hw.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../efuse.h"
  31. #include "../base.h"
  32. #include "../regd.h"
  33. #include "../cam.h"
  34. #include "../ps.h"
  35. #include "../pci.h"
  36. #include "reg.h"
  37. #include "def.h"
  38. #include "phy.h"
  39. #include "../rtl8192c/dm_common.h"
  40. #include "../rtl8192c/fw_common.h"
  41. #include "../rtl8192c/phy_common.h"
  42. #include "dm.h"
  43. #include "led.h"
  44. #include "hw.h"
  45. #define LLT_CONFIG 5
  46. static void _rtl92ce_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  47. u8 set_bits, u8 clear_bits)
  48. {
  49. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  50. struct rtl_priv *rtlpriv = rtl_priv(hw);
  51. rtlpci->reg_bcn_ctrl_val |= set_bits;
  52. rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
  53. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlpci->reg_bcn_ctrl_val);
  54. }
  55. static void _rtl92ce_stop_tx_beacon(struct ieee80211_hw *hw)
  56. {
  57. struct rtl_priv *rtlpriv = rtl_priv(hw);
  58. u8 tmp1byte;
  59. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  60. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
  61. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  62. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  63. tmp1byte &= ~(BIT(0));
  64. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  65. }
  66. static void _rtl92ce_resume_tx_beacon(struct ieee80211_hw *hw)
  67. {
  68. struct rtl_priv *rtlpriv = rtl_priv(hw);
  69. u8 tmp1byte;
  70. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  71. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
  72. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  73. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  74. tmp1byte |= BIT(0);
  75. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  76. }
  77. static void _rtl92ce_enable_bcn_sub_func(struct ieee80211_hw *hw)
  78. {
  79. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(1));
  80. }
  81. static void _rtl92ce_disable_bcn_sub_func(struct ieee80211_hw *hw)
  82. {
  83. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(1), 0);
  84. }
  85. void rtl92ce_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  86. {
  87. struct rtl_priv *rtlpriv = rtl_priv(hw);
  88. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  89. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  90. switch (variable) {
  91. case HW_VAR_RCR:
  92. *((u32 *) (val)) = rtlpci->receive_config;
  93. break;
  94. case HW_VAR_RF_STATE:
  95. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  96. break;
  97. case HW_VAR_FWLPS_RF_ON:{
  98. enum rf_pwrstate rfState;
  99. u32 val_rcr;
  100. rtlpriv->cfg->ops->get_hw_reg(hw,
  101. HW_VAR_RF_STATE,
  102. (u8 *) (&rfState));
  103. if (rfState == ERFOFF) {
  104. *((bool *) (val)) = true;
  105. } else {
  106. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  107. val_rcr &= 0x00070000;
  108. if (val_rcr)
  109. *((bool *) (val)) = false;
  110. else
  111. *((bool *) (val)) = true;
  112. }
  113. break;
  114. }
  115. case HW_VAR_FW_PSMODE_STATUS:
  116. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  117. break;
  118. case HW_VAR_CORRECT_TSF:{
  119. u64 tsf;
  120. u32 *ptsf_low = (u32 *)&tsf;
  121. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  122. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  123. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  124. *((u64 *) (val)) = tsf;
  125. break;
  126. }
  127. default:
  128. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  129. "switch case not processed\n");
  130. break;
  131. }
  132. }
  133. void rtl92ce_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  134. {
  135. struct rtl_priv *rtlpriv = rtl_priv(hw);
  136. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  137. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  138. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  139. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  140. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  141. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  142. u8 idx;
  143. switch (variable) {
  144. case HW_VAR_ETHER_ADDR:{
  145. for (idx = 0; idx < ETH_ALEN; idx++) {
  146. rtl_write_byte(rtlpriv, (REG_MACID + idx),
  147. val[idx]);
  148. }
  149. break;
  150. }
  151. case HW_VAR_BASIC_RATE:{
  152. u16 rate_cfg = ((u16 *) val)[0];
  153. u8 rate_index = 0;
  154. rate_cfg &= 0x15f;
  155. rate_cfg |= 0x01;
  156. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  157. rtl_write_byte(rtlpriv, REG_RRSR + 1,
  158. (rate_cfg >> 8) & 0xff);
  159. while (rate_cfg > 0x1) {
  160. rate_cfg = (rate_cfg >> 1);
  161. rate_index++;
  162. }
  163. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
  164. rate_index);
  165. break;
  166. }
  167. case HW_VAR_BSSID:{
  168. for (idx = 0; idx < ETH_ALEN; idx++) {
  169. rtl_write_byte(rtlpriv, (REG_BSSID + idx),
  170. val[idx]);
  171. }
  172. break;
  173. }
  174. case HW_VAR_SIFS:{
  175. rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
  176. rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
  177. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  178. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  179. if (!mac->ht_enable)
  180. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  181. 0x0e0e);
  182. else
  183. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  184. *((u16 *) val));
  185. break;
  186. }
  187. case HW_VAR_SLOT_TIME:{
  188. u8 e_aci;
  189. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  190. "HW_VAR_SLOT_TIME %x\n", val[0]);
  191. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  192. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  193. rtlpriv->cfg->ops->set_hw_reg(hw,
  194. HW_VAR_AC_PARAM,
  195. &e_aci);
  196. }
  197. break;
  198. }
  199. case HW_VAR_ACK_PREAMBLE:{
  200. u8 reg_tmp;
  201. u8 short_preamble = (bool)*val;
  202. reg_tmp = (mac->cur_40_prime_sc) << 5;
  203. if (short_preamble)
  204. reg_tmp |= 0x80;
  205. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
  206. break;
  207. }
  208. case HW_VAR_AMPDU_MIN_SPACE:{
  209. u8 min_spacing_to_set;
  210. u8 sec_min_space;
  211. min_spacing_to_set = *val;
  212. if (min_spacing_to_set <= 7) {
  213. sec_min_space = 0;
  214. if (min_spacing_to_set < sec_min_space)
  215. min_spacing_to_set = sec_min_space;
  216. mac->min_space_cfg = ((mac->min_space_cfg &
  217. 0xf8) |
  218. min_spacing_to_set);
  219. *val = min_spacing_to_set;
  220. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  221. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  222. mac->min_space_cfg);
  223. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  224. mac->min_space_cfg);
  225. }
  226. break;
  227. }
  228. case HW_VAR_SHORTGI_DENSITY:{
  229. u8 density_to_set;
  230. density_to_set = *val;
  231. mac->min_space_cfg |= (density_to_set << 3);
  232. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  233. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  234. mac->min_space_cfg);
  235. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  236. mac->min_space_cfg);
  237. break;
  238. }
  239. case HW_VAR_AMPDU_FACTOR:{
  240. u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
  241. u8 regtoset_bt[4] = {0x31, 0x74, 0x42, 0x97};
  242. u8 factor_toset;
  243. u8 *p_regtoset = NULL;
  244. u8 index = 0;
  245. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  246. (rtlpcipriv->bt_coexist.bt_coexist_type ==
  247. BT_CSR_BC4))
  248. p_regtoset = regtoset_bt;
  249. else
  250. p_regtoset = regtoset_normal;
  251. factor_toset = *(val);
  252. if (factor_toset <= 3) {
  253. factor_toset = (1 << (factor_toset + 2));
  254. if (factor_toset > 0xf)
  255. factor_toset = 0xf;
  256. for (index = 0; index < 4; index++) {
  257. if ((p_regtoset[index] & 0xf0) >
  258. (factor_toset << 4))
  259. p_regtoset[index] =
  260. (p_regtoset[index] & 0x0f) |
  261. (factor_toset << 4);
  262. if ((p_regtoset[index] & 0x0f) >
  263. factor_toset)
  264. p_regtoset[index] =
  265. (p_regtoset[index] & 0xf0) |
  266. (factor_toset);
  267. rtl_write_byte(rtlpriv,
  268. (REG_AGGLEN_LMT + index),
  269. p_regtoset[index]);
  270. }
  271. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  272. "Set HW_VAR_AMPDU_FACTOR: %#x\n",
  273. factor_toset);
  274. }
  275. break;
  276. }
  277. case HW_VAR_AC_PARAM:{
  278. u8 e_aci = *(val);
  279. rtl92c_dm_init_edca_turbo(hw);
  280. if (rtlpci->acm_method != EACMWAY2_SW)
  281. rtlpriv->cfg->ops->set_hw_reg(hw,
  282. HW_VAR_ACM_CTRL,
  283. (&e_aci));
  284. break;
  285. }
  286. case HW_VAR_ACM_CTRL:{
  287. u8 e_aci = *(val);
  288. union aci_aifsn *p_aci_aifsn =
  289. (union aci_aifsn *)(&(mac->ac[0].aifs));
  290. u8 acm = p_aci_aifsn->f.acm;
  291. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  292. acm_ctrl =
  293. acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
  294. if (acm) {
  295. switch (e_aci) {
  296. case AC0_BE:
  297. acm_ctrl |= AcmHw_BeqEn;
  298. break;
  299. case AC2_VI:
  300. acm_ctrl |= AcmHw_ViqEn;
  301. break;
  302. case AC3_VO:
  303. acm_ctrl |= AcmHw_VoqEn;
  304. break;
  305. default:
  306. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  307. "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
  308. acm);
  309. break;
  310. }
  311. } else {
  312. switch (e_aci) {
  313. case AC0_BE:
  314. acm_ctrl &= (~AcmHw_BeqEn);
  315. break;
  316. case AC2_VI:
  317. acm_ctrl &= (~AcmHw_ViqEn);
  318. break;
  319. case AC3_VO:
  320. acm_ctrl &= (~AcmHw_BeqEn);
  321. break;
  322. default:
  323. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  324. "switch case not processed\n");
  325. break;
  326. }
  327. }
  328. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  329. "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
  330. acm_ctrl);
  331. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  332. break;
  333. }
  334. case HW_VAR_RCR:{
  335. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
  336. rtlpci->receive_config = ((u32 *) (val))[0];
  337. break;
  338. }
  339. case HW_VAR_RETRY_LIMIT:{
  340. u8 retry_limit = val[0];
  341. rtl_write_word(rtlpriv, REG_RL,
  342. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  343. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  344. break;
  345. }
  346. case HW_VAR_DUAL_TSF_RST:
  347. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  348. break;
  349. case HW_VAR_EFUSE_BYTES:
  350. rtlefuse->efuse_usedbytes = *((u16 *) val);
  351. break;
  352. case HW_VAR_EFUSE_USAGE:
  353. rtlefuse->efuse_usedpercentage = *val;
  354. break;
  355. case HW_VAR_IO_CMD:
  356. rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val));
  357. break;
  358. case HW_VAR_WPA_CONFIG:
  359. rtl_write_byte(rtlpriv, REG_SECCFG, *val);
  360. break;
  361. case HW_VAR_SET_RPWM:{
  362. u8 rpwm_val;
  363. rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
  364. udelay(1);
  365. if (rpwm_val & BIT(7)) {
  366. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val);
  367. } else {
  368. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
  369. *val | BIT(7));
  370. }
  371. break;
  372. }
  373. case HW_VAR_H2C_FW_PWRMODE:{
  374. u8 psmode = *val;
  375. if ((psmode != FW_PS_ACTIVE_MODE) &&
  376. (!IS_92C_SERIAL(rtlhal->version))) {
  377. rtl92c_dm_rf_saving(hw, true);
  378. }
  379. rtl92c_set_fw_pwrmode_cmd(hw, *val);
  380. break;
  381. }
  382. case HW_VAR_FW_PSMODE_STATUS:
  383. ppsc->fw_current_inpsmode = *((bool *) val);
  384. break;
  385. case HW_VAR_H2C_FW_JOINBSSRPT:{
  386. u8 mstatus = *val;
  387. u8 tmp_regcr, tmp_reg422;
  388. bool recover = false;
  389. if (mstatus == RT_MEDIA_CONNECT) {
  390. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID,
  391. NULL);
  392. tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
  393. rtl_write_byte(rtlpriv, REG_CR + 1,
  394. (tmp_regcr | BIT(0)));
  395. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3));
  396. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0);
  397. tmp_reg422 =
  398. rtl_read_byte(rtlpriv,
  399. REG_FWHW_TXQ_CTRL + 2);
  400. if (tmp_reg422 & BIT(6))
  401. recover = true;
  402. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  403. tmp_reg422 & (~BIT(6)));
  404. rtl92c_set_fw_rsvdpagepkt(hw, NULL);
  405. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0);
  406. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4));
  407. if (recover) {
  408. rtl_write_byte(rtlpriv,
  409. REG_FWHW_TXQ_CTRL + 2,
  410. tmp_reg422);
  411. }
  412. rtl_write_byte(rtlpriv, REG_CR + 1,
  413. (tmp_regcr & ~(BIT(0))));
  414. }
  415. rtl92c_set_fw_joinbss_report_cmd(hw, *val);
  416. break;
  417. }
  418. case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
  419. rtl92c_set_p2p_ps_offload_cmd(hw, *val);
  420. break;
  421. case HW_VAR_AID:{
  422. u16 u2btmp;
  423. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  424. u2btmp &= 0xC000;
  425. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
  426. mac->assoc_id));
  427. break;
  428. }
  429. case HW_VAR_CORRECT_TSF:{
  430. u8 btype_ibss = val[0];
  431. if (btype_ibss)
  432. _rtl92ce_stop_tx_beacon(hw);
  433. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3));
  434. rtl_write_dword(rtlpriv, REG_TSFTR,
  435. (u32) (mac->tsf & 0xffffffff));
  436. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  437. (u32) ((mac->tsf >> 32) & 0xffffffff));
  438. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0);
  439. if (btype_ibss)
  440. _rtl92ce_resume_tx_beacon(hw);
  441. break;
  442. }
  443. case HW_VAR_FW_LPS_ACTION: {
  444. bool enter_fwlps = *((bool *)val);
  445. u8 rpwm_val, fw_pwrmode;
  446. bool fw_current_inps;
  447. if (enter_fwlps) {
  448. rpwm_val = 0x02; /* RF off */
  449. fw_current_inps = true;
  450. rtlpriv->cfg->ops->set_hw_reg(hw,
  451. HW_VAR_FW_PSMODE_STATUS,
  452. (u8 *)(&fw_current_inps));
  453. rtlpriv->cfg->ops->set_hw_reg(hw,
  454. HW_VAR_H2C_FW_PWRMODE,
  455. &ppsc->fwctrl_psmode);
  456. rtlpriv->cfg->ops->set_hw_reg(hw,
  457. HW_VAR_SET_RPWM,
  458. &rpwm_val);
  459. } else {
  460. rpwm_val = 0x0C; /* RF on */
  461. fw_pwrmode = FW_PS_ACTIVE_MODE;
  462. fw_current_inps = false;
  463. rtlpriv->cfg->ops->set_hw_reg(hw,
  464. HW_VAR_SET_RPWM,
  465. &rpwm_val);
  466. rtlpriv->cfg->ops->set_hw_reg(hw,
  467. HW_VAR_H2C_FW_PWRMODE,
  468. &fw_pwrmode);
  469. rtlpriv->cfg->ops->set_hw_reg(hw,
  470. HW_VAR_FW_PSMODE_STATUS,
  471. (u8 *)(&fw_current_inps));
  472. }
  473. break; }
  474. case HW_VAR_KEEP_ALIVE:
  475. break;
  476. default:
  477. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  478. "switch case %d not processed\n", variable);
  479. break;
  480. }
  481. }
  482. static bool _rtl92ce_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
  483. {
  484. struct rtl_priv *rtlpriv = rtl_priv(hw);
  485. bool status = true;
  486. long count = 0;
  487. u32 value = _LLT_INIT_ADDR(address) |
  488. _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
  489. rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
  490. do {
  491. value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
  492. if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
  493. break;
  494. if (count > POLLING_LLT_THRESHOLD) {
  495. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  496. "Failed to polling write LLT done at address %d!\n",
  497. address);
  498. status = false;
  499. break;
  500. }
  501. } while (++count);
  502. return status;
  503. }
  504. static bool _rtl92ce_llt_table_init(struct ieee80211_hw *hw)
  505. {
  506. struct rtl_priv *rtlpriv = rtl_priv(hw);
  507. unsigned short i;
  508. u8 txpktbuf_bndy;
  509. u8 maxPage;
  510. bool status;
  511. #if LLT_CONFIG == 1
  512. maxPage = 255;
  513. txpktbuf_bndy = 252;
  514. #elif LLT_CONFIG == 2
  515. maxPage = 127;
  516. txpktbuf_bndy = 124;
  517. #elif LLT_CONFIG == 3
  518. maxPage = 255;
  519. txpktbuf_bndy = 174;
  520. #elif LLT_CONFIG == 4
  521. maxPage = 255;
  522. txpktbuf_bndy = 246;
  523. #elif LLT_CONFIG == 5
  524. maxPage = 255;
  525. txpktbuf_bndy = 246;
  526. #endif
  527. #if LLT_CONFIG == 1
  528. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x1c);
  529. rtl_write_dword(rtlpriv, REG_RQPN, 0x80a71c1c);
  530. #elif LLT_CONFIG == 2
  531. rtl_write_dword(rtlpriv, REG_RQPN, 0x845B1010);
  532. #elif LLT_CONFIG == 3
  533. rtl_write_dword(rtlpriv, REG_RQPN, 0x84838484);
  534. #elif LLT_CONFIG == 4
  535. rtl_write_dword(rtlpriv, REG_RQPN, 0x80bd1c1c);
  536. #elif LLT_CONFIG == 5
  537. rtl_write_word(rtlpriv, REG_RQPN_NPQ, 0x0000);
  538. rtl_write_dword(rtlpriv, REG_RQPN, 0x80b01c29);
  539. #endif
  540. rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x27FF0000 | txpktbuf_bndy));
  541. rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
  542. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  543. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  544. rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
  545. rtl_write_byte(rtlpriv, REG_PBP, 0x11);
  546. rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
  547. for (i = 0; i < (txpktbuf_bndy - 1); i++) {
  548. status = _rtl92ce_llt_write(hw, i, i + 1);
  549. if (true != status)
  550. return status;
  551. }
  552. status = _rtl92ce_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
  553. if (true != status)
  554. return status;
  555. for (i = txpktbuf_bndy; i < maxPage; i++) {
  556. status = _rtl92ce_llt_write(hw, i, (i + 1));
  557. if (true != status)
  558. return status;
  559. }
  560. status = _rtl92ce_llt_write(hw, maxPage, txpktbuf_bndy);
  561. if (true != status)
  562. return status;
  563. return true;
  564. }
  565. static void _rtl92ce_gen_refresh_led_state(struct ieee80211_hw *hw)
  566. {
  567. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  568. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  569. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  570. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  571. if (rtlpci->up_first_time)
  572. return;
  573. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  574. rtl92ce_sw_led_on(hw, pLed0);
  575. else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
  576. rtl92ce_sw_led_on(hw, pLed0);
  577. else
  578. rtl92ce_sw_led_off(hw, pLed0);
  579. }
  580. static bool _rtl92ce_init_mac(struct ieee80211_hw *hw)
  581. {
  582. struct rtl_priv *rtlpriv = rtl_priv(hw);
  583. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  584. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  585. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  586. unsigned char bytetmp;
  587. unsigned short wordtmp;
  588. u16 retry;
  589. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
  590. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  591. u32 value32;
  592. value32 = rtl_read_dword(rtlpriv, REG_APS_FSMCO);
  593. value32 |= (SOP_ABG | SOP_AMB | XOP_BTCK);
  594. rtl_write_dword(rtlpriv, REG_APS_FSMCO, value32);
  595. }
  596. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  597. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
  598. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  599. u32 u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL);
  600. u4b_tmp &= (~0x00024800);
  601. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp);
  602. }
  603. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
  604. udelay(2);
  605. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
  606. udelay(2);
  607. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  608. udelay(2);
  609. retry = 0;
  610. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n",
  611. rtl_read_dword(rtlpriv, 0xEC), bytetmp);
  612. while ((bytetmp & BIT(0)) && retry < 1000) {
  613. retry++;
  614. udelay(50);
  615. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  616. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n",
  617. rtl_read_dword(rtlpriv, 0xEC), bytetmp);
  618. udelay(50);
  619. }
  620. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
  621. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
  622. udelay(2);
  623. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  624. bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL+2) & 0xfd;
  625. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL+2, bytetmp);
  626. }
  627. rtl_write_word(rtlpriv, REG_CR, 0x2ff);
  628. if (!_rtl92ce_llt_table_init(hw))
  629. return false;
  630. rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
  631. rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
  632. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x27ff);
  633. wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
  634. wordtmp &= 0xf;
  635. wordtmp |= 0xF771;
  636. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
  637. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
  638. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  639. rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
  640. rtl_write_byte(rtlpriv, 0x4d0, 0x0);
  641. rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
  642. ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
  643. DMA_BIT_MASK(32));
  644. rtl_write_dword(rtlpriv, REG_MGQ_DESA,
  645. (u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
  646. DMA_BIT_MASK(32));
  647. rtl_write_dword(rtlpriv, REG_VOQ_DESA,
  648. (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
  649. rtl_write_dword(rtlpriv, REG_VIQ_DESA,
  650. (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
  651. rtl_write_dword(rtlpriv, REG_BEQ_DESA,
  652. (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
  653. rtl_write_dword(rtlpriv, REG_BKQ_DESA,
  654. (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
  655. rtl_write_dword(rtlpriv, REG_HQ_DESA,
  656. (u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
  657. DMA_BIT_MASK(32));
  658. rtl_write_dword(rtlpriv, REG_RX_DESA,
  659. (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
  660. DMA_BIT_MASK(32));
  661. if (IS_92C_SERIAL(rtlhal->version))
  662. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x77);
  663. else
  664. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x22);
  665. rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
  666. bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
  667. rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
  668. do {
  669. retry++;
  670. bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
  671. } while ((retry < 200) && (bytetmp & BIT(7)));
  672. _rtl92ce_gen_refresh_led_state(hw);
  673. rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
  674. return true;
  675. }
  676. static void _rtl92ce_hw_configure(struct ieee80211_hw *hw)
  677. {
  678. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  679. struct rtl_priv *rtlpriv = rtl_priv(hw);
  680. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  681. u8 reg_bw_opmode;
  682. u32 reg_prsr;
  683. reg_bw_opmode = BW_OPMODE_20MHZ;
  684. reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  685. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
  686. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  687. rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
  688. rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
  689. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
  690. rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
  691. rtl_write_word(rtlpriv, REG_RL, 0x0707);
  692. rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
  693. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  694. rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
  695. rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
  696. rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
  697. rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
  698. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  699. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4))
  700. rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x97427431);
  701. else
  702. rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
  703. rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
  704. rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
  705. rtlpci->reg_bcn_ctrl_val = 0x1f;
  706. rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
  707. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  708. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  709. rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
  710. rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
  711. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  712. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4)) {
  713. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  714. rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x0402);
  715. } else {
  716. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  717. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  718. }
  719. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  720. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4))
  721. rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666);
  722. else
  723. rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x086666);
  724. rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
  725. rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
  726. rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
  727. rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
  728. rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
  729. rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
  730. rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
  731. }
  732. static void _rtl92ce_enable_aspm_back_door(struct ieee80211_hw *hw)
  733. {
  734. struct rtl_priv *rtlpriv = rtl_priv(hw);
  735. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  736. rtl_write_byte(rtlpriv, 0x34b, 0x93);
  737. rtl_write_word(rtlpriv, 0x350, 0x870c);
  738. rtl_write_byte(rtlpriv, 0x352, 0x1);
  739. if (ppsc->support_backdoor)
  740. rtl_write_byte(rtlpriv, 0x349, 0x1b);
  741. else
  742. rtl_write_byte(rtlpriv, 0x349, 0x03);
  743. rtl_write_word(rtlpriv, 0x350, 0x2718);
  744. rtl_write_byte(rtlpriv, 0x352, 0x1);
  745. }
  746. void rtl92ce_enable_hw_security_config(struct ieee80211_hw *hw)
  747. {
  748. struct rtl_priv *rtlpriv = rtl_priv(hw);
  749. u8 sec_reg_value;
  750. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  751. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  752. rtlpriv->sec.pairwise_enc_algorithm,
  753. rtlpriv->sec.group_enc_algorithm);
  754. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  755. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  756. "not open hw encryption\n");
  757. return;
  758. }
  759. sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable;
  760. if (rtlpriv->sec.use_defaultkey) {
  761. sec_reg_value |= SCR_TxUseDK;
  762. sec_reg_value |= SCR_RxUseDK;
  763. }
  764. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  765. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  766. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  767. "The SECR-value %x\n", sec_reg_value);
  768. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  769. }
  770. int rtl92ce_hw_init(struct ieee80211_hw *hw)
  771. {
  772. struct rtl_priv *rtlpriv = rtl_priv(hw);
  773. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  774. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  775. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  776. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  777. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  778. bool rtstatus = true;
  779. bool is92c;
  780. int err;
  781. u8 tmp_u1b;
  782. unsigned long flags;
  783. rtlpci->being_init_adapter = true;
  784. /* Since this function can take a very long time (up to 350 ms)
  785. * and can be called with irqs disabled, reenable the irqs
  786. * to let the other devices continue being serviced.
  787. *
  788. * It is safe doing so since our own interrupts will only be enabled
  789. * in a subsequent step.
  790. */
  791. local_save_flags(flags);
  792. local_irq_enable();
  793. rtlhal->fw_ready = false;
  794. rtlpriv->intf_ops->disable_aspm(hw);
  795. rtstatus = _rtl92ce_init_mac(hw);
  796. if (!rtstatus) {
  797. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
  798. err = 1;
  799. goto exit;
  800. }
  801. err = rtl92c_download_fw(hw);
  802. if (err) {
  803. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  804. "Failed to download FW. Init HW without FW now..\n");
  805. err = 1;
  806. goto exit;
  807. }
  808. rtlhal->fw_ready = true;
  809. rtlhal->last_hmeboxnum = 0;
  810. rtl92c_phy_mac_config(hw);
  811. /* because last function modify RCR, so we update
  812. * rcr var here, or TP will unstable for receive_config
  813. * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
  814. * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
  815. rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
  816. rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
  817. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  818. rtl92c_phy_bb_config(hw);
  819. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  820. rtl92c_phy_rf_config(hw);
  821. if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
  822. !IS_92C_SERIAL(rtlhal->version)) {
  823. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
  824. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
  825. } else if (IS_81XXC_VENDOR_UMC_B_CUT(rtlhal->version)) {
  826. rtl_set_rfreg(hw, RF90_PATH_A, 0x0C, MASKDWORD, 0x894AE);
  827. rtl_set_rfreg(hw, RF90_PATH_A, 0x0A, MASKDWORD, 0x1AF31);
  828. rtl_set_rfreg(hw, RF90_PATH_A, RF_IPA, MASKDWORD, 0x8F425);
  829. rtl_set_rfreg(hw, RF90_PATH_A, RF_SYN_G2, MASKDWORD, 0x4F200);
  830. rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK1, MASKDWORD, 0x44053);
  831. rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK2, MASKDWORD, 0x80201);
  832. }
  833. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  834. RF_CHNLBW, RFREG_OFFSET_MASK);
  835. rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
  836. RF_CHNLBW, RFREG_OFFSET_MASK);
  837. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  838. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  839. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);
  840. _rtl92ce_hw_configure(hw);
  841. rtl_cam_reset_all_entry(hw);
  842. rtl92ce_enable_hw_security_config(hw);
  843. ppsc->rfpwr_state = ERFON;
  844. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  845. _rtl92ce_enable_aspm_back_door(hw);
  846. rtlpriv->intf_ops->enable_aspm(hw);
  847. rtl8192ce_bt_hw_init(hw);
  848. if (ppsc->rfpwr_state == ERFON) {
  849. rtl92c_phy_set_rfpath_switch(hw, 1);
  850. if (rtlphy->iqk_initialized) {
  851. rtl92c_phy_iq_calibrate(hw, true);
  852. } else {
  853. rtl92c_phy_iq_calibrate(hw, false);
  854. rtlphy->iqk_initialized = true;
  855. }
  856. rtl92c_dm_check_txpower_tracking(hw);
  857. rtl92c_phy_lc_calibrate(hw);
  858. }
  859. is92c = IS_92C_SERIAL(rtlhal->version);
  860. tmp_u1b = efuse_read_1byte(hw, 0x1FA);
  861. if (!(tmp_u1b & BIT(0))) {
  862. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
  863. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path A\n");
  864. }
  865. if (!(tmp_u1b & BIT(1)) && is92c) {
  866. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0F, 0x05);
  867. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path B\n");
  868. }
  869. if (!(tmp_u1b & BIT(4))) {
  870. tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
  871. tmp_u1b &= 0x0F;
  872. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
  873. udelay(10);
  874. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
  875. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "under 1.5V\n");
  876. }
  877. rtl92c_dm_init(hw);
  878. exit:
  879. local_irq_restore(flags);
  880. rtlpci->being_init_adapter = false;
  881. return err;
  882. }
  883. static enum version_8192c _rtl92ce_read_chip_version(struct ieee80211_hw *hw)
  884. {
  885. struct rtl_priv *rtlpriv = rtl_priv(hw);
  886. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  887. enum version_8192c version = VERSION_UNKNOWN;
  888. u32 value32;
  889. const char *versionid;
  890. value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
  891. if (value32 & TRP_VAUX_EN) {
  892. version = (value32 & TYPE_ID) ? VERSION_A_CHIP_92C :
  893. VERSION_A_CHIP_88C;
  894. } else {
  895. version = (enum version_8192c) (CHIP_VER_B |
  896. ((value32 & TYPE_ID) ? CHIP_92C_BITMASK : 0) |
  897. ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0));
  898. if ((!IS_CHIP_VENDOR_UMC(version)) && (value32 &
  899. CHIP_VER_RTL_MASK)) {
  900. version = (enum version_8192c)(version |
  901. ((((value32 & CHIP_VER_RTL_MASK) == BIT(12))
  902. ? CHIP_VENDOR_UMC_B_CUT : CHIP_UNKNOWN) |
  903. CHIP_VENDOR_UMC));
  904. }
  905. if (IS_92C_SERIAL(version)) {
  906. value32 = rtl_read_dword(rtlpriv, REG_HPON_FSM);
  907. version = (enum version_8192c)(version |
  908. ((CHIP_BONDING_IDENTIFIER(value32)
  909. == CHIP_BONDING_92C_1T2R) ?
  910. RF_TYPE_1T2R : 0));
  911. }
  912. }
  913. switch (version) {
  914. case VERSION_B_CHIP_92C:
  915. versionid = "B_CHIP_92C";
  916. break;
  917. case VERSION_B_CHIP_88C:
  918. versionid = "B_CHIP_88C";
  919. break;
  920. case VERSION_A_CHIP_92C:
  921. versionid = "A_CHIP_92C";
  922. break;
  923. case VERSION_A_CHIP_88C:
  924. versionid = "A_CHIP_88C";
  925. break;
  926. case VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT:
  927. versionid = "A_CUT_92C_1T2R";
  928. break;
  929. case VERSION_NORMAL_UMC_CHIP_92C_A_CUT:
  930. versionid = "A_CUT_92C";
  931. break;
  932. case VERSION_NORMAL_UMC_CHIP_88C_A_CUT:
  933. versionid = "A_CUT_88C";
  934. break;
  935. case VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT:
  936. versionid = "B_CUT_92C_1T2R";
  937. break;
  938. case VERSION_NORMAL_UMC_CHIP_92C_B_CUT:
  939. versionid = "B_CUT_92C";
  940. break;
  941. case VERSION_NORMAL_UMC_CHIP_88C_B_CUT:
  942. versionid = "B_CUT_88C";
  943. break;
  944. default:
  945. versionid = "Unknown. Bug?";
  946. break;
  947. }
  948. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  949. "Chip Version ID: %s\n", versionid);
  950. switch (version & 0x3) {
  951. case CHIP_88C:
  952. rtlphy->rf_type = RF_1T1R;
  953. break;
  954. case CHIP_92C:
  955. rtlphy->rf_type = RF_2T2R;
  956. break;
  957. case CHIP_92C_1T2R:
  958. rtlphy->rf_type = RF_1T2R;
  959. break;
  960. default:
  961. rtlphy->rf_type = RF_1T1R;
  962. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  963. "ERROR RF_Type is set!!\n");
  964. break;
  965. }
  966. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n",
  967. rtlphy->rf_type == RF_2T2R ? "RF_2T2R" : "RF_1T1R");
  968. return version;
  969. }
  970. static int _rtl92ce_set_media_status(struct ieee80211_hw *hw,
  971. enum nl80211_iftype type)
  972. {
  973. struct rtl_priv *rtlpriv = rtl_priv(hw);
  974. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  975. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  976. bt_msr &= 0xfc;
  977. if (type == NL80211_IFTYPE_UNSPECIFIED ||
  978. type == NL80211_IFTYPE_STATION) {
  979. _rtl92ce_stop_tx_beacon(hw);
  980. _rtl92ce_enable_bcn_sub_func(hw);
  981. } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP ||
  982. type == NL80211_IFTYPE_MESH_POINT) {
  983. _rtl92ce_resume_tx_beacon(hw);
  984. _rtl92ce_disable_bcn_sub_func(hw);
  985. } else {
  986. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  987. "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
  988. type);
  989. }
  990. switch (type) {
  991. case NL80211_IFTYPE_UNSPECIFIED:
  992. bt_msr |= MSR_NOLINK;
  993. ledaction = LED_CTL_LINK;
  994. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  995. "Set Network type to NO LINK!\n");
  996. break;
  997. case NL80211_IFTYPE_ADHOC:
  998. bt_msr |= MSR_ADHOC;
  999. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1000. "Set Network type to Ad Hoc!\n");
  1001. break;
  1002. case NL80211_IFTYPE_STATION:
  1003. bt_msr |= MSR_INFRA;
  1004. ledaction = LED_CTL_LINK;
  1005. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1006. "Set Network type to STA!\n");
  1007. break;
  1008. case NL80211_IFTYPE_AP:
  1009. bt_msr |= MSR_AP;
  1010. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1011. "Set Network type to AP!\n");
  1012. break;
  1013. case NL80211_IFTYPE_MESH_POINT:
  1014. bt_msr |= MSR_ADHOC;
  1015. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1016. "Set Network type to Mesh Point!\n");
  1017. break;
  1018. default:
  1019. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1020. "Network type %d not supported!\n", type);
  1021. return 1;
  1022. }
  1023. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  1024. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1025. if ((bt_msr & MSR_MASK) == MSR_AP)
  1026. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1027. else
  1028. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1029. return 0;
  1030. }
  1031. void rtl92ce_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1032. {
  1033. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1034. u32 reg_rcr;
  1035. if (rtlpriv->psc.rfpwr_state != ERFON)
  1036. return;
  1037. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  1038. if (check_bssid) {
  1039. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1040. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1041. (u8 *) (&reg_rcr));
  1042. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1043. } else if (!check_bssid) {
  1044. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1045. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1046. rtlpriv->cfg->ops->set_hw_reg(hw,
  1047. HW_VAR_RCR, (u8 *) (&reg_rcr));
  1048. }
  1049. }
  1050. int rtl92ce_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1051. {
  1052. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1053. if (_rtl92ce_set_media_status(hw, type))
  1054. return -EOPNOTSUPP;
  1055. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  1056. if (type != NL80211_IFTYPE_AP &&
  1057. type != NL80211_IFTYPE_MESH_POINT)
  1058. rtl92ce_set_check_bssid(hw, true);
  1059. } else {
  1060. rtl92ce_set_check_bssid(hw, false);
  1061. }
  1062. return 0;
  1063. }
  1064. /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
  1065. void rtl92ce_set_qos(struct ieee80211_hw *hw, int aci)
  1066. {
  1067. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1068. rtl92c_dm_init_edca_turbo(hw);
  1069. switch (aci) {
  1070. case AC1_BK:
  1071. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
  1072. break;
  1073. case AC0_BE:
  1074. /* rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, u4b_ac_param); */
  1075. break;
  1076. case AC2_VI:
  1077. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
  1078. break;
  1079. case AC3_VO:
  1080. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
  1081. break;
  1082. default:
  1083. RT_ASSERT(false, "invalid aci: %d !\n", aci);
  1084. break;
  1085. }
  1086. }
  1087. void rtl92ce_enable_interrupt(struct ieee80211_hw *hw)
  1088. {
  1089. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1090. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1091. rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
  1092. rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
  1093. rtlpci->irq_enabled = true;
  1094. }
  1095. void rtl92ce_disable_interrupt(struct ieee80211_hw *hw)
  1096. {
  1097. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1098. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1099. rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
  1100. rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
  1101. rtlpci->irq_enabled = false;
  1102. }
  1103. static void _rtl92ce_poweroff_adapter(struct ieee80211_hw *hw)
  1104. {
  1105. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1106. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1107. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1108. u8 u1b_tmp;
  1109. u32 u4b_tmp;
  1110. rtlpriv->intf_ops->enable_aspm(hw);
  1111. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1112. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
  1113. rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
  1114. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  1115. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  1116. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
  1117. if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7))
  1118. rtl92c_firmware_selfreset(hw);
  1119. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
  1120. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
  1121. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
  1122. u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
  1123. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  1124. ((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) ||
  1125. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8))) {
  1126. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00F30000 |
  1127. (u1b_tmp << 8));
  1128. } else {
  1129. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00FF0000 |
  1130. (u1b_tmp << 8));
  1131. }
  1132. rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
  1133. rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
  1134. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
  1135. if (!IS_81XXC_VENDOR_UMC_B_CUT(rtlhal->version))
  1136. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
  1137. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  1138. u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL);
  1139. u4b_tmp |= 0x03824800;
  1140. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp);
  1141. } else {
  1142. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
  1143. }
  1144. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
  1145. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
  1146. }
  1147. void rtl92ce_card_disable(struct ieee80211_hw *hw)
  1148. {
  1149. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1150. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1151. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1152. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1153. enum nl80211_iftype opmode;
  1154. mac->link_state = MAC80211_NOLINK;
  1155. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1156. _rtl92ce_set_media_status(hw, opmode);
  1157. if (rtlpci->driver_is_goingto_unload ||
  1158. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1159. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1160. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1161. _rtl92ce_poweroff_adapter(hw);
  1162. /* after power off we should do iqk again */
  1163. rtlpriv->phy.iqk_initialized = false;
  1164. }
  1165. void rtl92ce_interrupt_recognized(struct ieee80211_hw *hw,
  1166. u32 *p_inta, u32 *p_intb)
  1167. {
  1168. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1169. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1170. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1171. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1172. /*
  1173. * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
  1174. * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
  1175. */
  1176. }
  1177. void rtl92ce_set_beacon_related_registers(struct ieee80211_hw *hw)
  1178. {
  1179. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1180. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1181. u16 bcn_interval, atim_window;
  1182. bcn_interval = mac->beacon_interval;
  1183. atim_window = 2; /*FIX MERGE */
  1184. rtl92ce_disable_interrupt(hw);
  1185. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1186. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1187. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
  1188. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
  1189. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
  1190. rtl_write_byte(rtlpriv, 0x606, 0x30);
  1191. rtl92ce_enable_interrupt(hw);
  1192. }
  1193. void rtl92ce_set_beacon_interval(struct ieee80211_hw *hw)
  1194. {
  1195. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1196. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1197. u16 bcn_interval = mac->beacon_interval;
  1198. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
  1199. "beacon_interval:%d\n", bcn_interval);
  1200. rtl92ce_disable_interrupt(hw);
  1201. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1202. rtl92ce_enable_interrupt(hw);
  1203. }
  1204. void rtl92ce_update_interrupt_mask(struct ieee80211_hw *hw,
  1205. u32 add_msr, u32 rm_msr)
  1206. {
  1207. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1208. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1209. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
  1210. add_msr, rm_msr);
  1211. if (add_msr)
  1212. rtlpci->irq_mask[0] |= add_msr;
  1213. if (rm_msr)
  1214. rtlpci->irq_mask[0] &= (~rm_msr);
  1215. rtl92ce_disable_interrupt(hw);
  1216. rtl92ce_enable_interrupt(hw);
  1217. }
  1218. static void _rtl92ce_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  1219. bool autoload_fail,
  1220. u8 *hwinfo)
  1221. {
  1222. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1223. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1224. u8 rf_path, index, tempval;
  1225. u16 i;
  1226. for (rf_path = 0; rf_path < 2; rf_path++) {
  1227. for (i = 0; i < 3; i++) {
  1228. if (!autoload_fail) {
  1229. rtlefuse->
  1230. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1231. hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
  1232. rtlefuse->
  1233. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1234. hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 +
  1235. i];
  1236. } else {
  1237. rtlefuse->
  1238. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1239. EEPROM_DEFAULT_TXPOWERLEVEL;
  1240. rtlefuse->
  1241. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1242. EEPROM_DEFAULT_TXPOWERLEVEL;
  1243. }
  1244. }
  1245. }
  1246. for (i = 0; i < 3; i++) {
  1247. if (!autoload_fail)
  1248. tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
  1249. else
  1250. tempval = EEPROM_DEFAULT_HT40_2SDIFF;
  1251. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_A][i] =
  1252. (tempval & 0xf);
  1253. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_B][i] =
  1254. ((tempval & 0xf0) >> 4);
  1255. }
  1256. for (rf_path = 0; rf_path < 2; rf_path++)
  1257. for (i = 0; i < 3; i++)
  1258. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1259. "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
  1260. rf_path, i,
  1261. rtlefuse->
  1262. eeprom_chnlarea_txpwr_cck[rf_path][i]);
  1263. for (rf_path = 0; rf_path < 2; rf_path++)
  1264. for (i = 0; i < 3; i++)
  1265. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1266. "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  1267. rf_path, i,
  1268. rtlefuse->
  1269. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]);
  1270. for (rf_path = 0; rf_path < 2; rf_path++)
  1271. for (i = 0; i < 3; i++)
  1272. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1273. "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  1274. rf_path, i,
  1275. rtlefuse->
  1276. eprom_chnl_txpwr_ht40_2sdf[rf_path][i]);
  1277. for (rf_path = 0; rf_path < 2; rf_path++) {
  1278. for (i = 0; i < 14; i++) {
  1279. index = rtl92c_get_chnl_group((u8)i);
  1280. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1281. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index];
  1282. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1283. rtlefuse->
  1284. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index];
  1285. if ((rtlefuse->
  1286. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] -
  1287. rtlefuse->
  1288. eprom_chnl_txpwr_ht40_2sdf[rf_path][index])
  1289. > 0) {
  1290. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  1291. rtlefuse->
  1292. eeprom_chnlarea_txpwr_ht40_1s[rf_path]
  1293. [index] -
  1294. rtlefuse->
  1295. eprom_chnl_txpwr_ht40_2sdf[rf_path]
  1296. [index];
  1297. } else {
  1298. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
  1299. }
  1300. }
  1301. for (i = 0; i < 14; i++) {
  1302. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1303. "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
  1304. rf_path, i,
  1305. rtlefuse->txpwrlevel_cck[rf_path][i],
  1306. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  1307. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
  1308. }
  1309. }
  1310. for (i = 0; i < 3; i++) {
  1311. if (!autoload_fail) {
  1312. rtlefuse->eeprom_pwrlimit_ht40[i] =
  1313. hwinfo[EEPROM_TXPWR_GROUP + i];
  1314. rtlefuse->eeprom_pwrlimit_ht20[i] =
  1315. hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
  1316. } else {
  1317. rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
  1318. rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
  1319. }
  1320. }
  1321. for (rf_path = 0; rf_path < 2; rf_path++) {
  1322. for (i = 0; i < 14; i++) {
  1323. index = rtl92c_get_chnl_group((u8)i);
  1324. if (rf_path == RF90_PATH_A) {
  1325. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1326. (rtlefuse->eeprom_pwrlimit_ht20[index]
  1327. & 0xf);
  1328. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1329. (rtlefuse->eeprom_pwrlimit_ht40[index]
  1330. & 0xf);
  1331. } else if (rf_path == RF90_PATH_B) {
  1332. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1333. ((rtlefuse->eeprom_pwrlimit_ht20[index]
  1334. & 0xf0) >> 4);
  1335. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1336. ((rtlefuse->eeprom_pwrlimit_ht40[index]
  1337. & 0xf0) >> 4);
  1338. }
  1339. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1340. "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  1341. rf_path, i,
  1342. rtlefuse->pwrgroup_ht20[rf_path][i]);
  1343. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1344. "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  1345. rf_path, i,
  1346. rtlefuse->pwrgroup_ht40[rf_path][i]);
  1347. }
  1348. }
  1349. for (i = 0; i < 14; i++) {
  1350. index = rtl92c_get_chnl_group((u8)i);
  1351. if (!autoload_fail)
  1352. tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
  1353. else
  1354. tempval = EEPROM_DEFAULT_HT20_DIFF;
  1355. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  1356. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  1357. ((tempval >> 4) & 0xF);
  1358. if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
  1359. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
  1360. if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
  1361. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
  1362. index = rtl92c_get_chnl_group((u8)i);
  1363. if (!autoload_fail)
  1364. tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
  1365. else
  1366. tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
  1367. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
  1368. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  1369. ((tempval >> 4) & 0xF);
  1370. }
  1371. rtlefuse->legacy_ht_txpowerdiff =
  1372. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
  1373. for (i = 0; i < 14; i++)
  1374. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1375. "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
  1376. i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
  1377. for (i = 0; i < 14; i++)
  1378. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1379. "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
  1380. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
  1381. for (i = 0; i < 14; i++)
  1382. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1383. "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
  1384. i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
  1385. for (i = 0; i < 14; i++)
  1386. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1387. "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
  1388. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
  1389. if (!autoload_fail)
  1390. rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
  1391. else
  1392. rtlefuse->eeprom_regulatory = 0;
  1393. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1394. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  1395. if (!autoload_fail) {
  1396. rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
  1397. rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B];
  1398. } else {
  1399. rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
  1400. rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI;
  1401. }
  1402. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  1403. rtlefuse->eeprom_tssi[RF90_PATH_A],
  1404. rtlefuse->eeprom_tssi[RF90_PATH_B]);
  1405. if (!autoload_fail)
  1406. tempval = hwinfo[EEPROM_THERMAL_METER];
  1407. else
  1408. tempval = EEPROM_DEFAULT_THERMALMETER;
  1409. rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
  1410. if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
  1411. rtlefuse->apk_thermalmeterignore = true;
  1412. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  1413. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1414. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  1415. }
  1416. static void _rtl92ce_read_adapter_info(struct ieee80211_hw *hw)
  1417. {
  1418. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1419. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1420. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1421. u16 i, usvalue;
  1422. u8 hwinfo[HWSET_MAX_SIZE];
  1423. u16 eeprom_id;
  1424. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  1425. rtl_efuse_shadow_map_update(hw);
  1426. memcpy((void *)hwinfo,
  1427. (void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  1428. HWSET_MAX_SIZE);
  1429. } else if (rtlefuse->epromtype == EEPROM_93C46) {
  1430. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1431. "RTL819X Not boot from eeprom, check it !!");
  1432. }
  1433. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
  1434. hwinfo, HWSET_MAX_SIZE);
  1435. eeprom_id = *((u16 *)&hwinfo[0]);
  1436. if (eeprom_id != RTL8190_EEPROM_ID) {
  1437. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1438. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  1439. rtlefuse->autoload_failflag = true;
  1440. } else {
  1441. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1442. rtlefuse->autoload_failflag = false;
  1443. }
  1444. if (rtlefuse->autoload_failflag)
  1445. return;
  1446. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  1447. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  1448. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
  1449. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
  1450. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1451. "EEPROMId = 0x%4x\n", eeprom_id);
  1452. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1453. "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
  1454. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1455. "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
  1456. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1457. "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
  1458. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1459. "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
  1460. for (i = 0; i < 6; i += 2) {
  1461. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  1462. *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
  1463. }
  1464. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
  1465. _rtl92ce_read_txpower_info_from_hwpg(hw,
  1466. rtlefuse->autoload_failflag,
  1467. hwinfo);
  1468. rtl8192ce_read_bt_coexist_info_from_hwpg(hw,
  1469. rtlefuse->autoload_failflag,
  1470. hwinfo);
  1471. rtlefuse->eeprom_channelplan = *&hwinfo[EEPROM_CHANNELPLAN];
  1472. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  1473. rtlefuse->txpwr_fromeprom = true;
  1474. rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMER_ID];
  1475. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1476. "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
  1477. /* set channel paln to world wide 13 */
  1478. rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
  1479. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  1480. switch (rtlefuse->eeprom_oemid) {
  1481. case EEPROM_CID_DEFAULT:
  1482. if (rtlefuse->eeprom_did == 0x8176) {
  1483. if ((rtlefuse->eeprom_svid == 0x103C &&
  1484. rtlefuse->eeprom_smid == 0x1629))
  1485. rtlhal->oem_id = RT_CID_819X_HP;
  1486. else
  1487. rtlhal->oem_id = RT_CID_DEFAULT;
  1488. } else {
  1489. rtlhal->oem_id = RT_CID_DEFAULT;
  1490. }
  1491. break;
  1492. case EEPROM_CID_TOSHIBA:
  1493. rtlhal->oem_id = RT_CID_TOSHIBA;
  1494. break;
  1495. case EEPROM_CID_QMI:
  1496. rtlhal->oem_id = RT_CID_819X_QMI;
  1497. break;
  1498. case EEPROM_CID_WHQL:
  1499. default:
  1500. rtlhal->oem_id = RT_CID_DEFAULT;
  1501. break;
  1502. }
  1503. }
  1504. }
  1505. static void _rtl92ce_hal_customized_behavior(struct ieee80211_hw *hw)
  1506. {
  1507. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1508. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1509. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1510. switch (rtlhal->oem_id) {
  1511. case RT_CID_819X_HP:
  1512. pcipriv->ledctl.led_opendrain = true;
  1513. break;
  1514. case RT_CID_819X_LENOVO:
  1515. case RT_CID_DEFAULT:
  1516. case RT_CID_TOSHIBA:
  1517. case RT_CID_CCX:
  1518. case RT_CID_819X_ACER:
  1519. case RT_CID_WHQL:
  1520. default:
  1521. break;
  1522. }
  1523. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1524. "RT Customized ID: 0x%02X\n", rtlhal->oem_id);
  1525. }
  1526. void rtl92ce_read_eeprom_info(struct ieee80211_hw *hw)
  1527. {
  1528. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1529. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1530. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1531. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1532. u8 tmp_u1b;
  1533. rtlhal->version = _rtl92ce_read_chip_version(hw);
  1534. if (get_rf_type(rtlphy) == RF_1T1R)
  1535. rtlpriv->dm.rfpath_rxenable[0] = true;
  1536. else
  1537. rtlpriv->dm.rfpath_rxenable[0] =
  1538. rtlpriv->dm.rfpath_rxenable[1] = true;
  1539. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
  1540. rtlhal->version);
  1541. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  1542. if (tmp_u1b & BIT(4)) {
  1543. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
  1544. rtlefuse->epromtype = EEPROM_93C46;
  1545. } else {
  1546. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
  1547. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1548. }
  1549. if (tmp_u1b & BIT(5)) {
  1550. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1551. rtlefuse->autoload_failflag = false;
  1552. _rtl92ce_read_adapter_info(hw);
  1553. } else {
  1554. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
  1555. }
  1556. _rtl92ce_hal_customized_behavior(hw);
  1557. }
  1558. static void rtl92ce_update_hal_rate_table(struct ieee80211_hw *hw,
  1559. struct ieee80211_sta *sta)
  1560. {
  1561. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1562. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1563. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1564. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1565. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1566. u32 ratr_value;
  1567. u8 ratr_index = 0;
  1568. u8 nmode = mac->ht_enable;
  1569. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1570. u16 shortgi_rate;
  1571. u32 tmp_ratr_value;
  1572. u8 curtxbw_40mhz = mac->bw_40;
  1573. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1574. 1 : 0;
  1575. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1576. 1 : 0;
  1577. enum wireless_mode wirelessmode = mac->mode;
  1578. if (rtlhal->current_bandtype == BAND_ON_5G)
  1579. ratr_value = sta->supp_rates[1] << 4;
  1580. else
  1581. ratr_value = sta->supp_rates[0];
  1582. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1583. ratr_value = 0xfff;
  1584. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1585. sta->ht_cap.mcs.rx_mask[0] << 12);
  1586. switch (wirelessmode) {
  1587. case WIRELESS_MODE_B:
  1588. if (ratr_value & 0x0000000c)
  1589. ratr_value &= 0x0000000d;
  1590. else
  1591. ratr_value &= 0x0000000f;
  1592. break;
  1593. case WIRELESS_MODE_G:
  1594. ratr_value &= 0x00000FF5;
  1595. break;
  1596. case WIRELESS_MODE_N_24G:
  1597. case WIRELESS_MODE_N_5G:
  1598. nmode = 1;
  1599. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1600. ratr_value &= 0x0007F005;
  1601. } else {
  1602. u32 ratr_mask;
  1603. if (get_rf_type(rtlphy) == RF_1T2R ||
  1604. get_rf_type(rtlphy) == RF_1T1R)
  1605. ratr_mask = 0x000ff005;
  1606. else
  1607. ratr_mask = 0x0f0ff005;
  1608. ratr_value &= ratr_mask;
  1609. }
  1610. break;
  1611. default:
  1612. if (rtlphy->rf_type == RF_1T2R)
  1613. ratr_value &= 0x000ff0ff;
  1614. else
  1615. ratr_value &= 0x0f0ff0ff;
  1616. break;
  1617. }
  1618. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  1619. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) &&
  1620. (rtlpcipriv->bt_coexist.bt_cur_state) &&
  1621. (rtlpcipriv->bt_coexist.bt_ant_isolation) &&
  1622. ((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ||
  1623. (rtlpcipriv->bt_coexist.bt_service == BT_BUSY)))
  1624. ratr_value &= 0x0fffcfc0;
  1625. else
  1626. ratr_value &= 0x0FFFFFFF;
  1627. if (nmode && ((curtxbw_40mhz &&
  1628. curshortgi_40mhz) || (!curtxbw_40mhz &&
  1629. curshortgi_20mhz))) {
  1630. ratr_value |= 0x10000000;
  1631. tmp_ratr_value = (ratr_value >> 12);
  1632. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1633. if ((1 << shortgi_rate) & tmp_ratr_value)
  1634. break;
  1635. }
  1636. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1637. (shortgi_rate << 4) | (shortgi_rate);
  1638. }
  1639. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  1640. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
  1641. rtl_read_dword(rtlpriv, REG_ARFR0));
  1642. }
  1643. static void rtl92ce_update_hal_rate_mask(struct ieee80211_hw *hw,
  1644. struct ieee80211_sta *sta, u8 rssi_level)
  1645. {
  1646. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1647. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1648. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1649. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1650. struct rtl_sta_info *sta_entry = NULL;
  1651. u32 ratr_bitmap;
  1652. u8 ratr_index;
  1653. u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
  1654. u8 curshortgi_40mhz = curtxbw_40mhz &&
  1655. (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1656. 1 : 0;
  1657. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1658. 1 : 0;
  1659. enum wireless_mode wirelessmode = 0;
  1660. bool shortgi = false;
  1661. u8 rate_mask[5];
  1662. u8 macid = 0;
  1663. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1664. sta_entry = (struct rtl_sta_info *) sta->drv_priv;
  1665. wirelessmode = sta_entry->wireless_mode;
  1666. if (mac->opmode == NL80211_IFTYPE_STATION ||
  1667. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1668. curtxbw_40mhz = mac->bw_40;
  1669. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1670. mac->opmode == NL80211_IFTYPE_ADHOC)
  1671. macid = sta->aid + 1;
  1672. if (rtlhal->current_bandtype == BAND_ON_5G)
  1673. ratr_bitmap = sta->supp_rates[1] << 4;
  1674. else
  1675. ratr_bitmap = sta->supp_rates[0];
  1676. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1677. ratr_bitmap = 0xfff;
  1678. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1679. sta->ht_cap.mcs.rx_mask[0] << 12);
  1680. switch (wirelessmode) {
  1681. case WIRELESS_MODE_B:
  1682. ratr_index = RATR_INX_WIRELESS_B;
  1683. if (ratr_bitmap & 0x0000000c)
  1684. ratr_bitmap &= 0x0000000d;
  1685. else
  1686. ratr_bitmap &= 0x0000000f;
  1687. break;
  1688. case WIRELESS_MODE_G:
  1689. ratr_index = RATR_INX_WIRELESS_GB;
  1690. if (rssi_level == 1)
  1691. ratr_bitmap &= 0x00000f00;
  1692. else if (rssi_level == 2)
  1693. ratr_bitmap &= 0x00000ff0;
  1694. else
  1695. ratr_bitmap &= 0x00000ff5;
  1696. break;
  1697. case WIRELESS_MODE_A:
  1698. ratr_index = RATR_INX_WIRELESS_A;
  1699. ratr_bitmap &= 0x00000ff0;
  1700. break;
  1701. case WIRELESS_MODE_N_24G:
  1702. case WIRELESS_MODE_N_5G:
  1703. ratr_index = RATR_INX_WIRELESS_NGB;
  1704. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1705. if (rssi_level == 1)
  1706. ratr_bitmap &= 0x00070000;
  1707. else if (rssi_level == 2)
  1708. ratr_bitmap &= 0x0007f000;
  1709. else
  1710. ratr_bitmap &= 0x0007f005;
  1711. } else {
  1712. if (rtlphy->rf_type == RF_1T2R ||
  1713. rtlphy->rf_type == RF_1T1R) {
  1714. if (curtxbw_40mhz) {
  1715. if (rssi_level == 1)
  1716. ratr_bitmap &= 0x000f0000;
  1717. else if (rssi_level == 2)
  1718. ratr_bitmap &= 0x000ff000;
  1719. else
  1720. ratr_bitmap &= 0x000ff015;
  1721. } else {
  1722. if (rssi_level == 1)
  1723. ratr_bitmap &= 0x000f0000;
  1724. else if (rssi_level == 2)
  1725. ratr_bitmap &= 0x000ff000;
  1726. else
  1727. ratr_bitmap &= 0x000ff005;
  1728. }
  1729. } else {
  1730. if (curtxbw_40mhz) {
  1731. if (rssi_level == 1)
  1732. ratr_bitmap &= 0x0f0f0000;
  1733. else if (rssi_level == 2)
  1734. ratr_bitmap &= 0x0f0ff000;
  1735. else
  1736. ratr_bitmap &= 0x0f0ff015;
  1737. } else {
  1738. if (rssi_level == 1)
  1739. ratr_bitmap &= 0x0f0f0000;
  1740. else if (rssi_level == 2)
  1741. ratr_bitmap &= 0x0f0ff000;
  1742. else
  1743. ratr_bitmap &= 0x0f0ff005;
  1744. }
  1745. }
  1746. }
  1747. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  1748. (!curtxbw_40mhz && curshortgi_20mhz)) {
  1749. if (macid == 0)
  1750. shortgi = true;
  1751. else if (macid == 1)
  1752. shortgi = false;
  1753. }
  1754. break;
  1755. default:
  1756. ratr_index = RATR_INX_WIRELESS_NGB;
  1757. if (rtlphy->rf_type == RF_1T2R)
  1758. ratr_bitmap &= 0x000ff0ff;
  1759. else
  1760. ratr_bitmap &= 0x0f0ff0ff;
  1761. break;
  1762. }
  1763. sta_entry->ratr_index = ratr_index;
  1764. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1765. "ratr_bitmap :%x\n", ratr_bitmap);
  1766. *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
  1767. (ratr_index << 28);
  1768. rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
  1769. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1770. "Rate_index:%x, ratr_val:%x, %5phC\n",
  1771. ratr_index, ratr_bitmap, rate_mask);
  1772. rtl92c_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask);
  1773. if (macid != 0)
  1774. sta_entry->ratr_index = ratr_index;
  1775. }
  1776. void rtl92ce_update_hal_rate_tbl(struct ieee80211_hw *hw,
  1777. struct ieee80211_sta *sta, u8 rssi_level)
  1778. {
  1779. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1780. if (rtlpriv->dm.useramask)
  1781. rtl92ce_update_hal_rate_mask(hw, sta, rssi_level);
  1782. else
  1783. rtl92ce_update_hal_rate_table(hw, sta);
  1784. }
  1785. void rtl92ce_update_channel_access_setting(struct ieee80211_hw *hw)
  1786. {
  1787. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1788. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1789. u16 sifs_timer;
  1790. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  1791. &mac->slot_time);
  1792. if (!mac->ht_enable)
  1793. sifs_timer = 0x0a0a;
  1794. else
  1795. sifs_timer = 0x1010;
  1796. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  1797. }
  1798. bool rtl92ce_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  1799. {
  1800. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1801. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1802. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1803. enum rf_pwrstate e_rfpowerstate_toset;
  1804. u8 u1tmp;
  1805. bool actuallyset = false;
  1806. unsigned long flag;
  1807. if (rtlpci->being_init_adapter)
  1808. return false;
  1809. if (ppsc->swrf_processing)
  1810. return false;
  1811. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1812. if (ppsc->rfchange_inprogress) {
  1813. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1814. return false;
  1815. } else {
  1816. ppsc->rfchange_inprogress = true;
  1817. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1818. }
  1819. rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
  1820. REG_MAC_PINMUX_CFG)&~(BIT(3)));
  1821. u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
  1822. e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
  1823. if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
  1824. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1825. "GPIOChangeRF - HW Radio ON, RF ON\n");
  1826. e_rfpowerstate_toset = ERFON;
  1827. ppsc->hwradiooff = false;
  1828. actuallyset = true;
  1829. } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
  1830. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1831. "GPIOChangeRF - HW Radio OFF, RF OFF\n");
  1832. e_rfpowerstate_toset = ERFOFF;
  1833. ppsc->hwradiooff = true;
  1834. actuallyset = true;
  1835. }
  1836. if (actuallyset) {
  1837. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1838. ppsc->rfchange_inprogress = false;
  1839. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1840. } else {
  1841. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
  1842. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1843. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1844. ppsc->rfchange_inprogress = false;
  1845. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1846. }
  1847. *valid = 1;
  1848. return !ppsc->hwradiooff;
  1849. }
  1850. void rtl92ce_set_key(struct ieee80211_hw *hw, u32 key_index,
  1851. u8 *p_macaddr, bool is_group, u8 enc_algo,
  1852. bool is_wepkey, bool clear_all)
  1853. {
  1854. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1855. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1856. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1857. u8 *macaddr = p_macaddr;
  1858. u32 entry_id = 0;
  1859. bool is_pairwise = false;
  1860. static u8 cam_const_addr[4][6] = {
  1861. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  1862. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  1863. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  1864. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  1865. };
  1866. static u8 cam_const_broad[] = {
  1867. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  1868. };
  1869. if (clear_all) {
  1870. u8 idx = 0;
  1871. u8 cam_offset = 0;
  1872. u8 clear_number = 5;
  1873. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
  1874. for (idx = 0; idx < clear_number; idx++) {
  1875. rtl_cam_mark_invalid(hw, cam_offset + idx);
  1876. rtl_cam_empty_entry(hw, cam_offset + idx);
  1877. if (idx < 5) {
  1878. memset(rtlpriv->sec.key_buf[idx], 0,
  1879. MAX_KEY_LEN);
  1880. rtlpriv->sec.key_len[idx] = 0;
  1881. }
  1882. }
  1883. } else {
  1884. switch (enc_algo) {
  1885. case WEP40_ENCRYPTION:
  1886. enc_algo = CAM_WEP40;
  1887. break;
  1888. case WEP104_ENCRYPTION:
  1889. enc_algo = CAM_WEP104;
  1890. break;
  1891. case TKIP_ENCRYPTION:
  1892. enc_algo = CAM_TKIP;
  1893. break;
  1894. case AESCCMP_ENCRYPTION:
  1895. enc_algo = CAM_AES;
  1896. break;
  1897. default:
  1898. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1899. "switch case not processed\n");
  1900. enc_algo = CAM_TKIP;
  1901. break;
  1902. }
  1903. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  1904. macaddr = cam_const_addr[key_index];
  1905. entry_id = key_index;
  1906. } else {
  1907. if (is_group) {
  1908. macaddr = cam_const_broad;
  1909. entry_id = key_index;
  1910. } else {
  1911. if (mac->opmode == NL80211_IFTYPE_AP ||
  1912. mac->opmode == NL80211_IFTYPE_MESH_POINT) {
  1913. entry_id = rtl_cam_get_free_entry(hw,
  1914. p_macaddr);
  1915. if (entry_id >= TOTAL_CAM_ENTRY) {
  1916. RT_TRACE(rtlpriv, COMP_SEC,
  1917. DBG_EMERG,
  1918. "Can not find free hw security cam entry\n");
  1919. return;
  1920. }
  1921. } else {
  1922. entry_id = CAM_PAIRWISE_KEY_POSITION;
  1923. }
  1924. key_index = PAIRWISE_KEYIDX;
  1925. is_pairwise = true;
  1926. }
  1927. }
  1928. if (rtlpriv->sec.key_len[key_index] == 0) {
  1929. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1930. "delete one entry, entry_id is %d\n",
  1931. entry_id);
  1932. if (mac->opmode == NL80211_IFTYPE_AP ||
  1933. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1934. rtl_cam_del_entry(hw, p_macaddr);
  1935. rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
  1936. } else {
  1937. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1938. "The insert KEY length is %d\n",
  1939. rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
  1940. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1941. "The insert KEY is %x %x\n",
  1942. rtlpriv->sec.key_buf[0][0],
  1943. rtlpriv->sec.key_buf[0][1]);
  1944. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1945. "add one entry\n");
  1946. if (is_pairwise) {
  1947. RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
  1948. "Pairwise Key content",
  1949. rtlpriv->sec.pairwise_key,
  1950. rtlpriv->sec.
  1951. key_len[PAIRWISE_KEYIDX]);
  1952. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1953. "set Pairwise key\n");
  1954. rtl_cam_add_one_entry(hw, macaddr, key_index,
  1955. entry_id, enc_algo,
  1956. CAM_CONFIG_NO_USEDK,
  1957. rtlpriv->sec.
  1958. key_buf[key_index]);
  1959. } else {
  1960. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1961. "set group key\n");
  1962. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  1963. rtl_cam_add_one_entry(hw,
  1964. rtlefuse->dev_addr,
  1965. PAIRWISE_KEYIDX,
  1966. CAM_PAIRWISE_KEY_POSITION,
  1967. enc_algo,
  1968. CAM_CONFIG_NO_USEDK,
  1969. rtlpriv->sec.key_buf
  1970. [entry_id]);
  1971. }
  1972. rtl_cam_add_one_entry(hw, macaddr, key_index,
  1973. entry_id, enc_algo,
  1974. CAM_CONFIG_NO_USEDK,
  1975. rtlpriv->sec.key_buf[entry_id]);
  1976. }
  1977. }
  1978. }
  1979. }
  1980. static void rtl8192ce_bt_var_init(struct ieee80211_hw *hw)
  1981. {
  1982. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1983. rtlpcipriv->bt_coexist.bt_coexistence =
  1984. rtlpcipriv->bt_coexist.eeprom_bt_coexist;
  1985. rtlpcipriv->bt_coexist.bt_ant_num =
  1986. rtlpcipriv->bt_coexist.eeprom_bt_ant_num;
  1987. rtlpcipriv->bt_coexist.bt_coexist_type =
  1988. rtlpcipriv->bt_coexist.eeprom_bt_type;
  1989. if (rtlpcipriv->bt_coexist.reg_bt_iso == 2)
  1990. rtlpcipriv->bt_coexist.bt_ant_isolation =
  1991. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol;
  1992. else
  1993. rtlpcipriv->bt_coexist.bt_ant_isolation =
  1994. rtlpcipriv->bt_coexist.reg_bt_iso;
  1995. rtlpcipriv->bt_coexist.bt_radio_shared_type =
  1996. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared;
  1997. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  1998. if (rtlpcipriv->bt_coexist.reg_bt_sco == 1)
  1999. rtlpcipriv->bt_coexist.bt_service = BT_OTHER_ACTION;
  2000. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 2)
  2001. rtlpcipriv->bt_coexist.bt_service = BT_SCO;
  2002. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 4)
  2003. rtlpcipriv->bt_coexist.bt_service = BT_BUSY;
  2004. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 5)
  2005. rtlpcipriv->bt_coexist.bt_service = BT_OTHERBUSY;
  2006. else
  2007. rtlpcipriv->bt_coexist.bt_service = BT_IDLE;
  2008. rtlpcipriv->bt_coexist.bt_edca_ul = 0;
  2009. rtlpcipriv->bt_coexist.bt_edca_dl = 0;
  2010. rtlpcipriv->bt_coexist.bt_rssi_state = 0xff;
  2011. }
  2012. }
  2013. void rtl8192ce_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
  2014. bool auto_load_fail, u8 *hwinfo)
  2015. {
  2016. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  2017. u8 val;
  2018. if (!auto_load_fail) {
  2019. rtlpcipriv->bt_coexist.eeprom_bt_coexist =
  2020. ((hwinfo[RF_OPTION1] & 0xe0) >> 5);
  2021. val = hwinfo[RF_OPTION4];
  2022. rtlpcipriv->bt_coexist.eeprom_bt_type = ((val & 0xe) >> 1);
  2023. rtlpcipriv->bt_coexist.eeprom_bt_ant_num = (val & 0x1);
  2024. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = ((val & 0x10) >> 4);
  2025. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared =
  2026. ((val & 0x20) >> 5);
  2027. } else {
  2028. rtlpcipriv->bt_coexist.eeprom_bt_coexist = 0;
  2029. rtlpcipriv->bt_coexist.eeprom_bt_type = BT_2WIRE;
  2030. rtlpcipriv->bt_coexist.eeprom_bt_ant_num = ANT_X2;
  2031. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = 0;
  2032. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared = BT_RADIO_SHARED;
  2033. }
  2034. rtl8192ce_bt_var_init(hw);
  2035. }
  2036. void rtl8192ce_bt_reg_init(struct ieee80211_hw *hw)
  2037. {
  2038. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  2039. /* 0:Low, 1:High, 2:From Efuse. */
  2040. rtlpcipriv->bt_coexist.reg_bt_iso = 2;
  2041. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
  2042. rtlpcipriv->bt_coexist.reg_bt_sco = 3;
  2043. /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
  2044. rtlpcipriv->bt_coexist.reg_bt_sco = 0;
  2045. }
  2046. void rtl8192ce_bt_hw_init(struct ieee80211_hw *hw)
  2047. {
  2048. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2049. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2050. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  2051. u8 u1_tmp;
  2052. if (rtlpcipriv->bt_coexist.bt_coexistence &&
  2053. ((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) ||
  2054. rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8)) {
  2055. if (rtlpcipriv->bt_coexist.bt_ant_isolation)
  2056. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0);
  2057. u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) &
  2058. BIT_OFFSET_LEN_MASK_32(0, 1);
  2059. u1_tmp = u1_tmp |
  2060. ((rtlpcipriv->bt_coexist.bt_ant_isolation == 1) ?
  2061. 0 : BIT_OFFSET_LEN_MASK_32(1, 1)) |
  2062. ((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ?
  2063. 0 : BIT_OFFSET_LEN_MASK_32(2, 1));
  2064. rtl_write_byte(rtlpriv, 0x4fd, u1_tmp);
  2065. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa);
  2066. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040);
  2067. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010);
  2068. /* Config to 1T1R. */
  2069. if (rtlphy->rf_type == RF_1T1R) {
  2070. u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE);
  2071. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2072. rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp);
  2073. u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE);
  2074. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2075. rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp);
  2076. }
  2077. }
  2078. }
  2079. void rtl92ce_suspend(struct ieee80211_hw *hw)
  2080. {
  2081. }
  2082. void rtl92ce_resume(struct ieee80211_hw *hw)
  2083. {
  2084. }