node.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394
  1. /*
  2. * fs/f2fs/node.h
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. /* start node id of a node block dedicated to the given node id */
  12. #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  13. /* node block offset on the NAT area dedicated to the given start node id */
  14. #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
  15. /* # of pages to perform readahead before building free nids */
  16. #define FREE_NID_PAGES 4
  17. /* maximum readahead size for node during getting data blocks */
  18. #define MAX_RA_NODE 128
  19. /* control the memory footprint threshold (10MB per 1GB ram) */
  20. #define DEF_RAM_THRESHOLD 10
  21. /* vector size for gang look-up from nat cache that consists of radix tree */
  22. #define NATVEC_SIZE 64
  23. /* return value for read_node_page */
  24. #define LOCKED_PAGE 1
  25. /*
  26. * For node information
  27. */
  28. struct node_info {
  29. nid_t nid; /* node id */
  30. nid_t ino; /* inode number of the node's owner */
  31. block_t blk_addr; /* block address of the node */
  32. unsigned char version; /* version of the node */
  33. };
  34. enum {
  35. IS_CHECKPOINTED, /* is it checkpointed before? */
  36. HAS_FSYNCED_INODE, /* is the inode fsynced before? */
  37. HAS_LAST_FSYNC, /* has the latest node fsync mark? */
  38. IS_DIRTY, /* this nat entry is dirty? */
  39. };
  40. struct nat_entry {
  41. struct list_head list; /* for clean or dirty nat list */
  42. unsigned char flag; /* for node information bits */
  43. struct node_info ni; /* in-memory node information */
  44. };
  45. #define nat_get_nid(nat) (nat->ni.nid)
  46. #define nat_set_nid(nat, n) (nat->ni.nid = n)
  47. #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
  48. #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
  49. #define nat_get_ino(nat) (nat->ni.ino)
  50. #define nat_set_ino(nat, i) (nat->ni.ino = i)
  51. #define nat_get_version(nat) (nat->ni.version)
  52. #define nat_set_version(nat, v) (nat->ni.version = v)
  53. #define inc_node_version(version) (++version)
  54. static inline void set_nat_flag(struct nat_entry *ne,
  55. unsigned int type, bool set)
  56. {
  57. unsigned char mask = 0x01 << type;
  58. if (set)
  59. ne->flag |= mask;
  60. else
  61. ne->flag &= ~mask;
  62. }
  63. static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
  64. {
  65. unsigned char mask = 0x01 << type;
  66. return ne->flag & mask;
  67. }
  68. static inline void nat_reset_flag(struct nat_entry *ne)
  69. {
  70. /* these states can be set only after checkpoint was done */
  71. set_nat_flag(ne, IS_CHECKPOINTED, true);
  72. set_nat_flag(ne, HAS_FSYNCED_INODE, false);
  73. set_nat_flag(ne, HAS_LAST_FSYNC, true);
  74. }
  75. static inline void node_info_from_raw_nat(struct node_info *ni,
  76. struct f2fs_nat_entry *raw_ne)
  77. {
  78. ni->ino = le32_to_cpu(raw_ne->ino);
  79. ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
  80. ni->version = raw_ne->version;
  81. }
  82. static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
  83. struct node_info *ni)
  84. {
  85. raw_ne->ino = cpu_to_le32(ni->ino);
  86. raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
  87. raw_ne->version = ni->version;
  88. }
  89. enum mem_type {
  90. FREE_NIDS, /* indicates the free nid list */
  91. NAT_ENTRIES, /* indicates the cached nat entry */
  92. DIRTY_DENTS, /* indicates dirty dentry pages */
  93. INO_ENTRIES, /* indicates inode entries */
  94. };
  95. struct nat_entry_set {
  96. struct list_head set_list; /* link with other nat sets */
  97. struct list_head entry_list; /* link with dirty nat entries */
  98. nid_t set; /* set number*/
  99. unsigned int entry_cnt; /* the # of nat entries in set */
  100. };
  101. /*
  102. * For free nid mangement
  103. */
  104. enum nid_state {
  105. NID_NEW, /* newly added to free nid list */
  106. NID_ALLOC /* it is allocated */
  107. };
  108. struct free_nid {
  109. struct list_head list; /* for free node id list */
  110. nid_t nid; /* node id */
  111. int state; /* in use or not: NID_NEW or NID_ALLOC */
  112. };
  113. static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  114. {
  115. struct f2fs_nm_info *nm_i = NM_I(sbi);
  116. struct free_nid *fnid;
  117. spin_lock(&nm_i->free_nid_list_lock);
  118. if (nm_i->fcnt <= 0) {
  119. spin_unlock(&nm_i->free_nid_list_lock);
  120. return;
  121. }
  122. fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
  123. *nid = fnid->nid;
  124. spin_unlock(&nm_i->free_nid_list_lock);
  125. }
  126. /*
  127. * inline functions
  128. */
  129. static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
  130. {
  131. struct f2fs_nm_info *nm_i = NM_I(sbi);
  132. memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
  133. }
  134. static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
  135. {
  136. struct f2fs_nm_info *nm_i = NM_I(sbi);
  137. pgoff_t block_off;
  138. pgoff_t block_addr;
  139. int seg_off;
  140. block_off = NAT_BLOCK_OFFSET(start);
  141. seg_off = block_off >> sbi->log_blocks_per_seg;
  142. block_addr = (pgoff_t)(nm_i->nat_blkaddr +
  143. (seg_off << sbi->log_blocks_per_seg << 1) +
  144. (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
  145. if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
  146. block_addr += sbi->blocks_per_seg;
  147. return block_addr;
  148. }
  149. static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
  150. pgoff_t block_addr)
  151. {
  152. struct f2fs_nm_info *nm_i = NM_I(sbi);
  153. block_addr -= nm_i->nat_blkaddr;
  154. if ((block_addr >> sbi->log_blocks_per_seg) % 2)
  155. block_addr -= sbi->blocks_per_seg;
  156. else
  157. block_addr += sbi->blocks_per_seg;
  158. return block_addr + nm_i->nat_blkaddr;
  159. }
  160. static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
  161. {
  162. unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
  163. f2fs_change_bit(block_off, nm_i->nat_bitmap);
  164. }
  165. static inline void fill_node_footer(struct page *page, nid_t nid,
  166. nid_t ino, unsigned int ofs, bool reset)
  167. {
  168. struct f2fs_node *rn = F2FS_NODE(page);
  169. if (reset)
  170. memset(rn, 0, sizeof(*rn));
  171. rn->footer.nid = cpu_to_le32(nid);
  172. rn->footer.ino = cpu_to_le32(ino);
  173. rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
  174. }
  175. static inline void copy_node_footer(struct page *dst, struct page *src)
  176. {
  177. struct f2fs_node *src_rn = F2FS_NODE(src);
  178. struct f2fs_node *dst_rn = F2FS_NODE(dst);
  179. memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
  180. }
  181. static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
  182. {
  183. struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
  184. struct f2fs_node *rn = F2FS_NODE(page);
  185. rn->footer.cp_ver = ckpt->checkpoint_ver;
  186. rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
  187. }
  188. static inline nid_t ino_of_node(struct page *node_page)
  189. {
  190. struct f2fs_node *rn = F2FS_NODE(node_page);
  191. return le32_to_cpu(rn->footer.ino);
  192. }
  193. static inline nid_t nid_of_node(struct page *node_page)
  194. {
  195. struct f2fs_node *rn = F2FS_NODE(node_page);
  196. return le32_to_cpu(rn->footer.nid);
  197. }
  198. static inline unsigned int ofs_of_node(struct page *node_page)
  199. {
  200. struct f2fs_node *rn = F2FS_NODE(node_page);
  201. unsigned flag = le32_to_cpu(rn->footer.flag);
  202. return flag >> OFFSET_BIT_SHIFT;
  203. }
  204. static inline unsigned long long cpver_of_node(struct page *node_page)
  205. {
  206. struct f2fs_node *rn = F2FS_NODE(node_page);
  207. return le64_to_cpu(rn->footer.cp_ver);
  208. }
  209. static inline block_t next_blkaddr_of_node(struct page *node_page)
  210. {
  211. struct f2fs_node *rn = F2FS_NODE(node_page);
  212. return le32_to_cpu(rn->footer.next_blkaddr);
  213. }
  214. /*
  215. * f2fs assigns the following node offsets described as (num).
  216. * N = NIDS_PER_BLOCK
  217. *
  218. * Inode block (0)
  219. * |- direct node (1)
  220. * |- direct node (2)
  221. * |- indirect node (3)
  222. * | `- direct node (4 => 4 + N - 1)
  223. * |- indirect node (4 + N)
  224. * | `- direct node (5 + N => 5 + 2N - 1)
  225. * `- double indirect node (5 + 2N)
  226. * `- indirect node (6 + 2N)
  227. * `- direct node
  228. * ......
  229. * `- indirect node ((6 + 2N) + x(N + 1))
  230. * `- direct node
  231. * ......
  232. * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
  233. * `- direct node
  234. */
  235. static inline bool IS_DNODE(struct page *node_page)
  236. {
  237. unsigned int ofs = ofs_of_node(node_page);
  238. if (f2fs_has_xattr_block(ofs))
  239. return false;
  240. if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
  241. ofs == 5 + 2 * NIDS_PER_BLOCK)
  242. return false;
  243. if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
  244. ofs -= 6 + 2 * NIDS_PER_BLOCK;
  245. if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
  246. return false;
  247. }
  248. return true;
  249. }
  250. static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
  251. {
  252. struct f2fs_node *rn = F2FS_NODE(p);
  253. f2fs_wait_on_page_writeback(p, NODE);
  254. if (i)
  255. rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
  256. else
  257. rn->in.nid[off] = cpu_to_le32(nid);
  258. set_page_dirty(p);
  259. }
  260. static inline nid_t get_nid(struct page *p, int off, bool i)
  261. {
  262. struct f2fs_node *rn = F2FS_NODE(p);
  263. if (i)
  264. return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
  265. return le32_to_cpu(rn->in.nid[off]);
  266. }
  267. /*
  268. * Coldness identification:
  269. * - Mark cold files in f2fs_inode_info
  270. * - Mark cold node blocks in their node footer
  271. * - Mark cold data pages in page cache
  272. */
  273. static inline int is_file(struct inode *inode, int type)
  274. {
  275. return F2FS_I(inode)->i_advise & type;
  276. }
  277. static inline void set_file(struct inode *inode, int type)
  278. {
  279. F2FS_I(inode)->i_advise |= type;
  280. }
  281. static inline void clear_file(struct inode *inode, int type)
  282. {
  283. F2FS_I(inode)->i_advise &= ~type;
  284. }
  285. #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
  286. #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
  287. #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
  288. #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
  289. #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
  290. #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
  291. static inline int is_cold_data(struct page *page)
  292. {
  293. return PageChecked(page);
  294. }
  295. static inline void set_cold_data(struct page *page)
  296. {
  297. SetPageChecked(page);
  298. }
  299. static inline void clear_cold_data(struct page *page)
  300. {
  301. ClearPageChecked(page);
  302. }
  303. static inline int is_node(struct page *page, int type)
  304. {
  305. struct f2fs_node *rn = F2FS_NODE(page);
  306. return le32_to_cpu(rn->footer.flag) & (1 << type);
  307. }
  308. #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
  309. #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
  310. #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
  311. static inline void set_cold_node(struct inode *inode, struct page *page)
  312. {
  313. struct f2fs_node *rn = F2FS_NODE(page);
  314. unsigned int flag = le32_to_cpu(rn->footer.flag);
  315. if (S_ISDIR(inode->i_mode))
  316. flag &= ~(0x1 << COLD_BIT_SHIFT);
  317. else
  318. flag |= (0x1 << COLD_BIT_SHIFT);
  319. rn->footer.flag = cpu_to_le32(flag);
  320. }
  321. static inline void set_mark(struct page *page, int mark, int type)
  322. {
  323. struct f2fs_node *rn = F2FS_NODE(page);
  324. unsigned int flag = le32_to_cpu(rn->footer.flag);
  325. if (mark)
  326. flag |= (0x1 << type);
  327. else
  328. flag &= ~(0x1 << type);
  329. rn->footer.flag = cpu_to_le32(flag);
  330. }
  331. #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
  332. #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)