core.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837
  1. /*
  2. * Core driver for the pin control subsystem
  3. *
  4. * Copyright (C) 2011-2012 ST-Ericsson SA
  5. * Written on behalf of Linaro for ST-Ericsson
  6. * Based on bits of regulator core, gpio core and clk core
  7. *
  8. * Author: Linus Walleij <linus.walleij@linaro.org>
  9. *
  10. * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  11. *
  12. * License terms: GNU General Public License (GPL) version 2
  13. */
  14. #define pr_fmt(fmt) "pinctrl core: " fmt
  15. #include <linux/kernel.h>
  16. #include <linux/kref.h>
  17. #include <linux/export.h>
  18. #include <linux/init.h>
  19. #include <linux/device.h>
  20. #include <linux/slab.h>
  21. #include <linux/err.h>
  22. #include <linux/list.h>
  23. #include <linux/sysfs.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/seq_file.h>
  26. #include <linux/pinctrl/consumer.h>
  27. #include <linux/pinctrl/pinctrl.h>
  28. #include <linux/pinctrl/machine.h>
  29. #ifdef CONFIG_GPIOLIB
  30. #include <asm-generic/gpio.h>
  31. #endif
  32. #include "core.h"
  33. #include "devicetree.h"
  34. #include "pinmux.h"
  35. #include "pinconf.h"
  36. static bool pinctrl_dummy_state;
  37. /* Mutex taken to protect pinctrl_list */
  38. static DEFINE_MUTEX(pinctrl_list_mutex);
  39. /* Mutex taken to protect pinctrl_maps */
  40. DEFINE_MUTEX(pinctrl_maps_mutex);
  41. /* Mutex taken to protect pinctrldev_list */
  42. static DEFINE_MUTEX(pinctrldev_list_mutex);
  43. /* Global list of pin control devices (struct pinctrl_dev) */
  44. static LIST_HEAD(pinctrldev_list);
  45. /* List of pin controller handles (struct pinctrl) */
  46. static LIST_HEAD(pinctrl_list);
  47. /* List of pinctrl maps (struct pinctrl_maps) */
  48. LIST_HEAD(pinctrl_maps);
  49. /**
  50. * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  51. *
  52. * Usually this function is called by platforms without pinctrl driver support
  53. * but run with some shared drivers using pinctrl APIs.
  54. * After calling this function, the pinctrl core will return successfully
  55. * with creating a dummy state for the driver to keep going smoothly.
  56. */
  57. void pinctrl_provide_dummies(void)
  58. {
  59. pinctrl_dummy_state = true;
  60. }
  61. const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  62. {
  63. /* We're not allowed to register devices without name */
  64. return pctldev->desc->name;
  65. }
  66. EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  67. const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  68. {
  69. return dev_name(pctldev->dev);
  70. }
  71. EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  72. void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  73. {
  74. return pctldev->driver_data;
  75. }
  76. EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  77. /**
  78. * get_pinctrl_dev_from_devname() - look up pin controller device
  79. * @devname: the name of a device instance, as returned by dev_name()
  80. *
  81. * Looks up a pin control device matching a certain device name or pure device
  82. * pointer, the pure device pointer will take precedence.
  83. */
  84. struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
  85. {
  86. struct pinctrl_dev *pctldev = NULL;
  87. if (!devname)
  88. return NULL;
  89. mutex_lock(&pinctrldev_list_mutex);
  90. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  91. if (!strcmp(dev_name(pctldev->dev), devname)) {
  92. /* Matched on device name */
  93. mutex_unlock(&pinctrldev_list_mutex);
  94. return pctldev;
  95. }
  96. }
  97. mutex_unlock(&pinctrldev_list_mutex);
  98. return NULL;
  99. }
  100. struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
  101. {
  102. struct pinctrl_dev *pctldev;
  103. mutex_lock(&pinctrldev_list_mutex);
  104. list_for_each_entry(pctldev, &pinctrldev_list, node)
  105. if (pctldev->dev->of_node == np) {
  106. mutex_unlock(&pinctrldev_list_mutex);
  107. return pctldev;
  108. }
  109. mutex_unlock(&pinctrldev_list_mutex);
  110. return NULL;
  111. }
  112. /**
  113. * pin_get_from_name() - look up a pin number from a name
  114. * @pctldev: the pin control device to lookup the pin on
  115. * @name: the name of the pin to look up
  116. */
  117. int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
  118. {
  119. unsigned i, pin;
  120. /* The pin number can be retrived from the pin controller descriptor */
  121. for (i = 0; i < pctldev->desc->npins; i++) {
  122. struct pin_desc *desc;
  123. pin = pctldev->desc->pins[i].number;
  124. desc = pin_desc_get(pctldev, pin);
  125. /* Pin space may be sparse */
  126. if (desc && !strcmp(name, desc->name))
  127. return pin;
  128. }
  129. return -EINVAL;
  130. }
  131. /**
  132. * pin_get_name_from_id() - look up a pin name from a pin id
  133. * @pctldev: the pin control device to lookup the pin on
  134. * @name: the name of the pin to look up
  135. */
  136. const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
  137. {
  138. const struct pin_desc *desc;
  139. desc = pin_desc_get(pctldev, pin);
  140. if (desc == NULL) {
  141. dev_err(pctldev->dev, "failed to get pin(%d) name\n",
  142. pin);
  143. return NULL;
  144. }
  145. return desc->name;
  146. }
  147. /**
  148. * pin_is_valid() - check if pin exists on controller
  149. * @pctldev: the pin control device to check the pin on
  150. * @pin: pin to check, use the local pin controller index number
  151. *
  152. * This tells us whether a certain pin exist on a certain pin controller or
  153. * not. Pin lists may be sparse, so some pins may not exist.
  154. */
  155. bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
  156. {
  157. struct pin_desc *pindesc;
  158. if (pin < 0)
  159. return false;
  160. mutex_lock(&pctldev->mutex);
  161. pindesc = pin_desc_get(pctldev, pin);
  162. mutex_unlock(&pctldev->mutex);
  163. return pindesc != NULL;
  164. }
  165. EXPORT_SYMBOL_GPL(pin_is_valid);
  166. /* Deletes a range of pin descriptors */
  167. static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
  168. const struct pinctrl_pin_desc *pins,
  169. unsigned num_pins)
  170. {
  171. int i;
  172. for (i = 0; i < num_pins; i++) {
  173. struct pin_desc *pindesc;
  174. pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
  175. pins[i].number);
  176. if (pindesc != NULL) {
  177. radix_tree_delete(&pctldev->pin_desc_tree,
  178. pins[i].number);
  179. if (pindesc->dynamic_name)
  180. kfree(pindesc->name);
  181. }
  182. kfree(pindesc);
  183. }
  184. }
  185. static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
  186. unsigned number, const char *name)
  187. {
  188. struct pin_desc *pindesc;
  189. pindesc = pin_desc_get(pctldev, number);
  190. if (pindesc != NULL) {
  191. pr_err("pin %d already registered on %s\n", number,
  192. pctldev->desc->name);
  193. return -EINVAL;
  194. }
  195. pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
  196. if (pindesc == NULL) {
  197. dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
  198. return -ENOMEM;
  199. }
  200. /* Set owner */
  201. pindesc->pctldev = pctldev;
  202. /* Copy basic pin info */
  203. if (name) {
  204. pindesc->name = name;
  205. } else {
  206. pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
  207. if (pindesc->name == NULL) {
  208. kfree(pindesc);
  209. return -ENOMEM;
  210. }
  211. pindesc->dynamic_name = true;
  212. }
  213. radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
  214. pr_debug("registered pin %d (%s) on %s\n",
  215. number, pindesc->name, pctldev->desc->name);
  216. return 0;
  217. }
  218. static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
  219. struct pinctrl_pin_desc const *pins,
  220. unsigned num_descs)
  221. {
  222. unsigned i;
  223. int ret = 0;
  224. for (i = 0; i < num_descs; i++) {
  225. ret = pinctrl_register_one_pin(pctldev,
  226. pins[i].number, pins[i].name);
  227. if (ret)
  228. return ret;
  229. }
  230. return 0;
  231. }
  232. /**
  233. * gpio_to_pin() - GPIO range GPIO number to pin number translation
  234. * @range: GPIO range used for the translation
  235. * @gpio: gpio pin to translate to a pin number
  236. *
  237. * Finds the pin number for a given GPIO using the specified GPIO range
  238. * as a base for translation. The distinction between linear GPIO ranges
  239. * and pin list based GPIO ranges is managed correctly by this function.
  240. *
  241. * This function assumes the gpio is part of the specified GPIO range, use
  242. * only after making sure this is the case (e.g. by calling it on the
  243. * result of successful pinctrl_get_device_gpio_range calls)!
  244. */
  245. static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
  246. unsigned int gpio)
  247. {
  248. unsigned int offset = gpio - range->base;
  249. if (range->pins)
  250. return range->pins[offset];
  251. else
  252. return range->pin_base + offset;
  253. }
  254. /**
  255. * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
  256. * @pctldev: pin controller device to check
  257. * @gpio: gpio pin to check taken from the global GPIO pin space
  258. *
  259. * Tries to match a GPIO pin number to the ranges handled by a certain pin
  260. * controller, return the range or NULL
  261. */
  262. static struct pinctrl_gpio_range *
  263. pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
  264. {
  265. struct pinctrl_gpio_range *range = NULL;
  266. mutex_lock(&pctldev->mutex);
  267. /* Loop over the ranges */
  268. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  269. /* Check if we're in the valid range */
  270. if (gpio >= range->base &&
  271. gpio < range->base + range->npins) {
  272. mutex_unlock(&pctldev->mutex);
  273. return range;
  274. }
  275. }
  276. mutex_unlock(&pctldev->mutex);
  277. return NULL;
  278. }
  279. /**
  280. * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
  281. * the same GPIO chip are in range
  282. * @gpio: gpio pin to check taken from the global GPIO pin space
  283. *
  284. * This function is complement of pinctrl_match_gpio_range(). If the return
  285. * value of pinctrl_match_gpio_range() is NULL, this function could be used
  286. * to check whether pinctrl device is ready or not. Maybe some GPIO pins
  287. * of the same GPIO chip don't have back-end pinctrl interface.
  288. * If the return value is true, it means that pinctrl device is ready & the
  289. * certain GPIO pin doesn't have back-end pinctrl device. If the return value
  290. * is false, it means that pinctrl device may not be ready.
  291. */
  292. #ifdef CONFIG_GPIOLIB
  293. static bool pinctrl_ready_for_gpio_range(unsigned gpio)
  294. {
  295. struct pinctrl_dev *pctldev;
  296. struct pinctrl_gpio_range *range = NULL;
  297. struct gpio_chip *chip = gpio_to_chip(gpio);
  298. mutex_lock(&pinctrldev_list_mutex);
  299. /* Loop over the pin controllers */
  300. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  301. /* Loop over the ranges */
  302. mutex_lock(&pctldev->mutex);
  303. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  304. /* Check if any gpio range overlapped with gpio chip */
  305. if (range->base + range->npins - 1 < chip->base ||
  306. range->base > chip->base + chip->ngpio - 1)
  307. continue;
  308. mutex_unlock(&pctldev->mutex);
  309. mutex_unlock(&pinctrldev_list_mutex);
  310. return true;
  311. }
  312. mutex_unlock(&pctldev->mutex);
  313. }
  314. mutex_unlock(&pinctrldev_list_mutex);
  315. return false;
  316. }
  317. #else
  318. static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
  319. #endif
  320. /**
  321. * pinctrl_get_device_gpio_range() - find device for GPIO range
  322. * @gpio: the pin to locate the pin controller for
  323. * @outdev: the pin control device if found
  324. * @outrange: the GPIO range if found
  325. *
  326. * Find the pin controller handling a certain GPIO pin from the pinspace of
  327. * the GPIO subsystem, return the device and the matching GPIO range. Returns
  328. * -EPROBE_DEFER if the GPIO range could not be found in any device since it
  329. * may still have not been registered.
  330. */
  331. static int pinctrl_get_device_gpio_range(unsigned gpio,
  332. struct pinctrl_dev **outdev,
  333. struct pinctrl_gpio_range **outrange)
  334. {
  335. struct pinctrl_dev *pctldev = NULL;
  336. mutex_lock(&pinctrldev_list_mutex);
  337. /* Loop over the pin controllers */
  338. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  339. struct pinctrl_gpio_range *range;
  340. range = pinctrl_match_gpio_range(pctldev, gpio);
  341. if (range != NULL) {
  342. *outdev = pctldev;
  343. *outrange = range;
  344. mutex_unlock(&pinctrldev_list_mutex);
  345. return 0;
  346. }
  347. }
  348. mutex_unlock(&pinctrldev_list_mutex);
  349. return -EPROBE_DEFER;
  350. }
  351. /**
  352. * pinctrl_add_gpio_range() - register a GPIO range for a controller
  353. * @pctldev: pin controller device to add the range to
  354. * @range: the GPIO range to add
  355. *
  356. * This adds a range of GPIOs to be handled by a certain pin controller. Call
  357. * this to register handled ranges after registering your pin controller.
  358. */
  359. void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
  360. struct pinctrl_gpio_range *range)
  361. {
  362. mutex_lock(&pctldev->mutex);
  363. list_add_tail(&range->node, &pctldev->gpio_ranges);
  364. mutex_unlock(&pctldev->mutex);
  365. }
  366. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
  367. void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
  368. struct pinctrl_gpio_range *ranges,
  369. unsigned nranges)
  370. {
  371. int i;
  372. for (i = 0; i < nranges; i++)
  373. pinctrl_add_gpio_range(pctldev, &ranges[i]);
  374. }
  375. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
  376. struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
  377. struct pinctrl_gpio_range *range)
  378. {
  379. struct pinctrl_dev *pctldev;
  380. pctldev = get_pinctrl_dev_from_devname(devname);
  381. /*
  382. * If we can't find this device, let's assume that is because
  383. * it has not probed yet, so the driver trying to register this
  384. * range need to defer probing.
  385. */
  386. if (!pctldev) {
  387. return ERR_PTR(-EPROBE_DEFER);
  388. }
  389. pinctrl_add_gpio_range(pctldev, range);
  390. return pctldev;
  391. }
  392. EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
  393. int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
  394. const unsigned **pins, unsigned *num_pins)
  395. {
  396. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  397. int gs;
  398. if (!pctlops->get_group_pins)
  399. return -EINVAL;
  400. gs = pinctrl_get_group_selector(pctldev, pin_group);
  401. if (gs < 0)
  402. return gs;
  403. return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
  404. }
  405. EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
  406. /**
  407. * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
  408. * @pctldev: the pin controller device to look in
  409. * @pin: a controller-local number to find the range for
  410. */
  411. struct pinctrl_gpio_range *
  412. pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
  413. unsigned int pin)
  414. {
  415. struct pinctrl_gpio_range *range;
  416. mutex_lock(&pctldev->mutex);
  417. /* Loop over the ranges */
  418. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  419. /* Check if we're in the valid range */
  420. if (range->pins) {
  421. int a;
  422. for (a = 0; a < range->npins; a++) {
  423. if (range->pins[a] == pin)
  424. goto out;
  425. }
  426. } else if (pin >= range->pin_base &&
  427. pin < range->pin_base + range->npins)
  428. goto out;
  429. }
  430. range = NULL;
  431. out:
  432. mutex_unlock(&pctldev->mutex);
  433. return range;
  434. }
  435. EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
  436. /**
  437. * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
  438. * @pctldev: pin controller device to remove the range from
  439. * @range: the GPIO range to remove
  440. */
  441. void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
  442. struct pinctrl_gpio_range *range)
  443. {
  444. mutex_lock(&pctldev->mutex);
  445. list_del(&range->node);
  446. mutex_unlock(&pctldev->mutex);
  447. }
  448. EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
  449. /**
  450. * pinctrl_get_group_selector() - returns the group selector for a group
  451. * @pctldev: the pin controller handling the group
  452. * @pin_group: the pin group to look up
  453. */
  454. int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
  455. const char *pin_group)
  456. {
  457. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  458. unsigned ngroups = pctlops->get_groups_count(pctldev);
  459. unsigned group_selector = 0;
  460. while (group_selector < ngroups) {
  461. const char *gname = pctlops->get_group_name(pctldev,
  462. group_selector);
  463. if (!strcmp(gname, pin_group)) {
  464. dev_dbg(pctldev->dev,
  465. "found group selector %u for %s\n",
  466. group_selector,
  467. pin_group);
  468. return group_selector;
  469. }
  470. group_selector++;
  471. }
  472. dev_err(pctldev->dev, "does not have pin group %s\n",
  473. pin_group);
  474. return -EINVAL;
  475. }
  476. /**
  477. * pinctrl_request_gpio() - request a single pin to be used in as GPIO
  478. * @gpio: the GPIO pin number from the GPIO subsystem number space
  479. *
  480. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  481. * as part of their gpio_request() semantics, platforms and individual drivers
  482. * shall *NOT* request GPIO pins to be muxed in.
  483. */
  484. int pinctrl_request_gpio(unsigned gpio)
  485. {
  486. struct pinctrl_dev *pctldev;
  487. struct pinctrl_gpio_range *range;
  488. int ret;
  489. int pin;
  490. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  491. if (ret) {
  492. if (pinctrl_ready_for_gpio_range(gpio))
  493. ret = 0;
  494. return ret;
  495. }
  496. mutex_lock(&pctldev->mutex);
  497. /* Convert to the pin controllers number space */
  498. pin = gpio_to_pin(range, gpio);
  499. ret = pinmux_request_gpio(pctldev, range, pin, gpio);
  500. mutex_unlock(&pctldev->mutex);
  501. return ret;
  502. }
  503. EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
  504. /**
  505. * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
  506. * @gpio: the GPIO pin number from the GPIO subsystem number space
  507. *
  508. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  509. * as part of their gpio_free() semantics, platforms and individual drivers
  510. * shall *NOT* request GPIO pins to be muxed out.
  511. */
  512. void pinctrl_free_gpio(unsigned gpio)
  513. {
  514. struct pinctrl_dev *pctldev;
  515. struct pinctrl_gpio_range *range;
  516. int ret;
  517. int pin;
  518. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  519. if (ret) {
  520. return;
  521. }
  522. mutex_lock(&pctldev->mutex);
  523. /* Convert to the pin controllers number space */
  524. pin = gpio_to_pin(range, gpio);
  525. pinmux_free_gpio(pctldev, pin, range);
  526. mutex_unlock(&pctldev->mutex);
  527. }
  528. EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
  529. static int pinctrl_gpio_direction(unsigned gpio, bool input)
  530. {
  531. struct pinctrl_dev *pctldev;
  532. struct pinctrl_gpio_range *range;
  533. int ret;
  534. int pin;
  535. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  536. if (ret) {
  537. return ret;
  538. }
  539. mutex_lock(&pctldev->mutex);
  540. /* Convert to the pin controllers number space */
  541. pin = gpio_to_pin(range, gpio);
  542. ret = pinmux_gpio_direction(pctldev, range, pin, input);
  543. mutex_unlock(&pctldev->mutex);
  544. return ret;
  545. }
  546. /**
  547. * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
  548. * @gpio: the GPIO pin number from the GPIO subsystem number space
  549. *
  550. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  551. * as part of their gpio_direction_input() semantics, platforms and individual
  552. * drivers shall *NOT* touch pin control GPIO calls.
  553. */
  554. int pinctrl_gpio_direction_input(unsigned gpio)
  555. {
  556. return pinctrl_gpio_direction(gpio, true);
  557. }
  558. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
  559. /**
  560. * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
  561. * @gpio: the GPIO pin number from the GPIO subsystem number space
  562. *
  563. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  564. * as part of their gpio_direction_output() semantics, platforms and individual
  565. * drivers shall *NOT* touch pin control GPIO calls.
  566. */
  567. int pinctrl_gpio_direction_output(unsigned gpio)
  568. {
  569. return pinctrl_gpio_direction(gpio, false);
  570. }
  571. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
  572. static struct pinctrl_state *find_state(struct pinctrl *p,
  573. const char *name)
  574. {
  575. struct pinctrl_state *state;
  576. list_for_each_entry(state, &p->states, node)
  577. if (!strcmp(state->name, name))
  578. return state;
  579. return NULL;
  580. }
  581. static struct pinctrl_state *create_state(struct pinctrl *p,
  582. const char *name)
  583. {
  584. struct pinctrl_state *state;
  585. state = kzalloc(sizeof(*state), GFP_KERNEL);
  586. if (state == NULL) {
  587. dev_err(p->dev,
  588. "failed to alloc struct pinctrl_state\n");
  589. return ERR_PTR(-ENOMEM);
  590. }
  591. state->name = name;
  592. INIT_LIST_HEAD(&state->settings);
  593. list_add_tail(&state->node, &p->states);
  594. return state;
  595. }
  596. static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
  597. {
  598. struct pinctrl_state *state;
  599. struct pinctrl_setting *setting;
  600. int ret;
  601. state = find_state(p, map->name);
  602. if (!state)
  603. state = create_state(p, map->name);
  604. if (IS_ERR(state))
  605. return PTR_ERR(state);
  606. if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
  607. return 0;
  608. setting = kzalloc(sizeof(*setting), GFP_KERNEL);
  609. if (setting == NULL) {
  610. dev_err(p->dev,
  611. "failed to alloc struct pinctrl_setting\n");
  612. return -ENOMEM;
  613. }
  614. setting->type = map->type;
  615. setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
  616. if (setting->pctldev == NULL) {
  617. kfree(setting);
  618. /* Do not defer probing of hogs (circular loop) */
  619. if (!strcmp(map->ctrl_dev_name, map->dev_name))
  620. return -ENODEV;
  621. /*
  622. * OK let us guess that the driver is not there yet, and
  623. * let's defer obtaining this pinctrl handle to later...
  624. */
  625. dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
  626. map->ctrl_dev_name);
  627. return -EPROBE_DEFER;
  628. }
  629. setting->dev_name = map->dev_name;
  630. switch (map->type) {
  631. case PIN_MAP_TYPE_MUX_GROUP:
  632. ret = pinmux_map_to_setting(map, setting);
  633. break;
  634. case PIN_MAP_TYPE_CONFIGS_PIN:
  635. case PIN_MAP_TYPE_CONFIGS_GROUP:
  636. ret = pinconf_map_to_setting(map, setting);
  637. break;
  638. default:
  639. ret = -EINVAL;
  640. break;
  641. }
  642. if (ret < 0) {
  643. kfree(setting);
  644. return ret;
  645. }
  646. list_add_tail(&setting->node, &state->settings);
  647. return 0;
  648. }
  649. static struct pinctrl *find_pinctrl(struct device *dev)
  650. {
  651. struct pinctrl *p;
  652. mutex_lock(&pinctrl_list_mutex);
  653. list_for_each_entry(p, &pinctrl_list, node)
  654. if (p->dev == dev) {
  655. mutex_unlock(&pinctrl_list_mutex);
  656. return p;
  657. }
  658. mutex_unlock(&pinctrl_list_mutex);
  659. return NULL;
  660. }
  661. static void pinctrl_free(struct pinctrl *p, bool inlist);
  662. static struct pinctrl *create_pinctrl(struct device *dev)
  663. {
  664. struct pinctrl *p;
  665. const char *devname;
  666. struct pinctrl_maps *maps_node;
  667. int i;
  668. struct pinctrl_map const *map;
  669. int ret;
  670. /*
  671. * create the state cookie holder struct pinctrl for each
  672. * mapping, this is what consumers will get when requesting
  673. * a pin control handle with pinctrl_get()
  674. */
  675. p = kzalloc(sizeof(*p), GFP_KERNEL);
  676. if (p == NULL) {
  677. dev_err(dev, "failed to alloc struct pinctrl\n");
  678. return ERR_PTR(-ENOMEM);
  679. }
  680. p->dev = dev;
  681. INIT_LIST_HEAD(&p->states);
  682. INIT_LIST_HEAD(&p->dt_maps);
  683. ret = pinctrl_dt_to_map(p);
  684. if (ret < 0) {
  685. kfree(p);
  686. return ERR_PTR(ret);
  687. }
  688. devname = dev_name(dev);
  689. mutex_lock(&pinctrl_maps_mutex);
  690. /* Iterate over the pin control maps to locate the right ones */
  691. for_each_maps(maps_node, i, map) {
  692. /* Map must be for this device */
  693. if (strcmp(map->dev_name, devname))
  694. continue;
  695. ret = add_setting(p, map);
  696. /*
  697. * At this point the adding of a setting may:
  698. *
  699. * - Defer, if the pinctrl device is not yet available
  700. * - Fail, if the pinctrl device is not yet available,
  701. * AND the setting is a hog. We cannot defer that, since
  702. * the hog will kick in immediately after the device
  703. * is registered.
  704. *
  705. * If the error returned was not -EPROBE_DEFER then we
  706. * accumulate the errors to see if we end up with
  707. * an -EPROBE_DEFER later, as that is the worst case.
  708. */
  709. if (ret == -EPROBE_DEFER) {
  710. pinctrl_free(p, false);
  711. mutex_unlock(&pinctrl_maps_mutex);
  712. return ERR_PTR(ret);
  713. }
  714. }
  715. mutex_unlock(&pinctrl_maps_mutex);
  716. if (ret < 0) {
  717. /* If some other error than deferral occured, return here */
  718. pinctrl_free(p, false);
  719. return ERR_PTR(ret);
  720. }
  721. kref_init(&p->users);
  722. /* Add the pinctrl handle to the global list */
  723. mutex_lock(&pinctrl_list_mutex);
  724. list_add_tail(&p->node, &pinctrl_list);
  725. mutex_unlock(&pinctrl_list_mutex);
  726. return p;
  727. }
  728. /**
  729. * pinctrl_get() - retrieves the pinctrl handle for a device
  730. * @dev: the device to obtain the handle for
  731. */
  732. struct pinctrl *pinctrl_get(struct device *dev)
  733. {
  734. struct pinctrl *p;
  735. if (WARN_ON(!dev))
  736. return ERR_PTR(-EINVAL);
  737. /*
  738. * See if somebody else (such as the device core) has already
  739. * obtained a handle to the pinctrl for this device. In that case,
  740. * return another pointer to it.
  741. */
  742. p = find_pinctrl(dev);
  743. if (p != NULL) {
  744. dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
  745. kref_get(&p->users);
  746. return p;
  747. }
  748. return create_pinctrl(dev);
  749. }
  750. EXPORT_SYMBOL_GPL(pinctrl_get);
  751. static void pinctrl_free_setting(bool disable_setting,
  752. struct pinctrl_setting *setting)
  753. {
  754. switch (setting->type) {
  755. case PIN_MAP_TYPE_MUX_GROUP:
  756. if (disable_setting)
  757. pinmux_disable_setting(setting);
  758. pinmux_free_setting(setting);
  759. break;
  760. case PIN_MAP_TYPE_CONFIGS_PIN:
  761. case PIN_MAP_TYPE_CONFIGS_GROUP:
  762. pinconf_free_setting(setting);
  763. break;
  764. default:
  765. break;
  766. }
  767. }
  768. static void pinctrl_free(struct pinctrl *p, bool inlist)
  769. {
  770. struct pinctrl_state *state, *n1;
  771. struct pinctrl_setting *setting, *n2;
  772. mutex_lock(&pinctrl_list_mutex);
  773. list_for_each_entry_safe(state, n1, &p->states, node) {
  774. list_for_each_entry_safe(setting, n2, &state->settings, node) {
  775. pinctrl_free_setting(state == p->state, setting);
  776. list_del(&setting->node);
  777. kfree(setting);
  778. }
  779. list_del(&state->node);
  780. kfree(state);
  781. }
  782. pinctrl_dt_free_maps(p);
  783. if (inlist)
  784. list_del(&p->node);
  785. kfree(p);
  786. mutex_unlock(&pinctrl_list_mutex);
  787. }
  788. /**
  789. * pinctrl_release() - release the pinctrl handle
  790. * @kref: the kref in the pinctrl being released
  791. */
  792. static void pinctrl_release(struct kref *kref)
  793. {
  794. struct pinctrl *p = container_of(kref, struct pinctrl, users);
  795. pinctrl_free(p, true);
  796. }
  797. /**
  798. * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
  799. * @p: the pinctrl handle to release
  800. */
  801. void pinctrl_put(struct pinctrl *p)
  802. {
  803. kref_put(&p->users, pinctrl_release);
  804. }
  805. EXPORT_SYMBOL_GPL(pinctrl_put);
  806. /**
  807. * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
  808. * @p: the pinctrl handle to retrieve the state from
  809. * @name: the state name to retrieve
  810. */
  811. struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
  812. const char *name)
  813. {
  814. struct pinctrl_state *state;
  815. state = find_state(p, name);
  816. if (!state) {
  817. if (pinctrl_dummy_state) {
  818. /* create dummy state */
  819. dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
  820. name);
  821. state = create_state(p, name);
  822. } else
  823. state = ERR_PTR(-ENODEV);
  824. }
  825. return state;
  826. }
  827. EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
  828. /**
  829. * pinctrl_select_state() - select/activate/program a pinctrl state to HW
  830. * @p: the pinctrl handle for the device that requests configuration
  831. * @state: the state handle to select/activate/program
  832. */
  833. int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
  834. {
  835. struct pinctrl_setting *setting, *setting2;
  836. struct pinctrl_state *old_state = p->state;
  837. int ret;
  838. if (p->state == state)
  839. return 0;
  840. if (p->state) {
  841. /*
  842. * For each pinmux setting in the old state, forget SW's record
  843. * of mux owner for that pingroup. Any pingroups which are
  844. * still owned by the new state will be re-acquired by the call
  845. * to pinmux_enable_setting() in the loop below.
  846. */
  847. list_for_each_entry(setting, &p->state->settings, node) {
  848. if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
  849. continue;
  850. pinmux_disable_setting(setting);
  851. }
  852. }
  853. p->state = NULL;
  854. /* Apply all the settings for the new state */
  855. list_for_each_entry(setting, &state->settings, node) {
  856. switch (setting->type) {
  857. case PIN_MAP_TYPE_MUX_GROUP:
  858. ret = pinmux_enable_setting(setting);
  859. break;
  860. case PIN_MAP_TYPE_CONFIGS_PIN:
  861. case PIN_MAP_TYPE_CONFIGS_GROUP:
  862. ret = pinconf_apply_setting(setting);
  863. break;
  864. default:
  865. ret = -EINVAL;
  866. break;
  867. }
  868. if (ret < 0) {
  869. goto unapply_new_state;
  870. }
  871. }
  872. p->state = state;
  873. return 0;
  874. unapply_new_state:
  875. dev_err(p->dev, "Error applying setting, reverse things back\n");
  876. list_for_each_entry(setting2, &state->settings, node) {
  877. if (&setting2->node == &setting->node)
  878. break;
  879. /*
  880. * All we can do here is pinmux_disable_setting.
  881. * That means that some pins are muxed differently now
  882. * than they were before applying the setting (We can't
  883. * "unmux a pin"!), but it's not a big deal since the pins
  884. * are free to be muxed by another apply_setting.
  885. */
  886. if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
  887. pinmux_disable_setting(setting2);
  888. }
  889. /* There's no infinite recursive loop here because p->state is NULL */
  890. if (old_state)
  891. pinctrl_select_state(p, old_state);
  892. return ret;
  893. }
  894. EXPORT_SYMBOL_GPL(pinctrl_select_state);
  895. static void devm_pinctrl_release(struct device *dev, void *res)
  896. {
  897. pinctrl_put(*(struct pinctrl **)res);
  898. }
  899. /**
  900. * struct devm_pinctrl_get() - Resource managed pinctrl_get()
  901. * @dev: the device to obtain the handle for
  902. *
  903. * If there is a need to explicitly destroy the returned struct pinctrl,
  904. * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
  905. */
  906. struct pinctrl *devm_pinctrl_get(struct device *dev)
  907. {
  908. struct pinctrl **ptr, *p;
  909. ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
  910. if (!ptr)
  911. return ERR_PTR(-ENOMEM);
  912. p = pinctrl_get(dev);
  913. if (!IS_ERR(p)) {
  914. *ptr = p;
  915. devres_add(dev, ptr);
  916. } else {
  917. devres_free(ptr);
  918. }
  919. return p;
  920. }
  921. EXPORT_SYMBOL_GPL(devm_pinctrl_get);
  922. static int devm_pinctrl_match(struct device *dev, void *res, void *data)
  923. {
  924. struct pinctrl **p = res;
  925. return *p == data;
  926. }
  927. /**
  928. * devm_pinctrl_put() - Resource managed pinctrl_put()
  929. * @p: the pinctrl handle to release
  930. *
  931. * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
  932. * this function will not need to be called and the resource management
  933. * code will ensure that the resource is freed.
  934. */
  935. void devm_pinctrl_put(struct pinctrl *p)
  936. {
  937. WARN_ON(devres_release(p->dev, devm_pinctrl_release,
  938. devm_pinctrl_match, p));
  939. }
  940. EXPORT_SYMBOL_GPL(devm_pinctrl_put);
  941. int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
  942. bool dup, bool locked)
  943. {
  944. int i, ret;
  945. struct pinctrl_maps *maps_node;
  946. pr_debug("add %d pinmux maps\n", num_maps);
  947. /* First sanity check the new mapping */
  948. for (i = 0; i < num_maps; i++) {
  949. if (!maps[i].dev_name) {
  950. pr_err("failed to register map %s (%d): no device given\n",
  951. maps[i].name, i);
  952. return -EINVAL;
  953. }
  954. if (!maps[i].name) {
  955. pr_err("failed to register map %d: no map name given\n",
  956. i);
  957. return -EINVAL;
  958. }
  959. if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
  960. !maps[i].ctrl_dev_name) {
  961. pr_err("failed to register map %s (%d): no pin control device given\n",
  962. maps[i].name, i);
  963. return -EINVAL;
  964. }
  965. switch (maps[i].type) {
  966. case PIN_MAP_TYPE_DUMMY_STATE:
  967. break;
  968. case PIN_MAP_TYPE_MUX_GROUP:
  969. ret = pinmux_validate_map(&maps[i], i);
  970. if (ret < 0)
  971. return ret;
  972. break;
  973. case PIN_MAP_TYPE_CONFIGS_PIN:
  974. case PIN_MAP_TYPE_CONFIGS_GROUP:
  975. ret = pinconf_validate_map(&maps[i], i);
  976. if (ret < 0)
  977. return ret;
  978. break;
  979. default:
  980. pr_err("failed to register map %s (%d): invalid type given\n",
  981. maps[i].name, i);
  982. return -EINVAL;
  983. }
  984. }
  985. maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
  986. if (!maps_node) {
  987. pr_err("failed to alloc struct pinctrl_maps\n");
  988. return -ENOMEM;
  989. }
  990. maps_node->num_maps = num_maps;
  991. if (dup) {
  992. maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
  993. GFP_KERNEL);
  994. if (!maps_node->maps) {
  995. pr_err("failed to duplicate mapping table\n");
  996. kfree(maps_node);
  997. return -ENOMEM;
  998. }
  999. } else {
  1000. maps_node->maps = maps;
  1001. }
  1002. if (!locked)
  1003. mutex_lock(&pinctrl_maps_mutex);
  1004. list_add_tail(&maps_node->node, &pinctrl_maps);
  1005. if (!locked)
  1006. mutex_unlock(&pinctrl_maps_mutex);
  1007. return 0;
  1008. }
  1009. /**
  1010. * pinctrl_register_mappings() - register a set of pin controller mappings
  1011. * @maps: the pincontrol mappings table to register. This should probably be
  1012. * marked with __initdata so it can be discarded after boot. This
  1013. * function will perform a shallow copy for the mapping entries.
  1014. * @num_maps: the number of maps in the mapping table
  1015. */
  1016. int pinctrl_register_mappings(struct pinctrl_map const *maps,
  1017. unsigned num_maps)
  1018. {
  1019. return pinctrl_register_map(maps, num_maps, true, false);
  1020. }
  1021. void pinctrl_unregister_map(struct pinctrl_map const *map)
  1022. {
  1023. struct pinctrl_maps *maps_node;
  1024. mutex_lock(&pinctrl_maps_mutex);
  1025. list_for_each_entry(maps_node, &pinctrl_maps, node) {
  1026. if (maps_node->maps == map) {
  1027. list_del(&maps_node->node);
  1028. kfree(maps_node);
  1029. mutex_unlock(&pinctrl_maps_mutex);
  1030. return;
  1031. }
  1032. }
  1033. mutex_unlock(&pinctrl_maps_mutex);
  1034. }
  1035. /**
  1036. * pinctrl_force_sleep() - turn a given controller device into sleep state
  1037. * @pctldev: pin controller device
  1038. */
  1039. int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
  1040. {
  1041. if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
  1042. return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
  1043. return 0;
  1044. }
  1045. EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
  1046. /**
  1047. * pinctrl_force_default() - turn a given controller device into default state
  1048. * @pctldev: pin controller device
  1049. */
  1050. int pinctrl_force_default(struct pinctrl_dev *pctldev)
  1051. {
  1052. if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
  1053. return pinctrl_select_state(pctldev->p, pctldev->hog_default);
  1054. return 0;
  1055. }
  1056. EXPORT_SYMBOL_GPL(pinctrl_force_default);
  1057. #ifdef CONFIG_PM
  1058. /**
  1059. * pinctrl_pm_select_state() - select pinctrl state for PM
  1060. * @dev: device to select default state for
  1061. * @state: state to set
  1062. */
  1063. static int pinctrl_pm_select_state(struct device *dev,
  1064. struct pinctrl_state *state)
  1065. {
  1066. struct dev_pin_info *pins = dev->pins;
  1067. int ret;
  1068. if (IS_ERR(state))
  1069. return 0; /* No such state */
  1070. ret = pinctrl_select_state(pins->p, state);
  1071. if (ret)
  1072. dev_err(dev, "failed to activate pinctrl state %s\n",
  1073. state->name);
  1074. return ret;
  1075. }
  1076. /**
  1077. * pinctrl_pm_select_default_state() - select default pinctrl state for PM
  1078. * @dev: device to select default state for
  1079. */
  1080. int pinctrl_pm_select_default_state(struct device *dev)
  1081. {
  1082. if (!dev->pins)
  1083. return 0;
  1084. return pinctrl_pm_select_state(dev, dev->pins->default_state);
  1085. }
  1086. EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
  1087. /**
  1088. * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
  1089. * @dev: device to select sleep state for
  1090. */
  1091. int pinctrl_pm_select_sleep_state(struct device *dev)
  1092. {
  1093. if (!dev->pins)
  1094. return 0;
  1095. return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
  1096. }
  1097. EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
  1098. /**
  1099. * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
  1100. * @dev: device to select idle state for
  1101. */
  1102. int pinctrl_pm_select_idle_state(struct device *dev)
  1103. {
  1104. if (!dev->pins)
  1105. return 0;
  1106. return pinctrl_pm_select_state(dev, dev->pins->idle_state);
  1107. }
  1108. EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
  1109. #endif
  1110. #ifdef CONFIG_DEBUG_FS
  1111. static int pinctrl_pins_show(struct seq_file *s, void *what)
  1112. {
  1113. struct pinctrl_dev *pctldev = s->private;
  1114. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1115. unsigned i, pin;
  1116. seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
  1117. mutex_lock(&pctldev->mutex);
  1118. /* The pin number can be retrived from the pin controller descriptor */
  1119. for (i = 0; i < pctldev->desc->npins; i++) {
  1120. struct pin_desc *desc;
  1121. pin = pctldev->desc->pins[i].number;
  1122. desc = pin_desc_get(pctldev, pin);
  1123. /* Pin space may be sparse */
  1124. if (desc == NULL)
  1125. continue;
  1126. seq_printf(s, "pin %d (%s) ", pin,
  1127. desc->name ? desc->name : "unnamed");
  1128. /* Driver-specific info per pin */
  1129. if (ops->pin_dbg_show)
  1130. ops->pin_dbg_show(pctldev, s, pin);
  1131. seq_puts(s, "\n");
  1132. }
  1133. mutex_unlock(&pctldev->mutex);
  1134. return 0;
  1135. }
  1136. static int pinctrl_groups_show(struct seq_file *s, void *what)
  1137. {
  1138. struct pinctrl_dev *pctldev = s->private;
  1139. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1140. unsigned ngroups, selector = 0;
  1141. mutex_lock(&pctldev->mutex);
  1142. ngroups = ops->get_groups_count(pctldev);
  1143. seq_puts(s, "registered pin groups:\n");
  1144. while (selector < ngroups) {
  1145. const unsigned *pins = NULL;
  1146. unsigned num_pins = 0;
  1147. const char *gname = ops->get_group_name(pctldev, selector);
  1148. const char *pname;
  1149. int ret = 0;
  1150. int i;
  1151. if (ops->get_group_pins)
  1152. ret = ops->get_group_pins(pctldev, selector,
  1153. &pins, &num_pins);
  1154. if (ret)
  1155. seq_printf(s, "%s [ERROR GETTING PINS]\n",
  1156. gname);
  1157. else {
  1158. seq_printf(s, "group: %s\n", gname);
  1159. for (i = 0; i < num_pins; i++) {
  1160. pname = pin_get_name(pctldev, pins[i]);
  1161. if (WARN_ON(!pname)) {
  1162. mutex_unlock(&pctldev->mutex);
  1163. return -EINVAL;
  1164. }
  1165. seq_printf(s, "pin %d (%s)\n", pins[i], pname);
  1166. }
  1167. seq_puts(s, "\n");
  1168. }
  1169. selector++;
  1170. }
  1171. mutex_unlock(&pctldev->mutex);
  1172. return 0;
  1173. }
  1174. static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
  1175. {
  1176. struct pinctrl_dev *pctldev = s->private;
  1177. struct pinctrl_gpio_range *range = NULL;
  1178. seq_puts(s, "GPIO ranges handled:\n");
  1179. mutex_lock(&pctldev->mutex);
  1180. /* Loop over the ranges */
  1181. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  1182. if (range->pins) {
  1183. int a;
  1184. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
  1185. range->id, range->name,
  1186. range->base, (range->base + range->npins - 1));
  1187. for (a = 0; a < range->npins - 1; a++)
  1188. seq_printf(s, "%u, ", range->pins[a]);
  1189. seq_printf(s, "%u}\n", range->pins[a]);
  1190. }
  1191. else
  1192. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
  1193. range->id, range->name,
  1194. range->base, (range->base + range->npins - 1),
  1195. range->pin_base,
  1196. (range->pin_base + range->npins - 1));
  1197. }
  1198. mutex_unlock(&pctldev->mutex);
  1199. return 0;
  1200. }
  1201. static int pinctrl_devices_show(struct seq_file *s, void *what)
  1202. {
  1203. struct pinctrl_dev *pctldev;
  1204. seq_puts(s, "name [pinmux] [pinconf]\n");
  1205. mutex_lock(&pinctrldev_list_mutex);
  1206. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  1207. seq_printf(s, "%s ", pctldev->desc->name);
  1208. if (pctldev->desc->pmxops)
  1209. seq_puts(s, "yes ");
  1210. else
  1211. seq_puts(s, "no ");
  1212. if (pctldev->desc->confops)
  1213. seq_puts(s, "yes");
  1214. else
  1215. seq_puts(s, "no");
  1216. seq_puts(s, "\n");
  1217. }
  1218. mutex_unlock(&pinctrldev_list_mutex);
  1219. return 0;
  1220. }
  1221. static inline const char *map_type(enum pinctrl_map_type type)
  1222. {
  1223. static const char * const names[] = {
  1224. "INVALID",
  1225. "DUMMY_STATE",
  1226. "MUX_GROUP",
  1227. "CONFIGS_PIN",
  1228. "CONFIGS_GROUP",
  1229. };
  1230. if (type >= ARRAY_SIZE(names))
  1231. return "UNKNOWN";
  1232. return names[type];
  1233. }
  1234. static int pinctrl_maps_show(struct seq_file *s, void *what)
  1235. {
  1236. struct pinctrl_maps *maps_node;
  1237. int i;
  1238. struct pinctrl_map const *map;
  1239. seq_puts(s, "Pinctrl maps:\n");
  1240. mutex_lock(&pinctrl_maps_mutex);
  1241. for_each_maps(maps_node, i, map) {
  1242. seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
  1243. map->dev_name, map->name, map_type(map->type),
  1244. map->type);
  1245. if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
  1246. seq_printf(s, "controlling device %s\n",
  1247. map->ctrl_dev_name);
  1248. switch (map->type) {
  1249. case PIN_MAP_TYPE_MUX_GROUP:
  1250. pinmux_show_map(s, map);
  1251. break;
  1252. case PIN_MAP_TYPE_CONFIGS_PIN:
  1253. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1254. pinconf_show_map(s, map);
  1255. break;
  1256. default:
  1257. break;
  1258. }
  1259. seq_printf(s, "\n");
  1260. }
  1261. mutex_unlock(&pinctrl_maps_mutex);
  1262. return 0;
  1263. }
  1264. static int pinctrl_show(struct seq_file *s, void *what)
  1265. {
  1266. struct pinctrl *p;
  1267. struct pinctrl_state *state;
  1268. struct pinctrl_setting *setting;
  1269. seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
  1270. mutex_lock(&pinctrl_list_mutex);
  1271. list_for_each_entry(p, &pinctrl_list, node) {
  1272. seq_printf(s, "device: %s current state: %s\n",
  1273. dev_name(p->dev),
  1274. p->state ? p->state->name : "none");
  1275. list_for_each_entry(state, &p->states, node) {
  1276. seq_printf(s, " state: %s\n", state->name);
  1277. list_for_each_entry(setting, &state->settings, node) {
  1278. struct pinctrl_dev *pctldev = setting->pctldev;
  1279. seq_printf(s, " type: %s controller %s ",
  1280. map_type(setting->type),
  1281. pinctrl_dev_get_name(pctldev));
  1282. switch (setting->type) {
  1283. case PIN_MAP_TYPE_MUX_GROUP:
  1284. pinmux_show_setting(s, setting);
  1285. break;
  1286. case PIN_MAP_TYPE_CONFIGS_PIN:
  1287. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1288. pinconf_show_setting(s, setting);
  1289. break;
  1290. default:
  1291. break;
  1292. }
  1293. }
  1294. }
  1295. }
  1296. mutex_unlock(&pinctrl_list_mutex);
  1297. return 0;
  1298. }
  1299. static int pinctrl_pins_open(struct inode *inode, struct file *file)
  1300. {
  1301. return single_open(file, pinctrl_pins_show, inode->i_private);
  1302. }
  1303. static int pinctrl_groups_open(struct inode *inode, struct file *file)
  1304. {
  1305. return single_open(file, pinctrl_groups_show, inode->i_private);
  1306. }
  1307. static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
  1308. {
  1309. return single_open(file, pinctrl_gpioranges_show, inode->i_private);
  1310. }
  1311. static int pinctrl_devices_open(struct inode *inode, struct file *file)
  1312. {
  1313. return single_open(file, pinctrl_devices_show, NULL);
  1314. }
  1315. static int pinctrl_maps_open(struct inode *inode, struct file *file)
  1316. {
  1317. return single_open(file, pinctrl_maps_show, NULL);
  1318. }
  1319. static int pinctrl_open(struct inode *inode, struct file *file)
  1320. {
  1321. return single_open(file, pinctrl_show, NULL);
  1322. }
  1323. static const struct file_operations pinctrl_pins_ops = {
  1324. .open = pinctrl_pins_open,
  1325. .read = seq_read,
  1326. .llseek = seq_lseek,
  1327. .release = single_release,
  1328. };
  1329. static const struct file_operations pinctrl_groups_ops = {
  1330. .open = pinctrl_groups_open,
  1331. .read = seq_read,
  1332. .llseek = seq_lseek,
  1333. .release = single_release,
  1334. };
  1335. static const struct file_operations pinctrl_gpioranges_ops = {
  1336. .open = pinctrl_gpioranges_open,
  1337. .read = seq_read,
  1338. .llseek = seq_lseek,
  1339. .release = single_release,
  1340. };
  1341. static const struct file_operations pinctrl_devices_ops = {
  1342. .open = pinctrl_devices_open,
  1343. .read = seq_read,
  1344. .llseek = seq_lseek,
  1345. .release = single_release,
  1346. };
  1347. static const struct file_operations pinctrl_maps_ops = {
  1348. .open = pinctrl_maps_open,
  1349. .read = seq_read,
  1350. .llseek = seq_lseek,
  1351. .release = single_release,
  1352. };
  1353. static const struct file_operations pinctrl_ops = {
  1354. .open = pinctrl_open,
  1355. .read = seq_read,
  1356. .llseek = seq_lseek,
  1357. .release = single_release,
  1358. };
  1359. static struct dentry *debugfs_root;
  1360. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1361. {
  1362. struct dentry *device_root;
  1363. device_root = debugfs_create_dir(dev_name(pctldev->dev),
  1364. debugfs_root);
  1365. pctldev->device_root = device_root;
  1366. if (IS_ERR(device_root) || !device_root) {
  1367. pr_warn("failed to create debugfs directory for %s\n",
  1368. dev_name(pctldev->dev));
  1369. return;
  1370. }
  1371. debugfs_create_file("pins", S_IFREG | S_IRUGO,
  1372. device_root, pctldev, &pinctrl_pins_ops);
  1373. debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
  1374. device_root, pctldev, &pinctrl_groups_ops);
  1375. debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
  1376. device_root, pctldev, &pinctrl_gpioranges_ops);
  1377. if (pctldev->desc->pmxops)
  1378. pinmux_init_device_debugfs(device_root, pctldev);
  1379. if (pctldev->desc->confops)
  1380. pinconf_init_device_debugfs(device_root, pctldev);
  1381. }
  1382. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1383. {
  1384. debugfs_remove_recursive(pctldev->device_root);
  1385. }
  1386. static void pinctrl_init_debugfs(void)
  1387. {
  1388. debugfs_root = debugfs_create_dir("pinctrl", NULL);
  1389. if (IS_ERR(debugfs_root) || !debugfs_root) {
  1390. pr_warn("failed to create debugfs directory\n");
  1391. debugfs_root = NULL;
  1392. return;
  1393. }
  1394. debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
  1395. debugfs_root, NULL, &pinctrl_devices_ops);
  1396. debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
  1397. debugfs_root, NULL, &pinctrl_maps_ops);
  1398. debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
  1399. debugfs_root, NULL, &pinctrl_ops);
  1400. }
  1401. #else /* CONFIG_DEBUG_FS */
  1402. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1403. {
  1404. }
  1405. static void pinctrl_init_debugfs(void)
  1406. {
  1407. }
  1408. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1409. {
  1410. }
  1411. #endif
  1412. static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
  1413. {
  1414. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1415. if (!ops ||
  1416. !ops->get_groups_count ||
  1417. !ops->get_group_name)
  1418. return -EINVAL;
  1419. if (ops->dt_node_to_map && !ops->dt_free_map)
  1420. return -EINVAL;
  1421. return 0;
  1422. }
  1423. /**
  1424. * pinctrl_register() - register a pin controller device
  1425. * @pctldesc: descriptor for this pin controller
  1426. * @dev: parent device for this pin controller
  1427. * @driver_data: private pin controller data for this pin controller
  1428. */
  1429. struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
  1430. struct device *dev, void *driver_data)
  1431. {
  1432. struct pinctrl_dev *pctldev;
  1433. int ret;
  1434. if (!pctldesc)
  1435. return NULL;
  1436. if (!pctldesc->name)
  1437. return NULL;
  1438. pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
  1439. if (pctldev == NULL) {
  1440. dev_err(dev, "failed to alloc struct pinctrl_dev\n");
  1441. return NULL;
  1442. }
  1443. /* Initialize pin control device struct */
  1444. pctldev->owner = pctldesc->owner;
  1445. pctldev->desc = pctldesc;
  1446. pctldev->driver_data = driver_data;
  1447. INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
  1448. INIT_LIST_HEAD(&pctldev->gpio_ranges);
  1449. pctldev->dev = dev;
  1450. mutex_init(&pctldev->mutex);
  1451. /* check core ops for sanity */
  1452. if (pinctrl_check_ops(pctldev)) {
  1453. dev_err(dev, "pinctrl ops lacks necessary functions\n");
  1454. goto out_err;
  1455. }
  1456. /* If we're implementing pinmuxing, check the ops for sanity */
  1457. if (pctldesc->pmxops) {
  1458. if (pinmux_check_ops(pctldev))
  1459. goto out_err;
  1460. }
  1461. /* If we're implementing pinconfig, check the ops for sanity */
  1462. if (pctldesc->confops) {
  1463. if (pinconf_check_ops(pctldev))
  1464. goto out_err;
  1465. }
  1466. /* Register all the pins */
  1467. dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
  1468. ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
  1469. if (ret) {
  1470. dev_err(dev, "error during pin registration\n");
  1471. pinctrl_free_pindescs(pctldev, pctldesc->pins,
  1472. pctldesc->npins);
  1473. goto out_err;
  1474. }
  1475. mutex_lock(&pinctrldev_list_mutex);
  1476. list_add_tail(&pctldev->node, &pinctrldev_list);
  1477. mutex_unlock(&pinctrldev_list_mutex);
  1478. pctldev->p = pinctrl_get(pctldev->dev);
  1479. if (!IS_ERR(pctldev->p)) {
  1480. pctldev->hog_default =
  1481. pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
  1482. if (IS_ERR(pctldev->hog_default)) {
  1483. dev_dbg(dev, "failed to lookup the default state\n");
  1484. } else {
  1485. if (pinctrl_select_state(pctldev->p,
  1486. pctldev->hog_default))
  1487. dev_err(dev,
  1488. "failed to select default state\n");
  1489. }
  1490. pctldev->hog_sleep =
  1491. pinctrl_lookup_state(pctldev->p,
  1492. PINCTRL_STATE_SLEEP);
  1493. if (IS_ERR(pctldev->hog_sleep))
  1494. dev_dbg(dev, "failed to lookup the sleep state\n");
  1495. }
  1496. pinctrl_init_device_debugfs(pctldev);
  1497. return pctldev;
  1498. out_err:
  1499. mutex_destroy(&pctldev->mutex);
  1500. kfree(pctldev);
  1501. return NULL;
  1502. }
  1503. EXPORT_SYMBOL_GPL(pinctrl_register);
  1504. /**
  1505. * pinctrl_unregister() - unregister pinmux
  1506. * @pctldev: pin controller to unregister
  1507. *
  1508. * Called by pinmux drivers to unregister a pinmux.
  1509. */
  1510. void pinctrl_unregister(struct pinctrl_dev *pctldev)
  1511. {
  1512. struct pinctrl_gpio_range *range, *n;
  1513. if (pctldev == NULL)
  1514. return;
  1515. mutex_lock(&pctldev->mutex);
  1516. pinctrl_remove_device_debugfs(pctldev);
  1517. mutex_unlock(&pctldev->mutex);
  1518. if (!IS_ERR(pctldev->p))
  1519. pinctrl_put(pctldev->p);
  1520. mutex_lock(&pinctrldev_list_mutex);
  1521. mutex_lock(&pctldev->mutex);
  1522. /* TODO: check that no pinmuxes are still active? */
  1523. list_del(&pctldev->node);
  1524. /* Destroy descriptor tree */
  1525. pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
  1526. pctldev->desc->npins);
  1527. /* remove gpio ranges map */
  1528. list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
  1529. list_del(&range->node);
  1530. mutex_unlock(&pctldev->mutex);
  1531. mutex_destroy(&pctldev->mutex);
  1532. kfree(pctldev);
  1533. mutex_unlock(&pinctrldev_list_mutex);
  1534. }
  1535. EXPORT_SYMBOL_GPL(pinctrl_unregister);
  1536. static int __init pinctrl_init(void)
  1537. {
  1538. pr_info("initialized pinctrl subsystem\n");
  1539. pinctrl_init_debugfs();
  1540. return 0;
  1541. }
  1542. /* init early since many drivers really need to initialized pinmux early */
  1543. core_initcall(pinctrl_init);