octeon-wdt-main.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761
  1. /*
  2. * Octeon Watchdog driver
  3. *
  4. * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
  5. *
  6. * Some parts derived from wdt.c
  7. *
  8. * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
  9. * All Rights Reserved.
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. *
  16. * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
  17. * warranty for any of this software. This material is provided
  18. * "AS-IS" and at no charge.
  19. *
  20. * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
  21. *
  22. * This file is subject to the terms and conditions of the GNU General Public
  23. * License. See the file "COPYING" in the main directory of this archive
  24. * for more details.
  25. *
  26. *
  27. * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
  28. * For most systems this is less than 10 seconds, so to allow for
  29. * software to request longer watchdog heartbeats, we maintain software
  30. * counters to count multiples of the base rate. If the system locks
  31. * up in such a manner that we can not run the software counters, the
  32. * only result is a watchdog reset sooner than was requested. But
  33. * that is OK, because in this case userspace would likely not be able
  34. * to do anything anyhow.
  35. *
  36. * The hardware watchdog interval we call the period. The OCTEON
  37. * watchdog goes through several stages, after the first period an
  38. * irq is asserted, then if it is not reset, after the next period NMI
  39. * is asserted, then after an additional period a chip wide soft reset.
  40. * So for the software counters, we reset watchdog after each period
  41. * and decrement the counter. But for the last two periods we need to
  42. * let the watchdog progress to the NMI stage so we disable the irq
  43. * and let it proceed. Once in the NMI, we print the register state
  44. * to the serial port and then wait for the reset.
  45. *
  46. * A watchdog is maintained for each CPU in the system, that way if
  47. * one CPU suffers a lockup, we also get a register dump and reset.
  48. * The userspace ping resets the watchdog on all CPUs.
  49. *
  50. * Before userspace opens the watchdog device, we still run the
  51. * watchdogs to catch any lockups that may be kernel related.
  52. *
  53. */
  54. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  55. #include <linux/miscdevice.h>
  56. #include <linux/interrupt.h>
  57. #include <linux/watchdog.h>
  58. #include <linux/cpumask.h>
  59. #include <linux/bitops.h>
  60. #include <linux/kernel.h>
  61. #include <linux/module.h>
  62. #include <linux/string.h>
  63. #include <linux/delay.h>
  64. #include <linux/cpu.h>
  65. #include <linux/smp.h>
  66. #include <linux/fs.h>
  67. #include <linux/irq.h>
  68. #include <asm/mipsregs.h>
  69. #include <asm/uasm.h>
  70. #include <asm/octeon/octeon.h>
  71. /* The count needed to achieve timeout_sec. */
  72. static unsigned int timeout_cnt;
  73. /* The maximum period supported. */
  74. static unsigned int max_timeout_sec;
  75. /* The current period. */
  76. static unsigned int timeout_sec;
  77. /* Set to non-zero when userspace countdown mode active */
  78. static int do_coundown;
  79. static unsigned int countdown_reset;
  80. static unsigned int per_cpu_countdown[NR_CPUS];
  81. static cpumask_t irq_enabled_cpus;
  82. #define WD_TIMO 60 /* Default heartbeat = 60 seconds */
  83. static int heartbeat = WD_TIMO;
  84. module_param(heartbeat, int, S_IRUGO);
  85. MODULE_PARM_DESC(heartbeat,
  86. "Watchdog heartbeat in seconds. (0 < heartbeat, default="
  87. __MODULE_STRING(WD_TIMO) ")");
  88. static bool nowayout = WATCHDOG_NOWAYOUT;
  89. module_param(nowayout, bool, S_IRUGO);
  90. MODULE_PARM_DESC(nowayout,
  91. "Watchdog cannot be stopped once started (default="
  92. __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
  93. static unsigned long octeon_wdt_is_open;
  94. static char expect_close;
  95. static u32 __initdata nmi_stage1_insns[64];
  96. /* We need one branch and therefore one relocation per target label. */
  97. static struct uasm_label __initdata labels[5];
  98. static struct uasm_reloc __initdata relocs[5];
  99. enum lable_id {
  100. label_enter_bootloader = 1
  101. };
  102. /* Some CP0 registers */
  103. #define K0 26
  104. #define C0_CVMMEMCTL 11, 7
  105. #define C0_STATUS 12, 0
  106. #define C0_EBASE 15, 1
  107. #define C0_DESAVE 31, 0
  108. void octeon_wdt_nmi_stage2(void);
  109. static void __init octeon_wdt_build_stage1(void)
  110. {
  111. int i;
  112. int len;
  113. u32 *p = nmi_stage1_insns;
  114. #ifdef CONFIG_HOTPLUG_CPU
  115. struct uasm_label *l = labels;
  116. struct uasm_reloc *r = relocs;
  117. #endif
  118. /*
  119. * For the next few instructions running the debugger may
  120. * cause corruption of k0 in the saved registers. Since we're
  121. * about to crash, nobody probably cares.
  122. *
  123. * Save K0 into the debug scratch register
  124. */
  125. uasm_i_dmtc0(&p, K0, C0_DESAVE);
  126. uasm_i_mfc0(&p, K0, C0_STATUS);
  127. #ifdef CONFIG_HOTPLUG_CPU
  128. if (octeon_bootloader_entry_addr)
  129. uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI),
  130. label_enter_bootloader);
  131. #endif
  132. /* Force 64-bit addressing enabled */
  133. uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
  134. uasm_i_mtc0(&p, K0, C0_STATUS);
  135. #ifdef CONFIG_HOTPLUG_CPU
  136. if (octeon_bootloader_entry_addr) {
  137. uasm_i_mfc0(&p, K0, C0_EBASE);
  138. /* Coreid number in K0 */
  139. uasm_i_andi(&p, K0, K0, 0xf);
  140. /* 8 * coreid in bits 16-31 */
  141. uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
  142. uasm_i_ori(&p, K0, K0, 0x8001);
  143. uasm_i_dsll_safe(&p, K0, K0, 16);
  144. uasm_i_ori(&p, K0, K0, 0x0700);
  145. uasm_i_drotr_safe(&p, K0, K0, 32);
  146. /*
  147. * Should result in: 0x8001,0700,0000,8*coreid which is
  148. * CVMX_CIU_WDOGX(coreid) - 0x0500
  149. *
  150. * Now ld K0, CVMX_CIU_WDOGX(coreid)
  151. */
  152. uasm_i_ld(&p, K0, 0x500, K0);
  153. /*
  154. * If bit one set handle the NMI as a watchdog event.
  155. * otherwise transfer control to bootloader.
  156. */
  157. uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
  158. uasm_i_nop(&p);
  159. }
  160. #endif
  161. /* Clear Dcache so cvmseg works right. */
  162. uasm_i_cache(&p, 1, 0, 0);
  163. /* Use K0 to do a read/modify/write of CVMMEMCTL */
  164. uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
  165. /* Clear out the size of CVMSEG */
  166. uasm_i_dins(&p, K0, 0, 0, 6);
  167. /* Set CVMSEG to its largest value */
  168. uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
  169. /* Store the CVMMEMCTL value */
  170. uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
  171. /* Load the address of the second stage handler */
  172. UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
  173. uasm_i_jr(&p, K0);
  174. uasm_i_dmfc0(&p, K0, C0_DESAVE);
  175. #ifdef CONFIG_HOTPLUG_CPU
  176. if (octeon_bootloader_entry_addr) {
  177. uasm_build_label(&l, p, label_enter_bootloader);
  178. /* Jump to the bootloader and restore K0 */
  179. UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
  180. uasm_i_jr(&p, K0);
  181. uasm_i_dmfc0(&p, K0, C0_DESAVE);
  182. }
  183. #endif
  184. uasm_resolve_relocs(relocs, labels);
  185. len = (int)(p - nmi_stage1_insns);
  186. pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len);
  187. pr_debug("\t.set push\n");
  188. pr_debug("\t.set noreorder\n");
  189. for (i = 0; i < len; i++)
  190. pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
  191. pr_debug("\t.set pop\n");
  192. if (len > 32)
  193. panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
  194. }
  195. static int cpu2core(int cpu)
  196. {
  197. #ifdef CONFIG_SMP
  198. return cpu_logical_map(cpu);
  199. #else
  200. return cvmx_get_core_num();
  201. #endif
  202. }
  203. static int core2cpu(int coreid)
  204. {
  205. #ifdef CONFIG_SMP
  206. return cpu_number_map(coreid);
  207. #else
  208. return 0;
  209. #endif
  210. }
  211. /**
  212. * Poke the watchdog when an interrupt is received
  213. *
  214. * @cpl:
  215. * @dev_id:
  216. *
  217. * Returns
  218. */
  219. static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
  220. {
  221. unsigned int core = cvmx_get_core_num();
  222. int cpu = core2cpu(core);
  223. if (do_coundown) {
  224. if (per_cpu_countdown[cpu] > 0) {
  225. /* We're alive, poke the watchdog */
  226. cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
  227. per_cpu_countdown[cpu]--;
  228. } else {
  229. /* Bad news, you are about to reboot. */
  230. disable_irq_nosync(cpl);
  231. cpumask_clear_cpu(cpu, &irq_enabled_cpus);
  232. }
  233. } else {
  234. /* Not open, just ping away... */
  235. cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
  236. }
  237. return IRQ_HANDLED;
  238. }
  239. /* From setup.c */
  240. extern int prom_putchar(char c);
  241. /**
  242. * Write a string to the uart
  243. *
  244. * @str: String to write
  245. */
  246. static void octeon_wdt_write_string(const char *str)
  247. {
  248. /* Just loop writing one byte at a time */
  249. while (*str)
  250. prom_putchar(*str++);
  251. }
  252. /**
  253. * Write a hex number out of the uart
  254. *
  255. * @value: Number to display
  256. * @digits: Number of digits to print (1 to 16)
  257. */
  258. static void octeon_wdt_write_hex(u64 value, int digits)
  259. {
  260. int d;
  261. int v;
  262. for (d = 0; d < digits; d++) {
  263. v = (value >> ((digits - d - 1) * 4)) & 0xf;
  264. if (v >= 10)
  265. prom_putchar('a' + v - 10);
  266. else
  267. prom_putchar('0' + v);
  268. }
  269. }
  270. const char *reg_name[] = {
  271. "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
  272. "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
  273. "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
  274. "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
  275. };
  276. /**
  277. * NMI stage 3 handler. NMIs are handled in the following manner:
  278. * 1) The first NMI handler enables CVMSEG and transfers from
  279. * the bootbus region into normal memory. It is careful to not
  280. * destroy any registers.
  281. * 2) The second stage handler uses CVMSEG to save the registers
  282. * and create a stack for C code. It then calls the third level
  283. * handler with one argument, a pointer to the register values.
  284. * 3) The third, and final, level handler is the following C
  285. * function that prints out some useful infomration.
  286. *
  287. * @reg: Pointer to register state before the NMI
  288. */
  289. void octeon_wdt_nmi_stage3(u64 reg[32])
  290. {
  291. u64 i;
  292. unsigned int coreid = cvmx_get_core_num();
  293. /*
  294. * Save status and cause early to get them before any changes
  295. * might happen.
  296. */
  297. u64 cp0_cause = read_c0_cause();
  298. u64 cp0_status = read_c0_status();
  299. u64 cp0_error_epc = read_c0_errorepc();
  300. u64 cp0_epc = read_c0_epc();
  301. /* Delay so output from all cores output is not jumbled together. */
  302. __delay(100000000ull * coreid);
  303. octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
  304. octeon_wdt_write_hex(coreid, 1);
  305. octeon_wdt_write_string(" ***\r\n");
  306. for (i = 0; i < 32; i++) {
  307. octeon_wdt_write_string("\t");
  308. octeon_wdt_write_string(reg_name[i]);
  309. octeon_wdt_write_string("\t0x");
  310. octeon_wdt_write_hex(reg[i], 16);
  311. if (i & 1)
  312. octeon_wdt_write_string("\r\n");
  313. }
  314. octeon_wdt_write_string("\terr_epc\t0x");
  315. octeon_wdt_write_hex(cp0_error_epc, 16);
  316. octeon_wdt_write_string("\tepc\t0x");
  317. octeon_wdt_write_hex(cp0_epc, 16);
  318. octeon_wdt_write_string("\r\n");
  319. octeon_wdt_write_string("\tstatus\t0x");
  320. octeon_wdt_write_hex(cp0_status, 16);
  321. octeon_wdt_write_string("\tcause\t0x");
  322. octeon_wdt_write_hex(cp0_cause, 16);
  323. octeon_wdt_write_string("\r\n");
  324. octeon_wdt_write_string("\tsum0\t0x");
  325. octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
  326. octeon_wdt_write_string("\ten0\t0x");
  327. octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
  328. octeon_wdt_write_string("\r\n");
  329. octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
  330. }
  331. static void octeon_wdt_disable_interrupt(int cpu)
  332. {
  333. unsigned int core;
  334. unsigned int irq;
  335. union cvmx_ciu_wdogx ciu_wdog;
  336. core = cpu2core(cpu);
  337. irq = OCTEON_IRQ_WDOG0 + core;
  338. /* Poke the watchdog to clear out its state */
  339. cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
  340. /* Disable the hardware. */
  341. ciu_wdog.u64 = 0;
  342. cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
  343. free_irq(irq, octeon_wdt_poke_irq);
  344. }
  345. static void octeon_wdt_setup_interrupt(int cpu)
  346. {
  347. unsigned int core;
  348. unsigned int irq;
  349. union cvmx_ciu_wdogx ciu_wdog;
  350. core = cpu2core(cpu);
  351. /* Disable it before doing anything with the interrupts. */
  352. ciu_wdog.u64 = 0;
  353. cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
  354. per_cpu_countdown[cpu] = countdown_reset;
  355. irq = OCTEON_IRQ_WDOG0 + core;
  356. if (request_irq(irq, octeon_wdt_poke_irq,
  357. IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
  358. panic("octeon_wdt: Couldn't obtain irq %d", irq);
  359. cpumask_set_cpu(cpu, &irq_enabled_cpus);
  360. /* Poke the watchdog to clear out its state */
  361. cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
  362. /* Finally enable the watchdog now that all handlers are installed */
  363. ciu_wdog.u64 = 0;
  364. ciu_wdog.s.len = timeout_cnt;
  365. ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
  366. cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
  367. }
  368. static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
  369. unsigned long action, void *hcpu)
  370. {
  371. unsigned int cpu = (unsigned long)hcpu;
  372. switch (action) {
  373. case CPU_DOWN_PREPARE:
  374. octeon_wdt_disable_interrupt(cpu);
  375. break;
  376. case CPU_ONLINE:
  377. case CPU_DOWN_FAILED:
  378. octeon_wdt_setup_interrupt(cpu);
  379. break;
  380. default:
  381. break;
  382. }
  383. return NOTIFY_OK;
  384. }
  385. static void octeon_wdt_ping(void)
  386. {
  387. int cpu;
  388. int coreid;
  389. for_each_online_cpu(cpu) {
  390. coreid = cpu2core(cpu);
  391. cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
  392. per_cpu_countdown[cpu] = countdown_reset;
  393. if ((countdown_reset || !do_coundown) &&
  394. !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
  395. /* We have to enable the irq */
  396. int irq = OCTEON_IRQ_WDOG0 + coreid;
  397. enable_irq(irq);
  398. cpumask_set_cpu(cpu, &irq_enabled_cpus);
  399. }
  400. }
  401. }
  402. static void octeon_wdt_calc_parameters(int t)
  403. {
  404. unsigned int periods;
  405. timeout_sec = max_timeout_sec;
  406. /*
  407. * Find the largest interrupt period, that can evenly divide
  408. * the requested heartbeat time.
  409. */
  410. while ((t % timeout_sec) != 0)
  411. timeout_sec--;
  412. periods = t / timeout_sec;
  413. /*
  414. * The last two periods are after the irq is disabled, and
  415. * then to the nmi, so we subtract them off.
  416. */
  417. countdown_reset = periods > 2 ? periods - 2 : 0;
  418. heartbeat = t;
  419. timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
  420. }
  421. static int octeon_wdt_set_heartbeat(int t)
  422. {
  423. int cpu;
  424. int coreid;
  425. union cvmx_ciu_wdogx ciu_wdog;
  426. if (t <= 0)
  427. return -1;
  428. octeon_wdt_calc_parameters(t);
  429. for_each_online_cpu(cpu) {
  430. coreid = cpu2core(cpu);
  431. cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
  432. ciu_wdog.u64 = 0;
  433. ciu_wdog.s.len = timeout_cnt;
  434. ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
  435. cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
  436. cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
  437. }
  438. octeon_wdt_ping(); /* Get the irqs back on. */
  439. return 0;
  440. }
  441. /**
  442. * octeon_wdt_write:
  443. * @file: file handle to the watchdog
  444. * @buf: buffer to write (unused as data does not matter here
  445. * @count: count of bytes
  446. * @ppos: pointer to the position to write. No seeks allowed
  447. *
  448. * A write to a watchdog device is defined as a keepalive signal. Any
  449. * write of data will do, as we we don't define content meaning.
  450. */
  451. static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
  452. size_t count, loff_t *ppos)
  453. {
  454. if (count) {
  455. if (!nowayout) {
  456. size_t i;
  457. /* In case it was set long ago */
  458. expect_close = 0;
  459. for (i = 0; i != count; i++) {
  460. char c;
  461. if (get_user(c, buf + i))
  462. return -EFAULT;
  463. if (c == 'V')
  464. expect_close = 1;
  465. }
  466. }
  467. octeon_wdt_ping();
  468. }
  469. return count;
  470. }
  471. /**
  472. * octeon_wdt_ioctl:
  473. * @file: file handle to the device
  474. * @cmd: watchdog command
  475. * @arg: argument pointer
  476. *
  477. * The watchdog API defines a common set of functions for all
  478. * watchdogs according to their available features. We only
  479. * actually usefully support querying capabilities and setting
  480. * the timeout.
  481. */
  482. static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
  483. unsigned long arg)
  484. {
  485. void __user *argp = (void __user *)arg;
  486. int __user *p = argp;
  487. int new_heartbeat;
  488. static struct watchdog_info ident = {
  489. .options = WDIOF_SETTIMEOUT|
  490. WDIOF_MAGICCLOSE|
  491. WDIOF_KEEPALIVEPING,
  492. .firmware_version = 1,
  493. .identity = "OCTEON",
  494. };
  495. switch (cmd) {
  496. case WDIOC_GETSUPPORT:
  497. return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
  498. case WDIOC_GETSTATUS:
  499. case WDIOC_GETBOOTSTATUS:
  500. return put_user(0, p);
  501. case WDIOC_KEEPALIVE:
  502. octeon_wdt_ping();
  503. return 0;
  504. case WDIOC_SETTIMEOUT:
  505. if (get_user(new_heartbeat, p))
  506. return -EFAULT;
  507. if (octeon_wdt_set_heartbeat(new_heartbeat))
  508. return -EINVAL;
  509. /* Fall through. */
  510. case WDIOC_GETTIMEOUT:
  511. return put_user(heartbeat, p);
  512. default:
  513. return -ENOTTY;
  514. }
  515. }
  516. /**
  517. * octeon_wdt_open:
  518. * @inode: inode of device
  519. * @file: file handle to device
  520. *
  521. * The watchdog device has been opened. The watchdog device is single
  522. * open and on opening we do a ping to reset the counters.
  523. */
  524. static int octeon_wdt_open(struct inode *inode, struct file *file)
  525. {
  526. if (test_and_set_bit(0, &octeon_wdt_is_open))
  527. return -EBUSY;
  528. /*
  529. * Activate
  530. */
  531. octeon_wdt_ping();
  532. do_coundown = 1;
  533. return nonseekable_open(inode, file);
  534. }
  535. /**
  536. * octeon_wdt_release:
  537. * @inode: inode to board
  538. * @file: file handle to board
  539. *
  540. * The watchdog has a configurable API. There is a religious dispute
  541. * between people who want their watchdog to be able to shut down and
  542. * those who want to be sure if the watchdog manager dies the machine
  543. * reboots. In the former case we disable the counters, in the latter
  544. * case you have to open it again very soon.
  545. */
  546. static int octeon_wdt_release(struct inode *inode, struct file *file)
  547. {
  548. if (expect_close) {
  549. do_coundown = 0;
  550. octeon_wdt_ping();
  551. } else {
  552. pr_crit("WDT device closed unexpectedly. WDT will not stop!\n");
  553. }
  554. clear_bit(0, &octeon_wdt_is_open);
  555. expect_close = 0;
  556. return 0;
  557. }
  558. static const struct file_operations octeon_wdt_fops = {
  559. .owner = THIS_MODULE,
  560. .llseek = no_llseek,
  561. .write = octeon_wdt_write,
  562. .unlocked_ioctl = octeon_wdt_ioctl,
  563. .open = octeon_wdt_open,
  564. .release = octeon_wdt_release,
  565. };
  566. static struct miscdevice octeon_wdt_miscdev = {
  567. .minor = WATCHDOG_MINOR,
  568. .name = "watchdog",
  569. .fops = &octeon_wdt_fops,
  570. };
  571. static struct notifier_block octeon_wdt_cpu_notifier = {
  572. .notifier_call = octeon_wdt_cpu_callback,
  573. };
  574. /**
  575. * Module/ driver initialization.
  576. *
  577. * Returns Zero on success
  578. */
  579. static int __init octeon_wdt_init(void)
  580. {
  581. int i;
  582. int ret;
  583. int cpu;
  584. u64 *ptr;
  585. /*
  586. * Watchdog time expiration length = The 16 bits of LEN
  587. * represent the most significant bits of a 24 bit decrementer
  588. * that decrements every 256 cycles.
  589. *
  590. * Try for a timeout of 5 sec, if that fails a smaller number
  591. * of even seconds,
  592. */
  593. max_timeout_sec = 6;
  594. do {
  595. max_timeout_sec--;
  596. timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
  597. } while (timeout_cnt > 65535);
  598. BUG_ON(timeout_cnt == 0);
  599. octeon_wdt_calc_parameters(heartbeat);
  600. pr_info("Initial granularity %d Sec\n", timeout_sec);
  601. ret = misc_register(&octeon_wdt_miscdev);
  602. if (ret) {
  603. pr_err("cannot register miscdev on minor=%d (err=%d)\n",
  604. WATCHDOG_MINOR, ret);
  605. goto out;
  606. }
  607. /* Build the NMI handler ... */
  608. octeon_wdt_build_stage1();
  609. /* ... and install it. */
  610. ptr = (u64 *) nmi_stage1_insns;
  611. for (i = 0; i < 16; i++) {
  612. cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
  613. cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
  614. }
  615. cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
  616. cpumask_clear(&irq_enabled_cpus);
  617. cpu_notifier_register_begin();
  618. for_each_online_cpu(cpu)
  619. octeon_wdt_setup_interrupt(cpu);
  620. __register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
  621. cpu_notifier_register_done();
  622. out:
  623. return ret;
  624. }
  625. /**
  626. * Module / driver shutdown
  627. */
  628. static void __exit octeon_wdt_cleanup(void)
  629. {
  630. int cpu;
  631. misc_deregister(&octeon_wdt_miscdev);
  632. cpu_notifier_register_begin();
  633. __unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
  634. for_each_online_cpu(cpu) {
  635. int core = cpu2core(cpu);
  636. /* Disable the watchdog */
  637. cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
  638. /* Free the interrupt handler */
  639. free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
  640. }
  641. cpu_notifier_register_done();
  642. /*
  643. * Disable the boot-bus memory, the code it points to is soon
  644. * to go missing.
  645. */
  646. cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
  647. }
  648. MODULE_LICENSE("GPL");
  649. MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
  650. MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
  651. module_init(octeon_wdt_init);
  652. module_exit(octeon_wdt_cleanup);