gc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766
  1. /*
  2. * fs/f2fs/gc.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/module.h>
  13. #include <linux/backing-dev.h>
  14. #include <linux/init.h>
  15. #include <linux/f2fs_fs.h>
  16. #include <linux/kthread.h>
  17. #include <linux/delay.h>
  18. #include <linux/freezer.h>
  19. #include <linux/blkdev.h>
  20. #include "f2fs.h"
  21. #include "node.h"
  22. #include "segment.h"
  23. #include "gc.h"
  24. #include <trace/events/f2fs.h>
  25. static struct kmem_cache *winode_slab;
  26. static int gc_thread_func(void *data)
  27. {
  28. struct f2fs_sb_info *sbi = data;
  29. struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
  30. wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
  31. long wait_ms;
  32. wait_ms = gc_th->min_sleep_time;
  33. do {
  34. if (try_to_freeze())
  35. continue;
  36. else
  37. wait_event_interruptible_timeout(*wq,
  38. kthread_should_stop(),
  39. msecs_to_jiffies(wait_ms));
  40. if (kthread_should_stop())
  41. break;
  42. if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
  43. wait_ms = increase_sleep_time(gc_th, wait_ms);
  44. continue;
  45. }
  46. /*
  47. * [GC triggering condition]
  48. * 0. GC is not conducted currently.
  49. * 1. There are enough dirty segments.
  50. * 2. IO subsystem is idle by checking the # of writeback pages.
  51. * 3. IO subsystem is idle by checking the # of requests in
  52. * bdev's request list.
  53. *
  54. * Note) We have to avoid triggering GCs frequently.
  55. * Because it is possible that some segments can be
  56. * invalidated soon after by user update or deletion.
  57. * So, I'd like to wait some time to collect dirty segments.
  58. */
  59. if (!mutex_trylock(&sbi->gc_mutex))
  60. continue;
  61. if (!is_idle(sbi)) {
  62. wait_ms = increase_sleep_time(gc_th, wait_ms);
  63. mutex_unlock(&sbi->gc_mutex);
  64. continue;
  65. }
  66. if (has_enough_invalid_blocks(sbi))
  67. wait_ms = decrease_sleep_time(gc_th, wait_ms);
  68. else
  69. wait_ms = increase_sleep_time(gc_th, wait_ms);
  70. stat_inc_bggc_count(sbi);
  71. /* if return value is not zero, no victim was selected */
  72. if (f2fs_gc(sbi))
  73. wait_ms = gc_th->no_gc_sleep_time;
  74. /* balancing f2fs's metadata periodically */
  75. f2fs_balance_fs_bg(sbi);
  76. } while (!kthread_should_stop());
  77. return 0;
  78. }
  79. int start_gc_thread(struct f2fs_sb_info *sbi)
  80. {
  81. struct f2fs_gc_kthread *gc_th;
  82. dev_t dev = sbi->sb->s_bdev->bd_dev;
  83. int err = 0;
  84. gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
  85. if (!gc_th) {
  86. err = -ENOMEM;
  87. goto out;
  88. }
  89. gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
  90. gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
  91. gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
  92. gc_th->gc_idle = 0;
  93. sbi->gc_thread = gc_th;
  94. init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
  95. sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
  96. "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
  97. if (IS_ERR(gc_th->f2fs_gc_task)) {
  98. err = PTR_ERR(gc_th->f2fs_gc_task);
  99. kfree(gc_th);
  100. sbi->gc_thread = NULL;
  101. }
  102. out:
  103. return err;
  104. }
  105. void stop_gc_thread(struct f2fs_sb_info *sbi)
  106. {
  107. struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
  108. if (!gc_th)
  109. return;
  110. kthread_stop(gc_th->f2fs_gc_task);
  111. kfree(gc_th);
  112. sbi->gc_thread = NULL;
  113. }
  114. static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
  115. {
  116. int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
  117. if (gc_th && gc_th->gc_idle) {
  118. if (gc_th->gc_idle == 1)
  119. gc_mode = GC_CB;
  120. else if (gc_th->gc_idle == 2)
  121. gc_mode = GC_GREEDY;
  122. }
  123. return gc_mode;
  124. }
  125. static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
  126. int type, struct victim_sel_policy *p)
  127. {
  128. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  129. if (p->alloc_mode == SSR) {
  130. p->gc_mode = GC_GREEDY;
  131. p->dirty_segmap = dirty_i->dirty_segmap[type];
  132. p->max_search = dirty_i->nr_dirty[type];
  133. p->ofs_unit = 1;
  134. } else {
  135. p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
  136. p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
  137. p->max_search = dirty_i->nr_dirty[DIRTY];
  138. p->ofs_unit = sbi->segs_per_sec;
  139. }
  140. if (p->max_search > sbi->max_victim_search)
  141. p->max_search = sbi->max_victim_search;
  142. p->offset = sbi->last_victim[p->gc_mode];
  143. }
  144. static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
  145. struct victim_sel_policy *p)
  146. {
  147. /* SSR allocates in a segment unit */
  148. if (p->alloc_mode == SSR)
  149. return 1 << sbi->log_blocks_per_seg;
  150. if (p->gc_mode == GC_GREEDY)
  151. return (1 << sbi->log_blocks_per_seg) * p->ofs_unit;
  152. else if (p->gc_mode == GC_CB)
  153. return UINT_MAX;
  154. else /* No other gc_mode */
  155. return 0;
  156. }
  157. static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
  158. {
  159. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  160. unsigned int secno;
  161. /*
  162. * If the gc_type is FG_GC, we can select victim segments
  163. * selected by background GC before.
  164. * Those segments guarantee they have small valid blocks.
  165. */
  166. for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
  167. if (sec_usage_check(sbi, secno))
  168. continue;
  169. clear_bit(secno, dirty_i->victim_secmap);
  170. return secno * sbi->segs_per_sec;
  171. }
  172. return NULL_SEGNO;
  173. }
  174. static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
  175. {
  176. struct sit_info *sit_i = SIT_I(sbi);
  177. unsigned int secno = GET_SECNO(sbi, segno);
  178. unsigned int start = secno * sbi->segs_per_sec;
  179. unsigned long long mtime = 0;
  180. unsigned int vblocks;
  181. unsigned char age = 0;
  182. unsigned char u;
  183. unsigned int i;
  184. for (i = 0; i < sbi->segs_per_sec; i++)
  185. mtime += get_seg_entry(sbi, start + i)->mtime;
  186. vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
  187. mtime = div_u64(mtime, sbi->segs_per_sec);
  188. vblocks = div_u64(vblocks, sbi->segs_per_sec);
  189. u = (vblocks * 100) >> sbi->log_blocks_per_seg;
  190. /* Handle if the system time has changed by the user */
  191. if (mtime < sit_i->min_mtime)
  192. sit_i->min_mtime = mtime;
  193. if (mtime > sit_i->max_mtime)
  194. sit_i->max_mtime = mtime;
  195. if (sit_i->max_mtime != sit_i->min_mtime)
  196. age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
  197. sit_i->max_mtime - sit_i->min_mtime);
  198. return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
  199. }
  200. static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
  201. unsigned int segno, struct victim_sel_policy *p)
  202. {
  203. if (p->alloc_mode == SSR)
  204. return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
  205. /* alloc_mode == LFS */
  206. if (p->gc_mode == GC_GREEDY)
  207. return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
  208. else
  209. return get_cb_cost(sbi, segno);
  210. }
  211. /*
  212. * This function is called from two paths.
  213. * One is garbage collection and the other is SSR segment selection.
  214. * When it is called during GC, it just gets a victim segment
  215. * and it does not remove it from dirty seglist.
  216. * When it is called from SSR segment selection, it finds a segment
  217. * which has minimum valid blocks and removes it from dirty seglist.
  218. */
  219. static int get_victim_by_default(struct f2fs_sb_info *sbi,
  220. unsigned int *result, int gc_type, int type, char alloc_mode)
  221. {
  222. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  223. struct victim_sel_policy p;
  224. unsigned int secno, max_cost;
  225. int nsearched = 0;
  226. mutex_lock(&dirty_i->seglist_lock);
  227. p.alloc_mode = alloc_mode;
  228. select_policy(sbi, gc_type, type, &p);
  229. p.min_segno = NULL_SEGNO;
  230. p.min_cost = max_cost = get_max_cost(sbi, &p);
  231. if (p.alloc_mode == LFS && gc_type == FG_GC) {
  232. p.min_segno = check_bg_victims(sbi);
  233. if (p.min_segno != NULL_SEGNO)
  234. goto got_it;
  235. }
  236. while (1) {
  237. unsigned long cost;
  238. unsigned int segno;
  239. segno = find_next_bit(p.dirty_segmap, MAIN_SEGS(sbi), p.offset);
  240. if (segno >= MAIN_SEGS(sbi)) {
  241. if (sbi->last_victim[p.gc_mode]) {
  242. sbi->last_victim[p.gc_mode] = 0;
  243. p.offset = 0;
  244. continue;
  245. }
  246. break;
  247. }
  248. p.offset = segno + p.ofs_unit;
  249. if (p.ofs_unit > 1)
  250. p.offset -= segno % p.ofs_unit;
  251. secno = GET_SECNO(sbi, segno);
  252. if (sec_usage_check(sbi, secno))
  253. continue;
  254. if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
  255. continue;
  256. cost = get_gc_cost(sbi, segno, &p);
  257. if (p.min_cost > cost) {
  258. p.min_segno = segno;
  259. p.min_cost = cost;
  260. } else if (unlikely(cost == max_cost)) {
  261. continue;
  262. }
  263. if (nsearched++ >= p.max_search) {
  264. sbi->last_victim[p.gc_mode] = segno;
  265. break;
  266. }
  267. }
  268. if (p.min_segno != NULL_SEGNO) {
  269. got_it:
  270. if (p.alloc_mode == LFS) {
  271. secno = GET_SECNO(sbi, p.min_segno);
  272. if (gc_type == FG_GC)
  273. sbi->cur_victim_sec = secno;
  274. else
  275. set_bit(secno, dirty_i->victim_secmap);
  276. }
  277. *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
  278. trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
  279. sbi->cur_victim_sec,
  280. prefree_segments(sbi), free_segments(sbi));
  281. }
  282. mutex_unlock(&dirty_i->seglist_lock);
  283. return (p.min_segno == NULL_SEGNO) ? 0 : 1;
  284. }
  285. static const struct victim_selection default_v_ops = {
  286. .get_victim = get_victim_by_default,
  287. };
  288. static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
  289. {
  290. struct inode_entry *ie;
  291. ie = radix_tree_lookup(&gc_list->iroot, ino);
  292. if (ie)
  293. return ie->inode;
  294. return NULL;
  295. }
  296. static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
  297. {
  298. struct inode_entry *new_ie;
  299. if (inode == find_gc_inode(gc_list, inode->i_ino)) {
  300. iput(inode);
  301. return;
  302. }
  303. new_ie = f2fs_kmem_cache_alloc(winode_slab, GFP_NOFS);
  304. new_ie->inode = inode;
  305. retry:
  306. if (radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie)) {
  307. cond_resched();
  308. goto retry;
  309. }
  310. list_add_tail(&new_ie->list, &gc_list->ilist);
  311. }
  312. static void put_gc_inode(struct gc_inode_list *gc_list)
  313. {
  314. struct inode_entry *ie, *next_ie;
  315. list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
  316. radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
  317. iput(ie->inode);
  318. list_del(&ie->list);
  319. kmem_cache_free(winode_slab, ie);
  320. }
  321. }
  322. static int check_valid_map(struct f2fs_sb_info *sbi,
  323. unsigned int segno, int offset)
  324. {
  325. struct sit_info *sit_i = SIT_I(sbi);
  326. struct seg_entry *sentry;
  327. int ret;
  328. mutex_lock(&sit_i->sentry_lock);
  329. sentry = get_seg_entry(sbi, segno);
  330. ret = f2fs_test_bit(offset, sentry->cur_valid_map);
  331. mutex_unlock(&sit_i->sentry_lock);
  332. return ret;
  333. }
  334. /*
  335. * This function compares node address got in summary with that in NAT.
  336. * On validity, copy that node with cold status, otherwise (invalid node)
  337. * ignore that.
  338. */
  339. static void gc_node_segment(struct f2fs_sb_info *sbi,
  340. struct f2fs_summary *sum, unsigned int segno, int gc_type)
  341. {
  342. bool initial = true;
  343. struct f2fs_summary *entry;
  344. int off;
  345. next_step:
  346. entry = sum;
  347. for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
  348. nid_t nid = le32_to_cpu(entry->nid);
  349. struct page *node_page;
  350. /* stop BG_GC if there is not enough free sections. */
  351. if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
  352. return;
  353. if (check_valid_map(sbi, segno, off) == 0)
  354. continue;
  355. if (initial) {
  356. ra_node_page(sbi, nid);
  357. continue;
  358. }
  359. node_page = get_node_page(sbi, nid);
  360. if (IS_ERR(node_page))
  361. continue;
  362. /* block may become invalid during get_node_page */
  363. if (check_valid_map(sbi, segno, off) == 0) {
  364. f2fs_put_page(node_page, 1);
  365. continue;
  366. }
  367. /* set page dirty and write it */
  368. if (gc_type == FG_GC) {
  369. f2fs_wait_on_page_writeback(node_page, NODE);
  370. set_page_dirty(node_page);
  371. } else {
  372. if (!PageWriteback(node_page))
  373. set_page_dirty(node_page);
  374. }
  375. f2fs_put_page(node_page, 1);
  376. stat_inc_node_blk_count(sbi, 1);
  377. }
  378. if (initial) {
  379. initial = false;
  380. goto next_step;
  381. }
  382. if (gc_type == FG_GC) {
  383. struct writeback_control wbc = {
  384. .sync_mode = WB_SYNC_ALL,
  385. .nr_to_write = LONG_MAX,
  386. .for_reclaim = 0,
  387. };
  388. sync_node_pages(sbi, 0, &wbc);
  389. /*
  390. * In the case of FG_GC, it'd be better to reclaim this victim
  391. * completely.
  392. */
  393. if (get_valid_blocks(sbi, segno, 1) != 0)
  394. goto next_step;
  395. }
  396. }
  397. /*
  398. * Calculate start block index indicating the given node offset.
  399. * Be careful, caller should give this node offset only indicating direct node
  400. * blocks. If any node offsets, which point the other types of node blocks such
  401. * as indirect or double indirect node blocks, are given, it must be a caller's
  402. * bug.
  403. */
  404. block_t start_bidx_of_node(unsigned int node_ofs, struct f2fs_inode_info *fi)
  405. {
  406. unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
  407. unsigned int bidx;
  408. if (node_ofs == 0)
  409. return 0;
  410. if (node_ofs <= 2) {
  411. bidx = node_ofs - 1;
  412. } else if (node_ofs <= indirect_blks) {
  413. int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
  414. bidx = node_ofs - 2 - dec;
  415. } else {
  416. int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
  417. bidx = node_ofs - 5 - dec;
  418. }
  419. return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi);
  420. }
  421. static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  422. struct node_info *dni, block_t blkaddr, unsigned int *nofs)
  423. {
  424. struct page *node_page;
  425. nid_t nid;
  426. unsigned int ofs_in_node;
  427. block_t source_blkaddr;
  428. nid = le32_to_cpu(sum->nid);
  429. ofs_in_node = le16_to_cpu(sum->ofs_in_node);
  430. node_page = get_node_page(sbi, nid);
  431. if (IS_ERR(node_page))
  432. return 0;
  433. get_node_info(sbi, nid, dni);
  434. if (sum->version != dni->version) {
  435. f2fs_put_page(node_page, 1);
  436. return 0;
  437. }
  438. *nofs = ofs_of_node(node_page);
  439. source_blkaddr = datablock_addr(node_page, ofs_in_node);
  440. f2fs_put_page(node_page, 1);
  441. if (source_blkaddr != blkaddr)
  442. return 0;
  443. return 1;
  444. }
  445. static void move_data_page(struct inode *inode, struct page *page, int gc_type)
  446. {
  447. struct f2fs_io_info fio = {
  448. .type = DATA,
  449. .rw = WRITE_SYNC,
  450. };
  451. if (gc_type == BG_GC) {
  452. if (PageWriteback(page))
  453. goto out;
  454. set_page_dirty(page);
  455. set_cold_data(page);
  456. } else {
  457. f2fs_wait_on_page_writeback(page, DATA);
  458. if (clear_page_dirty_for_io(page))
  459. inode_dec_dirty_pages(inode);
  460. set_cold_data(page);
  461. do_write_data_page(page, &fio);
  462. clear_cold_data(page);
  463. }
  464. out:
  465. f2fs_put_page(page, 1);
  466. }
  467. /*
  468. * This function tries to get parent node of victim data block, and identifies
  469. * data block validity. If the block is valid, copy that with cold status and
  470. * modify parent node.
  471. * If the parent node is not valid or the data block address is different,
  472. * the victim data block is ignored.
  473. */
  474. static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  475. struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
  476. {
  477. struct super_block *sb = sbi->sb;
  478. struct f2fs_summary *entry;
  479. block_t start_addr;
  480. int off;
  481. int phase = 0;
  482. start_addr = START_BLOCK(sbi, segno);
  483. next_step:
  484. entry = sum;
  485. for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
  486. struct page *data_page;
  487. struct inode *inode;
  488. struct node_info dni; /* dnode info for the data */
  489. unsigned int ofs_in_node, nofs;
  490. block_t start_bidx;
  491. /* stop BG_GC if there is not enough free sections. */
  492. if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
  493. return;
  494. if (check_valid_map(sbi, segno, off) == 0)
  495. continue;
  496. if (phase == 0) {
  497. ra_node_page(sbi, le32_to_cpu(entry->nid));
  498. continue;
  499. }
  500. /* Get an inode by ino with checking validity */
  501. if (check_dnode(sbi, entry, &dni, start_addr + off, &nofs) == 0)
  502. continue;
  503. if (phase == 1) {
  504. ra_node_page(sbi, dni.ino);
  505. continue;
  506. }
  507. ofs_in_node = le16_to_cpu(entry->ofs_in_node);
  508. if (phase == 2) {
  509. inode = f2fs_iget(sb, dni.ino);
  510. if (IS_ERR(inode) || is_bad_inode(inode))
  511. continue;
  512. start_bidx = start_bidx_of_node(nofs, F2FS_I(inode));
  513. data_page = find_data_page(inode,
  514. start_bidx + ofs_in_node, false);
  515. if (IS_ERR(data_page)) {
  516. iput(inode);
  517. continue;
  518. }
  519. f2fs_put_page(data_page, 0);
  520. add_gc_inode(gc_list, inode);
  521. continue;
  522. }
  523. /* phase 3 */
  524. inode = find_gc_inode(gc_list, dni.ino);
  525. if (inode) {
  526. start_bidx = start_bidx_of_node(nofs, F2FS_I(inode));
  527. data_page = get_lock_data_page(inode,
  528. start_bidx + ofs_in_node);
  529. if (IS_ERR(data_page))
  530. continue;
  531. move_data_page(inode, data_page, gc_type);
  532. stat_inc_data_blk_count(sbi, 1);
  533. }
  534. }
  535. if (++phase < 4)
  536. goto next_step;
  537. if (gc_type == FG_GC) {
  538. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  539. /*
  540. * In the case of FG_GC, it'd be better to reclaim this victim
  541. * completely.
  542. */
  543. if (get_valid_blocks(sbi, segno, 1) != 0) {
  544. phase = 2;
  545. goto next_step;
  546. }
  547. }
  548. }
  549. static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
  550. int gc_type)
  551. {
  552. struct sit_info *sit_i = SIT_I(sbi);
  553. int ret;
  554. mutex_lock(&sit_i->sentry_lock);
  555. ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
  556. NO_CHECK_TYPE, LFS);
  557. mutex_unlock(&sit_i->sentry_lock);
  558. return ret;
  559. }
  560. static void do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
  561. struct gc_inode_list *gc_list, int gc_type)
  562. {
  563. struct page *sum_page;
  564. struct f2fs_summary_block *sum;
  565. struct blk_plug plug;
  566. /* read segment summary of victim */
  567. sum_page = get_sum_page(sbi, segno);
  568. blk_start_plug(&plug);
  569. sum = page_address(sum_page);
  570. switch (GET_SUM_TYPE((&sum->footer))) {
  571. case SUM_TYPE_NODE:
  572. gc_node_segment(sbi, sum->entries, segno, gc_type);
  573. break;
  574. case SUM_TYPE_DATA:
  575. gc_data_segment(sbi, sum->entries, gc_list, segno, gc_type);
  576. break;
  577. }
  578. blk_finish_plug(&plug);
  579. stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)));
  580. stat_inc_call_count(sbi->stat_info);
  581. f2fs_put_page(sum_page, 1);
  582. }
  583. int f2fs_gc(struct f2fs_sb_info *sbi)
  584. {
  585. unsigned int segno, i;
  586. int gc_type = BG_GC;
  587. int nfree = 0;
  588. int ret = -1;
  589. struct cp_control cpc;
  590. struct gc_inode_list gc_list = {
  591. .ilist = LIST_HEAD_INIT(gc_list.ilist),
  592. .iroot = RADIX_TREE_INIT(GFP_NOFS),
  593. };
  594. cpc.reason = test_opt(sbi, FASTBOOT) ? CP_UMOUNT : CP_SYNC;
  595. gc_more:
  596. if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
  597. goto stop;
  598. if (unlikely(f2fs_cp_error(sbi)))
  599. goto stop;
  600. if (gc_type == BG_GC && has_not_enough_free_secs(sbi, nfree)) {
  601. gc_type = FG_GC;
  602. write_checkpoint(sbi, &cpc);
  603. }
  604. if (!__get_victim(sbi, &segno, gc_type))
  605. goto stop;
  606. ret = 0;
  607. /* readahead multi ssa blocks those have contiguous address */
  608. if (sbi->segs_per_sec > 1)
  609. ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), sbi->segs_per_sec,
  610. META_SSA);
  611. for (i = 0; i < sbi->segs_per_sec; i++)
  612. do_garbage_collect(sbi, segno + i, &gc_list, gc_type);
  613. if (gc_type == FG_GC) {
  614. sbi->cur_victim_sec = NULL_SEGNO;
  615. nfree++;
  616. WARN_ON(get_valid_blocks(sbi, segno, sbi->segs_per_sec));
  617. }
  618. if (has_not_enough_free_secs(sbi, nfree))
  619. goto gc_more;
  620. if (gc_type == FG_GC)
  621. write_checkpoint(sbi, &cpc);
  622. stop:
  623. mutex_unlock(&sbi->gc_mutex);
  624. put_gc_inode(&gc_list);
  625. return ret;
  626. }
  627. void build_gc_manager(struct f2fs_sb_info *sbi)
  628. {
  629. DIRTY_I(sbi)->v_ops = &default_v_ops;
  630. }
  631. int __init create_gc_caches(void)
  632. {
  633. winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes",
  634. sizeof(struct inode_entry));
  635. if (!winode_slab)
  636. return -ENOMEM;
  637. return 0;
  638. }
  639. void destroy_gc_caches(void)
  640. {
  641. kmem_cache_destroy(winode_slab);
  642. }