spi-dw.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744
  1. /*
  2. * Designware SPI core controller driver (refer pxa2xx_spi.c)
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. */
  15. #include <linux/dma-mapping.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/module.h>
  18. #include <linux/highmem.h>
  19. #include <linux/delay.h>
  20. #include <linux/slab.h>
  21. #include <linux/spi/spi.h>
  22. #include <linux/gpio.h>
  23. #include "spi-dw.h"
  24. #ifdef CONFIG_DEBUG_FS
  25. #include <linux/debugfs.h>
  26. #endif
  27. #define START_STATE ((void *)0)
  28. #define RUNNING_STATE ((void *)1)
  29. #define DONE_STATE ((void *)2)
  30. #define ERROR_STATE ((void *)-1)
  31. /* Slave spi_dev related */
  32. struct chip_data {
  33. u16 cr0;
  34. u8 cs; /* chip select pin */
  35. u8 n_bytes; /* current is a 1/2/4 byte op */
  36. u8 tmode; /* TR/TO/RO/EEPROM */
  37. u8 type; /* SPI/SSP/MicroWire */
  38. u8 poll_mode; /* 1 means use poll mode */
  39. u32 dma_width;
  40. u32 rx_threshold;
  41. u32 tx_threshold;
  42. u8 enable_dma;
  43. u8 bits_per_word;
  44. u16 clk_div; /* baud rate divider */
  45. u32 speed_hz; /* baud rate */
  46. void (*cs_control)(u32 command);
  47. };
  48. #ifdef CONFIG_DEBUG_FS
  49. #define SPI_REGS_BUFSIZE 1024
  50. static ssize_t dw_spi_show_regs(struct file *file, char __user *user_buf,
  51. size_t count, loff_t *ppos)
  52. {
  53. struct dw_spi *dws = file->private_data;
  54. char *buf;
  55. u32 len = 0;
  56. ssize_t ret;
  57. buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL);
  58. if (!buf)
  59. return 0;
  60. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  61. "%s registers:\n", dev_name(&dws->master->dev));
  62. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  63. "=================================\n");
  64. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  65. "CTRL0: \t\t0x%08x\n", dw_readl(dws, DW_SPI_CTRL0));
  66. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  67. "CTRL1: \t\t0x%08x\n", dw_readl(dws, DW_SPI_CTRL1));
  68. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  69. "SSIENR: \t0x%08x\n", dw_readl(dws, DW_SPI_SSIENR));
  70. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  71. "SER: \t\t0x%08x\n", dw_readl(dws, DW_SPI_SER));
  72. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  73. "BAUDR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_BAUDR));
  74. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  75. "TXFTLR: \t0x%08x\n", dw_readl(dws, DW_SPI_TXFLTR));
  76. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  77. "RXFTLR: \t0x%08x\n", dw_readl(dws, DW_SPI_RXFLTR));
  78. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  79. "TXFLR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_TXFLR));
  80. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  81. "RXFLR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_RXFLR));
  82. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  83. "SR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_SR));
  84. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  85. "IMR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_IMR));
  86. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  87. "ISR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_ISR));
  88. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  89. "DMACR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_DMACR));
  90. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  91. "DMATDLR: \t0x%08x\n", dw_readl(dws, DW_SPI_DMATDLR));
  92. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  93. "DMARDLR: \t0x%08x\n", dw_readl(dws, DW_SPI_DMARDLR));
  94. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  95. "=================================\n");
  96. ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
  97. kfree(buf);
  98. return ret;
  99. }
  100. static const struct file_operations dw_spi_regs_ops = {
  101. .owner = THIS_MODULE,
  102. .open = simple_open,
  103. .read = dw_spi_show_regs,
  104. .llseek = default_llseek,
  105. };
  106. static int dw_spi_debugfs_init(struct dw_spi *dws)
  107. {
  108. dws->debugfs = debugfs_create_dir("dw_spi", NULL);
  109. if (!dws->debugfs)
  110. return -ENOMEM;
  111. debugfs_create_file("registers", S_IFREG | S_IRUGO,
  112. dws->debugfs, (void *)dws, &dw_spi_regs_ops);
  113. return 0;
  114. }
  115. static void dw_spi_debugfs_remove(struct dw_spi *dws)
  116. {
  117. debugfs_remove_recursive(dws->debugfs);
  118. }
  119. #else
  120. static inline int dw_spi_debugfs_init(struct dw_spi *dws)
  121. {
  122. return 0;
  123. }
  124. static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
  125. {
  126. }
  127. #endif /* CONFIG_DEBUG_FS */
  128. /* Return the max entries we can fill into tx fifo */
  129. static inline u32 tx_max(struct dw_spi *dws)
  130. {
  131. u32 tx_left, tx_room, rxtx_gap;
  132. tx_left = (dws->tx_end - dws->tx) / dws->n_bytes;
  133. tx_room = dws->fifo_len - dw_readw(dws, DW_SPI_TXFLR);
  134. /*
  135. * Another concern is about the tx/rx mismatch, we
  136. * though to use (dws->fifo_len - rxflr - txflr) as
  137. * one maximum value for tx, but it doesn't cover the
  138. * data which is out of tx/rx fifo and inside the
  139. * shift registers. So a control from sw point of
  140. * view is taken.
  141. */
  142. rxtx_gap = ((dws->rx_end - dws->rx) - (dws->tx_end - dws->tx))
  143. / dws->n_bytes;
  144. return min3(tx_left, tx_room, (u32) (dws->fifo_len - rxtx_gap));
  145. }
  146. /* Return the max entries we should read out of rx fifo */
  147. static inline u32 rx_max(struct dw_spi *dws)
  148. {
  149. u32 rx_left = (dws->rx_end - dws->rx) / dws->n_bytes;
  150. return min_t(u32, rx_left, dw_readw(dws, DW_SPI_RXFLR));
  151. }
  152. static void dw_writer(struct dw_spi *dws)
  153. {
  154. u32 max = tx_max(dws);
  155. u16 txw = 0;
  156. while (max--) {
  157. /* Set the tx word if the transfer's original "tx" is not null */
  158. if (dws->tx_end - dws->len) {
  159. if (dws->n_bytes == 1)
  160. txw = *(u8 *)(dws->tx);
  161. else
  162. txw = *(u16 *)(dws->tx);
  163. }
  164. dw_writew(dws, DW_SPI_DR, txw);
  165. dws->tx += dws->n_bytes;
  166. }
  167. }
  168. static void dw_reader(struct dw_spi *dws)
  169. {
  170. u32 max = rx_max(dws);
  171. u16 rxw;
  172. while (max--) {
  173. rxw = dw_readw(dws, DW_SPI_DR);
  174. /* Care rx only if the transfer's original "rx" is not null */
  175. if (dws->rx_end - dws->len) {
  176. if (dws->n_bytes == 1)
  177. *(u8 *)(dws->rx) = rxw;
  178. else
  179. *(u16 *)(dws->rx) = rxw;
  180. }
  181. dws->rx += dws->n_bytes;
  182. }
  183. }
  184. static void *next_transfer(struct dw_spi *dws)
  185. {
  186. struct spi_message *msg = dws->cur_msg;
  187. struct spi_transfer *trans = dws->cur_transfer;
  188. /* Move to next transfer */
  189. if (trans->transfer_list.next != &msg->transfers) {
  190. dws->cur_transfer =
  191. list_entry(trans->transfer_list.next,
  192. struct spi_transfer,
  193. transfer_list);
  194. return RUNNING_STATE;
  195. }
  196. return DONE_STATE;
  197. }
  198. /*
  199. * Note: first step is the protocol driver prepares
  200. * a dma-capable memory, and this func just need translate
  201. * the virt addr to physical
  202. */
  203. static int map_dma_buffers(struct dw_spi *dws)
  204. {
  205. if (!dws->cur_msg->is_dma_mapped
  206. || !dws->dma_inited
  207. || !dws->cur_chip->enable_dma
  208. || !dws->dma_ops)
  209. return 0;
  210. if (dws->cur_transfer->tx_dma)
  211. dws->tx_dma = dws->cur_transfer->tx_dma;
  212. if (dws->cur_transfer->rx_dma)
  213. dws->rx_dma = dws->cur_transfer->rx_dma;
  214. return 1;
  215. }
  216. /* Caller already set message->status; dma and pio irqs are blocked */
  217. static void giveback(struct dw_spi *dws)
  218. {
  219. struct spi_transfer *last_transfer;
  220. struct spi_message *msg;
  221. msg = dws->cur_msg;
  222. dws->cur_msg = NULL;
  223. dws->cur_transfer = NULL;
  224. dws->prev_chip = dws->cur_chip;
  225. dws->cur_chip = NULL;
  226. dws->dma_mapped = 0;
  227. last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
  228. transfer_list);
  229. if (!last_transfer->cs_change)
  230. spi_chip_sel(dws, msg->spi, 0);
  231. spi_finalize_current_message(dws->master);
  232. }
  233. static void int_error_stop(struct dw_spi *dws, const char *msg)
  234. {
  235. /* Stop the hw */
  236. spi_enable_chip(dws, 0);
  237. dev_err(&dws->master->dev, "%s\n", msg);
  238. dws->cur_msg->state = ERROR_STATE;
  239. tasklet_schedule(&dws->pump_transfers);
  240. }
  241. void dw_spi_xfer_done(struct dw_spi *dws)
  242. {
  243. /* Update total byte transferred return count actual bytes read */
  244. dws->cur_msg->actual_length += dws->len;
  245. /* Move to next transfer */
  246. dws->cur_msg->state = next_transfer(dws);
  247. /* Handle end of message */
  248. if (dws->cur_msg->state == DONE_STATE) {
  249. dws->cur_msg->status = 0;
  250. giveback(dws);
  251. } else
  252. tasklet_schedule(&dws->pump_transfers);
  253. }
  254. EXPORT_SYMBOL_GPL(dw_spi_xfer_done);
  255. static irqreturn_t interrupt_transfer(struct dw_spi *dws)
  256. {
  257. u16 irq_status = dw_readw(dws, DW_SPI_ISR);
  258. /* Error handling */
  259. if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
  260. dw_readw(dws, DW_SPI_TXOICR);
  261. dw_readw(dws, DW_SPI_RXOICR);
  262. dw_readw(dws, DW_SPI_RXUICR);
  263. int_error_stop(dws, "interrupt_transfer: fifo overrun/underrun");
  264. return IRQ_HANDLED;
  265. }
  266. dw_reader(dws);
  267. if (dws->rx_end == dws->rx) {
  268. spi_mask_intr(dws, SPI_INT_TXEI);
  269. dw_spi_xfer_done(dws);
  270. return IRQ_HANDLED;
  271. }
  272. if (irq_status & SPI_INT_TXEI) {
  273. spi_mask_intr(dws, SPI_INT_TXEI);
  274. dw_writer(dws);
  275. /* Enable TX irq always, it will be disabled when RX finished */
  276. spi_umask_intr(dws, SPI_INT_TXEI);
  277. }
  278. return IRQ_HANDLED;
  279. }
  280. static irqreturn_t dw_spi_irq(int irq, void *dev_id)
  281. {
  282. struct dw_spi *dws = dev_id;
  283. u16 irq_status = dw_readw(dws, DW_SPI_ISR) & 0x3f;
  284. if (!irq_status)
  285. return IRQ_NONE;
  286. if (!dws->cur_msg) {
  287. spi_mask_intr(dws, SPI_INT_TXEI);
  288. return IRQ_HANDLED;
  289. }
  290. return dws->transfer_handler(dws);
  291. }
  292. /* Must be called inside pump_transfers() */
  293. static void poll_transfer(struct dw_spi *dws)
  294. {
  295. do {
  296. dw_writer(dws);
  297. dw_reader(dws);
  298. cpu_relax();
  299. } while (dws->rx_end > dws->rx);
  300. dw_spi_xfer_done(dws);
  301. }
  302. static void pump_transfers(unsigned long data)
  303. {
  304. struct dw_spi *dws = (struct dw_spi *)data;
  305. struct spi_message *message = NULL;
  306. struct spi_transfer *transfer = NULL;
  307. struct spi_transfer *previous = NULL;
  308. struct spi_device *spi = NULL;
  309. struct chip_data *chip = NULL;
  310. u8 bits = 0;
  311. u8 imask = 0;
  312. u8 cs_change = 0;
  313. u16 txint_level = 0;
  314. u16 clk_div = 0;
  315. u32 speed = 0;
  316. u32 cr0 = 0;
  317. /* Get current state information */
  318. message = dws->cur_msg;
  319. transfer = dws->cur_transfer;
  320. chip = dws->cur_chip;
  321. spi = message->spi;
  322. if (message->state == ERROR_STATE) {
  323. message->status = -EIO;
  324. goto early_exit;
  325. }
  326. /* Handle end of message */
  327. if (message->state == DONE_STATE) {
  328. message->status = 0;
  329. goto early_exit;
  330. }
  331. /* Delay if requested at end of transfer */
  332. if (message->state == RUNNING_STATE) {
  333. previous = list_entry(transfer->transfer_list.prev,
  334. struct spi_transfer,
  335. transfer_list);
  336. if (previous->delay_usecs)
  337. udelay(previous->delay_usecs);
  338. }
  339. dws->n_bytes = chip->n_bytes;
  340. dws->dma_width = chip->dma_width;
  341. dws->cs_control = chip->cs_control;
  342. dws->rx_dma = transfer->rx_dma;
  343. dws->tx_dma = transfer->tx_dma;
  344. dws->tx = (void *)transfer->tx_buf;
  345. dws->tx_end = dws->tx + transfer->len;
  346. dws->rx = transfer->rx_buf;
  347. dws->rx_end = dws->rx + transfer->len;
  348. dws->len = dws->cur_transfer->len;
  349. if (chip != dws->prev_chip)
  350. cs_change = 1;
  351. cr0 = chip->cr0;
  352. /* Handle per transfer options for bpw and speed */
  353. if (transfer->speed_hz) {
  354. speed = chip->speed_hz;
  355. if ((transfer->speed_hz != speed) || (!chip->clk_div)) {
  356. speed = transfer->speed_hz;
  357. /* clk_div doesn't support odd number */
  358. clk_div = dws->max_freq / speed;
  359. clk_div = (clk_div + 1) & 0xfffe;
  360. chip->speed_hz = speed;
  361. chip->clk_div = clk_div;
  362. }
  363. }
  364. if (transfer->bits_per_word) {
  365. bits = transfer->bits_per_word;
  366. dws->n_bytes = dws->dma_width = bits >> 3;
  367. cr0 = (bits - 1)
  368. | (chip->type << SPI_FRF_OFFSET)
  369. | (spi->mode << SPI_MODE_OFFSET)
  370. | (chip->tmode << SPI_TMOD_OFFSET);
  371. }
  372. message->state = RUNNING_STATE;
  373. /*
  374. * Adjust transfer mode if necessary. Requires platform dependent
  375. * chipselect mechanism.
  376. */
  377. if (dws->cs_control) {
  378. if (dws->rx && dws->tx)
  379. chip->tmode = SPI_TMOD_TR;
  380. else if (dws->rx)
  381. chip->tmode = SPI_TMOD_RO;
  382. else
  383. chip->tmode = SPI_TMOD_TO;
  384. cr0 &= ~SPI_TMOD_MASK;
  385. cr0 |= (chip->tmode << SPI_TMOD_OFFSET);
  386. }
  387. /* Check if current transfer is a DMA transaction */
  388. dws->dma_mapped = map_dma_buffers(dws);
  389. /*
  390. * Interrupt mode
  391. * we only need set the TXEI IRQ, as TX/RX always happen syncronizely
  392. */
  393. if (!dws->dma_mapped && !chip->poll_mode) {
  394. int templen = dws->len / dws->n_bytes;
  395. txint_level = dws->fifo_len / 2;
  396. txint_level = (templen > txint_level) ? txint_level : templen;
  397. imask |= SPI_INT_TXEI | SPI_INT_TXOI |
  398. SPI_INT_RXUI | SPI_INT_RXOI;
  399. dws->transfer_handler = interrupt_transfer;
  400. }
  401. /*
  402. * Reprogram registers only if
  403. * 1. chip select changes
  404. * 2. clk_div is changed
  405. * 3. control value changes
  406. */
  407. if (dw_readw(dws, DW_SPI_CTRL0) != cr0 || cs_change || clk_div || imask) {
  408. spi_enable_chip(dws, 0);
  409. if (dw_readw(dws, DW_SPI_CTRL0) != cr0)
  410. dw_writew(dws, DW_SPI_CTRL0, cr0);
  411. spi_set_clk(dws, clk_div ? clk_div : chip->clk_div);
  412. spi_chip_sel(dws, spi, 1);
  413. /* Set the interrupt mask, for poll mode just disable all int */
  414. spi_mask_intr(dws, 0xff);
  415. if (imask)
  416. spi_umask_intr(dws, imask);
  417. if (txint_level)
  418. dw_writew(dws, DW_SPI_TXFLTR, txint_level);
  419. spi_enable_chip(dws, 1);
  420. if (cs_change)
  421. dws->prev_chip = chip;
  422. }
  423. if (dws->dma_mapped)
  424. dws->dma_ops->dma_transfer(dws, cs_change);
  425. if (chip->poll_mode)
  426. poll_transfer(dws);
  427. return;
  428. early_exit:
  429. giveback(dws);
  430. }
  431. static int dw_spi_transfer_one_message(struct spi_master *master,
  432. struct spi_message *msg)
  433. {
  434. struct dw_spi *dws = spi_master_get_devdata(master);
  435. dws->cur_msg = msg;
  436. /* Initial message state */
  437. dws->cur_msg->state = START_STATE;
  438. dws->cur_transfer = list_entry(dws->cur_msg->transfers.next,
  439. struct spi_transfer,
  440. transfer_list);
  441. dws->cur_chip = spi_get_ctldata(dws->cur_msg->spi);
  442. /* Launch transfers */
  443. tasklet_schedule(&dws->pump_transfers);
  444. return 0;
  445. }
  446. /* This may be called twice for each spi dev */
  447. static int dw_spi_setup(struct spi_device *spi)
  448. {
  449. struct dw_spi_chip *chip_info = NULL;
  450. struct chip_data *chip;
  451. int ret;
  452. /* Only alloc on first setup */
  453. chip = spi_get_ctldata(spi);
  454. if (!chip) {
  455. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  456. if (!chip)
  457. return -ENOMEM;
  458. spi_set_ctldata(spi, chip);
  459. }
  460. /*
  461. * Protocol drivers may change the chip settings, so...
  462. * if chip_info exists, use it
  463. */
  464. chip_info = spi->controller_data;
  465. /* chip_info doesn't always exist */
  466. if (chip_info) {
  467. if (chip_info->cs_control)
  468. chip->cs_control = chip_info->cs_control;
  469. chip->poll_mode = chip_info->poll_mode;
  470. chip->type = chip_info->type;
  471. chip->rx_threshold = 0;
  472. chip->tx_threshold = 0;
  473. chip->enable_dma = chip_info->enable_dma;
  474. }
  475. if (spi->bits_per_word == 8) {
  476. chip->n_bytes = 1;
  477. chip->dma_width = 1;
  478. } else if (spi->bits_per_word == 16) {
  479. chip->n_bytes = 2;
  480. chip->dma_width = 2;
  481. }
  482. chip->bits_per_word = spi->bits_per_word;
  483. if (!spi->max_speed_hz) {
  484. dev_err(&spi->dev, "No max speed HZ parameter\n");
  485. return -EINVAL;
  486. }
  487. chip->tmode = 0; /* Tx & Rx */
  488. /* Default SPI mode is SCPOL = 0, SCPH = 0 */
  489. chip->cr0 = (chip->bits_per_word - 1)
  490. | (chip->type << SPI_FRF_OFFSET)
  491. | (spi->mode << SPI_MODE_OFFSET)
  492. | (chip->tmode << SPI_TMOD_OFFSET);
  493. if (spi->mode & SPI_LOOP)
  494. chip->cr0 |= 1 << SPI_SRL_OFFSET;
  495. if (gpio_is_valid(spi->cs_gpio)) {
  496. ret = gpio_direction_output(spi->cs_gpio,
  497. !(spi->mode & SPI_CS_HIGH));
  498. if (ret)
  499. return ret;
  500. }
  501. return 0;
  502. }
  503. static void dw_spi_cleanup(struct spi_device *spi)
  504. {
  505. struct chip_data *chip = spi_get_ctldata(spi);
  506. kfree(chip);
  507. spi_set_ctldata(spi, NULL);
  508. }
  509. /* Restart the controller, disable all interrupts, clean rx fifo */
  510. static void spi_hw_init(struct dw_spi *dws)
  511. {
  512. spi_enable_chip(dws, 0);
  513. spi_mask_intr(dws, 0xff);
  514. spi_enable_chip(dws, 1);
  515. /*
  516. * Try to detect the FIFO depth if not set by interface driver,
  517. * the depth could be from 2 to 256 from HW spec
  518. */
  519. if (!dws->fifo_len) {
  520. u32 fifo;
  521. for (fifo = 2; fifo <= 256; fifo++) {
  522. dw_writew(dws, DW_SPI_TXFLTR, fifo);
  523. if (fifo != dw_readw(dws, DW_SPI_TXFLTR))
  524. break;
  525. }
  526. dws->fifo_len = (fifo == 2) ? 0 : fifo - 1;
  527. dw_writew(dws, DW_SPI_TXFLTR, 0);
  528. }
  529. }
  530. int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
  531. {
  532. struct spi_master *master;
  533. int ret;
  534. BUG_ON(dws == NULL);
  535. master = spi_alloc_master(dev, 0);
  536. if (!master)
  537. return -ENOMEM;
  538. dws->master = master;
  539. dws->type = SSI_MOTO_SPI;
  540. dws->prev_chip = NULL;
  541. dws->dma_inited = 0;
  542. dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
  543. snprintf(dws->name, sizeof(dws->name), "dw_spi%d", dws->bus_num);
  544. ret = devm_request_irq(dev, dws->irq, dw_spi_irq, IRQF_SHARED,
  545. dws->name, dws);
  546. if (ret < 0) {
  547. dev_err(&master->dev, "can not get IRQ\n");
  548. goto err_free_master;
  549. }
  550. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
  551. master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
  552. master->bus_num = dws->bus_num;
  553. master->num_chipselect = dws->num_cs;
  554. master->setup = dw_spi_setup;
  555. master->cleanup = dw_spi_cleanup;
  556. master->transfer_one_message = dw_spi_transfer_one_message;
  557. master->max_speed_hz = dws->max_freq;
  558. master->dev.of_node = dev->of_node;
  559. /* Basic HW init */
  560. spi_hw_init(dws);
  561. if (dws->dma_ops && dws->dma_ops->dma_init) {
  562. ret = dws->dma_ops->dma_init(dws);
  563. if (ret) {
  564. dev_warn(dev, "DMA init failed\n");
  565. dws->dma_inited = 0;
  566. }
  567. }
  568. tasklet_init(&dws->pump_transfers, pump_transfers, (unsigned long)dws);
  569. spi_master_set_devdata(master, dws);
  570. ret = devm_spi_register_master(dev, master);
  571. if (ret) {
  572. dev_err(&master->dev, "problem registering spi master\n");
  573. goto err_dma_exit;
  574. }
  575. dw_spi_debugfs_init(dws);
  576. return 0;
  577. err_dma_exit:
  578. if (dws->dma_ops && dws->dma_ops->dma_exit)
  579. dws->dma_ops->dma_exit(dws);
  580. spi_enable_chip(dws, 0);
  581. err_free_master:
  582. spi_master_put(master);
  583. return ret;
  584. }
  585. EXPORT_SYMBOL_GPL(dw_spi_add_host);
  586. void dw_spi_remove_host(struct dw_spi *dws)
  587. {
  588. if (!dws)
  589. return;
  590. dw_spi_debugfs_remove(dws);
  591. if (dws->dma_ops && dws->dma_ops->dma_exit)
  592. dws->dma_ops->dma_exit(dws);
  593. spi_enable_chip(dws, 0);
  594. /* Disable clk */
  595. spi_set_clk(dws, 0);
  596. }
  597. EXPORT_SYMBOL_GPL(dw_spi_remove_host);
  598. int dw_spi_suspend_host(struct dw_spi *dws)
  599. {
  600. int ret = 0;
  601. ret = spi_master_suspend(dws->master);
  602. if (ret)
  603. return ret;
  604. spi_enable_chip(dws, 0);
  605. spi_set_clk(dws, 0);
  606. return ret;
  607. }
  608. EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
  609. int dw_spi_resume_host(struct dw_spi *dws)
  610. {
  611. int ret;
  612. spi_hw_init(dws);
  613. ret = spi_master_resume(dws->master);
  614. if (ret)
  615. dev_err(&dws->master->dev, "fail to start queue (%d)\n", ret);
  616. return ret;
  617. }
  618. EXPORT_SYMBOL_GPL(dw_spi_resume_host);
  619. MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
  620. MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
  621. MODULE_LICENSE("GPL v2");