kmem_cache_debug(s) && !lock) {
  1606. lock = 1;
  1607. /*
  1608. * This also ensures that the scanning of full
  1609. * slabs from diagnostic functions will not see
  1610. * any frozen slabs.
  1611. */
  1612. spin_lock(&n->list_lock);
  1613. }
  1614. }
  1615. if (l != m) {
  1616. if (l == M_PARTIAL)
  1617. remove_partial(n, page);
  1618. else if (l == M_FULL)
  1619. remove_full(s, n, page);
  1620. if (m == M_PARTIAL) {
  1621. add_partial(n, page, tail);
  1622. stat(s, tail);
  1623. } else if (m == M_FULL) {
  1624. stat(s, DEACTIVATE_FULL);
  1625. add_full(s, n, page);
  1626. }
  1627. }
  1628. l = m;
  1629. if (!__cmpxchg_double_slab(s, page,
  1630. old.freelist, old.counters,
  1631. new.freelist, new.counters,
  1632. "unfreezing slab"))
  1633. goto redo;
  1634. if (lock)
  1635. spin_unlock(&n->list_lock);
  1636. if (m == M_FREE) {
  1637. stat(s, DEACTIVATE_EMPTY);
  1638. discard_slab(s, page);
  1639. stat(s, FREE_SLAB);
  1640. }
  1641. }
  1642. /*
  1643. * Unfreeze all the cpu partial slabs.
  1644. *
  1645. * This function must be called with interrupts disabled
  1646. * for the cpu using c (or some other guarantee must be there
  1647. * to guarantee no concurrent accesses).
  1648. */
  1649. static void unfreeze_partials(struct kmem_cache *s,
  1650. struct kmem_cache_cpu *c)
  1651. {
  1652. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1653. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1654. struct page *page, *discard_page = NULL;
  1655. while ((page = c->partial)) {
  1656. struct page new;
  1657. struct page old;
  1658. c->partial = page->next;
  1659. n2 = get_node(s, page_to_nid(page));
  1660. if (n != n2) {
  1661. if (n)
  1662. spin_unlock(&n->list_lock);
  1663. n = n2;
  1664. spin_lock(&n->list_lock);
  1665. }
  1666. do {
  1667. old.freelist = page->freelist;
  1668. old.counters = page->counters;
  1669. VM_BUG_ON(!old.frozen);
  1670. new.counters = old.counters;
  1671. new.freelist = old.freelist;
  1672. new.frozen = 0;
  1673. } while (!__cmpxchg_double_slab(s, page,
  1674. old.freelist, old.counters,
  1675. new.freelist, new.counters,
  1676. "unfreezing slab"));
  1677. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
  1678. page->next = discard_page;
  1679. discard_page = page;
  1680. } else {
  1681. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1682. stat(s, FREE_ADD_PARTIAL);
  1683. }
  1684. }
  1685. if (n)
  1686. spin_unlock(&n->list_lock);
  1687. while (discard_page) {
  1688. page = discard_page;
  1689. discard_page = discard_page->next;
  1690. stat(s, DEACTIVATE_EMPTY);
  1691. discard_slab(s, page);
  1692. stat(s, FREE_SLAB);
  1693. }
  1694. #endif
  1695. }
  1696. /*
  1697. * Put a page that was just frozen (in __slab_free) into a partial page
  1698. * slot if available. This is done without interrupts disabled and without
  1699. * preemption disabled. The cmpxchg is racy and may put the partial page
  1700. * onto a random cpus partial slot.
  1701. *
  1702. * If we did not find a slot then simply move all the partials to the
  1703. * per node partial list.
  1704. */
  1705. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1706. {
  1707. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1708. struct page *oldpage;
  1709. int pages;
  1710. int pobjects;
  1711. do {
  1712. pages = 0;
  1713. pobjects = 0;
  1714. oldpage = this_cpu_read(s->cpu_slab->partial);
  1715. if (oldpage) {
  1716. pobjects = oldpage->pobjects;
  1717. pages = oldpage->pages;
  1718. if (drain && pobjects > s->cpu_partial) {
  1719. unsigned long flags;
  1720. /*
  1721. * partial array is full. Move the existing
  1722. * set to the per node partial list.
  1723. */
  1724. local_irq_save(flags);
  1725. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1726. local_irq_restore(flags);
  1727. oldpage = NULL;
  1728. pobjects = 0;
  1729. pages = 0;
  1730. stat(s, CPU_PARTIAL_DRAIN);
  1731. }
  1732. }
  1733. pages++;
  1734. pobjects += page->objects - page->inuse;
  1735. page->pages = pages;
  1736. page->pobjects = pobjects;
  1737. page->next = oldpage;
  1738. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
  1739. != oldpage);
  1740. #endif
  1741. }
  1742. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1743. {
  1744. stat(s, CPUSLAB_FLUSH);
  1745. deactivate_slab(s, c->page, c->freelist);
  1746. c->tid = next_tid(c->tid);
  1747. c->page = NULL;
  1748. c->freelist = NULL;
  1749. }
  1750. /*
  1751. * Flush cpu slab.
  1752. *
  1753. * Called from IPI handler with interrupts disabled.
  1754. */
  1755. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1756. {
  1757. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1758. if (likely(c)) {
  1759. if (c->page)
  1760. flush_slab(s, c);
  1761. unfreeze_partials(s, c);
  1762. }
  1763. }
  1764. static void flush_cpu_slab(void *d)
  1765. {
  1766. struct kmem_cache *s = d;
  1767. __flush_cpu_slab(s, smp_processor_id());
  1768. }
  1769. static bool has_cpu_slab(int cpu, void *info)
  1770. {
  1771. struct kmem_cache *s = info;
  1772. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1773. return c->page || c->partial;
  1774. }
  1775. static void flush_all(struct kmem_cache *s)
  1776. {
  1777. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1778. }
  1779. /*
  1780. * Check if the objects in a per cpu structure fit numa
  1781. * locality expectations.
  1782. */
  1783. static inline int node_match(struct page *page, int node)
  1784. {
  1785. #ifdef CONFIG_NUMA
  1786. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1787. return 0;
  1788. #endif
  1789. return 1;
  1790. }
  1791. #ifdef CONFIG_SLUB_DEBUG
  1792. static int count_free(struct page *page)
  1793. {
  1794. return page->objects - page->inuse;
  1795. }
  1796. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1797. {
  1798. return atomic_long_read(&n->total_objects);
  1799. }
  1800. #endif /* CONFIG_SLUB_DEBUG */
  1801. #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
  1802. static unsigned long count_partial(struct kmem_cache_node *n,
  1803. int (*get_count)(struct page *))
  1804. {
  1805. unsigned long flags;
  1806. unsigned long x = 0;
  1807. struct page *page;
  1808. spin_lock_irqsave(&n->list_lock, flags);
  1809. list_for_each_entry(page, &n->partial, lru)
  1810. x += get_count(page);
  1811. spin_unlock_irqrestore(&n->list_lock, flags);
  1812. return x;
  1813. }
  1814. #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
  1815. static noinline void
  1816. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1817. {
  1818. #ifdef CONFIG_SLUB_DEBUG
  1819. static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  1820. DEFAULT_RATELIMIT_BURST);
  1821. int node;
  1822. struct kmem_cache_node *n;
  1823. if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
  1824. return;
  1825. pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1826. nid, gfpflags);
  1827. pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
  1828. s->name, s->object_size, s->size, oo_order(s->oo),
  1829. oo_order(s->min));
  1830. if (oo_order(s->min) > get_order(s->object_size))
  1831. pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
  1832. s->name);
  1833. for_each_kmem_cache_node(s, node, n) {
  1834. unsigned long nr_slabs;
  1835. unsigned long nr_objs;
  1836. unsigned long nr_free;
  1837. nr_free = count_partial(n, count_free);
  1838. nr_slabs = node_nr_slabs(n);
  1839. nr_objs = node_nr_objs(n);
  1840. pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1841. node, nr_slabs, nr_objs, nr_free);
  1842. }
  1843. #endif
  1844. }
  1845. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1846. int node, struct kmem_cache_cpu **pc)
  1847. {
  1848. void *freelist;
  1849. struct kmem_cache_cpu *c = *pc;
  1850. struct page *page;
  1851. freelist = get_partial(s, flags, node, c);
  1852. if (freelist)
  1853. return freelist;
  1854. page = new_slab(s, flags, node);
  1855. if (page) {
  1856. c = raw_cpu_ptr(s->cpu_slab);
  1857. if (c->page)
  1858. flush_slab(s, c);
  1859. /*
  1860. * No other reference to the page yet so we can
  1861. * muck around with it freely without cmpxchg
  1862. */
  1863. freelist = page->freelist;
  1864. page->freelist = NULL;
  1865. stat(s, ALLOC_SLAB);
  1866. c->page = page;
  1867. *pc = c;
  1868. } else
  1869. freelist = NULL;
  1870. return freelist;
  1871. }
  1872. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1873. {
  1874. if (unlikely(PageSlabPfmemalloc(page)))
  1875. return gfp_pfmemalloc_allowed(gfpflags);
  1876. return true;
  1877. }
  1878. /*
  1879. * Check the page->freelist of a page and either transfer the freelist to the
  1880. * per cpu freelist or deactivate the page.
  1881. *
  1882. * The page is still frozen if the return value is not NULL.
  1883. *
  1884. * If this function returns NULL then the page has been unfrozen.
  1885. *
  1886. * This function must be called with interrupt disabled.
  1887. */
  1888. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1889. {
  1890. struct page new;
  1891. unsigned long counters;
  1892. void *freelist;
  1893. do {
  1894. freelist = page->freelist;
  1895. counters = page->counters;
  1896. new.counters = counters;
  1897. VM_BUG_ON(!new.frozen);
  1898. new.inuse = page->objects;
  1899. new.frozen = freelist != NULL;
  1900. } while (!__cmpxchg_double_slab(s, page,
  1901. freelist, counters,
  1902. NULL, new.counters,
  1903. "get_freelist"));
  1904. return freelist;
  1905. }
  1906. /*
  1907. * Slow path. The lockless freelist is empty or we need to perform
  1908. * debugging duties.
  1909. *
  1910. * Processing is still very fast if new objects have been freed to the
  1911. * regular freelist. In that case we simply take over the regular freelist
  1912. * as the lockless freelist and zap the regular freelist.
  1913. *
  1914. * If that is not working then we fall back to the partial lists. We take the
  1915. * first element of the freelist as the object to allocate now and move the
  1916. * rest of the freelist to the lockless freelist.
  1917. *
  1918. * And if we were unable to get a new slab from the partial slab lists then
  1919. * we need to allocate a new slab. This is the slowest path since it involves
  1920. * a call to the page allocator and the setup of a new slab.
  1921. */
  1922. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1923. unsigned long addr, struct kmem_cache_cpu *c)
  1924. {
  1925. void *freelist;
  1926. struct page *page;
  1927. unsigned long flags;
  1928. local_irq_save(flags);
  1929. #ifdef CONFIG_PREEMPT
  1930. /*
  1931. * We may have been preempted and rescheduled on a different
  1932. * cpu before disabling interrupts. Need to reload cpu area
  1933. * pointer.
  1934. */
  1935. c = this_cpu_ptr(s->cpu_slab);
  1936. #endif
  1937. page = c->page;
  1938. if (!page)
  1939. goto new_slab;
  1940. redo:
  1941. if (unlikely(!node_match(page, node))) {
  1942. int searchnode = node;
  1943. if (node != NUMA_NO_NODE && !node_present_pages(node))
  1944. searchnode = node_to_mem_node(node);
  1945. if (unlikely(!node_match(page, searchnode))) {
  1946. stat(s, ALLOC_NODE_MISMATCH);
  1947. deactivate_slab(s, page, c->freelist);
  1948. c->page = NULL;
  1949. c->freelist = NULL;
  1950. goto new_slab;
  1951. }
  1952. }
  1953. /*
  1954. * By rights, we should be searching for a slab page that was
  1955. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1956. * information when the page leaves the per-cpu allocator
  1957. */
  1958. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1959. deactivate_slab(s, page, c->freelist);
  1960. c->page = NULL;
  1961. c->freelist = NULL;
  1962. goto new_slab;
  1963. }
  1964. /* must check again c->freelist in case of cpu migration or IRQ */
  1965. freelist = c->freelist;
  1966. if (freelist)
  1967. goto load_freelist;
  1968. freelist = get_freelist(s, page);
  1969. if (!freelist) {
  1970. c->page = NULL;
  1971. stat(s, DEACTIVATE_BYPASS);
  1972. goto new_slab;
  1973. }
  1974. stat(s, ALLOC_REFILL);
  1975. load_freelist:
  1976. /*
  1977. * freelist is pointing to the list of objects to be used.
  1978. * page is pointing to the page from which the objects are obtained.
  1979. * That page must be frozen for per cpu allocations to work.
  1980. */
  1981. VM_BUG_ON(!c->page->frozen);
  1982. c->freelist = get_freepointer(s, freelist);
  1983. c->tid = next_tid(c->tid);
  1984. local_irq_restore(flags);
  1985. return freelist;
  1986. new_slab:
  1987. if (c->partial) {
  1988. page = c->page = c->partial;
  1989. c->partial = page->next;
  1990. stat(s, CPU_PARTIAL_ALLOC);
  1991. c->freelist = NULL;
  1992. goto redo;
  1993. }
  1994. freelist = new_slab_objects(s, gfpflags, node, &c);
  1995. if (unlikely(!freelist)) {
  1996. slab_out_of_memory(s, gfpflags, node);
  1997. local_irq_restore(flags);
  1998. return NULL;
  1999. }
  2000. page = c->page;
  2001. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  2002. goto load_freelist;
  2003. /* Only entered in the debug case */
  2004. if (kmem_cache_debug(s) &&
  2005. !alloc_debug_processing(s, page, freelist, addr))
  2006. goto new_slab; /* Slab failed checks. Next slab needed */
  2007. deactivate_slab(s, page, get_freepointer(s, freelist));
  2008. c->page = NULL;
  2009. c->freelist = NULL;
  2010. local_irq_restore(flags);
  2011. return freelist;
  2012. }
  2013. /*
  2014. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  2015. * have the fastpath folded into their functions. So no function call
  2016. * overhead for requests that can be satisfied on the fastpath.
  2017. *
  2018. * The fastpath works by first checking if the lockless freelist can be used.
  2019. * If not then __slab_alloc is called for slow processing.
  2020. *
  2021. * Otherwise we can simply pick the next object from the lockless free list.
  2022. */
  2023. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  2024. gfp_t gfpflags, int node, unsigned long addr)
  2025. {
  2026. void **object;
  2027. struct kmem_cache_cpu *c;
  2028. struct page *page;
  2029. unsigned long tid;
  2030. s = slab_pre_alloc_hook(s, gfpflags);
  2031. if (!s)
  2032. return NULL;
  2033. redo:
  2034. /*
  2035. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  2036. * enabled. We may switch back and forth between cpus while
  2037. * reading from one cpu area. That does not matter as long
  2038. * as we end up on the original cpu again when doing the cmpxchg.
  2039. *
  2040. * Preemption is disabled for the retrieval of the tid because that
  2041. * must occur from the current processor. We cannot allow rescheduling
  2042. * on a different processor between the determination of the pointer
  2043. * and the retrieval of the tid.
  2044. */
  2045. preempt_disable();
  2046. c = this_cpu_ptr(s->cpu_slab);
  2047. /*
  2048. * The transaction ids are globally unique per cpu and per operation on
  2049. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  2050. * occurs on the right processor and that there was no operation on the
  2051. * linked list in between.
  2052. */
  2053. tid = c->tid;
  2054. preempt_enable();
  2055. object = c->freelist;
  2056. page = c->page;
  2057. if (unlikely(!object || !node_match(page, node))) {
  2058. object = __slab_alloc(s, gfpflags, node, addr, c);
  2059. stat(s, ALLOC_SLOWPATH);
  2060. } else {
  2061. void *next_object = get_freepointer_safe(s, object);
  2062. /*
  2063. * The cmpxchg will only match if there was no additional
  2064. * operation and if we are on the right processor.
  2065. *
  2066. * The cmpxchg does the following atomically (without lock
  2067. * semantics!)
  2068. * 1. Relocate first pointer to the current per cpu area.
  2069. * 2. Verify that tid and freelist have not been changed
  2070. * 3. If they were not changed replace tid and freelist
  2071. *
  2072. * Since this is without lock semantics the protection is only
  2073. * against code executing on this cpu *not* from access by
  2074. * other cpus.
  2075. */
  2076. if (unlikely(!this_cpu_cmpxchg_double(
  2077. s->cpu_slab->freelist, s->cpu_slab->tid,
  2078. object, tid,
  2079. next_object, next_tid(tid)))) {
  2080. note_cmpxchg_failure("slab_alloc", s, tid);
  2081. goto redo;
  2082. }
  2083. prefetch_freepointer(s, next_object);
  2084. stat(s, ALLOC_FASTPATH);
  2085. }
  2086. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2087. memset(object, 0, s->object_size);
  2088. slab_post_alloc_hook(s, gfpflags, object);
  2089. return object;
  2090. }
  2091. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2092. gfp_t gfpflags, unsigned long addr)
  2093. {
  2094. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2095. }
  2096. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2097. {
  2098. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2099. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
  2100. s->size, gfpflags);
  2101. return ret;
  2102. }
  2103. EXPORT_SYMBOL(kmem_cache_alloc);
  2104. #ifdef CONFIG_TRACING
  2105. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2106. {
  2107. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2108. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2109. return ret;
  2110. }
  2111. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2112. #endif
  2113. #ifdef CONFIG_NUMA
  2114. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2115. {
  2116. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2117. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2118. s->object_size, s->size, gfpflags, node);
  2119. return ret;
  2120. }
  2121. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2122. #ifdef CONFIG_TRACING
  2123. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2124. gfp_t gfpflags,
  2125. int node, size_t size)
  2126. {
  2127. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2128. trace_kmalloc_node(_RET_IP_, ret,
  2129. size, s->size, gfpflags, node);
  2130. return ret;
  2131. }
  2132. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2133. #endif
  2134. #endif
  2135. /*
  2136. * Slow patch handling. This may still be called frequently since objects
  2137. * have a longer lifetime than the cpu slabs in most processing loads.
  2138. *
  2139. * So we still attempt to reduce cache line usage. Just take the slab
  2140. * lock and free the item. If there is no additional partial page
  2141. * handling required then we can return immediately.
  2142. */
  2143. static void __slab_free(struct kmem_cache *s, struct page *page,
  2144. void *x, unsigned long addr)
  2145. {
  2146. void *prior;
  2147. void **object = (void *)x;
  2148. int was_frozen;
  2149. struct page new;
  2150. unsigned long counters;
  2151. struct kmem_cache_node *n = NULL;
  2152. unsigned long uninitialized_var(flags);
  2153. stat(s, FREE_SLOWPATH);
  2154. if (kmem_cache_debug(s) &&
  2155. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2156. return;
  2157. do {
  2158. if (unlikely(n)) {
  2159. spin_unlock_irqrestore(&n->list_lock, flags);
  2160. n = NULL;
  2161. }
  2162. prior = page->freelist;
  2163. counters = page->counters;
  2164. set_freepointer(s, object, prior);
  2165. new.counters = counters;
  2166. was_frozen = new.frozen;
  2167. new.inuse--;
  2168. if ((!new.inuse || !prior) && !was_frozen) {
  2169. if (kmem_cache_has_cpu_partial(s) && !prior) {
  2170. /*
  2171. * Slab was on no list before and will be
  2172. * partially empty
  2173. * We can defer the list move and instead
  2174. * freeze it.
  2175. */
  2176. new.frozen = 1;
  2177. } else { /* Needs to be taken off a list */
  2178. n = get_node(s, page_to_nid(page));
  2179. /*
  2180. * Speculatively acquire the list_lock.
  2181. * If the cmpxchg does not succeed then we may
  2182. * drop the list_lock without any processing.
  2183. *
  2184. * Otherwise the list_lock will synchronize with
  2185. * other processors updating the list of slabs.
  2186. */
  2187. spin_lock_irqsave(&n->list_lock, flags);
  2188. }
  2189. }
  2190. } while (!cmpxchg_double_slab(s, page,
  2191. prior, counters,
  2192. object, new.counters,
  2193. "__slab_free"));
  2194. if (likely(!n)) {
  2195. /*
  2196. * If we just froze the page then put it onto the
  2197. * per cpu partial list.
  2198. */
  2199. if (new.frozen && !was_frozen) {
  2200. put_cpu_partial(s, page, 1);
  2201. stat(s, CPU_PARTIAL_FREE);
  2202. }
  2203. /*
  2204. * The list lock was not taken therefore no list
  2205. * activity can be necessary.
  2206. */
  2207. if (was_frozen)
  2208. stat(s, FREE_FROZEN);
  2209. return;
  2210. }
  2211. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
  2212. goto slab_empty;
  2213. /*
  2214. * Objects left in the slab. If it was not on the partial list before
  2215. * then add it.
  2216. */
  2217. if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
  2218. if (kmem_cache_debug(s))
  2219. remove_full(s, n, page);
  2220. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2221. stat(s, FREE_ADD_PARTIAL);
  2222. }
  2223. spin_unlock_irqrestore(&n->list_lock, flags);
  2224. return;
  2225. slab_empty:
  2226. if (prior) {
  2227. /*
  2228. * Slab on the partial list.
  2229. */
  2230. remove_partial(n, page);
  2231. stat(s, FREE_REMOVE_PARTIAL);
  2232. } else {
  2233. /* Slab must be on the full list */
  2234. remove_full(s, n, page);
  2235. }
  2236. spin_unlock_irqrestore(&n->list_lock, flags);
  2237. stat(s, FREE_SLAB);
  2238. discard_slab(s, page);
  2239. }
  2240. /*
  2241. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2242. * can perform fastpath freeing without additional function calls.
  2243. *
  2244. * The fastpath is only possible if we are freeing to the current cpu slab
  2245. * of this processor. This typically the case if we have just allocated
  2246. * the item before.
  2247. *
  2248. * If fastpath is not possible then fall back to __slab_free where we deal
  2249. * with all sorts of special processing.
  2250. */
  2251. static __always_inline void slab_free(struct kmem_cache *s,
  2252. struct page *page, void *x, unsigned long addr)
  2253. {
  2254. void **object = (void *)x;
  2255. struct kmem_cache_cpu *c;
  2256. unsigned long tid;
  2257. slab_free_hook(s, x);
  2258. redo:
  2259. /*
  2260. * Determine the currently cpus per cpu slab.
  2261. * The cpu may change afterward. However that does not matter since
  2262. * data is retrieved via this pointer. If we are on the same cpu
  2263. * during the cmpxchg then the free will succedd.
  2264. */
  2265. preempt_disable();
  2266. c = this_cpu_ptr(s->cpu_slab);
  2267. tid = c->tid;
  2268. preempt_enable();
  2269. if (likely(page == c->page)) {
  2270. set_freepointer(s, object, c->freelist);
  2271. if (unlikely(!this_cpu_cmpxchg_double(
  2272. s->cpu_slab->freelist, s->cpu_slab->tid,
  2273. c->freelist, tid,
  2274. object, next_tid(tid)))) {
  2275. note_cmpxchg_failure("slab_free", s, tid);
  2276. goto redo;
  2277. }
  2278. stat(s, FREE_FASTPATH);
  2279. } else
  2280. __slab_free(s, page, x, addr);
  2281. }
  2282. void kmem_cache_free(struct kmem_cache *s, void *x)
  2283. {
  2284. s = cache_from_obj(s, x);
  2285. if (!s)
  2286. return;
  2287. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2288. trace_kmem_cache_free(_RET_IP_, x);
  2289. }
  2290. EXPORT_SYMBOL(kmem_cache_free);
  2291. /*
  2292. * Object placement in a slab is made very easy because we always start at
  2293. * offset 0. If we tune the size of the object to the alignment then we can
  2294. * get the required alignment by putting one properly sized object after
  2295. * another.
  2296. *
  2297. * Notice that the allocation order determines the sizes of the per cpu
  2298. * caches. Each processor has always one slab available for allocations.
  2299. * Increasing the allocation order reduces the number of times that slabs
  2300. * must be moved on and off the partial lists and is therefore a factor in
  2301. * locking overhead.
  2302. */
  2303. /*
  2304. * Mininum / Maximum order of slab pages. This influences locking overhead
  2305. * and slab fragmentation. A higher order reduces the number of partial slabs
  2306. * and increases the number of allocations possible without having to
  2307. * take the list_lock.
  2308. */
  2309. static int slub_min_order;
  2310. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2311. static int slub_min_objects;
  2312. /*
  2313. * Calculate the order of allocation given an slab object size.
  2314. *
  2315. * The order of allocation has significant impact on performance and other
  2316. * system components. Generally order 0 allocations should be preferred since
  2317. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2318. * be problematic to put into order 0 slabs because there may be too much
  2319. * unused space left. We go to a higher order if more than 1/16th of the slab
  2320. * would be wasted.
  2321. *
  2322. * In order to reach satisfactory performance we must ensure that a minimum
  2323. * number of objects is in one slab. Otherwise we may generate too much
  2324. * activity on the partial lists which requires taking the list_lock. This is
  2325. * less a concern for large slabs though which are rarely used.
  2326. *
  2327. * slub_max_order specifies the order where we begin to stop considering the
  2328. * number of objects in a slab as critical. If we reach slub_max_order then
  2329. * we try to keep the page order as low as possible. So we accept more waste
  2330. * of space in favor of a small page order.
  2331. *
  2332. * Higher order allocations also allow the placement of more objects in a
  2333. * slab and thereby reduce object handling overhead. If the user has
  2334. * requested a higher mininum order then we start with that one instead of
  2335. * the smallest order which will fit the object.
  2336. */
  2337. static inline int slab_order(int size, int min_objects,
  2338. int max_order, int fract_leftover, int reserved)
  2339. {
  2340. int order;
  2341. int rem;
  2342. int min_order = slub_min_order;
  2343. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2344. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2345. for (order = max(min_order,
  2346. fls(min_objects * size - 1) - PAGE_SHIFT);
  2347. order <= max_order; order++) {
  2348. unsigned long slab_size = PAGE_SIZE << order;
  2349. if (slab_size < min_objects * size + reserved)
  2350. continue;
  2351. rem = (slab_size - reserved) % size;
  2352. if (rem <= slab_size / fract_leftover)
  2353. break;
  2354. }
  2355. return order;
  2356. }
  2357. static inline int calculate_order(int size, int reserved)
  2358. {
  2359. int order;
  2360. int min_objects;
  2361. int fraction;
  2362. int max_objects;
  2363. /*
  2364. * Attempt to find best configuration for a slab. This
  2365. * works by first attempting to generate a layout with
  2366. * the best configuration and backing off gradually.
  2367. *
  2368. * First we reduce the acceptable waste in a slab. Then
  2369. * we reduce the minimum objects required in a slab.
  2370. */
  2371. min_objects = slub_min_objects;
  2372. if (!min_objects)
  2373. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2374. max_objects = order_objects(slub_max_order, size, reserved);
  2375. min_objects = min(min_objects, max_objects);
  2376. while (min_objects > 1) {
  2377. fraction = 16;
  2378. while (fraction >= 4) {
  2379. order = slab_order(size, min_objects,
  2380. slub_max_order, fraction, reserved);
  2381. if (order <= slub_max_order)
  2382. return order;
  2383. fraction /= 2;
  2384. }
  2385. min_objects--;
  2386. }
  2387. /*
  2388. * We were unable to place multiple objects in a slab. Now
  2389. * lets see if we can place a single object there.
  2390. */
  2391. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2392. if (order <= slub_max_order)
  2393. return order;
  2394. /*
  2395. * Doh this slab cannot be placed using slub_max_order.
  2396. */
  2397. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2398. if (order < MAX_ORDER)
  2399. return order;
  2400. return -ENOSYS;
  2401. }
  2402. static void
  2403. init_kmem_cache_node(struct kmem_cache_node *n)
  2404. {
  2405. n->nr_partial = 0;
  2406. spin_lock_init(&n->list_lock);
  2407. INIT_LIST_HEAD(&n->partial);
  2408. #ifdef CONFIG_SLUB_DEBUG
  2409. atomic_long_set(&n->nr_slabs, 0);
  2410. atomic_long_set(&n->total_objects, 0);
  2411. INIT_LIST_HEAD(&n->full);
  2412. #endif
  2413. }
  2414. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2415. {
  2416. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2417. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2418. /*
  2419. * Must align to double word boundary for the double cmpxchg
  2420. * instructions to work; see __pcpu_double_call_return_bool().
  2421. */
  2422. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2423. 2 * sizeof(void *));
  2424. if (!s->cpu_slab)
  2425. return 0;
  2426. init_kmem_cache_cpus(s);
  2427. return 1;
  2428. }
  2429. static struct kmem_cache *kmem_cache_node;
  2430. /*
  2431. * No kmalloc_node yet so do it by hand. We know that this is the first
  2432. * slab on the node for this slabcache. There are no concurrent accesses
  2433. * possible.
  2434. *
  2435. * Note that this function only works on the kmem_cache_node
  2436. * when allocating for the kmem_cache_node. This is used for bootstrapping
  2437. * memory on a fresh node that has no slab structures yet.
  2438. */
  2439. static void early_kmem_cache_node_alloc(int node)
  2440. {
  2441. struct page *page;
  2442. struct kmem_cache_node *n;
  2443. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2444. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2445. BUG_ON(!page);
  2446. if (page_to_nid(page) != node) {
  2447. pr_err("SLUB: Unable to allocate memory from node %d\n", node);
  2448. pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
  2449. }
  2450. n = page->freelist;
  2451. BUG_ON(!n);
  2452. page->freelist = get_freepointer(kmem_cache_node, n);
  2453. page->inuse = 1;
  2454. page->frozen = 0;
  2455. kmem_cache_node->node[node] = n;
  2456. #ifdef CONFIG_SLUB_DEBUG
  2457. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2458. init_tracking(kmem_cache_node, n);
  2459. #endif
  2460. init_kmem_cache_node(n);
  2461. inc_slabs_node(kmem_cache_node, node, page->objects);
  2462. /*
  2463. * No locks need to be taken here as it has just been
  2464. * initialized and there is no concurrent access.
  2465. */
  2466. __add_partial(n, page, DEACTIVATE_TO_HEAD);
  2467. }
  2468. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2469. {
  2470. int node;
  2471. struct kmem_cache_node *n;
  2472. for_each_kmem_cache_node(s, node, n) {
  2473. kmem_cache_free(kmem_cache_node, n);
  2474. s->node[node] = NULL;
  2475. }
  2476. }
  2477. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2478. {
  2479. int node;
  2480. for_each_node_state(node, N_NORMAL_MEMORY) {
  2481. struct kmem_cache_node *n;
  2482. if (slab_state == DOWN) {
  2483. early_kmem_cache_node_alloc(node);
  2484. continue;
  2485. }
  2486. n = kmem_cache_alloc_node(kmem_cache_node,
  2487. GFP_KERNEL, node);
  2488. if (!n) {
  2489. free_kmem_cache_nodes(s);
  2490. return 0;
  2491. }
  2492. s->node[node] = n;
  2493. init_kmem_cache_node(n);
  2494. }
  2495. return 1;
  2496. }
  2497. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2498. {
  2499. if (min < MIN_PARTIAL)
  2500. min = MIN_PARTIAL;
  2501. else if (min > MAX_PARTIAL)
  2502. min = MAX_PARTIAL;
  2503. s->min_partial = min;
  2504. }
  2505. /*
  2506. * calculate_sizes() determines the order and the distribution of data within
  2507. * a slab object.
  2508. */
  2509. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2510. {
  2511. unsigned long flags = s->flags;
  2512. unsigned long size = s->object_size;
  2513. int order;
  2514. /*
  2515. * Round up object size to the next word boundary. We can only
  2516. * place the free pointer at word boundaries and this determines
  2517. * the possible location of the free pointer.
  2518. */
  2519. size = ALIGN(size, sizeof(void *));
  2520. #ifdef CONFIG_SLUB_DEBUG
  2521. /*
  2522. * Determine if we can poison the object itself. If the user of
  2523. * the slab may touch the object after free or before allocation
  2524. * then we should never poison the object itself.
  2525. */
  2526. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2527. !s->ctor)
  2528. s->flags |= __OBJECT_POISON;
  2529. else
  2530. s->flags &= ~__OBJECT_POISON;
  2531. /*
  2532. * If we are Redzoning then check if there is some space between the
  2533. * end of the object and the free pointer. If not then add an
  2534. * additional word to have some bytes to store Redzone information.
  2535. */
  2536. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2537. size += sizeof(void *);
  2538. #endif
  2539. /*
  2540. * With that we have determined the number of bytes in actual use
  2541. * by the object. This is the potential offset to the free pointer.
  2542. */
  2543. s->inuse = size;
  2544. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2545. s->ctor)) {
  2546. /*
  2547. * Relocate free pointer after the object if it is not
  2548. * permitted to overwrite the first word of the object on
  2549. * kmem_cache_free.
  2550. *
  2551. * This is the case if we do RCU, have a constructor or
  2552. * destructor or are poisoning the objects.
  2553. */
  2554. s->offset = size;
  2555. size += sizeof(void *);
  2556. }
  2557. #ifdef CONFIG_SLUB_DEBUG
  2558. if (flags & SLAB_STORE_USER)
  2559. /*
  2560. * Need to store information about allocs and frees after
  2561. * the object.
  2562. */
  2563. size += 2 * sizeof(struct track);
  2564. if (flags & SLAB_RED_ZONE)
  2565. /*
  2566. * Add some empty padding so that we can catch
  2567. * overwrites from earlier objects rather than let
  2568. * tracking information or the free pointer be
  2569. * corrupted if a user writes before the start
  2570. * of the object.
  2571. */
  2572. size += sizeof(void *);
  2573. #endif
  2574. /*
  2575. * SLUB stores one object immediately after another beginning from
  2576. * offset 0. In order to align the objects we have to simply size
  2577. * each object to conform to the alignment.
  2578. */
  2579. size = ALIGN(size, s->align);
  2580. s->size = size;
  2581. if (forced_order >= 0)
  2582. order = forced_order;
  2583. else
  2584. order = calculate_order(size, s->reserved);
  2585. if (order < 0)
  2586. return 0;
  2587. s->allocflags = 0;
  2588. if (order)
  2589. s->allocflags |= __GFP_COMP;
  2590. if (s->flags & SLAB_CACHE_DMA)
  2591. s->allocflags |= GFP_DMA;
  2592. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2593. s->allocflags |= __GFP_RECLAIMABLE;
  2594. /*
  2595. * Determine the number of objects per slab
  2596. */
  2597. s->oo = oo_make(order, size, s->reserved);
  2598. s->min = oo_make(get_order(size), size, s->reserved);
  2599. if (oo_objects(s->oo) > oo_objects(s->max))
  2600. s->max = s->oo;
  2601. return !!oo_objects(s->oo);
  2602. }
  2603. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2604. {
  2605. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2606. s->reserved = 0;
  2607. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2608. s->reserved = sizeof(struct rcu_head);
  2609. if (!calculate_sizes(s, -1))
  2610. goto error;
  2611. if (disable_higher_order_debug) {
  2612. /*
  2613. * Disable debugging flags that store metadata if the min slab
  2614. * order increased.
  2615. */
  2616. if (get_order(s->size) > get_order(s->object_size)) {
  2617. s->flags &= ~DEBUG_METADATA_FLAGS;
  2618. s->offset = 0;
  2619. if (!calculate_sizes(s, -1))
  2620. goto error;
  2621. }
  2622. }
  2623. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2624. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2625. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2626. /* Enable fast mode */
  2627. s->flags |= __CMPXCHG_DOUBLE;
  2628. #endif
  2629. /*
  2630. * The larger the object size is, the more pages we want on the partial
  2631. * list to avoid pounding the page allocator excessively.
  2632. */
  2633. set_min_partial(s, ilog2(s->size) / 2);
  2634. /*
  2635. * cpu_partial determined the maximum number of objects kept in the
  2636. * per cpu partial lists of a processor.
  2637. *
  2638. * Per cpu partial lists mainly contain slabs that just have one
  2639. * object freed. If they are used for allocation then they can be
  2640. * filled up again with minimal effort. The slab will never hit the
  2641. * per node partial lists and therefore no locking will be required.
  2642. *
  2643. * This setting also determines
  2644. *
  2645. * A) The number of objects from per cpu partial slabs dumped to the
  2646. * per node list when we reach the limit.
  2647. * B) The number of objects in cpu partial slabs to extract from the
  2648. * per node list when we run out of per cpu objects. We only fetch
  2649. * 50% to keep some capacity around for frees.
  2650. */
  2651. if (!kmem_cache_has_cpu_partial(s))
  2652. s->cpu_partial = 0;
  2653. else if (s->size >= PAGE_SIZE)
  2654. s->cpu_partial = 2;
  2655. else if (s->size >= 1024)
  2656. s->cpu_partial = 6;
  2657. else if (s->size >= 256)
  2658. s->cpu_partial = 13;
  2659. else
  2660. s->cpu_partial = 30;
  2661. #ifdef CONFIG_NUMA
  2662. s->remote_node_defrag_ratio = 1000;
  2663. #endif
  2664. if (!init_kmem_cache_nodes(s))
  2665. goto error;
  2666. if (alloc_kmem_cache_cpus(s))
  2667. return 0;
  2668. free_kmem_cache_nodes(s);
  2669. error:
  2670. if (flags & SLAB_PANIC)
  2671. panic("Cannot create slab %s size=%lu realsize=%u "
  2672. "order=%u offset=%u flags=%lx\n",
  2673. s->name, (unsigned long)s->size, s->size,
  2674. oo_order(s->oo), s->offset, flags);
  2675. return -EINVAL;
  2676. }
  2677. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2678. const char *text)
  2679. {
  2680. #ifdef CONFIG_SLUB_DEBUG
  2681. void *addr = page_address(page);
  2682. void *p;
  2683. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2684. sizeof(long), GFP_ATOMIC);
  2685. if (!map)
  2686. return;
  2687. slab_err(s, page, text, s->name);
  2688. slab_lock(page);
  2689. get_map(s, page, map);
  2690. for_each_object(p, s, addr, page->objects) {
  2691. if (!test_bit(slab_index(p, s, addr), map)) {
  2692. pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
  2693. print_tracking(s, p);
  2694. }
  2695. }
  2696. slab_unlock(page);
  2697. kfree(map);
  2698. #endif
  2699. }
  2700. /*
  2701. * Attempt to free all partial slabs on a node.
  2702. * This is called from kmem_cache_close(). We must be the last thread
  2703. * using the cache and therefore we do not need to lock anymore.
  2704. */
  2705. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2706. {
  2707. struct page *page, *h;
  2708. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2709. if (!page->inuse) {
  2710. __remove_partial(n, page);
  2711. discard_slab(s, page);
  2712. } else {
  2713. list_slab_objects(s, page,
  2714. "Objects remaining in %s on kmem_cache_close()");
  2715. }
  2716. }
  2717. }
  2718. /*
  2719. * Release all resources used by a slab cache.
  2720. */
  2721. static inline int kmem_cache_close(struct kmem_cache *s)
  2722. {
  2723. int node;
  2724. struct kmem_cache_node *n;
  2725. flush_all(s);
  2726. /* Attempt to free all objects */
  2727. for_each_kmem_cache_node(s, node, n) {
  2728. free_partial(s, n);
  2729. if (n->nr_partial || slabs_node(s, node))
  2730. return 1;
  2731. }
  2732. free_percpu(s->cpu_slab);
  2733. free_kmem_cache_nodes(s);
  2734. return 0;
  2735. }
  2736. int __kmem_cache_shutdown(struct kmem_cache *s)
  2737. {
  2738. return kmem_cache_close(s);
  2739. }
  2740. /********************************************************************
  2741. * Kmalloc subsystem
  2742. *******************************************************************/
  2743. static int __init setup_slub_min_order(char *str)
  2744. {
  2745. get_option(&str, &slub_min_order);
  2746. return 1;
  2747. }
  2748. __setup("slub_min_order=", setup_slub_min_order);
  2749. static int __init setup_slub_max_order(char *str)
  2750. {
  2751. get_option(&str, &slub_max_order);
  2752. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2753. return 1;
  2754. }
  2755. __setup("slub_max_order=", setup_slub_max_order);
  2756. static int __init setup_slub_min_objects(char *str)
  2757. {
  2758. get_option(&str, &slub_min_objects);
  2759. return 1;
  2760. }
  2761. __setup("slub_min_objects=", setup_slub_min_objects);
  2762. void *__kmalloc(size_t size, gfp_t flags)
  2763. {
  2764. struct kmem_cache *s;
  2765. void *ret;
  2766. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2767. return kmalloc_large(size, flags);
  2768. s = kmalloc_slab(size, flags);
  2769. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2770. return s;
  2771. ret = slab_alloc(s, flags, _RET_IP_);
  2772. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2773. return ret;
  2774. }
  2775. EXPORT_SYMBOL(__kmalloc);
  2776. #ifdef CONFIG_NUMA
  2777. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2778. {
  2779. struct page *page;
  2780. void *ptr = NULL;
  2781. flags |= __GFP_COMP | __GFP_NOTRACK;
  2782. page = alloc_kmem_pages_node(node, flags, get_order(size));
  2783. if (page)
  2784. ptr = page_address(page);
  2785. kmalloc_large_node_hook(ptr, size, flags);
  2786. return ptr;
  2787. }
  2788. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2789. {
  2790. struct kmem_cache *s;
  2791. void *ret;
  2792. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2793. ret = kmalloc_large_node(size, flags, node);
  2794. trace_kmalloc_node(_RET_IP_, ret,
  2795. size, PAGE_SIZE << get_order(size),
  2796. flags, node);
  2797. return ret;
  2798. }
  2799. s = kmalloc_slab(size, flags);
  2800. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2801. return s;
  2802. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2803. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2804. return ret;
  2805. }
  2806. EXPORT_SYMBOL(__kmalloc_node);
  2807. #endif
  2808. size_t ksize(const void *object)
  2809. {
  2810. struct page *page;
  2811. if (unlikely(object == ZERO_SIZE_PTR))
  2812. return 0;
  2813. page = virt_to_head_page(object);
  2814. if (unlikely(!PageSlab(page))) {
  2815. WARN_ON(!PageCompound(page));
  2816. return PAGE_SIZE << compound_order(page);
  2817. }
  2818. return slab_ksize(page->slab_cache);
  2819. }
  2820. EXPORT_SYMBOL(ksize);
  2821. void kfree(const void *x)
  2822. {
  2823. struct page *page;
  2824. void *object = (void *)x;
  2825. trace_kfree(_RET_IP_, x);
  2826. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2827. return;
  2828. page = virt_to_head_page(x);
  2829. if (unlikely(!PageSlab(page))) {
  2830. BUG_ON(!PageCompound(page));
  2831. kfree_hook(x);
  2832. __free_kmem_pages(page, compound_order(page));
  2833. return;
  2834. }
  2835. slab_free(page->slab_cache, page, object, _RET_IP_);
  2836. }
  2837. EXPORT_SYMBOL(kfree);
  2838. /*
  2839. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2840. * the remaining slabs by the number of items in use. The slabs with the
  2841. * most items in use come first. New allocations will then fill those up
  2842. * and thus they can be removed from the partial lists.
  2843. *
  2844. * The slabs with the least items are placed last. This results in them
  2845. * being allocated from last increasing the chance that the last objects
  2846. * are freed in them.
  2847. */
  2848. int __kmem_cache_shrink(struct kmem_cache *s)
  2849. {
  2850. int node;
  2851. int i;
  2852. struct kmem_cache_node *n;
  2853. struct page *page;
  2854. struct page *t;
  2855. int objects = oo_objects(s->max);
  2856. struct list_head *slabs_by_inuse =
  2857. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2858. unsigned long flags;
  2859. if (!slabs_by_inuse)
  2860. return -ENOMEM;
  2861. flush_all(s);
  2862. for_each_kmem_cache_node(s, node, n) {
  2863. if (!n->nr_partial)
  2864. continue;
  2865. for (i = 0; i < objects; i++)
  2866. INIT_LIST_HEAD(slabs_by_inuse + i);
  2867. spin_lock_irqsave(&n->list_lock, flags);
  2868. /*
  2869. * Build lists indexed by the items in use in each slab.
  2870. *
  2871. * Note that concurrent frees may occur while we hold the
  2872. * list_lock. page->inuse here is the upper limit.
  2873. */
  2874. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2875. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2876. if (!page->inuse)
  2877. n->nr_partial--;
  2878. }
  2879. /*
  2880. * Rebuild the partial list with the slabs filled up most
  2881. * first and the least used slabs at the end.
  2882. */
  2883. for (i = objects - 1; i > 0; i--)
  2884. list_splice(slabs_by_inuse + i, n->partial.prev);
  2885. spin_unlock_irqrestore(&n->list_lock, flags);
  2886. /* Release empty slabs */
  2887. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2888. discard_slab(s, page);
  2889. }
  2890. kfree(slabs_by_inuse);
  2891. return 0;
  2892. }
  2893. static int slab_mem_going_offline_callback(void *arg)
  2894. {
  2895. struct kmem_cache *s;
  2896. mutex_lock(&slab_mutex);
  2897. list_for_each_entry(s, &slab_caches, list)
  2898. __kmem_cache_shrink(s);
  2899. mutex_unlock(&slab_mutex);
  2900. return 0;
  2901. }
  2902. static void slab_mem_offline_callback(void *arg)
  2903. {
  2904. struct kmem_cache_node *n;
  2905. struct kmem_cache *s;
  2906. struct memory_notify *marg = arg;
  2907. int offline_node;
  2908. offline_node = marg->status_change_nid_normal;
  2909. /*
  2910. * If the node still has available memory. we need kmem_cache_node
  2911. * for it yet.
  2912. */
  2913. if (offline_node < 0)
  2914. return;
  2915. mutex_lock(&slab_mutex);
  2916. list_for_each_entry(s, &slab_caches, list) {
  2917. n = get_node(s, offline_node);
  2918. if (n) {
  2919. /*
  2920. * if n->nr_slabs > 0, slabs still exist on the node
  2921. * that is going down. We were unable to free them,
  2922. * and offline_pages() function shouldn't call this
  2923. * callback. So, we must fail.
  2924. */
  2925. BUG_ON(slabs_node(s, offline_node));
  2926. s->node[offline_node] = NULL;
  2927. kmem_cache_free(kmem_cache_node, n);
  2928. }
  2929. }
  2930. mutex_unlock(&slab_mutex);
  2931. }
  2932. static int slab_mem_going_online_callback(void *arg)
  2933. {
  2934. struct kmem_cache_node *n;
  2935. struct kmem_cache *s;
  2936. struct memory_notify *marg = arg;
  2937. int nid = marg->status_change_nid_normal;
  2938. int ret = 0;
  2939. /*
  2940. * If the node's memory is already available, then kmem_cache_node is
  2941. * already created. Nothing to do.
  2942. */
  2943. if (nid < 0)
  2944. return 0;
  2945. /*
  2946. * We are bringing a node online. No memory is available yet. We must
  2947. * allocate a kmem_cache_node structure in order to bring the node
  2948. * online.
  2949. */
  2950. mutex_lock(&slab_mutex);
  2951. list_for_each_entry(s, &slab_caches, list) {
  2952. /*
  2953. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2954. * since memory is not yet available from the node that
  2955. * is brought up.
  2956. */
  2957. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2958. if (!n) {
  2959. ret = -ENOMEM;
  2960. goto out;
  2961. }
  2962. init_kmem_cache_node(n);
  2963. s->node[nid] = n;
  2964. }
  2965. out:
  2966. mutex_unlock(&slab_mutex);
  2967. return ret;
  2968. }
  2969. static int slab_memory_callback(struct notifier_block *self,
  2970. unsigned long action, void *arg)
  2971. {
  2972. int ret = 0;
  2973. switch (action) {
  2974. case MEM_GOING_ONLINE:
  2975. ret = slab_mem_going_online_callback(arg);
  2976. break;
  2977. case MEM_GOING_OFFLINE:
  2978. ret = slab_mem_going_offline_callback(arg);
  2979. break;
  2980. case MEM_OFFLINE:
  2981. case MEM_CANCEL_ONLINE:
  2982. slab_mem_offline_callback(arg);
  2983. break;
  2984. case MEM_ONLINE:
  2985. case MEM_CANCEL_OFFLINE:
  2986. break;
  2987. }
  2988. if (ret)
  2989. ret = notifier_from_errno(ret);
  2990. else
  2991. ret = NOTIFY_OK;
  2992. return ret;
  2993. }
  2994. static struct notifier_block slab_memory_callback_nb = {
  2995. .notifier_call = slab_memory_callback,
  2996. .priority = SLAB_CALLBACK_PRI,
  2997. };
  2998. /********************************************************************
  2999. * Basic setup of slabs
  3000. *******************************************************************/
  3001. /*
  3002. * Used for early kmem_cache structures that were allocated using
  3003. * the page allocator. Allocate them properly then fix up the pointers
  3004. * that may be pointing to the wrong kmem_cache structure.
  3005. */
  3006. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3007. {
  3008. int node;
  3009. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3010. struct kmem_cache_node *n;
  3011. memcpy(s, static_cache, kmem_cache->object_size);
  3012. /*
  3013. * This runs very early, and only the boot processor is supposed to be
  3014. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3015. * IPIs around.
  3016. */
  3017. __flush_cpu_slab(s, smp_processor_id());
  3018. for_each_kmem_cache_node(s, node, n) {
  3019. struct page *p;
  3020. list_for_each_entry(p, &n->partial, lru)
  3021. p->slab_cache = s;
  3022. #ifdef CONFIG_SLUB_DEBUG
  3023. list_for_each_entry(p, &n->full, lru)
  3024. p->slab_cache = s;
  3025. #endif
  3026. }
  3027. list_add(&s->list, &slab_caches);
  3028. return s;
  3029. }
  3030. void __init kmem_cache_init(void)
  3031. {
  3032. static __initdata struct kmem_cache boot_kmem_cache,
  3033. boot_kmem_cache_node;
  3034. if (debug_guardpage_minorder())
  3035. slub_max_order = 0;
  3036. kmem_cache_node = &boot_kmem_cache_node;
  3037. kmem_cache = &boot_kmem_cache;
  3038. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3039. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3040. register_hotmemory_notifier(&slab_memory_callback_nb);
  3041. /* Able to allocate the per node structures */
  3042. slab_state = PARTIAL;
  3043. create_boot_cache(kmem_cache, "kmem_cache",
  3044. offsetof(struct kmem_cache, node) +
  3045. nr_node_ids * sizeof(struct kmem_cache_node *),
  3046. SLAB_HWCACHE_ALIGN);
  3047. kmem_cache = bootstrap(&boot_kmem_cache);
  3048. /*
  3049. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3050. * kmem_cache_node is separately allocated so no need to
  3051. * update any list pointers.
  3052. */
  3053. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3054. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3055. create_kmalloc_caches(0);
  3056. #ifdef CONFIG_SMP
  3057. register_cpu_notifier(&slab_notifier);
  3058. #endif
  3059. pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
  3060. cache_line_size(),
  3061. slub_min_order, slub_max_order, slub_min_objects,
  3062. nr_cpu_ids, nr_node_ids);
  3063. }
  3064. void __init kmem_cache_init_late(void)
  3065. {
  3066. }
  3067. struct kmem_cache *
  3068. __kmem_cache_alias(const char *name, size_t size, size_t align,
  3069. unsigned long flags, void (*ctor)(void *))
  3070. {
  3071. struct kmem_cache *s;
  3072. s = find_mergeable(size, align, flags, name, ctor);
  3073. if (s) {
  3074. int i;
  3075. struct kmem_cache *c;
  3076. s->refcount++;
  3077. /*
  3078. * Adjust the object sizes so that we clear
  3079. * the complete object on kzalloc.
  3080. */
  3081. s->object_size = max(s->object_size, (int)size);
  3082. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3083. for_each_memcg_cache_index(i) {
  3084. c = cache_from_memcg_idx(s, i);
  3085. if (!c)
  3086. continue;
  3087. c->object_size = s->object_size;
  3088. c->inuse = max_t(int, c->inuse,
  3089. ALIGN(size, sizeof(void *)));
  3090. }
  3091. if (sysfs_slab_alias(s, name)) {
  3092. s->refcount--;
  3093. s = NULL;
  3094. }
  3095. }
  3096. return s;
  3097. }
  3098. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3099. {
  3100. int err;
  3101. err = kmem_cache_open(s, flags);
  3102. if (err)
  3103. return err;
  3104. /* Mutex is not taken during early boot */
  3105. if (slab_state <= UP)
  3106. return 0;
  3107. memcg_propagate_slab_attrs(s);
  3108. err = sysfs_slab_add(s);
  3109. if (err)
  3110. kmem_cache_close(s);
  3111. return err;
  3112. }
  3113. #ifdef CONFIG_SMP
  3114. /*
  3115. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3116. * necessary.
  3117. */
  3118. static int slab_cpuup_callback(struct notifier_block *nfb,
  3119. unsigned long action, void *hcpu)
  3120. {
  3121. long cpu = (long)hcpu;
  3122. struct kmem_cache *s;
  3123. unsigned long flags;
  3124. switch (action) {
  3125. case CPU_UP_CANCELED:
  3126. case CPU_UP_CANCELED_FROZEN:
  3127. case CPU_DEAD:
  3128. case CPU_DEAD_FROZEN:
  3129. mutex_lock(&slab_mutex);
  3130. list_for_each_entry(s, &slab_caches, list) {
  3131. local_irq_save(flags);
  3132. __flush_cpu_slab(s, cpu);
  3133. local_irq_restore(flags);
  3134. }
  3135. mutex_unlock(&slab_mutex);
  3136. break;
  3137. default:
  3138. break;
  3139. }
  3140. return NOTIFY_OK;
  3141. }
  3142. static struct notifier_block slab_notifier = {
  3143. .notifier_call = slab_cpuup_callback
  3144. };
  3145. #endif
  3146. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3147. {
  3148. struct kmem_cache *s;
  3149. void *ret;
  3150. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3151. return kmalloc_large(size, gfpflags);
  3152. s = kmalloc_slab(size, gfpflags);
  3153. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3154. return s;
  3155. ret = slab_alloc(s, gfpflags, caller);
  3156. /* Honor the call site pointer we received. */
  3157. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3158. return ret;
  3159. }
  3160. #ifdef CONFIG_NUMA
  3161. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3162. int node, unsigned long caller)
  3163. {
  3164. struct kmem_cache *s;
  3165. void *ret;
  3166. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3167. ret = kmalloc_large_node(size, gfpflags, node);
  3168. trace_kmalloc_node(caller, ret,
  3169. size, PAGE_SIZE << get_order(size),
  3170. gfpflags, node);
  3171. return ret;
  3172. }
  3173. s = kmalloc_slab(size, gfpflags);
  3174. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3175. return s;
  3176. ret = slab_alloc_node(s, gfpflags, node, caller);
  3177. /* Honor the call site pointer we received. */
  3178. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3179. return ret;
  3180. }
  3181. #endif
  3182. #ifdef CONFIG_SYSFS
  3183. static int count_inuse(struct page *page)
  3184. {
  3185. return page->inuse;
  3186. }
  3187. static int count_total(struct page *page)
  3188. {
  3189. return page->objects;
  3190. }
  3191. #endif
  3192. #ifdef CONFIG_SLUB_DEBUG
  3193. static int validate_slab(struct kmem_cache *s, struct page *page,
  3194. unsigned long *map)
  3195. {
  3196. void *p;
  3197. void *addr = page_address(page);
  3198. if (!check_slab(s, page) ||
  3199. !on_freelist(s, page, NULL))
  3200. return 0;
  3201. /* Now we know that a valid freelist exists */
  3202. bitmap_zero(map, page->objects);
  3203. get_map(s, page, map);
  3204. for_each_object(p, s, addr, page->objects) {
  3205. if (test_bit(slab_index(p, s, addr), map))
  3206. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3207. return 0;
  3208. }
  3209. for_each_object(p, s, addr, page->objects)
  3210. if (!test_bit(slab_index(p, s, addr), map))
  3211. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3212. return 0;
  3213. return 1;
  3214. }
  3215. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3216. unsigned long *map)
  3217. {
  3218. slab_lock(page);
  3219. validate_slab(s, page, map);
  3220. slab_unlock(page);
  3221. }
  3222. static int validate_slab_node(struct kmem_cache *s,
  3223. struct kmem_cache_node *n, unsigned long *map)
  3224. {
  3225. unsigned long count = 0;
  3226. struct page *page;
  3227. unsigned long flags;
  3228. spin_lock_irqsave(&n->list_lock, flags);
  3229. list_for_each_entry(page, &n->partial, lru) {
  3230. validate_slab_slab(s, page, map);
  3231. count++;
  3232. }
  3233. if (count != n->nr_partial)
  3234. pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
  3235. s->name, count, n->nr_partial);
  3236. if (!(s->flags & SLAB_STORE_USER))
  3237. goto out;
  3238. list_for_each_entry(page, &n->full, lru) {
  3239. validate_slab_slab(s, page, map);
  3240. count++;
  3241. }
  3242. if (count != atomic_long_read(&n->nr_slabs))
  3243. pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
  3244. s->name, count, atomic_long_read(&n->nr_slabs));
  3245. out:
  3246. spin_unlock_irqrestore(&n->list_lock, flags);
  3247. return count;
  3248. }
  3249. static long validate_slab_cache(struct kmem_cache *s)
  3250. {
  3251. int node;
  3252. unsigned long count = 0;
  3253. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3254. sizeof(unsigned long), GFP_KERNEL);
  3255. struct kmem_cache_node *n;
  3256. if (!map)
  3257. return -ENOMEM;
  3258. flush_all(s);
  3259. for_each_kmem_cache_node(s, node, n)
  3260. count += validate_slab_node(s, n, map);
  3261. kfree(map);
  3262. return count;
  3263. }
  3264. /*
  3265. * Generate lists of code addresses where slabcache objects are allocated
  3266. * and freed.
  3267. */
  3268. struct location {
  3269. unsigned long count;
  3270. unsigned long addr;
  3271. long long sum_time;
  3272. long min_time;
  3273. long max_time;
  3274. long min_pid;
  3275. long max_pid;
  3276. DECLARE_BITMAP(cpus, NR_CPUS);
  3277. nodemask_t nodes;
  3278. };
  3279. struct loc_track {
  3280. unsigned long max;
  3281. unsigned long count;
  3282. struct location *loc;
  3283. };
  3284. static void free_loc_track(struct loc_track *t)
  3285. {
  3286. if (t->max)
  3287. free_pages((unsigned long)t->loc,
  3288. get_order(sizeof(struct location) * t->max));
  3289. }
  3290. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3291. {
  3292. struct location *l;
  3293. int order;
  3294. order = get_order(sizeof(struct location) * max);
  3295. l = (void *)__get_free_pages(flags, order);
  3296. if (!l)
  3297. return 0;
  3298. if (t->count) {
  3299. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3300. free_loc_track(t);
  3301. }
  3302. t->max = max;
  3303. t->loc = l;
  3304. return 1;
  3305. }
  3306. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3307. const struct track *track)
  3308. {
  3309. long start, end, pos;
  3310. struct location *l;
  3311. unsigned long caddr;
  3312. unsigned long age = jiffies - track->when;
  3313. start = -1;
  3314. end = t->count;
  3315. for ( ; ; ) {
  3316. pos = start + (end - start + 1) / 2;
  3317. /*
  3318. * There is nothing at "end". If we end up there
  3319. * we need to add something to before end.
  3320. */
  3321. if (pos == end)
  3322. break;
  3323. caddr = t->loc[pos].addr;
  3324. if (track->addr == caddr) {
  3325. l = &t->loc[pos];
  3326. l->count++;
  3327. if (track->when) {
  3328. l->sum_time += age;
  3329. if (age < l->min_time)
  3330. l->min_time = age;
  3331. if (age > l->max_time)
  3332. l->max_time = age;
  3333. if (track->pid < l->min_pid)
  3334. l->min_pid = track->pid;
  3335. if (track->pid > l->max_pid)
  3336. l->max_pid = track->pid;
  3337. cpumask_set_cpu(track->cpu,
  3338. to_cpumask(l->cpus));
  3339. }
  3340. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3341. return 1;
  3342. }
  3343. if (track->addr < caddr)
  3344. end = pos;
  3345. else
  3346. start = pos;
  3347. }
  3348. /*
  3349. * Not found. Insert new tracking element.
  3350. */
  3351. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3352. return 0;
  3353. l = t->loc + pos;
  3354. if (pos < t->count)
  3355. memmove(l + 1, l,
  3356. (t->count - pos) * sizeof(struct location));
  3357. t->count++;
  3358. l->count = 1;
  3359. l->addr = track->addr;
  3360. l->sum_time = age;
  3361. l->min_time = age;
  3362. l->max_time = age;
  3363. l->min_pid = track->pid;
  3364. l->max_pid = track->pid;
  3365. cpumask_clear(to_cpumask(l->cpus));
  3366. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3367. nodes_clear(l->nodes);
  3368. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3369. return 1;
  3370. }
  3371. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3372. struct page *page, enum track_item alloc,
  3373. unsigned long *map)
  3374. {
  3375. void *addr = page_address(page);
  3376. void *p;
  3377. bitmap_zero(map, page->objects);
  3378. get_map(s, page, map);
  3379. for_each_object(p, s, addr, page->objects)
  3380. if (!test_bit(slab_index(p, s, addr), map))
  3381. add_location(t, s, get_track(s, p, alloc));
  3382. }
  3383. static int list_locations(struct kmem_cache *s, char *buf,
  3384. enum track_item alloc)
  3385. {
  3386. int len = 0;
  3387. unsigned long i;
  3388. struct loc_track t = { 0, 0, NULL };
  3389. int node;
  3390. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3391. sizeof(unsigned long), GFP_KERNEL);
  3392. struct kmem_cache_node *n;
  3393. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3394. GFP_TEMPORARY)) {
  3395. kfree(map);
  3396. return sprintf(buf, "Out of memory\n");
  3397. }
  3398. /* Push back cpu slabs */
  3399. flush_all(s);
  3400. for_each_kmem_cache_node(s, node, n) {
  3401. unsigned long flags;
  3402. struct page *page;
  3403. if (!atomic_long_read(&n->nr_slabs))
  3404. continue;
  3405. spin_lock_irqsave(&n->list_lock, flags);
  3406. list_for_each_entry(page, &n->partial, lru)
  3407. process_slab(&t, s, page, alloc, map);
  3408. list_for_each_entry(page, &n->full, lru)
  3409. process_slab(&t, s, page, alloc, map);
  3410. spin_unlock_irqrestore(&n->list_lock, flags);
  3411. }
  3412. for (i = 0; i < t.count; i++) {
  3413. struct location *l = &t.loc[i];
  3414. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3415. break;
  3416. len += sprintf(buf + len, "%7ld ", l->count);
  3417. if (l->addr)
  3418. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3419. else
  3420. len += sprintf(buf + len, "<not-available>");
  3421. if (l->sum_time != l->min_time) {
  3422. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3423. l->min_time,
  3424. (long)div_u64(l->sum_time, l->count),
  3425. l->max_time);
  3426. } else
  3427. len += sprintf(buf + len, " age=%ld",
  3428. l->min_time);
  3429. if (l->min_pid != l->max_pid)
  3430. len += sprintf(buf + len, " pid=%ld-%ld",
  3431. l->min_pid, l->max_pid);
  3432. else
  3433. len += sprintf(buf + len, " pid=%ld",
  3434. l->min_pid);
  3435. if (num_online_cpus() > 1 &&
  3436. !cpumask_empty(to_cpumask(l->cpus)) &&
  3437. len < PAGE_SIZE - 60) {
  3438. len += sprintf(buf + len, " cpus=");
  3439. len += cpulist_scnprintf(buf + len,
  3440. PAGE_SIZE - len - 50,
  3441. to_cpumask(l->cpus));
  3442. }
  3443. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3444. len < PAGE_SIZE - 60) {
  3445. len += sprintf(buf + len, " nodes=");
  3446. len += nodelist_scnprintf(buf + len,
  3447. PAGE_SIZE - len - 50,
  3448. l->nodes);
  3449. }
  3450. len += sprintf(buf + len, "\n");
  3451. }
  3452. free_loc_track(&t);
  3453. kfree(map);
  3454. if (!t.count)
  3455. len += sprintf(buf, "No data\n");
  3456. return len;
  3457. }
  3458. #endif
  3459. #ifdef SLUB_RESILIENCY_TEST
  3460. static void __init resiliency_test(void)
  3461. {
  3462. u8 *p;
  3463. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3464. pr_err("SLUB resiliency testing\n");
  3465. pr_err("-----------------------\n");
  3466. pr_err("A. Corruption after allocation\n");
  3467. p = kzalloc(16, GFP_KERNEL);
  3468. p[16] = 0x12;
  3469. pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
  3470. p + 16);
  3471. validate_slab_cache(kmalloc_caches[4]);
  3472. /* Hmmm... The next two are dangerous */
  3473. p = kzalloc(32, GFP_KERNEL);
  3474. p[32 + sizeof(void *)] = 0x34;
  3475. pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
  3476. p);
  3477. pr_err("If allocated object is overwritten then not detectable\n\n");
  3478. validate_slab_cache(kmalloc_caches[5]);
  3479. p = kzalloc(64, GFP_KERNEL);
  3480. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3481. *p = 0x56;
  3482. pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3483. p);
  3484. pr_err("If allocated object is overwritten then not detectable\n\n");
  3485. validate_slab_cache(kmalloc_caches[6]);
  3486. pr_err("\nB. Corruption after free\n");
  3487. p = kzalloc(128, GFP_KERNEL);
  3488. kfree(p);
  3489. *p = 0x78;
  3490. pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3491. validate_slab_cache(kmalloc_caches[7]);
  3492. p = kzalloc(256, GFP_KERNEL);
  3493. kfree(p);
  3494. p[50] = 0x9a;
  3495. pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  3496. validate_slab_cache(kmalloc_caches[8]);
  3497. p = kzalloc(512, GFP_KERNEL);
  3498. kfree(p);
  3499. p[512] = 0xab;
  3500. pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3501. validate_slab_cache(kmalloc_caches[9]);
  3502. }
  3503. #else
  3504. #ifdef CONFIG_SYSFS
  3505. static void resiliency_test(void) {};
  3506. #endif
  3507. #endif
  3508. #ifdef CONFIG_SYSFS
  3509. enum slab_stat_type {
  3510. SL_ALL, /* All slabs */
  3511. SL_PARTIAL, /* Only partially allocated slabs */
  3512. SL_CPU, /* Only slabs used for cpu caches */
  3513. SL_OBJECTS, /* Determine allocated objects not slabs */
  3514. SL_TOTAL /* Determine object capacity not slabs */
  3515. };
  3516. #define SO_ALL (1 << SL_ALL)
  3517. #define SO_PARTIAL (1 << SL_PARTIAL)
  3518. #define SO_CPU (1 << SL_CPU)
  3519. #define SO_OBJECTS (1 << SL_OBJECTS)
  3520. #define SO_TOTAL (1 << SL_TOTAL)
  3521. static ssize_t show_slab_objects(struct kmem_cache *s,
  3522. char *buf, unsigned long flags)
  3523. {
  3524. unsigned long total = 0;
  3525. int node;
  3526. int x;
  3527. unsigned long *nodes;
  3528. nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3529. if (!nodes)
  3530. return -ENOMEM;
  3531. if (flags & SO_CPU) {
  3532. int cpu;
  3533. for_each_possible_cpu(cpu) {
  3534. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
  3535. cpu);
  3536. int node;
  3537. struct page *page;
  3538. page = ACCESS_ONCE(c->page);
  3539. if (!page)
  3540. continue;
  3541. node = page_to_nid(page);
  3542. if (flags & SO_TOTAL)
  3543. x = page->objects;
  3544. else if (flags & SO_OBJECTS)
  3545. x = page->inuse;
  3546. else
  3547. x = 1;
  3548. total += x;
  3549. nodes[node] += x;
  3550. page = ACCESS_ONCE(c->partial);
  3551. if (page) {
  3552. node = page_to_nid(page);
  3553. if (flags & SO_TOTAL)
  3554. WARN_ON_ONCE(1);
  3555. else if (flags & SO_OBJECTS)
  3556. WARN_ON_ONCE(1);
  3557. else
  3558. x = page->pages;
  3559. total += x;
  3560. nodes[node] += x;
  3561. }
  3562. }
  3563. }
  3564. get_online_mems();
  3565. #ifdef CONFIG_SLUB_DEBUG
  3566. if (flags & SO_ALL) {
  3567. struct kmem_cache_node *n;
  3568. for_each_kmem_cache_node(s, node, n) {
  3569. if (flags & SO_TOTAL)
  3570. x = atomic_long_read(&n->total_objects);
  3571. else if (flags & SO_OBJECTS)
  3572. x = atomic_long_read(&n->total_objects) -
  3573. count_partial(n, count_free);
  3574. else
  3575. x = atomic_long_read(&n->nr_slabs);
  3576. total += x;
  3577. nodes[node] += x;
  3578. }
  3579. } else
  3580. #endif
  3581. if (flags & SO_PARTIAL) {
  3582. struct kmem_cache_node *n;
  3583. for_each_kmem_cache_node(s, node, n) {
  3584. if (flags & SO_TOTAL)
  3585. x = count_partial(n, count_total);
  3586. else if (flags & SO_OBJECTS)
  3587. x = count_partial(n, count_inuse);
  3588. else
  3589. x = n->nr_partial;
  3590. total += x;
  3591. nodes[node] += x;
  3592. }
  3593. }
  3594. x = sprintf(buf, "%lu", total);
  3595. #ifdef CONFIG_NUMA
  3596. for (node = 0; node < nr_node_ids; node++)
  3597. if (nodes[node])
  3598. x += sprintf(buf + x, " N%d=%lu",
  3599. node, nodes[node]);
  3600. #endif
  3601. put_online_mems();
  3602. kfree(nodes);
  3603. return x + sprintf(buf + x, "\n");
  3604. }
  3605. #ifdef CONFIG_SLUB_DEBUG
  3606. static int any_slab_objects(struct kmem_cache *s)
  3607. {
  3608. int node;
  3609. struct kmem_cache_node *n;
  3610. for_each_kmem_cache_node(s, node, n)
  3611. if (atomic_long_read(&n->total_objects))
  3612. return 1;
  3613. return 0;
  3614. }
  3615. #endif
  3616. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3617. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3618. struct slab_attribute {
  3619. struct attribute attr;
  3620. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3621. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3622. };
  3623. #define SLAB_ATTR_RO(_name) \
  3624. static struct slab_attribute _name##_attr = \
  3625. __ATTR(_name, 0400, _name##_show, NULL)
  3626. #define SLAB_ATTR(_name) \
  3627. static struct slab_attribute _name##_attr = \
  3628. __ATTR(_name, 0600, _name##_show, _name##_store)
  3629. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3630. {
  3631. return sprintf(buf, "%d\n", s->size);
  3632. }
  3633. SLAB_ATTR_RO(slab_size);
  3634. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3635. {
  3636. return sprintf(buf, "%d\n", s->align);
  3637. }
  3638. SLAB_ATTR_RO(align);
  3639. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3640. {
  3641. return sprintf(buf, "%d\n", s->object_size);
  3642. }
  3643. SLAB_ATTR_RO(object_size);
  3644. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3645. {
  3646. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3647. }
  3648. SLAB_ATTR_RO(objs_per_slab);
  3649. static ssize_t order_store(struct kmem_cache *s,
  3650. const char *buf, size_t length)
  3651. {
  3652. unsigned long order;
  3653. int err;
  3654. err = kstrtoul(buf, 10, &order);
  3655. if (err)
  3656. return err;
  3657. if (order > slub_max_order || order < slub_min_order)
  3658. return -EINVAL;
  3659. calculate_sizes(s, order);
  3660. return length;
  3661. }
  3662. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3663. {
  3664. return sprintf(buf, "%d\n", oo_order(s->oo));
  3665. }
  3666. SLAB_ATTR(order);
  3667. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3668. {
  3669. return sprintf(buf, "%lu\n", s->min_partial);
  3670. }
  3671. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3672. size_t length)
  3673. {
  3674. unsigned long min;
  3675. int err;
  3676. err = kstrtoul(buf, 10, &min);
  3677. if (err)
  3678. return err;
  3679. set_min_partial(s, min);
  3680. return length;
  3681. }
  3682. SLAB_ATTR(min_partial);
  3683. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3684. {
  3685. return sprintf(buf, "%u\n", s->cpu_partial);
  3686. }
  3687. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3688. size_t length)
  3689. {
  3690. unsigned long objects;
  3691. int err;
  3692. err = kstrtoul(buf, 10, &objects);
  3693. if (err)
  3694. return err;
  3695. if (objects && !kmem_cache_has_cpu_partial(s))
  3696. return -EINVAL;
  3697. s->cpu_partial = objects;
  3698. flush_all(s);
  3699. return length;
  3700. }
  3701. SLAB_ATTR(cpu_partial);
  3702. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3703. {
  3704. if (!s->ctor)
  3705. return 0;
  3706. return sprintf(buf, "%pS\n", s->ctor);
  3707. }
  3708. SLAB_ATTR_RO(ctor);
  3709. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3710. {
  3711. return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
  3712. }
  3713. SLAB_ATTR_RO(aliases);
  3714. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3715. {
  3716. return show_slab_objects(s, buf, SO_PARTIAL);
  3717. }
  3718. SLAB_ATTR_RO(partial);
  3719. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3720. {
  3721. return show_slab_objects(s, buf, SO_CPU);
  3722. }
  3723. SLAB_ATTR_RO(cpu_slabs);
  3724. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3725. {
  3726. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3727. }
  3728. SLAB_ATTR_RO(objects);
  3729. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3730. {
  3731. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3732. }
  3733. SLAB_ATTR_RO(objects_partial);
  3734. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3735. {
  3736. int objects = 0;
  3737. int pages = 0;
  3738. int cpu;
  3739. int len;
  3740. for_each_online_cpu(cpu) {
  3741. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3742. if (page) {
  3743. pages += page->pages;
  3744. objects += page->pobjects;
  3745. }
  3746. }
  3747. len = sprintf(buf, "%d(%d)", objects, pages);
  3748. #ifdef CONFIG_SMP
  3749. for_each_online_cpu(cpu) {
  3750. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3751. if (page && len < PAGE_SIZE - 20)
  3752. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3753. page->pobjects, page->pages);
  3754. }
  3755. #endif
  3756. return len + sprintf(buf + len, "\n");
  3757. }
  3758. SLAB_ATTR_RO(slabs_cpu_partial);
  3759. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3760. {
  3761. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3762. }
  3763. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3764. const char *buf, size_t length)
  3765. {
  3766. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3767. if (buf[0] == '1')
  3768. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3769. return length;
  3770. }
  3771. SLAB_ATTR(reclaim_account);
  3772. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3773. {
  3774. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3775. }
  3776. SLAB_ATTR_RO(hwcache_align);
  3777. #ifdef CONFIG_ZONE_DMA
  3778. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3779. {
  3780. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3781. }
  3782. SLAB_ATTR_RO(cache_dma);
  3783. #endif
  3784. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3785. {
  3786. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3787. }
  3788. SLAB_ATTR_RO(destroy_by_rcu);
  3789. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3790. {
  3791. return sprintf(buf, "%d\n", s->reserved);
  3792. }
  3793. SLAB_ATTR_RO(reserved);
  3794. #ifdef CONFIG_SLUB_DEBUG
  3795. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3796. {
  3797. return show_slab_objects(s, buf, SO_ALL);
  3798. }
  3799. SLAB_ATTR_RO(slabs);
  3800. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3801. {
  3802. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3803. }
  3804. SLAB_ATTR_RO(total_objects);
  3805. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3806. {
  3807. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3808. }
  3809. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3810. const char *buf, size_t length)
  3811. {
  3812. s->flags &= ~SLAB_DEBUG_FREE;
  3813. if (buf[0] == '1') {
  3814. s->flags &= ~__CMPXCHG_DOUBLE;
  3815. s->flags |= SLAB_DEBUG_FREE;
  3816. }
  3817. return length;
  3818. }
  3819. SLAB_ATTR(sanity_checks);
  3820. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3821. {
  3822. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3823. }
  3824. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3825. size_t length)
  3826. {
  3827. /*
  3828. * Tracing a merged cache is going to give confusing results
  3829. * as well as cause other issues like converting a mergeable
  3830. * cache into an umergeable one.
  3831. */
  3832. if (s->refcount > 1)
  3833. return -EINVAL;
  3834. s->flags &= ~SLAB_TRACE;
  3835. if (buf[0] == '1') {
  3836. s->flags &= ~__CMPXCHG_DOUBLE;
  3837. s->flags |= SLAB_TRACE;
  3838. }
  3839. return length;
  3840. }
  3841. SLAB_ATTR(trace);
  3842. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3843. {
  3844. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3845. }
  3846. static ssize_t red_zone_store(struct kmem_cache *s,
  3847. const char *buf, size_t length)
  3848. {
  3849. if (any_slab_objects(s))
  3850. return -EBUSY;
  3851. s->flags &= ~SLAB_RED_ZONE;
  3852. if (buf[0] == '1') {
  3853. s->flags &= ~__CMPXCHG_DOUBLE;
  3854. s->flags |= SLAB_RED_ZONE;
  3855. }
  3856. calculate_sizes(s, -1);
  3857. return length;
  3858. }
  3859. SLAB_ATTR(red_zone);
  3860. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3861. {
  3862. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3863. }
  3864. static ssize_t poison_store(struct kmem_cache *s,
  3865. const char *buf, size_t length)
  3866. {
  3867. if (any_slab_objects(s))
  3868. return -EBUSY;
  3869. s->flags &= ~SLAB_POISON;
  3870. if (buf[0] == '1') {
  3871. s->flags &= ~__CMPXCHG_DOUBLE;
  3872. s->flags |= SLAB_POISON;
  3873. }
  3874. calculate_sizes(s, -1);
  3875. return length;
  3876. }
  3877. SLAB_ATTR(poison);
  3878. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3879. {
  3880. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3881. }
  3882. static ssize_t store_user_store(struct kmem_cache *s,
  3883. const char *buf, size_t length)
  3884. {
  3885. if (any_slab_objects(s))
  3886. return -EBUSY;
  3887. s->flags &= ~SLAB_STORE_USER;
  3888. if (buf[0] == '1') {
  3889. s->flags &= ~__CMPXCHG_DOUBLE;
  3890. s->flags |= SLAB_STORE_USER;
  3891. }
  3892. calculate_sizes(s, -1);
  3893. return length;
  3894. }
  3895. SLAB_ATTR(store_user);
  3896. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3897. {
  3898. return 0;
  3899. }
  3900. static ssize_t validate_store(struct kmem_cache *s,
  3901. const char *buf, size_t length)
  3902. {
  3903. int ret = -EINVAL;
  3904. if (buf[0] == '1') {
  3905. ret = validate_slab_cache(s);
  3906. if (ret >= 0)
  3907. ret = length;
  3908. }
  3909. return ret;
  3910. }
  3911. SLAB_ATTR(validate);
  3912. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3913. {
  3914. if (!(s->flags & SLAB_STORE_USER))
  3915. return -ENOSYS;
  3916. return list_locations(s, buf, TRACK_ALLOC);
  3917. }
  3918. SLAB_ATTR_RO(alloc_calls);
  3919. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3920. {
  3921. if (!(s->flags & SLAB_STORE_USER))
  3922. return -ENOSYS;
  3923. return list_locations(s, buf, TRACK_FREE);
  3924. }
  3925. SLAB_ATTR_RO(free_calls);
  3926. #endif /* CONFIG_SLUB_DEBUG */
  3927. #ifdef CONFIG_FAILSLAB
  3928. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3929. {
  3930. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3931. }
  3932. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3933. size_t length)
  3934. {
  3935. if (s->refcount > 1)
  3936. return -EINVAL;
  3937. s->flags &= ~SLAB_FAILSLAB;
  3938. if (buf[0] == '1')
  3939. s->flags |= SLAB_FAILSLAB;
  3940. return length;
  3941. }
  3942. SLAB_ATTR(failslab);
  3943. #endif
  3944. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3945. {
  3946. return 0;
  3947. }
  3948. static ssize_t shrink_store(struct kmem_cache *s,
  3949. const char *buf, size_t length)
  3950. {
  3951. if (buf[0] == '1') {
  3952. int rc = kmem_cache_shrink(s);
  3953. if (rc)
  3954. return rc;
  3955. } else
  3956. return -EINVAL;
  3957. return length;
  3958. }
  3959. SLAB_ATTR(shrink);
  3960. #ifdef CONFIG_NUMA
  3961. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3962. {
  3963. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3964. }
  3965. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3966. const char *buf, size_t length)
  3967. {
  3968. unsigned long ratio;
  3969. int err;
  3970. err = kstrtoul(buf, 10, &ratio);
  3971. if (err)
  3972. return err;
  3973. if (ratio <= 100)
  3974. s->remote_node_defrag_ratio = ratio * 10;
  3975. return length;
  3976. }
  3977. SLAB_ATTR(remote_node_defrag_ratio);
  3978. #endif
  3979. #ifdef CONFIG_SLUB_STATS
  3980. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3981. {
  3982. unsigned long sum = 0;
  3983. int cpu;
  3984. int len;
  3985. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3986. if (!data)
  3987. return -ENOMEM;
  3988. for_each_online_cpu(cpu) {
  3989. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3990. data[cpu] = x;
  3991. sum += x;
  3992. }
  3993. len = sprintf(buf, "%lu", sum);
  3994. #ifdef CONFIG_SMP
  3995. for_each_online_cpu(cpu) {
  3996. if (data[cpu] && len < PAGE_SIZE - 20)
  3997. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3998. }
  3999. #endif
  4000. kfree(data);
  4001. return len + sprintf(buf + len, "\n");
  4002. }
  4003. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4004. {
  4005. int cpu;
  4006. for_each_online_cpu(cpu)
  4007. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4008. }
  4009. #define STAT_ATTR(si, text) \
  4010. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4011. { \
  4012. return show_stat(s, buf, si); \
  4013. } \
  4014. static ssize_t text##_store(struct kmem_cache *s, \
  4015. const char *buf, size_t length) \
  4016. { \
  4017. if (buf[0] != '0') \
  4018. return -EINVAL; \
  4019. clear_stat(s, si); \
  4020. return length; \
  4021. } \
  4022. SLAB_ATTR(text); \
  4023. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4024. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4025. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4026. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4027. STAT_ATTR(FREE_FROZEN, free_frozen);
  4028. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4029. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4030. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4031. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4032. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4033. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4034. STAT_ATTR(FREE_SLAB, free_slab);
  4035. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4036. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4037. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4038. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4039. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4040. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4041. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4042. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4043. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4044. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4045. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4046. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4047. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4048. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4049. #endif
  4050. static struct attribute *slab_attrs[] = {
  4051. &slab_size_attr.attr,
  4052. &object_size_attr.attr,
  4053. &objs_per_slab_attr.attr,
  4054. &order_attr.attr,
  4055. &min_partial_attr.attr,
  4056. &cpu_partial_attr.attr,
  4057. &objects_attr.attr,
  4058. &objects_partial_attr.attr,
  4059. &partial_attr.attr,
  4060. &cpu_slabs_attr.attr,
  4061. &ctor_attr.attr,
  4062. &aliases_attr.attr,
  4063. &align_attr.attr,
  4064. &hwcache_align_attr.attr,
  4065. &reclaim_account_attr.attr,
  4066. &destroy_by_rcu_attr.attr,
  4067. &shrink_attr.attr,
  4068. &reserved_attr.attr,
  4069. &slabs_cpu_partial_attr.attr,
  4070. #ifdef CONFIG_SLUB_DEBUG
  4071. &total_objects_attr.attr,
  4072. &slabs_attr.attr,
  4073. &sanity_checks_attr.attr,
  4074. &trace_attr.attr,
  4075. &red_zone_attr.attr,
  4076. &poison_attr.attr,
  4077. &store_user_attr.attr,
  4078. &validate_attr.attr,
  4079. &alloc_calls_attr.attr,
  4080. &free_calls_attr.attr,
  4081. #endif
  4082. #ifdef CONFIG_ZONE_DMA
  4083. &cache_dma_attr.attr,
  4084. #endif
  4085. #ifdef CONFIG_NUMA
  4086. &remote_node_defrag_ratio_attr.attr,
  4087. #endif
  4088. #ifdef CONFIG_SLUB_STATS
  4089. &alloc_fastpath_attr.attr,
  4090. &alloc_slowpath_attr.attr,
  4091. &free_fastpath_attr.attr,
  4092. &free_slowpath_attr.attr,
  4093. &free_frozen_attr.attr,
  4094. &free_add_partial_attr.attr,
  4095. &free_remove_partial_attr.attr,
  4096. &alloc_from_partial_attr.attr,
  4097. &alloc_slab_attr.attr,
  4098. &alloc_refill_attr.attr,
  4099. &alloc_node_mismatch_attr.attr,
  4100. &free_slab_attr.attr,
  4101. &cpuslab_flush_attr.attr,
  4102. &deactivate_full_attr.attr,
  4103. &deactivate_empty_attr.attr,
  4104. &deactivate_to_head_attr.attr,
  4105. &deactivate_to_tail_attr.attr,
  4106. &deactivate_remote_frees_attr.attr,
  4107. &deactivate_bypass_attr.attr,
  4108. &order_fallback_attr.attr,
  4109. &cmpxchg_double_fail_attr.attr,
  4110. &cmpxchg_double_cpu_fail_attr.attr,
  4111. &cpu_partial_alloc_attr.attr,
  4112. &cpu_partial_free_attr.attr,
  4113. &cpu_partial_node_attr.attr,
  4114. &cpu_partial_drain_attr.attr,
  4115. #endif
  4116. #ifdef CONFIG_FAILSLAB
  4117. &failslab_attr.attr,
  4118. #endif
  4119. NULL
  4120. };
  4121. static struct attribute_group slab_attr_group = {
  4122. .attrs = slab_attrs,
  4123. };
  4124. static ssize_t slab_attr_show(struct kobject *kobj,
  4125. struct attribute *attr,
  4126. char *buf)
  4127. {
  4128. struct slab_attribute *attribute;
  4129. struct kmem_cache *s;
  4130. int err;
  4131. attribute = to_slab_attr(attr);
  4132. s = to_slab(kobj);
  4133. if (!attribute->show)
  4134. return -EIO;
  4135. err = attribute->show(s, buf);
  4136. return err;
  4137. }
  4138. static ssize_t slab_attr_store(struct kobject *kobj,
  4139. struct attribute *attr,
  4140. const char *buf, size_t len)
  4141. {
  4142. struct slab_attribute *attribute;
  4143. struct kmem_cache *s;
  4144. int err;
  4145. attribute = to_slab_attr(attr);
  4146. s = to_slab(kobj);
  4147. if (!attribute->store)
  4148. return -EIO;
  4149. err = attribute->store(s, buf, len);
  4150. #ifdef CONFIG_MEMCG_KMEM
  4151. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4152. int i;
  4153. mutex_lock(&slab_mutex);
  4154. if (s->max_attr_size < len)
  4155. s->max_attr_size = len;
  4156. /*
  4157. * This is a best effort propagation, so this function's return
  4158. * value will be determined by the parent cache only. This is
  4159. * basically because not all attributes will have a well
  4160. * defined semantics for rollbacks - most of the actions will
  4161. * have permanent effects.
  4162. *
  4163. * Returning the error value of any of the children that fail
  4164. * is not 100 % defined, in the sense that users seeing the
  4165. * error code won't be able to know anything about the state of
  4166. * the cache.
  4167. *
  4168. * Only returning the error code for the parent cache at least
  4169. * has well defined semantics. The cache being written to
  4170. * directly either failed or succeeded, in which case we loop
  4171. * through the descendants with best-effort propagation.
  4172. */
  4173. for_each_memcg_cache_index(i) {
  4174. struct kmem_cache *c = cache_from_memcg_idx(s, i);
  4175. if (c)
  4176. attribute->store(c, buf, len);
  4177. }
  4178. mutex_unlock(&slab_mutex);
  4179. }
  4180. #endif
  4181. return err;
  4182. }
  4183. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4184. {
  4185. #ifdef CONFIG_MEMCG_KMEM
  4186. int i;
  4187. char *buffer = NULL;
  4188. struct kmem_cache *root_cache;
  4189. if (is_root_cache(s))
  4190. return;
  4191. root_cache = s->memcg_params->root_cache;
  4192. /*
  4193. * This mean this cache had no attribute written. Therefore, no point
  4194. * in copying default values around
  4195. */
  4196. if (!root_cache->max_attr_size)
  4197. return;
  4198. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4199. char mbuf[64];
  4200. char *buf;
  4201. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4202. if (!attr || !attr->store || !attr->show)
  4203. continue;
  4204. /*
  4205. * It is really bad that we have to allocate here, so we will
  4206. * do it only as a fallback. If we actually allocate, though,
  4207. * we can just use the allocated buffer until the end.
  4208. *
  4209. * Most of the slub attributes will tend to be very small in
  4210. * size, but sysfs allows buffers up to a page, so they can
  4211. * theoretically happen.
  4212. */
  4213. if (buffer)
  4214. buf = buffer;
  4215. else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
  4216. buf = mbuf;
  4217. else {
  4218. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4219. if (WARN_ON(!buffer))
  4220. continue;
  4221. buf = buffer;
  4222. }
  4223. attr->show(root_cache, buf);
  4224. attr->store(s, buf, strlen(buf));
  4225. }
  4226. if (buffer)
  4227. free_page((unsigned long)buffer);
  4228. #endif
  4229. }
  4230. static void kmem_cache_release(struct kobject *k)
  4231. {
  4232. slab_kmem_cache_release(to_slab(k));
  4233. }
  4234. static const struct sysfs_ops slab_sysfs_ops = {
  4235. .show = slab_attr_show,
  4236. .store = slab_attr_store,
  4237. };
  4238. static struct kobj_type slab_ktype = {
  4239. .sysfs_ops = &slab_sysfs_ops,
  4240. .release = kmem_cache_release,
  4241. };
  4242. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4243. {
  4244. struct kobj_type *ktype = get_ktype(kobj);
  4245. if (ktype == &slab_ktype)
  4246. return 1;
  4247. return 0;
  4248. }
  4249. static const struct kset_uevent_ops slab_uevent_ops = {
  4250. .filter = uevent_filter,
  4251. };
  4252. static struct kset *slab_kset;
  4253. static inline struct kset *cache_kset(struct kmem_cache *s)
  4254. {
  4255. #ifdef CONFIG_MEMCG_KMEM
  4256. if (!is_root_cache(s))
  4257. return s->memcg_params->root_cache->memcg_kset;
  4258. #endif
  4259. return slab_kset;
  4260. }
  4261. #define ID_STR_LENGTH 64
  4262. /* Create a unique string id for a slab cache:
  4263. *
  4264. * Format :[flags-]size
  4265. */
  4266. static char *create_unique_id(struct kmem_cache *s)
  4267. {
  4268. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4269. char *p = name;
  4270. BUG_ON(!name);
  4271. *p++ = ':';
  4272. /*
  4273. * First flags affecting slabcache operations. We will only
  4274. * get here for aliasable slabs so we do not need to support
  4275. * too many flags. The flags here must cover all flags that
  4276. * are matched during merging to guarantee that the id is
  4277. * unique.
  4278. */
  4279. if (s->flags & SLAB_CACHE_DMA)
  4280. *p++ = 'd';
  4281. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4282. *p++ = 'a';
  4283. if (s->flags & SLAB_DEBUG_FREE)
  4284. *p++ = 'F';
  4285. if (!(s->flags & SLAB_NOTRACK))
  4286. *p++ = 't';
  4287. if (p != name + 1)
  4288. *p++ = '-';
  4289. p += sprintf(p, "%07d", s->size);
  4290. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4291. return name;
  4292. }
  4293. static int sysfs_slab_add(struct kmem_cache *s)
  4294. {
  4295. int err;
  4296. const char *name;
  4297. int unmergeable = slab_unmergeable(s);
  4298. if (unmergeable) {
  4299. /*
  4300. * Slabcache can never be merged so we can use the name proper.
  4301. * This is typically the case for debug situations. In that
  4302. * case we can catch duplicate names easily.
  4303. */
  4304. sysfs_remove_link(&slab_kset->kobj, s->name);
  4305. name = s->name;
  4306. } else {
  4307. /*
  4308. * Create a unique name for the slab as a target
  4309. * for the symlinks.
  4310. */
  4311. name = create_unique_id(s);
  4312. }
  4313. s->kobj.kset = cache_kset(s);
  4314. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
  4315. if (err)
  4316. goto out_put_kobj;
  4317. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4318. if (err)
  4319. goto out_del_kobj;
  4320. #ifdef CONFIG_MEMCG_KMEM
  4321. if (is_root_cache(s)) {
  4322. s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
  4323. if (!s->memcg_kset) {
  4324. err = -ENOMEM;
  4325. goto out_del_kobj;
  4326. }
  4327. }
  4328. #endif
  4329. kobject_uevent(&s->kobj, KOBJ_ADD);
  4330. if (!unmergeable) {
  4331. /* Setup first alias */
  4332. sysfs_slab_alias(s, s->name);
  4333. }
  4334. out:
  4335. if (!unmergeable)
  4336. kfree(name);
  4337. return err;
  4338. out_del_kobj:
  4339. kobject_del(&s->kobj);
  4340. out_put_kobj:
  4341. kobject_put(&s->kobj);
  4342. goto out;
  4343. }
  4344. void sysfs_slab_remove(struct kmem_cache *s)
  4345. {
  4346. if (slab_state < FULL)
  4347. /*
  4348. * Sysfs has not been setup yet so no need to remove the
  4349. * cache from sysfs.
  4350. */
  4351. return;
  4352. #ifdef CONFIG_MEMCG_KMEM
  4353. kset_unregister(s->memcg_kset);
  4354. #endif
  4355. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4356. kobject_del(&s->kobj);
  4357. kobject_put(&s->kobj);
  4358. }
  4359. /*
  4360. * Need to buffer aliases during bootup until sysfs becomes
  4361. * available lest we lose that information.
  4362. */
  4363. struct saved_alias {
  4364. struct kmem_cache *s;
  4365. const char *name;
  4366. struct saved_alias *next;
  4367. };
  4368. static struct saved_alias *alias_list;
  4369. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4370. {
  4371. struct saved_alias *al;
  4372. if (slab_state == FULL) {
  4373. /*
  4374. * If we have a leftover link then remove it.
  4375. */
  4376. sysfs_remove_link(&slab_kset->kobj, name);
  4377. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4378. }
  4379. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4380. if (!al)
  4381. return -ENOMEM;
  4382. al->s = s;
  4383. al->name = name;
  4384. al->next = alias_list;
  4385. alias_list = al;
  4386. return 0;
  4387. }
  4388. static int __init slab_sysfs_init(void)
  4389. {
  4390. struct kmem_cache *s;
  4391. int err;
  4392. mutex_lock(&slab_mutex);
  4393. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4394. if (!slab_kset) {
  4395. mutex_unlock(&slab_mutex);
  4396. pr_err("Cannot register slab subsystem.\n");
  4397. return -ENOSYS;
  4398. }
  4399. slab_state = FULL;
  4400. list_for_each_entry(s, &slab_caches, list) {
  4401. err = sysfs_slab_add(s);
  4402. if (err)
  4403. pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
  4404. s->name);
  4405. }
  4406. while (alias_list) {
  4407. struct saved_alias *al = alias_list;
  4408. alias_list = alias_list->next;
  4409. err = sysfs_slab_alias(al->s, al->name);
  4410. if (err)
  4411. pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
  4412. al->name);
  4413. kfree(al);
  4414. }
  4415. mutex_unlock(&slab_mutex);
  4416. resiliency_test();
  4417. return 0;
  4418. }
  4419. __initcall(slab_sysfs_init);
  4420. #endif /* CONFIG_SYSFS */
  4421. /*
  4422. * The /proc/slabinfo ABI
  4423. */
  4424. #ifdef CONFIG_SLABINFO
  4425. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4426. {
  4427. unsigned long nr_slabs = 0;
  4428. unsigned long nr_objs = 0;
  4429. unsigned long nr_free = 0;
  4430. int node;
  4431. struct kmem_cache_node *n;
  4432. for_each_kmem_cache_node(s, node, n) {
  4433. nr_slabs += node_nr_slabs(n);
  4434. nr_objs += node_nr_objs(n);
  4435. nr_free += count_partial(n, count_free);
  4436. }
  4437. sinfo->active_objs = nr_objs - nr_free;
  4438. sinfo->num_objs = nr_objs;
  4439. sinfo->active_slabs = nr_slabs;
  4440. sinfo->num_slabs = nr_slabs;
  4441. sinfo->objects_per_slab = oo_objects(s->oo);
  4442. sinfo->cache_order = oo_order(s->oo);
  4443. }
  4444. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4445. {
  4446. }
  4447. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4448. size_t count, loff_t *ppos)
  4449. {
  4450. return -EIO;
  4451. }
  4452. #endif /* CONFIG_SLABINFO */