checkpoint.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include <trace/events/f2fs.h>
  23. static struct kmem_cache *ino_entry_slab;
  24. static struct kmem_cache *inode_entry_slab;
  25. /*
  26. * We guarantee no failure on the returned page.
  27. */
  28. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  29. {
  30. struct address_space *mapping = META_MAPPING(sbi);
  31. struct page *page = NULL;
  32. repeat:
  33. page = grab_cache_page(mapping, index);
  34. if (!page) {
  35. cond_resched();
  36. goto repeat;
  37. }
  38. f2fs_wait_on_page_writeback(page, META);
  39. SetPageUptodate(page);
  40. return page;
  41. }
  42. /*
  43. * We guarantee no failure on the returned page.
  44. */
  45. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  46. {
  47. struct address_space *mapping = META_MAPPING(sbi);
  48. struct page *page;
  49. repeat:
  50. page = grab_cache_page(mapping, index);
  51. if (!page) {
  52. cond_resched();
  53. goto repeat;
  54. }
  55. if (PageUptodate(page))
  56. goto out;
  57. if (f2fs_submit_page_bio(sbi, page, index,
  58. READ_SYNC | REQ_META | REQ_PRIO))
  59. goto repeat;
  60. lock_page(page);
  61. if (unlikely(page->mapping != mapping)) {
  62. f2fs_put_page(page, 1);
  63. goto repeat;
  64. }
  65. out:
  66. return page;
  67. }
  68. static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
  69. block_t blkaddr, int type)
  70. {
  71. switch (type) {
  72. case META_NAT:
  73. break;
  74. case META_SIT:
  75. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  76. return false;
  77. break;
  78. case META_SSA:
  79. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  80. blkaddr < SM_I(sbi)->ssa_blkaddr))
  81. return false;
  82. break;
  83. case META_CP:
  84. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  85. blkaddr < __start_cp_addr(sbi)))
  86. return false;
  87. break;
  88. case META_POR:
  89. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  90. blkaddr < MAIN_BLKADDR(sbi)))
  91. return false;
  92. break;
  93. default:
  94. BUG();
  95. }
  96. return true;
  97. }
  98. /*
  99. * Readahead CP/NAT/SIT/SSA pages
  100. */
  101. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
  102. {
  103. block_t prev_blk_addr = 0;
  104. struct page *page;
  105. block_t blkno = start;
  106. struct f2fs_io_info fio = {
  107. .type = META,
  108. .rw = READ_SYNC | REQ_META | REQ_PRIO
  109. };
  110. for (; nrpages-- > 0; blkno++) {
  111. block_t blk_addr;
  112. if (!is_valid_blkaddr(sbi, blkno, type))
  113. goto out;
  114. switch (type) {
  115. case META_NAT:
  116. if (unlikely(blkno >=
  117. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  118. blkno = 0;
  119. /* get nat block addr */
  120. blk_addr = current_nat_addr(sbi,
  121. blkno * NAT_ENTRY_PER_BLOCK);
  122. break;
  123. case META_SIT:
  124. /* get sit block addr */
  125. blk_addr = current_sit_addr(sbi,
  126. blkno * SIT_ENTRY_PER_BLOCK);
  127. if (blkno != start && prev_blk_addr + 1 != blk_addr)
  128. goto out;
  129. prev_blk_addr = blk_addr;
  130. break;
  131. case META_SSA:
  132. case META_CP:
  133. case META_POR:
  134. blk_addr = blkno;
  135. break;
  136. default:
  137. BUG();
  138. }
  139. page = grab_cache_page(META_MAPPING(sbi), blk_addr);
  140. if (!page)
  141. continue;
  142. if (PageUptodate(page)) {
  143. f2fs_put_page(page, 1);
  144. continue;
  145. }
  146. f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
  147. f2fs_put_page(page, 0);
  148. }
  149. out:
  150. f2fs_submit_merged_bio(sbi, META, READ);
  151. return blkno - start;
  152. }
  153. void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  154. {
  155. struct page *page;
  156. bool readahead = false;
  157. page = find_get_page(META_MAPPING(sbi), index);
  158. if (!page || (page && !PageUptodate(page)))
  159. readahead = true;
  160. f2fs_put_page(page, 0);
  161. if (readahead)
  162. ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
  163. }
  164. static int f2fs_write_meta_page(struct page *page,
  165. struct writeback_control *wbc)
  166. {
  167. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  168. trace_f2fs_writepage(page, META);
  169. if (unlikely(sbi->por_doing))
  170. goto redirty_out;
  171. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  172. goto redirty_out;
  173. if (unlikely(f2fs_cp_error(sbi)))
  174. goto redirty_out;
  175. f2fs_wait_on_page_writeback(page, META);
  176. write_meta_page(sbi, page);
  177. dec_page_count(sbi, F2FS_DIRTY_META);
  178. unlock_page(page);
  179. if (wbc->for_reclaim)
  180. f2fs_submit_merged_bio(sbi, META, WRITE);
  181. return 0;
  182. redirty_out:
  183. redirty_page_for_writepage(wbc, page);
  184. return AOP_WRITEPAGE_ACTIVATE;
  185. }
  186. static int f2fs_write_meta_pages(struct address_space *mapping,
  187. struct writeback_control *wbc)
  188. {
  189. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  190. long diff, written;
  191. trace_f2fs_writepages(mapping->host, wbc, META);
  192. /* collect a number of dirty meta pages and write together */
  193. if (wbc->for_kupdate ||
  194. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  195. goto skip_write;
  196. /* if mounting is failed, skip writing node pages */
  197. mutex_lock(&sbi->cp_mutex);
  198. diff = nr_pages_to_write(sbi, META, wbc);
  199. written = sync_meta_pages(sbi, META, wbc->nr_to_write);
  200. mutex_unlock(&sbi->cp_mutex);
  201. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  202. return 0;
  203. skip_write:
  204. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  205. return 0;
  206. }
  207. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  208. long nr_to_write)
  209. {
  210. struct address_space *mapping = META_MAPPING(sbi);
  211. pgoff_t index = 0, end = LONG_MAX;
  212. struct pagevec pvec;
  213. long nwritten = 0;
  214. struct writeback_control wbc = {
  215. .for_reclaim = 0,
  216. };
  217. pagevec_init(&pvec, 0);
  218. while (index <= end) {
  219. int i, nr_pages;
  220. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  221. PAGECACHE_TAG_DIRTY,
  222. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  223. if (unlikely(nr_pages == 0))
  224. break;
  225. for (i = 0; i < nr_pages; i++) {
  226. struct page *page = pvec.pages[i];
  227. lock_page(page);
  228. if (unlikely(page->mapping != mapping)) {
  229. continue_unlock:
  230. unlock_page(page);
  231. continue;
  232. }
  233. if (!PageDirty(page)) {
  234. /* someone wrote it for us */
  235. goto continue_unlock;
  236. }
  237. if (!clear_page_dirty_for_io(page))
  238. goto continue_unlock;
  239. if (f2fs_write_meta_page(page, &wbc)) {
  240. unlock_page(page);
  241. break;
  242. }
  243. nwritten++;
  244. if (unlikely(nwritten >= nr_to_write))
  245. break;
  246. }
  247. pagevec_release(&pvec);
  248. cond_resched();
  249. }
  250. if (nwritten)
  251. f2fs_submit_merged_bio(sbi, type, WRITE);
  252. return nwritten;
  253. }
  254. static int f2fs_set_meta_page_dirty(struct page *page)
  255. {
  256. trace_f2fs_set_page_dirty(page, META);
  257. SetPageUptodate(page);
  258. if (!PageDirty(page)) {
  259. __set_page_dirty_nobuffers(page);
  260. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  261. return 1;
  262. }
  263. return 0;
  264. }
  265. const struct address_space_operations f2fs_meta_aops = {
  266. .writepage = f2fs_write_meta_page,
  267. .writepages = f2fs_write_meta_pages,
  268. .set_page_dirty = f2fs_set_meta_page_dirty,
  269. };
  270. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  271. {
  272. struct inode_management *im = &sbi->im[type];
  273. struct ino_entry *e;
  274. retry:
  275. if (radix_tree_preload(GFP_NOFS)) {
  276. cond_resched();
  277. goto retry;
  278. }
  279. spin_lock(&im->ino_lock);
  280. e = radix_tree_lookup(&im->ino_root, ino);
  281. if (!e) {
  282. e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
  283. if (!e) {
  284. spin_unlock(&im->ino_lock);
  285. radix_tree_preload_end();
  286. goto retry;
  287. }
  288. if (radix_tree_insert(&im->ino_root, ino, e)) {
  289. spin_unlock(&im->ino_lock);
  290. kmem_cache_free(ino_entry_slab, e);
  291. radix_tree_preload_end();
  292. goto retry;
  293. }
  294. memset(e, 0, sizeof(struct ino_entry));
  295. e->ino = ino;
  296. list_add_tail(&e->list, &im->ino_list);
  297. if (type != ORPHAN_INO)
  298. im->ino_num++;
  299. }
  300. spin_unlock(&im->ino_lock);
  301. radix_tree_preload_end();
  302. }
  303. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  304. {
  305. struct inode_management *im = &sbi->im[type];
  306. struct ino_entry *e;
  307. spin_lock(&im->ino_lock);
  308. e = radix_tree_lookup(&im->ino_root, ino);
  309. if (e) {
  310. list_del(&e->list);
  311. radix_tree_delete(&im->ino_root, ino);
  312. im->ino_num--;
  313. spin_unlock(&im->ino_lock);
  314. kmem_cache_free(ino_entry_slab, e);
  315. return;
  316. }
  317. spin_unlock(&im->ino_lock);
  318. }
  319. void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  320. {
  321. /* add new dirty ino entry into list */
  322. __add_ino_entry(sbi, ino, type);
  323. }
  324. void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  325. {
  326. /* remove dirty ino entry from list */
  327. __remove_ino_entry(sbi, ino, type);
  328. }
  329. /* mode should be APPEND_INO or UPDATE_INO */
  330. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  331. {
  332. struct inode_management *im = &sbi->im[mode];
  333. struct ino_entry *e;
  334. spin_lock(&im->ino_lock);
  335. e = radix_tree_lookup(&im->ino_root, ino);
  336. spin_unlock(&im->ino_lock);
  337. return e ? true : false;
  338. }
  339. void release_dirty_inode(struct f2fs_sb_info *sbi)
  340. {
  341. struct ino_entry *e, *tmp;
  342. int i;
  343. for (i = APPEND_INO; i <= UPDATE_INO; i++) {
  344. struct inode_management *im = &sbi->im[i];
  345. spin_lock(&im->ino_lock);
  346. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  347. list_del(&e->list);
  348. radix_tree_delete(&im->ino_root, e->ino);
  349. kmem_cache_free(ino_entry_slab, e);
  350. im->ino_num--;
  351. }
  352. spin_unlock(&im->ino_lock);
  353. }
  354. }
  355. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  356. {
  357. struct inode_management *im = &sbi->im[ORPHAN_INO];
  358. int err = 0;
  359. spin_lock(&im->ino_lock);
  360. if (unlikely(im->ino_num >= sbi->max_orphans))
  361. err = -ENOSPC;
  362. else
  363. im->ino_num++;
  364. spin_unlock(&im->ino_lock);
  365. return err;
  366. }
  367. void release_orphan_inode(struct f2fs_sb_info *sbi)
  368. {
  369. struct inode_management *im = &sbi->im[ORPHAN_INO];
  370. spin_lock(&im->ino_lock);
  371. f2fs_bug_on(sbi, im->ino_num == 0);
  372. im->ino_num--;
  373. spin_unlock(&im->ino_lock);
  374. }
  375. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  376. {
  377. /* add new orphan ino entry into list */
  378. __add_ino_entry(sbi, ino, ORPHAN_INO);
  379. }
  380. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  381. {
  382. /* remove orphan entry from orphan list */
  383. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  384. }
  385. static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  386. {
  387. struct inode *inode = f2fs_iget(sbi->sb, ino);
  388. f2fs_bug_on(sbi, IS_ERR(inode));
  389. clear_nlink(inode);
  390. /* truncate all the data during iput */
  391. iput(inode);
  392. }
  393. void recover_orphan_inodes(struct f2fs_sb_info *sbi)
  394. {
  395. block_t start_blk, orphan_blkaddr, i, j;
  396. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  397. return;
  398. sbi->por_doing = true;
  399. start_blk = __start_cp_addr(sbi) + 1 +
  400. le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  401. orphan_blkaddr = __start_sum_addr(sbi) - 1;
  402. ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
  403. for (i = 0; i < orphan_blkaddr; i++) {
  404. struct page *page = get_meta_page(sbi, start_blk + i);
  405. struct f2fs_orphan_block *orphan_blk;
  406. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  407. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  408. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  409. recover_orphan_inode(sbi, ino);
  410. }
  411. f2fs_put_page(page, 1);
  412. }
  413. /* clear Orphan Flag */
  414. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  415. sbi->por_doing = false;
  416. return;
  417. }
  418. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  419. {
  420. struct list_head *head;
  421. struct f2fs_orphan_block *orphan_blk = NULL;
  422. unsigned int nentries = 0;
  423. unsigned short index;
  424. unsigned short orphan_blocks;
  425. struct page *page = NULL;
  426. struct ino_entry *orphan = NULL;
  427. struct inode_management *im = &sbi->im[ORPHAN_INO];
  428. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  429. for (index = 0; index < orphan_blocks; index++)
  430. grab_meta_page(sbi, start_blk + index);
  431. index = 1;
  432. spin_lock(&im->ino_lock);
  433. head = &im->ino_list;
  434. /* loop for each orphan inode entry and write them in Jornal block */
  435. list_for_each_entry(orphan, head, list) {
  436. if (!page) {
  437. page = find_get_page(META_MAPPING(sbi), start_blk++);
  438. f2fs_bug_on(sbi, !page);
  439. orphan_blk =
  440. (struct f2fs_orphan_block *)page_address(page);
  441. memset(orphan_blk, 0, sizeof(*orphan_blk));
  442. f2fs_put_page(page, 0);
  443. }
  444. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  445. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  446. /*
  447. * an orphan block is full of 1020 entries,
  448. * then we need to flush current orphan blocks
  449. * and bring another one in memory
  450. */
  451. orphan_blk->blk_addr = cpu_to_le16(index);
  452. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  453. orphan_blk->entry_count = cpu_to_le32(nentries);
  454. set_page_dirty(page);
  455. f2fs_put_page(page, 1);
  456. index++;
  457. nentries = 0;
  458. page = NULL;
  459. }
  460. }
  461. if (page) {
  462. orphan_blk->blk_addr = cpu_to_le16(index);
  463. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  464. orphan_blk->entry_count = cpu_to_le32(nentries);
  465. set_page_dirty(page);
  466. f2fs_put_page(page, 1);
  467. }
  468. spin_unlock(&im->ino_lock);
  469. }
  470. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  471. block_t cp_addr, unsigned long long *version)
  472. {
  473. struct page *cp_page_1, *cp_page_2 = NULL;
  474. unsigned long blk_size = sbi->blocksize;
  475. struct f2fs_checkpoint *cp_block;
  476. unsigned long long cur_version = 0, pre_version = 0;
  477. size_t crc_offset;
  478. __u32 crc = 0;
  479. /* Read the 1st cp block in this CP pack */
  480. cp_page_1 = get_meta_page(sbi, cp_addr);
  481. /* get the version number */
  482. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  483. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  484. if (crc_offset >= blk_size)
  485. goto invalid_cp1;
  486. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  487. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  488. goto invalid_cp1;
  489. pre_version = cur_cp_version(cp_block);
  490. /* Read the 2nd cp block in this CP pack */
  491. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  492. cp_page_2 = get_meta_page(sbi, cp_addr);
  493. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  494. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  495. if (crc_offset >= blk_size)
  496. goto invalid_cp2;
  497. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  498. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  499. goto invalid_cp2;
  500. cur_version = cur_cp_version(cp_block);
  501. if (cur_version == pre_version) {
  502. *version = cur_version;
  503. f2fs_put_page(cp_page_2, 1);
  504. return cp_page_1;
  505. }
  506. invalid_cp2:
  507. f2fs_put_page(cp_page_2, 1);
  508. invalid_cp1:
  509. f2fs_put_page(cp_page_1, 1);
  510. return NULL;
  511. }
  512. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  513. {
  514. struct f2fs_checkpoint *cp_block;
  515. struct f2fs_super_block *fsb = sbi->raw_super;
  516. struct page *cp1, *cp2, *cur_page;
  517. unsigned long blk_size = sbi->blocksize;
  518. unsigned long long cp1_version = 0, cp2_version = 0;
  519. unsigned long long cp_start_blk_no;
  520. unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  521. block_t cp_blk_no;
  522. int i;
  523. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  524. if (!sbi->ckpt)
  525. return -ENOMEM;
  526. /*
  527. * Finding out valid cp block involves read both
  528. * sets( cp pack1 and cp pack 2)
  529. */
  530. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  531. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  532. /* The second checkpoint pack should start at the next segment */
  533. cp_start_blk_no += ((unsigned long long)1) <<
  534. le32_to_cpu(fsb->log_blocks_per_seg);
  535. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  536. if (cp1 && cp2) {
  537. if (ver_after(cp2_version, cp1_version))
  538. cur_page = cp2;
  539. else
  540. cur_page = cp1;
  541. } else if (cp1) {
  542. cur_page = cp1;
  543. } else if (cp2) {
  544. cur_page = cp2;
  545. } else {
  546. goto fail_no_cp;
  547. }
  548. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  549. memcpy(sbi->ckpt, cp_block, blk_size);
  550. if (cp_blks <= 1)
  551. goto done;
  552. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  553. if (cur_page == cp2)
  554. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  555. for (i = 1; i < cp_blks; i++) {
  556. void *sit_bitmap_ptr;
  557. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  558. cur_page = get_meta_page(sbi, cp_blk_no + i);
  559. sit_bitmap_ptr = page_address(cur_page);
  560. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  561. f2fs_put_page(cur_page, 1);
  562. }
  563. done:
  564. f2fs_put_page(cp1, 1);
  565. f2fs_put_page(cp2, 1);
  566. return 0;
  567. fail_no_cp:
  568. kfree(sbi->ckpt);
  569. return -EINVAL;
  570. }
  571. static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
  572. {
  573. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  574. if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
  575. return -EEXIST;
  576. set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  577. F2FS_I(inode)->dirty_dir = new;
  578. list_add_tail(&new->list, &sbi->dir_inode_list);
  579. stat_inc_dirty_dir(sbi);
  580. return 0;
  581. }
  582. void update_dirty_page(struct inode *inode, struct page *page)
  583. {
  584. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  585. struct dir_inode_entry *new;
  586. int ret = 0;
  587. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
  588. return;
  589. if (!S_ISDIR(inode->i_mode)) {
  590. inode_inc_dirty_pages(inode);
  591. goto out;
  592. }
  593. new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  594. new->inode = inode;
  595. INIT_LIST_HEAD(&new->list);
  596. spin_lock(&sbi->dir_inode_lock);
  597. ret = __add_dirty_inode(inode, new);
  598. inode_inc_dirty_pages(inode);
  599. spin_unlock(&sbi->dir_inode_lock);
  600. if (ret)
  601. kmem_cache_free(inode_entry_slab, new);
  602. out:
  603. SetPagePrivate(page);
  604. }
  605. void add_dirty_dir_inode(struct inode *inode)
  606. {
  607. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  608. struct dir_inode_entry *new =
  609. f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  610. int ret = 0;
  611. new->inode = inode;
  612. INIT_LIST_HEAD(&new->list);
  613. spin_lock(&sbi->dir_inode_lock);
  614. ret = __add_dirty_inode(inode, new);
  615. spin_unlock(&sbi->dir_inode_lock);
  616. if (ret)
  617. kmem_cache_free(inode_entry_slab, new);
  618. }
  619. void remove_dirty_dir_inode(struct inode *inode)
  620. {
  621. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  622. struct dir_inode_entry *entry;
  623. if (!S_ISDIR(inode->i_mode))
  624. return;
  625. spin_lock(&sbi->dir_inode_lock);
  626. if (get_dirty_pages(inode) ||
  627. !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
  628. spin_unlock(&sbi->dir_inode_lock);
  629. return;
  630. }
  631. entry = F2FS_I(inode)->dirty_dir;
  632. list_del(&entry->list);
  633. F2FS_I(inode)->dirty_dir = NULL;
  634. clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  635. stat_dec_dirty_dir(sbi);
  636. spin_unlock(&sbi->dir_inode_lock);
  637. kmem_cache_free(inode_entry_slab, entry);
  638. /* Only from the recovery routine */
  639. if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
  640. clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
  641. iput(inode);
  642. }
  643. }
  644. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  645. {
  646. struct list_head *head;
  647. struct dir_inode_entry *entry;
  648. struct inode *inode;
  649. retry:
  650. if (unlikely(f2fs_cp_error(sbi)))
  651. return;
  652. spin_lock(&sbi->dir_inode_lock);
  653. head = &sbi->dir_inode_list;
  654. if (list_empty(head)) {
  655. spin_unlock(&sbi->dir_inode_lock);
  656. return;
  657. }
  658. entry = list_entry(head->next, struct dir_inode_entry, list);
  659. inode = igrab(entry->inode);
  660. spin_unlock(&sbi->dir_inode_lock);
  661. if (inode) {
  662. filemap_fdatawrite(inode->i_mapping);
  663. iput(inode);
  664. } else {
  665. /*
  666. * We should submit bio, since it exists several
  667. * wribacking dentry pages in the freeing inode.
  668. */
  669. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  670. }
  671. goto retry;
  672. }
  673. /*
  674. * Freeze all the FS-operations for checkpoint.
  675. */
  676. static int block_operations(struct f2fs_sb_info *sbi)
  677. {
  678. struct writeback_control wbc = {
  679. .sync_mode = WB_SYNC_ALL,
  680. .nr_to_write = LONG_MAX,
  681. .for_reclaim = 0,
  682. };
  683. struct blk_plug plug;
  684. int err = 0;
  685. blk_start_plug(&plug);
  686. retry_flush_dents:
  687. f2fs_lock_all(sbi);
  688. /* write all the dirty dentry pages */
  689. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  690. f2fs_unlock_all(sbi);
  691. sync_dirty_dir_inodes(sbi);
  692. if (unlikely(f2fs_cp_error(sbi))) {
  693. err = -EIO;
  694. goto out;
  695. }
  696. goto retry_flush_dents;
  697. }
  698. /*
  699. * POR: we should ensure that there are no dirty node pages
  700. * until finishing nat/sit flush.
  701. */
  702. retry_flush_nodes:
  703. down_write(&sbi->node_write);
  704. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  705. up_write(&sbi->node_write);
  706. sync_node_pages(sbi, 0, &wbc);
  707. if (unlikely(f2fs_cp_error(sbi))) {
  708. f2fs_unlock_all(sbi);
  709. err = -EIO;
  710. goto out;
  711. }
  712. goto retry_flush_nodes;
  713. }
  714. out:
  715. blk_finish_plug(&plug);
  716. return err;
  717. }
  718. static void unblock_operations(struct f2fs_sb_info *sbi)
  719. {
  720. up_write(&sbi->node_write);
  721. f2fs_unlock_all(sbi);
  722. }
  723. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  724. {
  725. DEFINE_WAIT(wait);
  726. for (;;) {
  727. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  728. if (!get_pages(sbi, F2FS_WRITEBACK))
  729. break;
  730. io_schedule();
  731. }
  732. finish_wait(&sbi->cp_wait, &wait);
  733. }
  734. static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  735. {
  736. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  737. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  738. struct f2fs_nm_info *nm_i = NM_I(sbi);
  739. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  740. nid_t last_nid = nm_i->next_scan_nid;
  741. block_t start_blk;
  742. struct page *cp_page;
  743. unsigned int data_sum_blocks, orphan_blocks;
  744. __u32 crc32 = 0;
  745. void *kaddr;
  746. int i;
  747. int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  748. /*
  749. * This avoids to conduct wrong roll-forward operations and uses
  750. * metapages, so should be called prior to sync_meta_pages below.
  751. */
  752. discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
  753. /* Flush all the NAT/SIT pages */
  754. while (get_pages(sbi, F2FS_DIRTY_META)) {
  755. sync_meta_pages(sbi, META, LONG_MAX);
  756. if (unlikely(f2fs_cp_error(sbi)))
  757. return;
  758. }
  759. next_free_nid(sbi, &last_nid);
  760. /*
  761. * modify checkpoint
  762. * version number is already updated
  763. */
  764. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  765. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  766. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  767. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  768. ckpt->cur_node_segno[i] =
  769. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  770. ckpt->cur_node_blkoff[i] =
  771. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  772. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  773. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  774. }
  775. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  776. ckpt->cur_data_segno[i] =
  777. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  778. ckpt->cur_data_blkoff[i] =
  779. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  780. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  781. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  782. }
  783. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  784. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  785. ckpt->next_free_nid = cpu_to_le32(last_nid);
  786. /* 2 cp + n data seg summary + orphan inode blocks */
  787. data_sum_blocks = npages_for_summary_flush(sbi);
  788. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  789. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  790. else
  791. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  792. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  793. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  794. orphan_blocks);
  795. if (cpc->reason == CP_UMOUNT) {
  796. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  797. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  798. cp_payload_blks + data_sum_blocks +
  799. orphan_blocks + NR_CURSEG_NODE_TYPE);
  800. } else {
  801. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  802. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  803. cp_payload_blks + data_sum_blocks +
  804. orphan_blocks);
  805. }
  806. if (orphan_num)
  807. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  808. else
  809. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  810. if (sbi->need_fsck)
  811. set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  812. /* update SIT/NAT bitmap */
  813. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  814. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  815. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  816. *((__le32 *)((unsigned char *)ckpt +
  817. le32_to_cpu(ckpt->checksum_offset)))
  818. = cpu_to_le32(crc32);
  819. start_blk = __start_cp_addr(sbi);
  820. /* write out checkpoint buffer at block 0 */
  821. cp_page = grab_meta_page(sbi, start_blk++);
  822. kaddr = page_address(cp_page);
  823. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  824. set_page_dirty(cp_page);
  825. f2fs_put_page(cp_page, 1);
  826. for (i = 1; i < 1 + cp_payload_blks; i++) {
  827. cp_page = grab_meta_page(sbi, start_blk++);
  828. kaddr = page_address(cp_page);
  829. memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
  830. (1 << sbi->log_blocksize));
  831. set_page_dirty(cp_page);
  832. f2fs_put_page(cp_page, 1);
  833. }
  834. if (orphan_num) {
  835. write_orphan_inodes(sbi, start_blk);
  836. start_blk += orphan_blocks;
  837. }
  838. write_data_summaries(sbi, start_blk);
  839. start_blk += data_sum_blocks;
  840. if (cpc->reason == CP_UMOUNT) {
  841. write_node_summaries(sbi, start_blk);
  842. start_blk += NR_CURSEG_NODE_TYPE;
  843. }
  844. /* writeout checkpoint block */
  845. cp_page = grab_meta_page(sbi, start_blk);
  846. kaddr = page_address(cp_page);
  847. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  848. set_page_dirty(cp_page);
  849. f2fs_put_page(cp_page, 1);
  850. /* wait for previous submitted node/meta pages writeback */
  851. wait_on_all_pages_writeback(sbi);
  852. if (unlikely(f2fs_cp_error(sbi)))
  853. return;
  854. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
  855. filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
  856. /* update user_block_counts */
  857. sbi->last_valid_block_count = sbi->total_valid_block_count;
  858. sbi->alloc_valid_block_count = 0;
  859. /* Here, we only have one bio having CP pack */
  860. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  861. /* wait for previous submitted meta pages writeback */
  862. wait_on_all_pages_writeback(sbi);
  863. release_dirty_inode(sbi);
  864. if (unlikely(f2fs_cp_error(sbi)))
  865. return;
  866. clear_prefree_segments(sbi);
  867. F2FS_RESET_SB_DIRT(sbi);
  868. }
  869. /*
  870. * We guarantee that this checkpoint procedure will not fail.
  871. */
  872. void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  873. {
  874. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  875. unsigned long long ckpt_ver;
  876. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  877. mutex_lock(&sbi->cp_mutex);
  878. if (!sbi->s_dirty && cpc->reason != CP_DISCARD)
  879. goto out;
  880. if (unlikely(f2fs_cp_error(sbi)))
  881. goto out;
  882. if (block_operations(sbi))
  883. goto out;
  884. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  885. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  886. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  887. f2fs_submit_merged_bio(sbi, META, WRITE);
  888. /*
  889. * update checkpoint pack index
  890. * Increase the version number so that
  891. * SIT entries and seg summaries are written at correct place
  892. */
  893. ckpt_ver = cur_cp_version(ckpt);
  894. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  895. /* write cached NAT/SIT entries to NAT/SIT area */
  896. flush_nat_entries(sbi);
  897. flush_sit_entries(sbi, cpc);
  898. /* unlock all the fs_lock[] in do_checkpoint() */
  899. do_checkpoint(sbi, cpc);
  900. unblock_operations(sbi);
  901. stat_inc_cp_count(sbi->stat_info);
  902. out:
  903. mutex_unlock(&sbi->cp_mutex);
  904. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  905. }
  906. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  907. {
  908. int i;
  909. for (i = 0; i < MAX_INO_ENTRY; i++) {
  910. struct inode_management *im = &sbi->im[i];
  911. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  912. spin_lock_init(&im->ino_lock);
  913. INIT_LIST_HEAD(&im->ino_list);
  914. im->ino_num = 0;
  915. }
  916. /*
  917. * considering 512 blocks in a segment 8 blocks are needed for cp
  918. * and log segment summaries. Remaining blocks are used to keep
  919. * orphan entries with the limitation one reserved segment
  920. * for cp pack we can have max 1020*504 orphan entries
  921. */
  922. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  923. NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
  924. }
  925. int __init create_checkpoint_caches(void)
  926. {
  927. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  928. sizeof(struct ino_entry));
  929. if (!ino_entry_slab)
  930. return -ENOMEM;
  931. inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
  932. sizeof(struct dir_inode_entry));
  933. if (!inode_entry_slab) {
  934. kmem_cache_destroy(ino_entry_slab);
  935. return -ENOMEM;
  936. }
  937. return 0;
  938. }
  939. void destroy_checkpoint_caches(void)
  940. {
  941. kmem_cache_destroy(ino_entry_slab);
  942. kmem_cache_destroy(inode_entry_slab);
  943. }