inode.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. /*
  2. * fs/f2fs/inode.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/writeback.h>
  15. #include <linux/bitops.h>
  16. #include "f2fs.h"
  17. #include "node.h"
  18. #include <trace/events/f2fs.h>
  19. void f2fs_set_inode_flags(struct inode *inode)
  20. {
  21. unsigned int flags = F2FS_I(inode)->i_flags;
  22. unsigned int new_fl = 0;
  23. if (flags & FS_SYNC_FL)
  24. new_fl |= S_SYNC;
  25. if (flags & FS_APPEND_FL)
  26. new_fl |= S_APPEND;
  27. if (flags & FS_IMMUTABLE_FL)
  28. new_fl |= S_IMMUTABLE;
  29. if (flags & FS_NOATIME_FL)
  30. new_fl |= S_NOATIME;
  31. if (flags & FS_DIRSYNC_FL)
  32. new_fl |= S_DIRSYNC;
  33. set_mask_bits(&inode->i_flags,
  34. S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
  35. }
  36. static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  37. {
  38. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  39. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  40. if (ri->i_addr[0])
  41. inode->i_rdev =
  42. old_decode_dev(le32_to_cpu(ri->i_addr[0]));
  43. else
  44. inode->i_rdev =
  45. new_decode_dev(le32_to_cpu(ri->i_addr[1]));
  46. }
  47. }
  48. static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  49. {
  50. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  51. if (old_valid_dev(inode->i_rdev)) {
  52. ri->i_addr[0] =
  53. cpu_to_le32(old_encode_dev(inode->i_rdev));
  54. ri->i_addr[1] = 0;
  55. } else {
  56. ri->i_addr[0] = 0;
  57. ri->i_addr[1] =
  58. cpu_to_le32(new_encode_dev(inode->i_rdev));
  59. ri->i_addr[2] = 0;
  60. }
  61. }
  62. }
  63. static int __recover_inline_status(struct inode *inode, struct page *ipage)
  64. {
  65. void *inline_data = inline_data_addr(ipage);
  66. struct f2fs_inode *ri;
  67. void *zbuf;
  68. zbuf = kzalloc(MAX_INLINE_DATA, GFP_NOFS);
  69. if (!zbuf)
  70. return -ENOMEM;
  71. if (!memcmp(zbuf, inline_data, MAX_INLINE_DATA)) {
  72. kfree(zbuf);
  73. return 0;
  74. }
  75. kfree(zbuf);
  76. f2fs_wait_on_page_writeback(ipage, NODE);
  77. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  78. ri = F2FS_INODE(ipage);
  79. set_raw_inline(F2FS_I(inode), ri);
  80. set_page_dirty(ipage);
  81. return 0;
  82. }
  83. static int do_read_inode(struct inode *inode)
  84. {
  85. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  86. struct f2fs_inode_info *fi = F2FS_I(inode);
  87. struct page *node_page;
  88. struct f2fs_inode *ri;
  89. int err = 0;
  90. /* Check if ino is within scope */
  91. if (check_nid_range(sbi, inode->i_ino)) {
  92. f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
  93. (unsigned long) inode->i_ino);
  94. WARN_ON(1);
  95. return -EINVAL;
  96. }
  97. node_page = get_node_page(sbi, inode->i_ino);
  98. if (IS_ERR(node_page))
  99. return PTR_ERR(node_page);
  100. ri = F2FS_INODE(node_page);
  101. inode->i_mode = le16_to_cpu(ri->i_mode);
  102. i_uid_write(inode, le32_to_cpu(ri->i_uid));
  103. i_gid_write(inode, le32_to_cpu(ri->i_gid));
  104. set_nlink(inode, le32_to_cpu(ri->i_links));
  105. inode->i_size = le64_to_cpu(ri->i_size);
  106. inode->i_blocks = le64_to_cpu(ri->i_blocks);
  107. inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
  108. inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
  109. inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
  110. inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  111. inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  112. inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  113. inode->i_generation = le32_to_cpu(ri->i_generation);
  114. fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
  115. fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
  116. fi->i_flags = le32_to_cpu(ri->i_flags);
  117. fi->flags = 0;
  118. fi->i_advise = ri->i_advise;
  119. fi->i_pino = le32_to_cpu(ri->i_pino);
  120. fi->i_dir_level = ri->i_dir_level;
  121. get_extent_info(&fi->ext, ri->i_ext);
  122. get_inline_info(fi, ri);
  123. /* check data exist */
  124. if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
  125. err = __recover_inline_status(inode, node_page);
  126. /* get rdev by using inline_info */
  127. __get_inode_rdev(inode, ri);
  128. f2fs_put_page(node_page, 1);
  129. stat_inc_inline_inode(inode);
  130. stat_inc_inline_dir(inode);
  131. return err;
  132. }
  133. struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
  134. {
  135. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  136. struct inode *inode;
  137. int ret = 0;
  138. inode = iget_locked(sb, ino);
  139. if (!inode)
  140. return ERR_PTR(-ENOMEM);
  141. if (!(inode->i_state & I_NEW)) {
  142. trace_f2fs_iget(inode);
  143. return inode;
  144. }
  145. if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
  146. goto make_now;
  147. ret = do_read_inode(inode);
  148. if (ret)
  149. goto bad_inode;
  150. make_now:
  151. if (ino == F2FS_NODE_INO(sbi)) {
  152. inode->i_mapping->a_ops = &f2fs_node_aops;
  153. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  154. } else if (ino == F2FS_META_INO(sbi)) {
  155. inode->i_mapping->a_ops = &f2fs_meta_aops;
  156. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  157. } else if (S_ISREG(inode->i_mode)) {
  158. inode->i_op = &f2fs_file_inode_operations;
  159. inode->i_fop = &f2fs_file_operations;
  160. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  161. } else if (S_ISDIR(inode->i_mode)) {
  162. inode->i_op = &f2fs_dir_inode_operations;
  163. inode->i_fop = &f2fs_dir_operations;
  164. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  165. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
  166. } else if (S_ISLNK(inode->i_mode)) {
  167. inode->i_op = &f2fs_symlink_inode_operations;
  168. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  169. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  170. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  171. inode->i_op = &f2fs_special_inode_operations;
  172. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  173. } else {
  174. ret = -EIO;
  175. goto bad_inode;
  176. }
  177. unlock_new_inode(inode);
  178. trace_f2fs_iget(inode);
  179. return inode;
  180. bad_inode:
  181. iget_failed(inode);
  182. trace_f2fs_iget_exit(inode, ret);
  183. return ERR_PTR(ret);
  184. }
  185. void update_inode(struct inode *inode, struct page *node_page)
  186. {
  187. struct f2fs_inode *ri;
  188. f2fs_wait_on_page_writeback(node_page, NODE);
  189. ri = F2FS_INODE(node_page);
  190. ri->i_mode = cpu_to_le16(inode->i_mode);
  191. ri->i_advise = F2FS_I(inode)->i_advise;
  192. ri->i_uid = cpu_to_le32(i_uid_read(inode));
  193. ri->i_gid = cpu_to_le32(i_gid_read(inode));
  194. ri->i_links = cpu_to_le32(inode->i_nlink);
  195. ri->i_size = cpu_to_le64(i_size_read(inode));
  196. ri->i_blocks = cpu_to_le64(inode->i_blocks);
  197. set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
  198. set_raw_inline(F2FS_I(inode), ri);
  199. ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
  200. ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
  201. ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
  202. ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
  203. ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
  204. ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  205. ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
  206. ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
  207. ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
  208. ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
  209. ri->i_generation = cpu_to_le32(inode->i_generation);
  210. ri->i_dir_level = F2FS_I(inode)->i_dir_level;
  211. __set_inode_rdev(inode, ri);
  212. set_cold_node(inode, node_page);
  213. set_page_dirty(node_page);
  214. clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
  215. }
  216. void update_inode_page(struct inode *inode)
  217. {
  218. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  219. struct page *node_page;
  220. retry:
  221. node_page = get_node_page(sbi, inode->i_ino);
  222. if (IS_ERR(node_page)) {
  223. int err = PTR_ERR(node_page);
  224. if (err == -ENOMEM) {
  225. cond_resched();
  226. goto retry;
  227. } else if (err != -ENOENT) {
  228. f2fs_stop_checkpoint(sbi);
  229. }
  230. return;
  231. }
  232. update_inode(inode, node_page);
  233. f2fs_put_page(node_page, 1);
  234. }
  235. int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
  236. {
  237. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  238. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  239. inode->i_ino == F2FS_META_INO(sbi))
  240. return 0;
  241. if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE))
  242. return 0;
  243. /*
  244. * We need to lock here to prevent from producing dirty node pages
  245. * during the urgent cleaning time when runing out of free sections.
  246. */
  247. f2fs_lock_op(sbi);
  248. update_inode_page(inode);
  249. f2fs_unlock_op(sbi);
  250. if (wbc)
  251. f2fs_balance_fs(sbi);
  252. return 0;
  253. }
  254. /*
  255. * Called at the last iput() if i_nlink is zero
  256. */
  257. void f2fs_evict_inode(struct inode *inode)
  258. {
  259. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  260. nid_t xnid = F2FS_I(inode)->i_xattr_nid;
  261. /* some remained atomic pages should discarded */
  262. if (f2fs_is_atomic_file(inode) || f2fs_is_volatile_file(inode))
  263. commit_inmem_pages(inode, true);
  264. trace_f2fs_evict_inode(inode);
  265. truncate_inode_pages_final(&inode->i_data);
  266. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  267. inode->i_ino == F2FS_META_INO(sbi))
  268. goto out_clear;
  269. f2fs_bug_on(sbi, get_dirty_pages(inode));
  270. remove_dirty_dir_inode(inode);
  271. if (inode->i_nlink || is_bad_inode(inode))
  272. goto no_delete;
  273. sb_start_intwrite(inode->i_sb);
  274. set_inode_flag(F2FS_I(inode), FI_NO_ALLOC);
  275. i_size_write(inode, 0);
  276. if (F2FS_HAS_BLOCKS(inode))
  277. f2fs_truncate(inode);
  278. f2fs_lock_op(sbi);
  279. remove_inode_page(inode);
  280. f2fs_unlock_op(sbi);
  281. sb_end_intwrite(inode->i_sb);
  282. no_delete:
  283. stat_dec_inline_dir(inode);
  284. stat_dec_inline_inode(inode);
  285. invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino);
  286. if (xnid)
  287. invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
  288. if (is_inode_flag_set(F2FS_I(inode), FI_APPEND_WRITE))
  289. add_dirty_inode(sbi, inode->i_ino, APPEND_INO);
  290. if (is_inode_flag_set(F2FS_I(inode), FI_UPDATE_WRITE))
  291. add_dirty_inode(sbi, inode->i_ino, UPDATE_INO);
  292. out_clear:
  293. clear_inode(inode);
  294. }
  295. /* caller should call f2fs_lock_op() */
  296. void handle_failed_inode(struct inode *inode)
  297. {
  298. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  299. clear_nlink(inode);
  300. make_bad_inode(inode);
  301. unlock_new_inode(inode);
  302. i_size_write(inode, 0);
  303. if (F2FS_HAS_BLOCKS(inode))
  304. f2fs_truncate(inode);
  305. remove_inode_page(inode);
  306. clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  307. clear_inode_flag(F2FS_I(inode), FI_INLINE_DENTRY);
  308. alloc_nid_failed(sbi, inode->i_ino);
  309. f2fs_unlock_op(sbi);
  310. /* iput will drop the inode object */
  311. iput(inode);
  312. }