inline.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. bool f2fs_may_inline(struct inode *inode)
  14. {
  15. if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
  16. return false;
  17. if (f2fs_is_atomic_file(inode))
  18. return false;
  19. if (!S_ISREG(inode->i_mode))
  20. return false;
  21. if (i_size_read(inode) > MAX_INLINE_DATA)
  22. return false;
  23. return true;
  24. }
  25. void read_inline_data(struct page *page, struct page *ipage)
  26. {
  27. void *src_addr, *dst_addr;
  28. if (PageUptodate(page))
  29. return;
  30. f2fs_bug_on(F2FS_P_SB(page), page->index);
  31. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  32. /* Copy the whole inline data block */
  33. src_addr = inline_data_addr(ipage);
  34. dst_addr = kmap_atomic(page);
  35. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  36. flush_dcache_page(page);
  37. kunmap_atomic(dst_addr);
  38. SetPageUptodate(page);
  39. }
  40. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  41. {
  42. struct page *ipage;
  43. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  44. if (IS_ERR(ipage)) {
  45. unlock_page(page);
  46. return PTR_ERR(ipage);
  47. }
  48. if (!f2fs_has_inline_data(inode)) {
  49. f2fs_put_page(ipage, 1);
  50. return -EAGAIN;
  51. }
  52. if (page->index)
  53. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  54. else
  55. read_inline_data(page, ipage);
  56. SetPageUptodate(page);
  57. f2fs_put_page(ipage, 1);
  58. unlock_page(page);
  59. return 0;
  60. }
  61. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  62. {
  63. void *src_addr, *dst_addr;
  64. block_t new_blk_addr;
  65. struct f2fs_io_info fio = {
  66. .type = DATA,
  67. .rw = WRITE_SYNC | REQ_PRIO,
  68. };
  69. int dirty, err;
  70. f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
  71. if (!f2fs_exist_data(dn->inode))
  72. goto clear_out;
  73. err = f2fs_reserve_block(dn, 0);
  74. if (err)
  75. return err;
  76. f2fs_wait_on_page_writeback(page, DATA);
  77. if (PageUptodate(page))
  78. goto no_update;
  79. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  80. /* Copy the whole inline data block */
  81. src_addr = inline_data_addr(dn->inode_page);
  82. dst_addr = kmap_atomic(page);
  83. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  84. flush_dcache_page(page);
  85. kunmap_atomic(dst_addr);
  86. SetPageUptodate(page);
  87. no_update:
  88. /* clear dirty state */
  89. dirty = clear_page_dirty_for_io(page);
  90. /* write data page to try to make data consistent */
  91. set_page_writeback(page);
  92. write_data_page(page, dn, &new_blk_addr, &fio);
  93. update_extent_cache(new_blk_addr, dn);
  94. f2fs_wait_on_page_writeback(page, DATA);
  95. if (dirty)
  96. inode_dec_dirty_pages(dn->inode);
  97. /* this converted inline_data should be recovered. */
  98. set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
  99. /* clear inline data and flag after data writeback */
  100. truncate_inline_data(dn->inode_page, 0);
  101. clear_out:
  102. stat_dec_inline_inode(dn->inode);
  103. f2fs_clear_inline_inode(dn->inode);
  104. sync_inode_page(dn);
  105. f2fs_put_dnode(dn);
  106. return 0;
  107. }
  108. int f2fs_convert_inline_inode(struct inode *inode)
  109. {
  110. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  111. struct dnode_of_data dn;
  112. struct page *ipage, *page;
  113. int err = 0;
  114. page = grab_cache_page(inode->i_mapping, 0);
  115. if (!page)
  116. return -ENOMEM;
  117. f2fs_lock_op(sbi);
  118. ipage = get_node_page(sbi, inode->i_ino);
  119. if (IS_ERR(ipage)) {
  120. err = PTR_ERR(ipage);
  121. goto out;
  122. }
  123. set_new_dnode(&dn, inode, ipage, ipage, 0);
  124. if (f2fs_has_inline_data(inode))
  125. err = f2fs_convert_inline_page(&dn, page);
  126. f2fs_put_dnode(&dn);
  127. out:
  128. f2fs_unlock_op(sbi);
  129. f2fs_put_page(page, 1);
  130. return err;
  131. }
  132. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  133. {
  134. void *src_addr, *dst_addr;
  135. struct dnode_of_data dn;
  136. int err;
  137. set_new_dnode(&dn, inode, NULL, NULL, 0);
  138. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  139. if (err)
  140. return err;
  141. if (!f2fs_has_inline_data(inode)) {
  142. f2fs_put_dnode(&dn);
  143. return -EAGAIN;
  144. }
  145. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  146. f2fs_wait_on_page_writeback(dn.inode_page, NODE);
  147. src_addr = kmap_atomic(page);
  148. dst_addr = inline_data_addr(dn.inode_page);
  149. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  150. kunmap_atomic(src_addr);
  151. set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
  152. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  153. sync_inode_page(&dn);
  154. f2fs_put_dnode(&dn);
  155. return 0;
  156. }
  157. void truncate_inline_data(struct page *ipage, u64 from)
  158. {
  159. void *addr;
  160. if (from >= MAX_INLINE_DATA)
  161. return;
  162. f2fs_wait_on_page_writeback(ipage, NODE);
  163. addr = inline_data_addr(ipage);
  164. memset(addr + from, 0, MAX_INLINE_DATA - from);
  165. }
  166. bool recover_inline_data(struct inode *inode, struct page *npage)
  167. {
  168. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  169. struct f2fs_inode *ri = NULL;
  170. void *src_addr, *dst_addr;
  171. struct page *ipage;
  172. /*
  173. * The inline_data recovery policy is as follows.
  174. * [prev.] [next] of inline_data flag
  175. * o o -> recover inline_data
  176. * o x -> remove inline_data, and then recover data blocks
  177. * x o -> remove inline_data, and then recover inline_data
  178. * x x -> recover data blocks
  179. */
  180. if (IS_INODE(npage))
  181. ri = F2FS_INODE(npage);
  182. if (f2fs_has_inline_data(inode) &&
  183. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  184. process_inline:
  185. ipage = get_node_page(sbi, inode->i_ino);
  186. f2fs_bug_on(sbi, IS_ERR(ipage));
  187. f2fs_wait_on_page_writeback(ipage, NODE);
  188. src_addr = inline_data_addr(npage);
  189. dst_addr = inline_data_addr(ipage);
  190. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  191. set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  192. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  193. update_inode(inode, ipage);
  194. f2fs_put_page(ipage, 1);
  195. return true;
  196. }
  197. if (f2fs_has_inline_data(inode)) {
  198. ipage = get_node_page(sbi, inode->i_ino);
  199. f2fs_bug_on(sbi, IS_ERR(ipage));
  200. truncate_inline_data(ipage, 0);
  201. f2fs_clear_inline_inode(inode);
  202. update_inode(inode, ipage);
  203. f2fs_put_page(ipage, 1);
  204. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  205. truncate_blocks(inode, 0, false);
  206. goto process_inline;
  207. }
  208. return false;
  209. }
  210. struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
  211. struct qstr *name, struct page **res_page)
  212. {
  213. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  214. struct f2fs_inline_dentry *inline_dentry;
  215. struct f2fs_dir_entry *de;
  216. struct f2fs_dentry_ptr d;
  217. struct page *ipage;
  218. ipage = get_node_page(sbi, dir->i_ino);
  219. if (IS_ERR(ipage))
  220. return NULL;
  221. inline_dentry = inline_data_addr(ipage);
  222. make_dentry_ptr(&d, (void *)inline_dentry, 2);
  223. de = find_target_dentry(name, NULL, &d);
  224. unlock_page(ipage);
  225. if (de)
  226. *res_page = ipage;
  227. else
  228. f2fs_put_page(ipage, 0);
  229. /*
  230. * For the most part, it should be a bug when name_len is zero.
  231. * We stop here for figuring out where the bugs has occurred.
  232. */
  233. f2fs_bug_on(sbi, d.max < 0);
  234. return de;
  235. }
  236. struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
  237. struct page **p)
  238. {
  239. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  240. struct page *ipage;
  241. struct f2fs_dir_entry *de;
  242. struct f2fs_inline_dentry *dentry_blk;
  243. ipage = get_node_page(sbi, dir->i_ino);
  244. if (IS_ERR(ipage))
  245. return NULL;
  246. dentry_blk = inline_data_addr(ipage);
  247. de = &dentry_blk->dentry[1];
  248. *p = ipage;
  249. unlock_page(ipage);
  250. return de;
  251. }
  252. int make_empty_inline_dir(struct inode *inode, struct inode *parent,
  253. struct page *ipage)
  254. {
  255. struct f2fs_inline_dentry *dentry_blk;
  256. struct f2fs_dentry_ptr d;
  257. dentry_blk = inline_data_addr(ipage);
  258. make_dentry_ptr(&d, (void *)dentry_blk, 2);
  259. do_make_empty_dir(inode, parent, &d);
  260. set_page_dirty(ipage);
  261. /* update i_size to MAX_INLINE_DATA */
  262. if (i_size_read(inode) < MAX_INLINE_DATA) {
  263. i_size_write(inode, MAX_INLINE_DATA);
  264. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  265. }
  266. return 0;
  267. }
  268. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  269. struct f2fs_inline_dentry *inline_dentry)
  270. {
  271. struct page *page;
  272. struct dnode_of_data dn;
  273. struct f2fs_dentry_block *dentry_blk;
  274. int err;
  275. page = grab_cache_page(dir->i_mapping, 0);
  276. if (!page)
  277. return -ENOMEM;
  278. set_new_dnode(&dn, dir, ipage, NULL, 0);
  279. err = f2fs_reserve_block(&dn, 0);
  280. if (err)
  281. goto out;
  282. f2fs_wait_on_page_writeback(page, DATA);
  283. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  284. dentry_blk = kmap_atomic(page);
  285. /* copy data from inline dentry block to new dentry block */
  286. memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
  287. INLINE_DENTRY_BITMAP_SIZE);
  288. memcpy(dentry_blk->dentry, inline_dentry->dentry,
  289. sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
  290. memcpy(dentry_blk->filename, inline_dentry->filename,
  291. NR_INLINE_DENTRY * F2FS_SLOT_LEN);
  292. kunmap_atomic(dentry_blk);
  293. SetPageUptodate(page);
  294. set_page_dirty(page);
  295. /* clear inline dir and flag after data writeback */
  296. truncate_inline_data(ipage, 0);
  297. stat_dec_inline_dir(dir);
  298. clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
  299. if (i_size_read(dir) < PAGE_CACHE_SIZE) {
  300. i_size_write(dir, PAGE_CACHE_SIZE);
  301. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  302. }
  303. sync_inode_page(&dn);
  304. out:
  305. f2fs_put_page(page, 1);
  306. return err;
  307. }
  308. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
  309. struct inode *inode)
  310. {
  311. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  312. struct page *ipage;
  313. unsigned int bit_pos;
  314. f2fs_hash_t name_hash;
  315. struct f2fs_dir_entry *de;
  316. size_t namelen = name->len;
  317. struct f2fs_inline_dentry *dentry_blk = NULL;
  318. int slots = GET_DENTRY_SLOTS(namelen);
  319. struct page *page;
  320. int err = 0;
  321. int i;
  322. name_hash = f2fs_dentry_hash(name);
  323. ipage = get_node_page(sbi, dir->i_ino);
  324. if (IS_ERR(ipage))
  325. return PTR_ERR(ipage);
  326. dentry_blk = inline_data_addr(ipage);
  327. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  328. slots, NR_INLINE_DENTRY);
  329. if (bit_pos >= NR_INLINE_DENTRY) {
  330. err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
  331. if (!err)
  332. err = -EAGAIN;
  333. goto out;
  334. }
  335. down_write(&F2FS_I(inode)->i_sem);
  336. page = init_inode_metadata(inode, dir, name, ipage);
  337. if (IS_ERR(page)) {
  338. err = PTR_ERR(page);
  339. goto fail;
  340. }
  341. f2fs_wait_on_page_writeback(ipage, NODE);
  342. de = &dentry_blk->dentry[bit_pos];
  343. de->hash_code = name_hash;
  344. de->name_len = cpu_to_le16(namelen);
  345. memcpy(dentry_blk->filename[bit_pos], name->name, name->len);
  346. de->ino = cpu_to_le32(inode->i_ino);
  347. set_de_type(de, inode);
  348. for (i = 0; i < slots; i++)
  349. test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  350. set_page_dirty(ipage);
  351. /* we don't need to mark_inode_dirty now */
  352. F2FS_I(inode)->i_pino = dir->i_ino;
  353. update_inode(inode, page);
  354. f2fs_put_page(page, 1);
  355. update_parent_metadata(dir, inode, 0);
  356. fail:
  357. up_write(&F2FS_I(inode)->i_sem);
  358. if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
  359. update_inode(dir, ipage);
  360. clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  361. }
  362. out:
  363. f2fs_put_page(ipage, 1);
  364. return err;
  365. }
  366. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  367. struct inode *dir, struct inode *inode)
  368. {
  369. struct f2fs_inline_dentry *inline_dentry;
  370. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  371. unsigned int bit_pos;
  372. int i;
  373. lock_page(page);
  374. f2fs_wait_on_page_writeback(page, NODE);
  375. inline_dentry = inline_data_addr(page);
  376. bit_pos = dentry - inline_dentry->dentry;
  377. for (i = 0; i < slots; i++)
  378. test_and_clear_bit_le(bit_pos + i,
  379. &inline_dentry->dentry_bitmap);
  380. set_page_dirty(page);
  381. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  382. if (inode)
  383. f2fs_drop_nlink(dir, inode, page);
  384. f2fs_put_page(page, 1);
  385. }
  386. bool f2fs_empty_inline_dir(struct inode *dir)
  387. {
  388. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  389. struct page *ipage;
  390. unsigned int bit_pos = 2;
  391. struct f2fs_inline_dentry *dentry_blk;
  392. ipage = get_node_page(sbi, dir->i_ino);
  393. if (IS_ERR(ipage))
  394. return false;
  395. dentry_blk = inline_data_addr(ipage);
  396. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  397. NR_INLINE_DENTRY,
  398. bit_pos);
  399. f2fs_put_page(ipage, 1);
  400. if (bit_pos < NR_INLINE_DENTRY)
  401. return false;
  402. return true;
  403. }
  404. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
  405. {
  406. struct inode *inode = file_inode(file);
  407. struct f2fs_inline_dentry *inline_dentry = NULL;
  408. struct page *ipage = NULL;
  409. struct f2fs_dentry_ptr d;
  410. if (ctx->pos == NR_INLINE_DENTRY)
  411. return 0;
  412. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  413. if (IS_ERR(ipage))
  414. return PTR_ERR(ipage);
  415. inline_dentry = inline_data_addr(ipage);
  416. make_dentry_ptr(&d, (void *)inline_dentry, 2);
  417. if (!f2fs_fill_dentries(ctx, &d, 0))
  418. ctx->pos = NR_INLINE_DENTRY;
  419. f2fs_put_page(ipage, 1);
  420. return 0;
  421. }