node.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include <trace/events/f2fs.h>
  22. #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  23. static struct kmem_cache *nat_entry_slab;
  24. static struct kmem_cache *free_nid_slab;
  25. static struct kmem_cache *nat_entry_set_slab;
  26. bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  27. {
  28. struct f2fs_nm_info *nm_i = NM_I(sbi);
  29. struct sysinfo val;
  30. unsigned long avail_ram;
  31. unsigned long mem_size = 0;
  32. bool res = false;
  33. si_meminfo(&val);
  34. /* only uses low memory */
  35. avail_ram = val.totalram - val.totalhigh;
  36. /* give 25%, 25%, 50%, 50% memory for each components respectively */
  37. if (type == FREE_NIDS) {
  38. mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  39. PAGE_CACHE_SHIFT;
  40. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  41. } else if (type == NAT_ENTRIES) {
  42. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  43. PAGE_CACHE_SHIFT;
  44. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  45. } else if (type == DIRTY_DENTS) {
  46. if (sbi->sb->s_bdi->dirty_exceeded)
  47. return false;
  48. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  49. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  50. } else if (type == INO_ENTRIES) {
  51. int i;
  52. if (sbi->sb->s_bdi->dirty_exceeded)
  53. return false;
  54. for (i = 0; i <= UPDATE_INO; i++)
  55. mem_size += (sbi->im[i].ino_num *
  56. sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
  57. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  58. }
  59. return res;
  60. }
  61. static void clear_node_page_dirty(struct page *page)
  62. {
  63. struct address_space *mapping = page->mapping;
  64. unsigned int long flags;
  65. if (PageDirty(page)) {
  66. spin_lock_irqsave(&mapping->tree_lock, flags);
  67. radix_tree_tag_clear(&mapping->page_tree,
  68. page_index(page),
  69. PAGECACHE_TAG_DIRTY);
  70. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  71. clear_page_dirty_for_io(page);
  72. dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  73. }
  74. ClearPageUptodate(page);
  75. }
  76. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  77. {
  78. pgoff_t index = current_nat_addr(sbi, nid);
  79. return get_meta_page(sbi, index);
  80. }
  81. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  82. {
  83. struct page *src_page;
  84. struct page *dst_page;
  85. pgoff_t src_off;
  86. pgoff_t dst_off;
  87. void *src_addr;
  88. void *dst_addr;
  89. struct f2fs_nm_info *nm_i = NM_I(sbi);
  90. src_off = current_nat_addr(sbi, nid);
  91. dst_off = next_nat_addr(sbi, src_off);
  92. /* get current nat block page with lock */
  93. src_page = get_meta_page(sbi, src_off);
  94. dst_page = grab_meta_page(sbi, dst_off);
  95. f2fs_bug_on(sbi, PageDirty(src_page));
  96. src_addr = page_address(src_page);
  97. dst_addr = page_address(dst_page);
  98. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  99. set_page_dirty(dst_page);
  100. f2fs_put_page(src_page, 1);
  101. set_to_next_nat(nm_i, nid);
  102. return dst_page;
  103. }
  104. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  105. {
  106. return radix_tree_lookup(&nm_i->nat_root, n);
  107. }
  108. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  109. nid_t start, unsigned int nr, struct nat_entry **ep)
  110. {
  111. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  112. }
  113. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  114. {
  115. list_del(&e->list);
  116. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  117. nm_i->nat_cnt--;
  118. kmem_cache_free(nat_entry_slab, e);
  119. }
  120. static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  121. struct nat_entry *ne)
  122. {
  123. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  124. struct nat_entry_set *head;
  125. if (get_nat_flag(ne, IS_DIRTY))
  126. return;
  127. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  128. if (!head) {
  129. head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
  130. INIT_LIST_HEAD(&head->entry_list);
  131. INIT_LIST_HEAD(&head->set_list);
  132. head->set = set;
  133. head->entry_cnt = 0;
  134. f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
  135. }
  136. list_move_tail(&ne->list, &head->entry_list);
  137. nm_i->dirty_nat_cnt++;
  138. head->entry_cnt++;
  139. set_nat_flag(ne, IS_DIRTY, true);
  140. }
  141. static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  142. struct nat_entry *ne)
  143. {
  144. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  145. struct nat_entry_set *head;
  146. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  147. if (head) {
  148. list_move_tail(&ne->list, &nm_i->nat_entries);
  149. set_nat_flag(ne, IS_DIRTY, false);
  150. head->entry_cnt--;
  151. nm_i->dirty_nat_cnt--;
  152. }
  153. }
  154. static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
  155. nid_t start, unsigned int nr, struct nat_entry_set **ep)
  156. {
  157. return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
  158. start, nr);
  159. }
  160. bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  161. {
  162. struct f2fs_nm_info *nm_i = NM_I(sbi);
  163. struct nat_entry *e;
  164. bool is_cp = true;
  165. down_read(&nm_i->nat_tree_lock);
  166. e = __lookup_nat_cache(nm_i, nid);
  167. if (e && !get_nat_flag(e, IS_CHECKPOINTED))
  168. is_cp = false;
  169. up_read(&nm_i->nat_tree_lock);
  170. return is_cp;
  171. }
  172. bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
  173. {
  174. struct f2fs_nm_info *nm_i = NM_I(sbi);
  175. struct nat_entry *e;
  176. bool fsynced = false;
  177. down_read(&nm_i->nat_tree_lock);
  178. e = __lookup_nat_cache(nm_i, ino);
  179. if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
  180. fsynced = true;
  181. up_read(&nm_i->nat_tree_lock);
  182. return fsynced;
  183. }
  184. bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
  185. {
  186. struct f2fs_nm_info *nm_i = NM_I(sbi);
  187. struct nat_entry *e;
  188. bool need_update = true;
  189. down_read(&nm_i->nat_tree_lock);
  190. e = __lookup_nat_cache(nm_i, ino);
  191. if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
  192. (get_nat_flag(e, IS_CHECKPOINTED) ||
  193. get_nat_flag(e, HAS_FSYNCED_INODE)))
  194. need_update = false;
  195. up_read(&nm_i->nat_tree_lock);
  196. return need_update;
  197. }
  198. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  199. {
  200. struct nat_entry *new;
  201. new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  202. f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
  203. memset(new, 0, sizeof(struct nat_entry));
  204. nat_set_nid(new, nid);
  205. nat_reset_flag(new);
  206. list_add_tail(&new->list, &nm_i->nat_entries);
  207. nm_i->nat_cnt++;
  208. return new;
  209. }
  210. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  211. struct f2fs_nat_entry *ne)
  212. {
  213. struct nat_entry *e;
  214. down_write(&nm_i->nat_tree_lock);
  215. e = __lookup_nat_cache(nm_i, nid);
  216. if (!e) {
  217. e = grab_nat_entry(nm_i, nid);
  218. node_info_from_raw_nat(&e->ni, ne);
  219. }
  220. up_write(&nm_i->nat_tree_lock);
  221. }
  222. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  223. block_t new_blkaddr, bool fsync_done)
  224. {
  225. struct f2fs_nm_info *nm_i = NM_I(sbi);
  226. struct nat_entry *e;
  227. down_write(&nm_i->nat_tree_lock);
  228. e = __lookup_nat_cache(nm_i, ni->nid);
  229. if (!e) {
  230. e = grab_nat_entry(nm_i, ni->nid);
  231. e->ni = *ni;
  232. f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
  233. } else if (new_blkaddr == NEW_ADDR) {
  234. /*
  235. * when nid is reallocated,
  236. * previous nat entry can be remained in nat cache.
  237. * So, reinitialize it with new information.
  238. */
  239. e->ni = *ni;
  240. f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
  241. }
  242. /* sanity check */
  243. f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
  244. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
  245. new_blkaddr == NULL_ADDR);
  246. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
  247. new_blkaddr == NEW_ADDR);
  248. f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
  249. nat_get_blkaddr(e) != NULL_ADDR &&
  250. new_blkaddr == NEW_ADDR);
  251. /* increment version no as node is removed */
  252. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  253. unsigned char version = nat_get_version(e);
  254. nat_set_version(e, inc_node_version(version));
  255. }
  256. /* change address */
  257. nat_set_blkaddr(e, new_blkaddr);
  258. if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
  259. set_nat_flag(e, IS_CHECKPOINTED, false);
  260. __set_nat_cache_dirty(nm_i, e);
  261. /* update fsync_mark if its inode nat entry is still alive */
  262. e = __lookup_nat_cache(nm_i, ni->ino);
  263. if (e) {
  264. if (fsync_done && ni->nid == ni->ino)
  265. set_nat_flag(e, HAS_FSYNCED_INODE, true);
  266. set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
  267. }
  268. up_write(&nm_i->nat_tree_lock);
  269. }
  270. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  271. {
  272. struct f2fs_nm_info *nm_i = NM_I(sbi);
  273. if (available_free_memory(sbi, NAT_ENTRIES))
  274. return 0;
  275. down_write(&nm_i->nat_tree_lock);
  276. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  277. struct nat_entry *ne;
  278. ne = list_first_entry(&nm_i->nat_entries,
  279. struct nat_entry, list);
  280. __del_from_nat_cache(nm_i, ne);
  281. nr_shrink--;
  282. }
  283. up_write(&nm_i->nat_tree_lock);
  284. return nr_shrink;
  285. }
  286. /*
  287. * This function always returns success
  288. */
  289. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  290. {
  291. struct f2fs_nm_info *nm_i = NM_I(sbi);
  292. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  293. struct f2fs_summary_block *sum = curseg->sum_blk;
  294. nid_t start_nid = START_NID(nid);
  295. struct f2fs_nat_block *nat_blk;
  296. struct page *page = NULL;
  297. struct f2fs_nat_entry ne;
  298. struct nat_entry *e;
  299. int i;
  300. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  301. ni->nid = nid;
  302. /* Check nat cache */
  303. down_read(&nm_i->nat_tree_lock);
  304. e = __lookup_nat_cache(nm_i, nid);
  305. if (e) {
  306. ni->ino = nat_get_ino(e);
  307. ni->blk_addr = nat_get_blkaddr(e);
  308. ni->version = nat_get_version(e);
  309. }
  310. up_read(&nm_i->nat_tree_lock);
  311. if (e)
  312. return;
  313. /* Check current segment summary */
  314. mutex_lock(&curseg->curseg_mutex);
  315. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  316. if (i >= 0) {
  317. ne = nat_in_journal(sum, i);
  318. node_info_from_raw_nat(ni, &ne);
  319. }
  320. mutex_unlock(&curseg->curseg_mutex);
  321. if (i >= 0)
  322. goto cache;
  323. /* Fill node_info from nat page */
  324. page = get_current_nat_page(sbi, start_nid);
  325. nat_blk = (struct f2fs_nat_block *)page_address(page);
  326. ne = nat_blk->entries[nid - start_nid];
  327. node_info_from_raw_nat(ni, &ne);
  328. f2fs_put_page(page, 1);
  329. cache:
  330. /* cache nat entry */
  331. cache_nat_entry(NM_I(sbi), nid, &ne);
  332. }
  333. /*
  334. * The maximum depth is four.
  335. * Offset[0] will have raw inode offset.
  336. */
  337. static int get_node_path(struct f2fs_inode_info *fi, long block,
  338. int offset[4], unsigned int noffset[4])
  339. {
  340. const long direct_index = ADDRS_PER_INODE(fi);
  341. const long direct_blks = ADDRS_PER_BLOCK;
  342. const long dptrs_per_blk = NIDS_PER_BLOCK;
  343. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  344. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  345. int n = 0;
  346. int level = 0;
  347. noffset[0] = 0;
  348. if (block < direct_index) {
  349. offset[n] = block;
  350. goto got;
  351. }
  352. block -= direct_index;
  353. if (block < direct_blks) {
  354. offset[n++] = NODE_DIR1_BLOCK;
  355. noffset[n] = 1;
  356. offset[n] = block;
  357. level = 1;
  358. goto got;
  359. }
  360. block -= direct_blks;
  361. if (block < direct_blks) {
  362. offset[n++] = NODE_DIR2_BLOCK;
  363. noffset[n] = 2;
  364. offset[n] = block;
  365. level = 1;
  366. goto got;
  367. }
  368. block -= direct_blks;
  369. if (block < indirect_blks) {
  370. offset[n++] = NODE_IND1_BLOCK;
  371. noffset[n] = 3;
  372. offset[n++] = block / direct_blks;
  373. noffset[n] = 4 + offset[n - 1];
  374. offset[n] = block % direct_blks;
  375. level = 2;
  376. goto got;
  377. }
  378. block -= indirect_blks;
  379. if (block < indirect_blks) {
  380. offset[n++] = NODE_IND2_BLOCK;
  381. noffset[n] = 4 + dptrs_per_blk;
  382. offset[n++] = block / direct_blks;
  383. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  384. offset[n] = block % direct_blks;
  385. level = 2;
  386. goto got;
  387. }
  388. block -= indirect_blks;
  389. if (block < dindirect_blks) {
  390. offset[n++] = NODE_DIND_BLOCK;
  391. noffset[n] = 5 + (dptrs_per_blk * 2);
  392. offset[n++] = block / indirect_blks;
  393. noffset[n] = 6 + (dptrs_per_blk * 2) +
  394. offset[n - 1] * (dptrs_per_blk + 1);
  395. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  396. noffset[n] = 7 + (dptrs_per_blk * 2) +
  397. offset[n - 2] * (dptrs_per_blk + 1) +
  398. offset[n - 1];
  399. offset[n] = block % direct_blks;
  400. level = 3;
  401. goto got;
  402. } else {
  403. BUG();
  404. }
  405. got:
  406. return level;
  407. }
  408. /*
  409. * Caller should call f2fs_put_dnode(dn).
  410. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  411. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  412. * In the case of RDONLY_NODE, we don't need to care about mutex.
  413. */
  414. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  415. {
  416. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  417. struct page *npage[4];
  418. struct page *parent;
  419. int offset[4];
  420. unsigned int noffset[4];
  421. nid_t nids[4];
  422. int level, i;
  423. int err = 0;
  424. level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
  425. nids[0] = dn->inode->i_ino;
  426. npage[0] = dn->inode_page;
  427. if (!npage[0]) {
  428. npage[0] = get_node_page(sbi, nids[0]);
  429. if (IS_ERR(npage[0]))
  430. return PTR_ERR(npage[0]);
  431. }
  432. parent = npage[0];
  433. if (level != 0)
  434. nids[1] = get_nid(parent, offset[0], true);
  435. dn->inode_page = npage[0];
  436. dn->inode_page_locked = true;
  437. /* get indirect or direct nodes */
  438. for (i = 1; i <= level; i++) {
  439. bool done = false;
  440. if (!nids[i] && mode == ALLOC_NODE) {
  441. /* alloc new node */
  442. if (!alloc_nid(sbi, &(nids[i]))) {
  443. err = -ENOSPC;
  444. goto release_pages;
  445. }
  446. dn->nid = nids[i];
  447. npage[i] = new_node_page(dn, noffset[i], NULL);
  448. if (IS_ERR(npage[i])) {
  449. alloc_nid_failed(sbi, nids[i]);
  450. err = PTR_ERR(npage[i]);
  451. goto release_pages;
  452. }
  453. set_nid(parent, offset[i - 1], nids[i], i == 1);
  454. alloc_nid_done(sbi, nids[i]);
  455. done = true;
  456. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  457. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  458. if (IS_ERR(npage[i])) {
  459. err = PTR_ERR(npage[i]);
  460. goto release_pages;
  461. }
  462. done = true;
  463. }
  464. if (i == 1) {
  465. dn->inode_page_locked = false;
  466. unlock_page(parent);
  467. } else {
  468. f2fs_put_page(parent, 1);
  469. }
  470. if (!done) {
  471. npage[i] = get_node_page(sbi, nids[i]);
  472. if (IS_ERR(npage[i])) {
  473. err = PTR_ERR(npage[i]);
  474. f2fs_put_page(npage[0], 0);
  475. goto release_out;
  476. }
  477. }
  478. if (i < level) {
  479. parent = npage[i];
  480. nids[i + 1] = get_nid(parent, offset[i], false);
  481. }
  482. }
  483. dn->nid = nids[level];
  484. dn->ofs_in_node = offset[level];
  485. dn->node_page = npage[level];
  486. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  487. return 0;
  488. release_pages:
  489. f2fs_put_page(parent, 1);
  490. if (i > 1)
  491. f2fs_put_page(npage[0], 0);
  492. release_out:
  493. dn->inode_page = NULL;
  494. dn->node_page = NULL;
  495. return err;
  496. }
  497. static void truncate_node(struct dnode_of_data *dn)
  498. {
  499. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  500. struct node_info ni;
  501. get_node_info(sbi, dn->nid, &ni);
  502. if (dn->inode->i_blocks == 0) {
  503. f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
  504. goto invalidate;
  505. }
  506. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  507. /* Deallocate node address */
  508. invalidate_blocks(sbi, ni.blk_addr);
  509. dec_valid_node_count(sbi, dn->inode);
  510. set_node_addr(sbi, &ni, NULL_ADDR, false);
  511. if (dn->nid == dn->inode->i_ino) {
  512. remove_orphan_inode(sbi, dn->nid);
  513. dec_valid_inode_count(sbi);
  514. } else {
  515. sync_inode_page(dn);
  516. }
  517. invalidate:
  518. clear_node_page_dirty(dn->node_page);
  519. F2FS_SET_SB_DIRT(sbi);
  520. f2fs_put_page(dn->node_page, 1);
  521. invalidate_mapping_pages(NODE_MAPPING(sbi),
  522. dn->node_page->index, dn->node_page->index);
  523. dn->node_page = NULL;
  524. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  525. }
  526. static int truncate_dnode(struct dnode_of_data *dn)
  527. {
  528. struct page *page;
  529. if (dn->nid == 0)
  530. return 1;
  531. /* get direct node */
  532. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  533. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  534. return 1;
  535. else if (IS_ERR(page))
  536. return PTR_ERR(page);
  537. /* Make dnode_of_data for parameter */
  538. dn->node_page = page;
  539. dn->ofs_in_node = 0;
  540. truncate_data_blocks(dn);
  541. truncate_node(dn);
  542. return 1;
  543. }
  544. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  545. int ofs, int depth)
  546. {
  547. struct dnode_of_data rdn = *dn;
  548. struct page *page;
  549. struct f2fs_node *rn;
  550. nid_t child_nid;
  551. unsigned int child_nofs;
  552. int freed = 0;
  553. int i, ret;
  554. if (dn->nid == 0)
  555. return NIDS_PER_BLOCK + 1;
  556. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  557. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  558. if (IS_ERR(page)) {
  559. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  560. return PTR_ERR(page);
  561. }
  562. rn = F2FS_NODE(page);
  563. if (depth < 3) {
  564. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  565. child_nid = le32_to_cpu(rn->in.nid[i]);
  566. if (child_nid == 0)
  567. continue;
  568. rdn.nid = child_nid;
  569. ret = truncate_dnode(&rdn);
  570. if (ret < 0)
  571. goto out_err;
  572. set_nid(page, i, 0, false);
  573. }
  574. } else {
  575. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  576. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  577. child_nid = le32_to_cpu(rn->in.nid[i]);
  578. if (child_nid == 0) {
  579. child_nofs += NIDS_PER_BLOCK + 1;
  580. continue;
  581. }
  582. rdn.nid = child_nid;
  583. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  584. if (ret == (NIDS_PER_BLOCK + 1)) {
  585. set_nid(page, i, 0, false);
  586. child_nofs += ret;
  587. } else if (ret < 0 && ret != -ENOENT) {
  588. goto out_err;
  589. }
  590. }
  591. freed = child_nofs;
  592. }
  593. if (!ofs) {
  594. /* remove current indirect node */
  595. dn->node_page = page;
  596. truncate_node(dn);
  597. freed++;
  598. } else {
  599. f2fs_put_page(page, 1);
  600. }
  601. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  602. return freed;
  603. out_err:
  604. f2fs_put_page(page, 1);
  605. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  606. return ret;
  607. }
  608. static int truncate_partial_nodes(struct dnode_of_data *dn,
  609. struct f2fs_inode *ri, int *offset, int depth)
  610. {
  611. struct page *pages[2];
  612. nid_t nid[3];
  613. nid_t child_nid;
  614. int err = 0;
  615. int i;
  616. int idx = depth - 2;
  617. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  618. if (!nid[0])
  619. return 0;
  620. /* get indirect nodes in the path */
  621. for (i = 0; i < idx + 1; i++) {
  622. /* reference count'll be increased */
  623. pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
  624. if (IS_ERR(pages[i])) {
  625. err = PTR_ERR(pages[i]);
  626. idx = i - 1;
  627. goto fail;
  628. }
  629. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  630. }
  631. /* free direct nodes linked to a partial indirect node */
  632. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  633. child_nid = get_nid(pages[idx], i, false);
  634. if (!child_nid)
  635. continue;
  636. dn->nid = child_nid;
  637. err = truncate_dnode(dn);
  638. if (err < 0)
  639. goto fail;
  640. set_nid(pages[idx], i, 0, false);
  641. }
  642. if (offset[idx + 1] == 0) {
  643. dn->node_page = pages[idx];
  644. dn->nid = nid[idx];
  645. truncate_node(dn);
  646. } else {
  647. f2fs_put_page(pages[idx], 1);
  648. }
  649. offset[idx]++;
  650. offset[idx + 1] = 0;
  651. idx--;
  652. fail:
  653. for (i = idx; i >= 0; i--)
  654. f2fs_put_page(pages[i], 1);
  655. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  656. return err;
  657. }
  658. /*
  659. * All the block addresses of data and nodes should be nullified.
  660. */
  661. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  662. {
  663. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  664. int err = 0, cont = 1;
  665. int level, offset[4], noffset[4];
  666. unsigned int nofs = 0;
  667. struct f2fs_inode *ri;
  668. struct dnode_of_data dn;
  669. struct page *page;
  670. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  671. level = get_node_path(F2FS_I(inode), from, offset, noffset);
  672. restart:
  673. page = get_node_page(sbi, inode->i_ino);
  674. if (IS_ERR(page)) {
  675. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  676. return PTR_ERR(page);
  677. }
  678. set_new_dnode(&dn, inode, page, NULL, 0);
  679. unlock_page(page);
  680. ri = F2FS_INODE(page);
  681. switch (level) {
  682. case 0:
  683. case 1:
  684. nofs = noffset[1];
  685. break;
  686. case 2:
  687. nofs = noffset[1];
  688. if (!offset[level - 1])
  689. goto skip_partial;
  690. err = truncate_partial_nodes(&dn, ri, offset, level);
  691. if (err < 0 && err != -ENOENT)
  692. goto fail;
  693. nofs += 1 + NIDS_PER_BLOCK;
  694. break;
  695. case 3:
  696. nofs = 5 + 2 * NIDS_PER_BLOCK;
  697. if (!offset[level - 1])
  698. goto skip_partial;
  699. err = truncate_partial_nodes(&dn, ri, offset, level);
  700. if (err < 0 && err != -ENOENT)
  701. goto fail;
  702. break;
  703. default:
  704. BUG();
  705. }
  706. skip_partial:
  707. while (cont) {
  708. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  709. switch (offset[0]) {
  710. case NODE_DIR1_BLOCK:
  711. case NODE_DIR2_BLOCK:
  712. err = truncate_dnode(&dn);
  713. break;
  714. case NODE_IND1_BLOCK:
  715. case NODE_IND2_BLOCK:
  716. err = truncate_nodes(&dn, nofs, offset[1], 2);
  717. break;
  718. case NODE_DIND_BLOCK:
  719. err = truncate_nodes(&dn, nofs, offset[1], 3);
  720. cont = 0;
  721. break;
  722. default:
  723. BUG();
  724. }
  725. if (err < 0 && err != -ENOENT)
  726. goto fail;
  727. if (offset[1] == 0 &&
  728. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  729. lock_page(page);
  730. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  731. f2fs_put_page(page, 1);
  732. goto restart;
  733. }
  734. f2fs_wait_on_page_writeback(page, NODE);
  735. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  736. set_page_dirty(page);
  737. unlock_page(page);
  738. }
  739. offset[1] = 0;
  740. offset[0]++;
  741. nofs += err;
  742. }
  743. fail:
  744. f2fs_put_page(page, 0);
  745. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  746. return err > 0 ? 0 : err;
  747. }
  748. int truncate_xattr_node(struct inode *inode, struct page *page)
  749. {
  750. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  751. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  752. struct dnode_of_data dn;
  753. struct page *npage;
  754. if (!nid)
  755. return 0;
  756. npage = get_node_page(sbi, nid);
  757. if (IS_ERR(npage))
  758. return PTR_ERR(npage);
  759. F2FS_I(inode)->i_xattr_nid = 0;
  760. /* need to do checkpoint during fsync */
  761. F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
  762. set_new_dnode(&dn, inode, page, npage, nid);
  763. if (page)
  764. dn.inode_page_locked = true;
  765. truncate_node(&dn);
  766. return 0;
  767. }
  768. /*
  769. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  770. * f2fs_unlock_op().
  771. */
  772. void remove_inode_page(struct inode *inode)
  773. {
  774. struct dnode_of_data dn;
  775. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  776. if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
  777. return;
  778. if (truncate_xattr_node(inode, dn.inode_page)) {
  779. f2fs_put_dnode(&dn);
  780. return;
  781. }
  782. /* remove potential inline_data blocks */
  783. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  784. S_ISLNK(inode->i_mode))
  785. truncate_data_blocks_range(&dn, 1);
  786. /* 0 is possible, after f2fs_new_inode() has failed */
  787. f2fs_bug_on(F2FS_I_SB(inode),
  788. inode->i_blocks != 0 && inode->i_blocks != 1);
  789. /* will put inode & node pages */
  790. truncate_node(&dn);
  791. }
  792. struct page *new_inode_page(struct inode *inode)
  793. {
  794. struct dnode_of_data dn;
  795. /* allocate inode page for new inode */
  796. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  797. /* caller should f2fs_put_page(page, 1); */
  798. return new_node_page(&dn, 0, NULL);
  799. }
  800. struct page *new_node_page(struct dnode_of_data *dn,
  801. unsigned int ofs, struct page *ipage)
  802. {
  803. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  804. struct node_info old_ni, new_ni;
  805. struct page *page;
  806. int err;
  807. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  808. return ERR_PTR(-EPERM);
  809. page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
  810. if (!page)
  811. return ERR_PTR(-ENOMEM);
  812. if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
  813. err = -ENOSPC;
  814. goto fail;
  815. }
  816. get_node_info(sbi, dn->nid, &old_ni);
  817. /* Reinitialize old_ni with new node page */
  818. f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
  819. new_ni = old_ni;
  820. new_ni.ino = dn->inode->i_ino;
  821. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  822. f2fs_wait_on_page_writeback(page, NODE);
  823. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  824. set_cold_node(dn->inode, page);
  825. SetPageUptodate(page);
  826. set_page_dirty(page);
  827. if (f2fs_has_xattr_block(ofs))
  828. F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
  829. dn->node_page = page;
  830. if (ipage)
  831. update_inode(dn->inode, ipage);
  832. else
  833. sync_inode_page(dn);
  834. if (ofs == 0)
  835. inc_valid_inode_count(sbi);
  836. return page;
  837. fail:
  838. clear_node_page_dirty(page);
  839. f2fs_put_page(page, 1);
  840. return ERR_PTR(err);
  841. }
  842. /*
  843. * Caller should do after getting the following values.
  844. * 0: f2fs_put_page(page, 0)
  845. * LOCKED_PAGE: f2fs_put_page(page, 1)
  846. * error: nothing
  847. */
  848. static int read_node_page(struct page *page, int rw)
  849. {
  850. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  851. struct node_info ni;
  852. get_node_info(sbi, page->index, &ni);
  853. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  854. f2fs_put_page(page, 1);
  855. return -ENOENT;
  856. }
  857. if (PageUptodate(page))
  858. return LOCKED_PAGE;
  859. return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
  860. }
  861. /*
  862. * Readahead a node page
  863. */
  864. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  865. {
  866. struct page *apage;
  867. int err;
  868. apage = find_get_page(NODE_MAPPING(sbi), nid);
  869. if (apage && PageUptodate(apage)) {
  870. f2fs_put_page(apage, 0);
  871. return;
  872. }
  873. f2fs_put_page(apage, 0);
  874. apage = grab_cache_page(NODE_MAPPING(sbi), nid);
  875. if (!apage)
  876. return;
  877. err = read_node_page(apage, READA);
  878. if (err == 0)
  879. f2fs_put_page(apage, 0);
  880. else if (err == LOCKED_PAGE)
  881. f2fs_put_page(apage, 1);
  882. }
  883. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  884. {
  885. struct page *page;
  886. int err;
  887. repeat:
  888. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  889. if (!page)
  890. return ERR_PTR(-ENOMEM);
  891. err = read_node_page(page, READ_SYNC);
  892. if (err < 0)
  893. return ERR_PTR(err);
  894. else if (err == LOCKED_PAGE)
  895. goto got_it;
  896. lock_page(page);
  897. if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
  898. f2fs_put_page(page, 1);
  899. return ERR_PTR(-EIO);
  900. }
  901. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  902. f2fs_put_page(page, 1);
  903. goto repeat;
  904. }
  905. got_it:
  906. return page;
  907. }
  908. /*
  909. * Return a locked page for the desired node page.
  910. * And, readahead MAX_RA_NODE number of node pages.
  911. */
  912. struct page *get_node_page_ra(struct page *parent, int start)
  913. {
  914. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  915. struct blk_plug plug;
  916. struct page *page;
  917. int err, i, end;
  918. nid_t nid;
  919. /* First, try getting the desired direct node. */
  920. nid = get_nid(parent, start, false);
  921. if (!nid)
  922. return ERR_PTR(-ENOENT);
  923. repeat:
  924. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  925. if (!page)
  926. return ERR_PTR(-ENOMEM);
  927. err = read_node_page(page, READ_SYNC);
  928. if (err < 0)
  929. return ERR_PTR(err);
  930. else if (err == LOCKED_PAGE)
  931. goto page_hit;
  932. blk_start_plug(&plug);
  933. /* Then, try readahead for siblings of the desired node */
  934. end = start + MAX_RA_NODE;
  935. end = min(end, NIDS_PER_BLOCK);
  936. for (i = start + 1; i < end; i++) {
  937. nid = get_nid(parent, i, false);
  938. if (!nid)
  939. continue;
  940. ra_node_page(sbi, nid);
  941. }
  942. blk_finish_plug(&plug);
  943. lock_page(page);
  944. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  945. f2fs_put_page(page, 1);
  946. goto repeat;
  947. }
  948. page_hit:
  949. if (unlikely(!PageUptodate(page))) {
  950. f2fs_put_page(page, 1);
  951. return ERR_PTR(-EIO);
  952. }
  953. return page;
  954. }
  955. void sync_inode_page(struct dnode_of_data *dn)
  956. {
  957. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  958. update_inode(dn->inode, dn->node_page);
  959. } else if (dn->inode_page) {
  960. if (!dn->inode_page_locked)
  961. lock_page(dn->inode_page);
  962. update_inode(dn->inode, dn->inode_page);
  963. if (!dn->inode_page_locked)
  964. unlock_page(dn->inode_page);
  965. } else {
  966. update_inode_page(dn->inode);
  967. }
  968. }
  969. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  970. struct writeback_control *wbc)
  971. {
  972. pgoff_t index, end;
  973. struct pagevec pvec;
  974. int step = ino ? 2 : 0;
  975. int nwritten = 0, wrote = 0;
  976. pagevec_init(&pvec, 0);
  977. next_step:
  978. index = 0;
  979. end = LONG_MAX;
  980. while (index <= end) {
  981. int i, nr_pages;
  982. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  983. PAGECACHE_TAG_DIRTY,
  984. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  985. if (nr_pages == 0)
  986. break;
  987. for (i = 0; i < nr_pages; i++) {
  988. struct page *page = pvec.pages[i];
  989. /*
  990. * flushing sequence with step:
  991. * 0. indirect nodes
  992. * 1. dentry dnodes
  993. * 2. file dnodes
  994. */
  995. if (step == 0 && IS_DNODE(page))
  996. continue;
  997. if (step == 1 && (!IS_DNODE(page) ||
  998. is_cold_node(page)))
  999. continue;
  1000. if (step == 2 && (!IS_DNODE(page) ||
  1001. !is_cold_node(page)))
  1002. continue;
  1003. /*
  1004. * If an fsync mode,
  1005. * we should not skip writing node pages.
  1006. */
  1007. if (ino && ino_of_node(page) == ino)
  1008. lock_page(page);
  1009. else if (!trylock_page(page))
  1010. continue;
  1011. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1012. continue_unlock:
  1013. unlock_page(page);
  1014. continue;
  1015. }
  1016. if (ino && ino_of_node(page) != ino)
  1017. goto continue_unlock;
  1018. if (!PageDirty(page)) {
  1019. /* someone wrote it for us */
  1020. goto continue_unlock;
  1021. }
  1022. if (!clear_page_dirty_for_io(page))
  1023. goto continue_unlock;
  1024. /* called by fsync() */
  1025. if (ino && IS_DNODE(page)) {
  1026. set_fsync_mark(page, 1);
  1027. if (IS_INODE(page)) {
  1028. if (!is_checkpointed_node(sbi, ino) &&
  1029. !has_fsynced_inode(sbi, ino))
  1030. set_dentry_mark(page, 1);
  1031. else
  1032. set_dentry_mark(page, 0);
  1033. }
  1034. nwritten++;
  1035. } else {
  1036. set_fsync_mark(page, 0);
  1037. set_dentry_mark(page, 0);
  1038. }
  1039. if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
  1040. unlock_page(page);
  1041. else
  1042. wrote++;
  1043. if (--wbc->nr_to_write == 0)
  1044. break;
  1045. }
  1046. pagevec_release(&pvec);
  1047. cond_resched();
  1048. if (wbc->nr_to_write == 0) {
  1049. step = 2;
  1050. break;
  1051. }
  1052. }
  1053. if (step < 2) {
  1054. step++;
  1055. goto next_step;
  1056. }
  1057. if (wrote)
  1058. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1059. return nwritten;
  1060. }
  1061. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  1062. {
  1063. pgoff_t index = 0, end = LONG_MAX;
  1064. struct pagevec pvec;
  1065. int ret2 = 0, ret = 0;
  1066. pagevec_init(&pvec, 0);
  1067. while (index <= end) {
  1068. int i, nr_pages;
  1069. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1070. PAGECACHE_TAG_WRITEBACK,
  1071. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1072. if (nr_pages == 0)
  1073. break;
  1074. for (i = 0; i < nr_pages; i++) {
  1075. struct page *page = pvec.pages[i];
  1076. /* until radix tree lookup accepts end_index */
  1077. if (unlikely(page->index > end))
  1078. continue;
  1079. if (ino && ino_of_node(page) == ino) {
  1080. f2fs_wait_on_page_writeback(page, NODE);
  1081. if (TestClearPageError(page))
  1082. ret = -EIO;
  1083. }
  1084. }
  1085. pagevec_release(&pvec);
  1086. cond_resched();
  1087. }
  1088. if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
  1089. ret2 = -ENOSPC;
  1090. if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
  1091. ret2 = -EIO;
  1092. if (!ret)
  1093. ret = ret2;
  1094. return ret;
  1095. }
  1096. static int f2fs_write_node_page(struct page *page,
  1097. struct writeback_control *wbc)
  1098. {
  1099. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1100. nid_t nid;
  1101. block_t new_addr;
  1102. struct node_info ni;
  1103. struct f2fs_io_info fio = {
  1104. .type = NODE,
  1105. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  1106. };
  1107. trace_f2fs_writepage(page, NODE);
  1108. if (unlikely(sbi->por_doing))
  1109. goto redirty_out;
  1110. if (unlikely(f2fs_cp_error(sbi)))
  1111. goto redirty_out;
  1112. f2fs_wait_on_page_writeback(page, NODE);
  1113. /* get old block addr of this node page */
  1114. nid = nid_of_node(page);
  1115. f2fs_bug_on(sbi, page->index != nid);
  1116. get_node_info(sbi, nid, &ni);
  1117. /* This page is already truncated */
  1118. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1119. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1120. unlock_page(page);
  1121. return 0;
  1122. }
  1123. if (wbc->for_reclaim) {
  1124. if (!down_read_trylock(&sbi->node_write))
  1125. goto redirty_out;
  1126. } else {
  1127. down_read(&sbi->node_write);
  1128. }
  1129. set_page_writeback(page);
  1130. write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
  1131. set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
  1132. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1133. up_read(&sbi->node_write);
  1134. unlock_page(page);
  1135. if (wbc->for_reclaim)
  1136. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1137. return 0;
  1138. redirty_out:
  1139. redirty_page_for_writepage(wbc, page);
  1140. return AOP_WRITEPAGE_ACTIVATE;
  1141. }
  1142. static int f2fs_write_node_pages(struct address_space *mapping,
  1143. struct writeback_control *wbc)
  1144. {
  1145. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1146. long diff;
  1147. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1148. /* balancing f2fs's metadata in background */
  1149. f2fs_balance_fs_bg(sbi);
  1150. /* collect a number of dirty node pages and write together */
  1151. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1152. goto skip_write;
  1153. diff = nr_pages_to_write(sbi, NODE, wbc);
  1154. wbc->sync_mode = WB_SYNC_NONE;
  1155. sync_node_pages(sbi, 0, wbc);
  1156. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1157. return 0;
  1158. skip_write:
  1159. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1160. return 0;
  1161. }
  1162. static int f2fs_set_node_page_dirty(struct page *page)
  1163. {
  1164. trace_f2fs_set_page_dirty(page, NODE);
  1165. SetPageUptodate(page);
  1166. if (!PageDirty(page)) {
  1167. __set_page_dirty_nobuffers(page);
  1168. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  1169. SetPagePrivate(page);
  1170. return 1;
  1171. }
  1172. return 0;
  1173. }
  1174. static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
  1175. unsigned int length)
  1176. {
  1177. struct inode *inode = page->mapping->host;
  1178. if (PageDirty(page))
  1179. dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_NODES);
  1180. ClearPagePrivate(page);
  1181. }
  1182. static int f2fs_release_node_page(struct page *page, gfp_t wait)
  1183. {
  1184. ClearPagePrivate(page);
  1185. return 1;
  1186. }
  1187. /*
  1188. * Structure of the f2fs node operations
  1189. */
  1190. const struct address_space_operations f2fs_node_aops = {
  1191. .writepage = f2fs_write_node_page,
  1192. .writepages = f2fs_write_node_pages,
  1193. .set_page_dirty = f2fs_set_node_page_dirty,
  1194. .invalidatepage = f2fs_invalidate_node_page,
  1195. .releasepage = f2fs_release_node_page,
  1196. };
  1197. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1198. nid_t n)
  1199. {
  1200. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1201. }
  1202. static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
  1203. struct free_nid *i)
  1204. {
  1205. list_del(&i->list);
  1206. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1207. }
  1208. static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
  1209. {
  1210. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1211. struct free_nid *i;
  1212. struct nat_entry *ne;
  1213. bool allocated = false;
  1214. if (!available_free_memory(sbi, FREE_NIDS))
  1215. return -1;
  1216. /* 0 nid should not be used */
  1217. if (unlikely(nid == 0))
  1218. return 0;
  1219. if (build) {
  1220. /* do not add allocated nids */
  1221. down_read(&nm_i->nat_tree_lock);
  1222. ne = __lookup_nat_cache(nm_i, nid);
  1223. if (ne &&
  1224. (!get_nat_flag(ne, IS_CHECKPOINTED) ||
  1225. nat_get_blkaddr(ne) != NULL_ADDR))
  1226. allocated = true;
  1227. up_read(&nm_i->nat_tree_lock);
  1228. if (allocated)
  1229. return 0;
  1230. }
  1231. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1232. i->nid = nid;
  1233. i->state = NID_NEW;
  1234. if (radix_tree_preload(GFP_NOFS)) {
  1235. kmem_cache_free(free_nid_slab, i);
  1236. return 0;
  1237. }
  1238. spin_lock(&nm_i->free_nid_list_lock);
  1239. if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
  1240. spin_unlock(&nm_i->free_nid_list_lock);
  1241. radix_tree_preload_end();
  1242. kmem_cache_free(free_nid_slab, i);
  1243. return 0;
  1244. }
  1245. list_add_tail(&i->list, &nm_i->free_nid_list);
  1246. nm_i->fcnt++;
  1247. spin_unlock(&nm_i->free_nid_list_lock);
  1248. radix_tree_preload_end();
  1249. return 1;
  1250. }
  1251. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1252. {
  1253. struct free_nid *i;
  1254. bool need_free = false;
  1255. spin_lock(&nm_i->free_nid_list_lock);
  1256. i = __lookup_free_nid_list(nm_i, nid);
  1257. if (i && i->state == NID_NEW) {
  1258. __del_from_free_nid_list(nm_i, i);
  1259. nm_i->fcnt--;
  1260. need_free = true;
  1261. }
  1262. spin_unlock(&nm_i->free_nid_list_lock);
  1263. if (need_free)
  1264. kmem_cache_free(free_nid_slab, i);
  1265. }
  1266. static void scan_nat_page(struct f2fs_sb_info *sbi,
  1267. struct page *nat_page, nid_t start_nid)
  1268. {
  1269. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1270. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1271. block_t blk_addr;
  1272. int i;
  1273. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1274. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1275. if (unlikely(start_nid >= nm_i->max_nid))
  1276. break;
  1277. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1278. f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
  1279. if (blk_addr == NULL_ADDR) {
  1280. if (add_free_nid(sbi, start_nid, true) < 0)
  1281. break;
  1282. }
  1283. }
  1284. }
  1285. static void build_free_nids(struct f2fs_sb_info *sbi)
  1286. {
  1287. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1288. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1289. struct f2fs_summary_block *sum = curseg->sum_blk;
  1290. int i = 0;
  1291. nid_t nid = nm_i->next_scan_nid;
  1292. /* Enough entries */
  1293. if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
  1294. return;
  1295. /* readahead nat pages to be scanned */
  1296. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
  1297. while (1) {
  1298. struct page *page = get_current_nat_page(sbi, nid);
  1299. scan_nat_page(sbi, page, nid);
  1300. f2fs_put_page(page, 1);
  1301. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1302. if (unlikely(nid >= nm_i->max_nid))
  1303. nid = 0;
  1304. if (i++ == FREE_NID_PAGES)
  1305. break;
  1306. }
  1307. /* go to the next free nat pages to find free nids abundantly */
  1308. nm_i->next_scan_nid = nid;
  1309. /* find free nids from current sum_pages */
  1310. mutex_lock(&curseg->curseg_mutex);
  1311. for (i = 0; i < nats_in_cursum(sum); i++) {
  1312. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1313. nid = le32_to_cpu(nid_in_journal(sum, i));
  1314. if (addr == NULL_ADDR)
  1315. add_free_nid(sbi, nid, true);
  1316. else
  1317. remove_free_nid(nm_i, nid);
  1318. }
  1319. mutex_unlock(&curseg->curseg_mutex);
  1320. }
  1321. /*
  1322. * If this function returns success, caller can obtain a new nid
  1323. * from second parameter of this function.
  1324. * The returned nid could be used ino as well as nid when inode is created.
  1325. */
  1326. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1327. {
  1328. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1329. struct free_nid *i = NULL;
  1330. retry:
  1331. if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
  1332. return false;
  1333. spin_lock(&nm_i->free_nid_list_lock);
  1334. /* We should not use stale free nids created by build_free_nids */
  1335. if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
  1336. f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
  1337. list_for_each_entry(i, &nm_i->free_nid_list, list)
  1338. if (i->state == NID_NEW)
  1339. break;
  1340. f2fs_bug_on(sbi, i->state != NID_NEW);
  1341. *nid = i->nid;
  1342. i->state = NID_ALLOC;
  1343. nm_i->fcnt--;
  1344. spin_unlock(&nm_i->free_nid_list_lock);
  1345. return true;
  1346. }
  1347. spin_unlock(&nm_i->free_nid_list_lock);
  1348. /* Let's scan nat pages and its caches to get free nids */
  1349. mutex_lock(&nm_i->build_lock);
  1350. build_free_nids(sbi);
  1351. mutex_unlock(&nm_i->build_lock);
  1352. goto retry;
  1353. }
  1354. /*
  1355. * alloc_nid() should be called prior to this function.
  1356. */
  1357. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1358. {
  1359. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1360. struct free_nid *i;
  1361. spin_lock(&nm_i->free_nid_list_lock);
  1362. i = __lookup_free_nid_list(nm_i, nid);
  1363. f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
  1364. __del_from_free_nid_list(nm_i, i);
  1365. spin_unlock(&nm_i->free_nid_list_lock);
  1366. kmem_cache_free(free_nid_slab, i);
  1367. }
  1368. /*
  1369. * alloc_nid() should be called prior to this function.
  1370. */
  1371. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1372. {
  1373. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1374. struct free_nid *i;
  1375. bool need_free = false;
  1376. if (!nid)
  1377. return;
  1378. spin_lock(&nm_i->free_nid_list_lock);
  1379. i = __lookup_free_nid_list(nm_i, nid);
  1380. f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
  1381. if (!available_free_memory(sbi, FREE_NIDS)) {
  1382. __del_from_free_nid_list(nm_i, i);
  1383. need_free = true;
  1384. } else {
  1385. i->state = NID_NEW;
  1386. nm_i->fcnt++;
  1387. }
  1388. spin_unlock(&nm_i->free_nid_list_lock);
  1389. if (need_free)
  1390. kmem_cache_free(free_nid_slab, i);
  1391. }
  1392. void recover_inline_xattr(struct inode *inode, struct page *page)
  1393. {
  1394. void *src_addr, *dst_addr;
  1395. size_t inline_size;
  1396. struct page *ipage;
  1397. struct f2fs_inode *ri;
  1398. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  1399. f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
  1400. ri = F2FS_INODE(page);
  1401. if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
  1402. clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
  1403. goto update_inode;
  1404. }
  1405. dst_addr = inline_xattr_addr(ipage);
  1406. src_addr = inline_xattr_addr(page);
  1407. inline_size = inline_xattr_size(inode);
  1408. f2fs_wait_on_page_writeback(ipage, NODE);
  1409. memcpy(dst_addr, src_addr, inline_size);
  1410. update_inode:
  1411. update_inode(inode, ipage);
  1412. f2fs_put_page(ipage, 1);
  1413. }
  1414. void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
  1415. {
  1416. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1417. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1418. nid_t new_xnid = nid_of_node(page);
  1419. struct node_info ni;
  1420. /* 1: invalidate the previous xattr nid */
  1421. if (!prev_xnid)
  1422. goto recover_xnid;
  1423. /* Deallocate node address */
  1424. get_node_info(sbi, prev_xnid, &ni);
  1425. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  1426. invalidate_blocks(sbi, ni.blk_addr);
  1427. dec_valid_node_count(sbi, inode);
  1428. set_node_addr(sbi, &ni, NULL_ADDR, false);
  1429. recover_xnid:
  1430. /* 2: allocate new xattr nid */
  1431. if (unlikely(!inc_valid_node_count(sbi, inode)))
  1432. f2fs_bug_on(sbi, 1);
  1433. remove_free_nid(NM_I(sbi), new_xnid);
  1434. get_node_info(sbi, new_xnid, &ni);
  1435. ni.ino = inode->i_ino;
  1436. set_node_addr(sbi, &ni, NEW_ADDR, false);
  1437. F2FS_I(inode)->i_xattr_nid = new_xnid;
  1438. /* 3: update xattr blkaddr */
  1439. refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
  1440. set_node_addr(sbi, &ni, blkaddr, false);
  1441. update_inode_page(inode);
  1442. }
  1443. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1444. {
  1445. struct f2fs_inode *src, *dst;
  1446. nid_t ino = ino_of_node(page);
  1447. struct node_info old_ni, new_ni;
  1448. struct page *ipage;
  1449. get_node_info(sbi, ino, &old_ni);
  1450. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  1451. return -EINVAL;
  1452. ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
  1453. if (!ipage)
  1454. return -ENOMEM;
  1455. /* Should not use this inode from free nid list */
  1456. remove_free_nid(NM_I(sbi), ino);
  1457. SetPageUptodate(ipage);
  1458. fill_node_footer(ipage, ino, ino, 0, true);
  1459. src = F2FS_INODE(page);
  1460. dst = F2FS_INODE(ipage);
  1461. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1462. dst->i_size = 0;
  1463. dst->i_blocks = cpu_to_le64(1);
  1464. dst->i_links = cpu_to_le32(1);
  1465. dst->i_xattr_nid = 0;
  1466. dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
  1467. new_ni = old_ni;
  1468. new_ni.ino = ino;
  1469. if (unlikely(!inc_valid_node_count(sbi, NULL)))
  1470. WARN_ON(1);
  1471. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1472. inc_valid_inode_count(sbi);
  1473. set_page_dirty(ipage);
  1474. f2fs_put_page(ipage, 1);
  1475. return 0;
  1476. }
  1477. /*
  1478. * ra_sum_pages() merge contiguous pages into one bio and submit.
  1479. * these pre-read pages are allocated in bd_inode's mapping tree.
  1480. */
  1481. static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
  1482. int start, int nrpages)
  1483. {
  1484. struct inode *inode = sbi->sb->s_bdev->bd_inode;
  1485. struct address_space *mapping = inode->i_mapping;
  1486. int i, page_idx = start;
  1487. struct f2fs_io_info fio = {
  1488. .type = META,
  1489. .rw = READ_SYNC | REQ_META | REQ_PRIO
  1490. };
  1491. for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
  1492. /* alloc page in bd_inode for reading node summary info */
  1493. pages[i] = grab_cache_page(mapping, page_idx);
  1494. if (!pages[i])
  1495. break;
  1496. f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
  1497. }
  1498. f2fs_submit_merged_bio(sbi, META, READ);
  1499. return i;
  1500. }
  1501. int restore_node_summary(struct f2fs_sb_info *sbi,
  1502. unsigned int segno, struct f2fs_summary_block *sum)
  1503. {
  1504. struct f2fs_node *rn;
  1505. struct f2fs_summary *sum_entry;
  1506. struct inode *inode = sbi->sb->s_bdev->bd_inode;
  1507. block_t addr;
  1508. int bio_blocks = MAX_BIO_BLOCKS(sbi);
  1509. struct page *pages[bio_blocks];
  1510. int i, idx, last_offset, nrpages, err = 0;
  1511. /* scan the node segment */
  1512. last_offset = sbi->blocks_per_seg;
  1513. addr = START_BLOCK(sbi, segno);
  1514. sum_entry = &sum->entries[0];
  1515. for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
  1516. nrpages = min(last_offset - i, bio_blocks);
  1517. /* readahead node pages */
  1518. nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
  1519. if (!nrpages)
  1520. return -ENOMEM;
  1521. for (idx = 0; idx < nrpages; idx++) {
  1522. if (err)
  1523. goto skip;
  1524. lock_page(pages[idx]);
  1525. if (unlikely(!PageUptodate(pages[idx]))) {
  1526. err = -EIO;
  1527. } else {
  1528. rn = F2FS_NODE(pages[idx]);
  1529. sum_entry->nid = rn->footer.nid;
  1530. sum_entry->version = 0;
  1531. sum_entry->ofs_in_node = 0;
  1532. sum_entry++;
  1533. }
  1534. unlock_page(pages[idx]);
  1535. skip:
  1536. page_cache_release(pages[idx]);
  1537. }
  1538. invalidate_mapping_pages(inode->i_mapping, addr,
  1539. addr + nrpages);
  1540. }
  1541. return err;
  1542. }
  1543. static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
  1544. {
  1545. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1546. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1547. struct f2fs_summary_block *sum = curseg->sum_blk;
  1548. int i;
  1549. mutex_lock(&curseg->curseg_mutex);
  1550. for (i = 0; i < nats_in_cursum(sum); i++) {
  1551. struct nat_entry *ne;
  1552. struct f2fs_nat_entry raw_ne;
  1553. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1554. raw_ne = nat_in_journal(sum, i);
  1555. down_write(&nm_i->nat_tree_lock);
  1556. ne = __lookup_nat_cache(nm_i, nid);
  1557. if (!ne) {
  1558. ne = grab_nat_entry(nm_i, nid);
  1559. node_info_from_raw_nat(&ne->ni, &raw_ne);
  1560. }
  1561. __set_nat_cache_dirty(nm_i, ne);
  1562. up_write(&nm_i->nat_tree_lock);
  1563. }
  1564. update_nats_in_cursum(sum, -i);
  1565. mutex_unlock(&curseg->curseg_mutex);
  1566. }
  1567. static void __adjust_nat_entry_set(struct nat_entry_set *nes,
  1568. struct list_head *head, int max)
  1569. {
  1570. struct nat_entry_set *cur;
  1571. if (nes->entry_cnt >= max)
  1572. goto add_out;
  1573. list_for_each_entry(cur, head, set_list) {
  1574. if (cur->entry_cnt >= nes->entry_cnt) {
  1575. list_add(&nes->set_list, cur->set_list.prev);
  1576. return;
  1577. }
  1578. }
  1579. add_out:
  1580. list_add_tail(&nes->set_list, head);
  1581. }
  1582. static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
  1583. struct nat_entry_set *set)
  1584. {
  1585. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1586. struct f2fs_summary_block *sum = curseg->sum_blk;
  1587. nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
  1588. bool to_journal = true;
  1589. struct f2fs_nat_block *nat_blk;
  1590. struct nat_entry *ne, *cur;
  1591. struct page *page = NULL;
  1592. /*
  1593. * there are two steps to flush nat entries:
  1594. * #1, flush nat entries to journal in current hot data summary block.
  1595. * #2, flush nat entries to nat page.
  1596. */
  1597. if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
  1598. to_journal = false;
  1599. if (to_journal) {
  1600. mutex_lock(&curseg->curseg_mutex);
  1601. } else {
  1602. page = get_next_nat_page(sbi, start_nid);
  1603. nat_blk = page_address(page);
  1604. f2fs_bug_on(sbi, !nat_blk);
  1605. }
  1606. /* flush dirty nats in nat entry set */
  1607. list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
  1608. struct f2fs_nat_entry *raw_ne;
  1609. nid_t nid = nat_get_nid(ne);
  1610. int offset;
  1611. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1612. continue;
  1613. if (to_journal) {
  1614. offset = lookup_journal_in_cursum(sum,
  1615. NAT_JOURNAL, nid, 1);
  1616. f2fs_bug_on(sbi, offset < 0);
  1617. raw_ne = &nat_in_journal(sum, offset);
  1618. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1619. } else {
  1620. raw_ne = &nat_blk->entries[nid - start_nid];
  1621. }
  1622. raw_nat_from_node_info(raw_ne, &ne->ni);
  1623. down_write(&NM_I(sbi)->nat_tree_lock);
  1624. nat_reset_flag(ne);
  1625. __clear_nat_cache_dirty(NM_I(sbi), ne);
  1626. up_write(&NM_I(sbi)->nat_tree_lock);
  1627. if (nat_get_blkaddr(ne) == NULL_ADDR)
  1628. add_free_nid(sbi, nid, false);
  1629. }
  1630. if (to_journal)
  1631. mutex_unlock(&curseg->curseg_mutex);
  1632. else
  1633. f2fs_put_page(page, 1);
  1634. f2fs_bug_on(sbi, set->entry_cnt);
  1635. radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
  1636. kmem_cache_free(nat_entry_set_slab, set);
  1637. }
  1638. /*
  1639. * This function is called during the checkpointing process.
  1640. */
  1641. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1642. {
  1643. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1644. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1645. struct f2fs_summary_block *sum = curseg->sum_blk;
  1646. struct nat_entry_set *setvec[NATVEC_SIZE];
  1647. struct nat_entry_set *set, *tmp;
  1648. unsigned int found;
  1649. nid_t set_idx = 0;
  1650. LIST_HEAD(sets);
  1651. if (!nm_i->dirty_nat_cnt)
  1652. return;
  1653. /*
  1654. * if there are no enough space in journal to store dirty nat
  1655. * entries, remove all entries from journal and merge them
  1656. * into nat entry set.
  1657. */
  1658. if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
  1659. remove_nats_in_journal(sbi);
  1660. while ((found = __gang_lookup_nat_set(nm_i,
  1661. set_idx, NATVEC_SIZE, setvec))) {
  1662. unsigned idx;
  1663. set_idx = setvec[found - 1]->set + 1;
  1664. for (idx = 0; idx < found; idx++)
  1665. __adjust_nat_entry_set(setvec[idx], &sets,
  1666. MAX_NAT_JENTRIES(sum));
  1667. }
  1668. /* flush dirty nats in nat entry set */
  1669. list_for_each_entry_safe(set, tmp, &sets, set_list)
  1670. __flush_nat_entry_set(sbi, set);
  1671. f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
  1672. }
  1673. static int init_node_manager(struct f2fs_sb_info *sbi)
  1674. {
  1675. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1676. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1677. unsigned char *version_bitmap;
  1678. unsigned int nat_segs, nat_blocks;
  1679. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1680. /* segment_count_nat includes pair segment so divide to 2. */
  1681. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1682. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1683. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1684. /* not used nids: 0, node, meta, (and root counted as valid node) */
  1685. nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
  1686. nm_i->fcnt = 0;
  1687. nm_i->nat_cnt = 0;
  1688. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  1689. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  1690. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1691. INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
  1692. INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
  1693. INIT_LIST_HEAD(&nm_i->nat_entries);
  1694. mutex_init(&nm_i->build_lock);
  1695. spin_lock_init(&nm_i->free_nid_list_lock);
  1696. init_rwsem(&nm_i->nat_tree_lock);
  1697. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1698. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1699. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1700. if (!version_bitmap)
  1701. return -EFAULT;
  1702. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1703. GFP_KERNEL);
  1704. if (!nm_i->nat_bitmap)
  1705. return -ENOMEM;
  1706. return 0;
  1707. }
  1708. int build_node_manager(struct f2fs_sb_info *sbi)
  1709. {
  1710. int err;
  1711. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1712. if (!sbi->nm_info)
  1713. return -ENOMEM;
  1714. err = init_node_manager(sbi);
  1715. if (err)
  1716. return err;
  1717. build_free_nids(sbi);
  1718. return 0;
  1719. }
  1720. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1721. {
  1722. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1723. struct free_nid *i, *next_i;
  1724. struct nat_entry *natvec[NATVEC_SIZE];
  1725. nid_t nid = 0;
  1726. unsigned int found;
  1727. if (!nm_i)
  1728. return;
  1729. /* destroy free nid list */
  1730. spin_lock(&nm_i->free_nid_list_lock);
  1731. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1732. f2fs_bug_on(sbi, i->state == NID_ALLOC);
  1733. __del_from_free_nid_list(nm_i, i);
  1734. nm_i->fcnt--;
  1735. spin_unlock(&nm_i->free_nid_list_lock);
  1736. kmem_cache_free(free_nid_slab, i);
  1737. spin_lock(&nm_i->free_nid_list_lock);
  1738. }
  1739. f2fs_bug_on(sbi, nm_i->fcnt);
  1740. spin_unlock(&nm_i->free_nid_list_lock);
  1741. /* destroy nat cache */
  1742. down_write(&nm_i->nat_tree_lock);
  1743. while ((found = __gang_lookup_nat_cache(nm_i,
  1744. nid, NATVEC_SIZE, natvec))) {
  1745. unsigned idx;
  1746. nid = nat_get_nid(natvec[found - 1]) + 1;
  1747. for (idx = 0; idx < found; idx++)
  1748. __del_from_nat_cache(nm_i, natvec[idx]);
  1749. }
  1750. f2fs_bug_on(sbi, nm_i->nat_cnt);
  1751. up_write(&nm_i->nat_tree_lock);
  1752. kfree(nm_i->nat_bitmap);
  1753. sbi->nm_info = NULL;
  1754. kfree(nm_i);
  1755. }
  1756. int __init create_node_manager_caches(void)
  1757. {
  1758. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1759. sizeof(struct nat_entry));
  1760. if (!nat_entry_slab)
  1761. goto fail;
  1762. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1763. sizeof(struct free_nid));
  1764. if (!free_nid_slab)
  1765. goto destroy_nat_entry;
  1766. nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
  1767. sizeof(struct nat_entry_set));
  1768. if (!nat_entry_set_slab)
  1769. goto destroy_free_nid;
  1770. return 0;
  1771. destroy_free_nid:
  1772. kmem_cache_destroy(free_nid_slab);
  1773. destroy_nat_entry:
  1774. kmem_cache_destroy(nat_entry_slab);
  1775. fail:
  1776. return -ENOMEM;
  1777. }
  1778. void destroy_node_manager_caches(void)
  1779. {
  1780. kmem_cache_destroy(nat_entry_set_slab);
  1781. kmem_cache_destroy(free_nid_slab);
  1782. kmem_cache_destroy(nat_entry_slab);
  1783. }