phy.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2013 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * The full GNU General Public License is included in this distribution in the
  15. * file called LICENSE.
  16. *
  17. * Contact Information:
  18. * wlanfae <wlanfae@realtek.com>
  19. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  20. * Hsinchu 300, Taiwan.
  21. *
  22. * Larry Finger <Larry.Finger@lwfinger.net>
  23. *
  24. *****************************************************************************/
  25. #include "../wifi.h"
  26. #include "../pci.h"
  27. #include "../ps.h"
  28. #include "reg.h"
  29. #include "def.h"
  30. #include "phy.h"
  31. #include "rf.h"
  32. #include "dm.h"
  33. #include "table.h"
  34. static u32 _rtl88e_phy_rf_serial_read(struct ieee80211_hw *hw,
  35. enum radio_path rfpath, u32 offset);
  36. static void _rtl88e_phy_rf_serial_write(struct ieee80211_hw *hw,
  37. enum radio_path rfpath, u32 offset,
  38. u32 data);
  39. static u32 _rtl88e_phy_calculate_bit_shift(u32 bitmask);
  40. static bool _rtl88e_phy_bb8188e_config_parafile(struct ieee80211_hw *hw);
  41. static bool _rtl88e_phy_config_mac_with_headerfile(struct ieee80211_hw *hw);
  42. static bool phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
  43. u8 configtype);
  44. static bool phy_config_bb_with_pghdr(struct ieee80211_hw *hw,
  45. u8 configtype);
  46. static void _rtl88e_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw);
  47. static bool _rtl88e_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
  48. u32 cmdtableidx, u32 cmdtablesz,
  49. enum swchnlcmd_id cmdid, u32 para1,
  50. u32 para2, u32 msdelay);
  51. static bool _rtl88e_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
  52. u8 channel, u8 *stage, u8 *step,
  53. u32 *delay);
  54. static long _rtl88e_phy_txpwr_idx_to_dbm(struct ieee80211_hw *hw,
  55. enum wireless_mode wirelessmode,
  56. u8 txpwridx);
  57. static void rtl88ee_phy_set_rf_on(struct ieee80211_hw *hw);
  58. static void rtl88e_phy_set_io(struct ieee80211_hw *hw);
  59. u32 rtl88e_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
  60. {
  61. struct rtl_priv *rtlpriv = rtl_priv(hw);
  62. u32 returnvalue, originalvalue, bitshift;
  63. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  64. "regaddr(%#x), bitmask(%#x)\n", regaddr, bitmask);
  65. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  66. bitshift = _rtl88e_phy_calculate_bit_shift(bitmask);
  67. returnvalue = (originalvalue & bitmask) >> bitshift;
  68. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  69. "BBR MASK=0x%x Addr[0x%x]=0x%x\n", bitmask,
  70. regaddr, originalvalue);
  71. return returnvalue;
  72. }
  73. void rtl88e_phy_set_bb_reg(struct ieee80211_hw *hw,
  74. u32 regaddr, u32 bitmask, u32 data)
  75. {
  76. struct rtl_priv *rtlpriv = rtl_priv(hw);
  77. u32 originalvalue, bitshift;
  78. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  79. "regaddr(%#x), bitmask(%#x), data(%#x)\n",
  80. regaddr, bitmask, data);
  81. if (bitmask != MASKDWORD) {
  82. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  83. bitshift = _rtl88e_phy_calculate_bit_shift(bitmask);
  84. data = ((originalvalue & (~bitmask)) | (data << bitshift));
  85. }
  86. rtl_write_dword(rtlpriv, regaddr, data);
  87. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  88. "regaddr(%#x), bitmask(%#x), data(%#x)\n",
  89. regaddr, bitmask, data);
  90. }
  91. u32 rtl88e_phy_query_rf_reg(struct ieee80211_hw *hw,
  92. enum radio_path rfpath, u32 regaddr, u32 bitmask)
  93. {
  94. struct rtl_priv *rtlpriv = rtl_priv(hw);
  95. u32 original_value, readback_value, bitshift;
  96. unsigned long flags;
  97. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  98. "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
  99. regaddr, rfpath, bitmask);
  100. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  101. original_value = _rtl88e_phy_rf_serial_read(hw, rfpath, regaddr);
  102. bitshift = _rtl88e_phy_calculate_bit_shift(bitmask);
  103. readback_value = (original_value & bitmask) >> bitshift;
  104. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  105. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  106. "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
  107. regaddr, rfpath, bitmask, original_value);
  108. return readback_value;
  109. }
  110. void rtl88e_phy_set_rf_reg(struct ieee80211_hw *hw,
  111. enum radio_path rfpath,
  112. u32 regaddr, u32 bitmask, u32 data)
  113. {
  114. struct rtl_priv *rtlpriv = rtl_priv(hw);
  115. u32 original_value, bitshift;
  116. unsigned long flags;
  117. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  118. "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
  119. regaddr, bitmask, data, rfpath);
  120. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  121. if (bitmask != RFREG_OFFSET_MASK) {
  122. original_value = _rtl88e_phy_rf_serial_read(hw,
  123. rfpath,
  124. regaddr);
  125. bitshift = _rtl88e_phy_calculate_bit_shift(bitmask);
  126. data =
  127. ((original_value & (~bitmask)) |
  128. (data << bitshift));
  129. }
  130. _rtl88e_phy_rf_serial_write(hw, rfpath, regaddr, data);
  131. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  132. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  133. "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
  134. regaddr, bitmask, data, rfpath);
  135. }
  136. static u32 _rtl88e_phy_rf_serial_read(struct ieee80211_hw *hw,
  137. enum radio_path rfpath, u32 offset)
  138. {
  139. struct rtl_priv *rtlpriv = rtl_priv(hw);
  140. struct rtl_phy *rtlphy = &rtlpriv->phy;
  141. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  142. u32 newoffset;
  143. u32 tmplong, tmplong2;
  144. u8 rfpi_enable = 0;
  145. u32 retvalue;
  146. offset &= 0xff;
  147. newoffset = offset;
  148. if (RT_CANNOT_IO(hw)) {
  149. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "return all one\n");
  150. return 0xFFFFFFFF;
  151. }
  152. tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD);
  153. if (rfpath == RF90_PATH_A)
  154. tmplong2 = tmplong;
  155. else
  156. tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD);
  157. tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) |
  158. (newoffset << 23) | BLSSIREADEDGE;
  159. rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
  160. tmplong & (~BLSSIREADEDGE));
  161. mdelay(1);
  162. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD, tmplong2);
  163. mdelay(2);
  164. if (rfpath == RF90_PATH_A)
  165. rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
  166. BIT(8));
  167. else if (rfpath == RF90_PATH_B)
  168. rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
  169. BIT(8));
  170. if (rfpi_enable)
  171. retvalue = rtl_get_bbreg(hw, pphyreg->rf_rbpi,
  172. BLSSIREADBACKDATA);
  173. else
  174. retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb,
  175. BLSSIREADBACKDATA);
  176. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  177. "RFR-%d Addr[0x%x]=0x%x\n",
  178. rfpath, pphyreg->rf_rb, retvalue);
  179. return retvalue;
  180. }
  181. static void _rtl88e_phy_rf_serial_write(struct ieee80211_hw *hw,
  182. enum radio_path rfpath, u32 offset,
  183. u32 data)
  184. {
  185. u32 data_and_addr;
  186. u32 newoffset;
  187. struct rtl_priv *rtlpriv = rtl_priv(hw);
  188. struct rtl_phy *rtlphy = &rtlpriv->phy;
  189. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  190. if (RT_CANNOT_IO(hw)) {
  191. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "stop\n");
  192. return;
  193. }
  194. offset &= 0xff;
  195. newoffset = offset;
  196. data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
  197. rtl_set_bbreg(hw, pphyreg->rf3wire_offset, MASKDWORD, data_and_addr);
  198. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  199. "RFW-%d Addr[0x%x]=0x%x\n",
  200. rfpath, pphyreg->rf3wire_offset, data_and_addr);
  201. }
  202. static u32 _rtl88e_phy_calculate_bit_shift(u32 bitmask)
  203. {
  204. u32 i;
  205. for (i = 0; i <= 31; i++) {
  206. if (((bitmask >> i) & 0x1) == 1)
  207. break;
  208. }
  209. return i;
  210. }
  211. bool rtl88e_phy_mac_config(struct ieee80211_hw *hw)
  212. {
  213. struct rtl_priv *rtlpriv = rtl_priv(hw);
  214. bool rtstatus = _rtl88e_phy_config_mac_with_headerfile(hw);
  215. rtl_write_byte(rtlpriv, 0x04CA, 0x0B);
  216. return rtstatus;
  217. }
  218. bool rtl88e_phy_bb_config(struct ieee80211_hw *hw)
  219. {
  220. bool rtstatus = true;
  221. struct rtl_priv *rtlpriv = rtl_priv(hw);
  222. u16 regval;
  223. u8 b_reg_hwparafile = 1;
  224. u32 tmp;
  225. _rtl88e_phy_init_bb_rf_register_definition(hw);
  226. regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  227. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
  228. regval | BIT(13) | BIT(0) | BIT(1));
  229. rtl_write_byte(rtlpriv, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB);
  230. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN,
  231. FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE |
  232. FEN_BB_GLB_RSTN | FEN_BBRSTB);
  233. tmp = rtl_read_dword(rtlpriv, 0x4c);
  234. rtl_write_dword(rtlpriv, 0x4c, tmp | BIT(23));
  235. if (b_reg_hwparafile == 1)
  236. rtstatus = _rtl88e_phy_bb8188e_config_parafile(hw);
  237. return rtstatus;
  238. }
  239. bool rtl88e_phy_rf_config(struct ieee80211_hw *hw)
  240. {
  241. return rtl88e_phy_rf6052_config(hw);
  242. }
  243. static bool _rtl88e_check_condition(struct ieee80211_hw *hw,
  244. const u32 condition)
  245. {
  246. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  247. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  248. u32 _board = rtlefuse->board_type; /*need efuse define*/
  249. u32 _interface = rtlhal->interface;
  250. u32 _platform = 0x08;/*SupportPlatform */
  251. u32 cond = condition;
  252. if (condition == 0xCDCDCDCD)
  253. return true;
  254. cond = condition & 0xFF;
  255. if ((_board & cond) == 0 && cond != 0x1F)
  256. return false;
  257. cond = condition & 0xFF00;
  258. cond = cond >> 8;
  259. if ((_interface & cond) == 0 && cond != 0x07)
  260. return false;
  261. cond = condition & 0xFF0000;
  262. cond = cond >> 16;
  263. if ((_platform & cond) == 0 && cond != 0x0F)
  264. return false;
  265. return true;
  266. }
  267. static void _rtl8188e_config_rf_reg(struct ieee80211_hw *hw, u32 addr,
  268. u32 data, enum radio_path rfpath,
  269. u32 regaddr)
  270. {
  271. if (addr == 0xffe) {
  272. mdelay(50);
  273. } else if (addr == 0xfd) {
  274. mdelay(5);
  275. } else if (addr == 0xfc) {
  276. mdelay(1);
  277. } else if (addr == 0xfb) {
  278. udelay(50);
  279. } else if (addr == 0xfa) {
  280. udelay(5);
  281. } else if (addr == 0xf9) {
  282. udelay(1);
  283. } else {
  284. rtl_set_rfreg(hw, rfpath, regaddr,
  285. RFREG_OFFSET_MASK,
  286. data);
  287. udelay(1);
  288. }
  289. }
  290. static void _rtl8188e_config_rf_radio_a(struct ieee80211_hw *hw,
  291. u32 addr, u32 data)
  292. {
  293. u32 content = 0x1000; /*RF Content: radio_a_txt*/
  294. u32 maskforphyset = (u32)(content & 0xE000);
  295. _rtl8188e_config_rf_reg(hw, addr, data, RF90_PATH_A,
  296. addr | maskforphyset);
  297. }
  298. static void _rtl8188e_config_bb_reg(struct ieee80211_hw *hw,
  299. u32 addr, u32 data)
  300. {
  301. if (addr == 0xfe) {
  302. mdelay(50);
  303. } else if (addr == 0xfd) {
  304. mdelay(5);
  305. } else if (addr == 0xfc) {
  306. mdelay(1);
  307. } else if (addr == 0xfb) {
  308. udelay(50);
  309. } else if (addr == 0xfa) {
  310. udelay(5);
  311. } else if (addr == 0xf9) {
  312. udelay(1);
  313. } else {
  314. rtl_set_bbreg(hw, addr, MASKDWORD, data);
  315. udelay(1);
  316. }
  317. }
  318. static bool _rtl88e_phy_bb8188e_config_parafile(struct ieee80211_hw *hw)
  319. {
  320. struct rtl_priv *rtlpriv = rtl_priv(hw);
  321. struct rtl_phy *rtlphy = &rtlpriv->phy;
  322. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  323. bool rtstatus;
  324. rtstatus = phy_config_bb_with_headerfile(hw, BASEBAND_CONFIG_PHY_REG);
  325. if (!rtstatus) {
  326. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Write BB Reg Fail!!");
  327. return false;
  328. }
  329. if (!rtlefuse->autoload_failflag) {
  330. rtlphy->pwrgroup_cnt = 0;
  331. rtstatus =
  332. phy_config_bb_with_pghdr(hw, BASEBAND_CONFIG_PHY_REG);
  333. }
  334. if (!rtstatus) {
  335. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "BB_PG Reg Fail!!");
  336. return false;
  337. }
  338. rtstatus =
  339. phy_config_bb_with_headerfile(hw, BASEBAND_CONFIG_AGC_TAB);
  340. if (!rtstatus) {
  341. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "AGC Table Fail\n");
  342. return false;
  343. }
  344. rtlphy->cck_high_power =
  345. (bool)(rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, 0x200));
  346. return true;
  347. }
  348. static bool _rtl88e_phy_config_mac_with_headerfile(struct ieee80211_hw *hw)
  349. {
  350. struct rtl_priv *rtlpriv = rtl_priv(hw);
  351. u32 i;
  352. u32 arraylength;
  353. u32 *ptrarray;
  354. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl8188EMACPHY_Array\n");
  355. arraylength = RTL8188EEMAC_1T_ARRAYLEN;
  356. ptrarray = RTL8188EEMAC_1T_ARRAY;
  357. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  358. "Img:RTL8188EEMAC_1T_ARRAY LEN %d\n", arraylength);
  359. for (i = 0; i < arraylength; i = i + 2)
  360. rtl_write_byte(rtlpriv, ptrarray[i], (u8)ptrarray[i + 1]);
  361. return true;
  362. }
  363. #define READ_NEXT_PAIR(v1, v2, i) \
  364. do { \
  365. i += 2; v1 = array_table[i]; \
  366. v2 = array_table[i+1]; \
  367. } while (0)
  368. static void handle_branch1(struct ieee80211_hw *hw, u16 arraylen,
  369. u32 *array_table)
  370. {
  371. u32 v1;
  372. u32 v2;
  373. int i;
  374. for (i = 0; i < arraylen; i = i + 2) {
  375. v1 = array_table[i];
  376. v2 = array_table[i+1];
  377. if (v1 < 0xcdcdcdcd) {
  378. _rtl8188e_config_bb_reg(hw, v1, v2);
  379. } else { /*This line is the start line of branch.*/
  380. /* to protect READ_NEXT_PAIR not overrun */
  381. if (i >= arraylen - 2)
  382. break;
  383. if (!_rtl88e_check_condition(hw, array_table[i])) {
  384. /*Discard the following (offset, data) pairs*/
  385. READ_NEXT_PAIR(v1, v2, i);
  386. while (v2 != 0xDEAD &&
  387. v2 != 0xCDEF &&
  388. v2 != 0xCDCD && i < arraylen - 2)
  389. READ_NEXT_PAIR(v1, v2, i);
  390. i -= 2; /* prevent from for-loop += 2*/
  391. } else { /* Configure matched pairs and skip
  392. * to end of if-else.
  393. */
  394. READ_NEXT_PAIR(v1, v2, i);
  395. while (v2 != 0xDEAD &&
  396. v2 != 0xCDEF &&
  397. v2 != 0xCDCD && i < arraylen - 2)
  398. _rtl8188e_config_bb_reg(hw, v1, v2);
  399. READ_NEXT_PAIR(v1, v2, i);
  400. while (v2 != 0xDEAD && i < arraylen - 2)
  401. READ_NEXT_PAIR(v1, v2, i);
  402. }
  403. }
  404. }
  405. }
  406. static void handle_branch2(struct ieee80211_hw *hw, u16 arraylen,
  407. u32 *array_table)
  408. {
  409. struct rtl_priv *rtlpriv = rtl_priv(hw);
  410. u32 v1;
  411. u32 v2;
  412. int i;
  413. for (i = 0; i < arraylen; i = i + 2) {
  414. v1 = array_table[i];
  415. v2 = array_table[i+1];
  416. if (v1 < 0xCDCDCDCD) {
  417. rtl_set_bbreg(hw, array_table[i], MASKDWORD,
  418. array_table[i + 1]);
  419. udelay(1);
  420. continue;
  421. } else { /*This line is the start line of branch.*/
  422. /* to protect READ_NEXT_PAIR not overrun */
  423. if (i >= arraylen - 2)
  424. break;
  425. if (!_rtl88e_check_condition(hw, array_table[i])) {
  426. /*Discard the following (offset, data) pairs*/
  427. READ_NEXT_PAIR(v1, v2, i);
  428. while (v2 != 0xDEAD &&
  429. v2 != 0xCDEF &&
  430. v2 != 0xCDCD && i < arraylen - 2)
  431. READ_NEXT_PAIR(v1, v2, i);
  432. i -= 2; /* prevent from for-loop += 2*/
  433. } else { /* Configure matched pairs and skip
  434. * to end of if-else.
  435. */
  436. READ_NEXT_PAIR(v1, v2, i);
  437. while (v2 != 0xDEAD &&
  438. v2 != 0xCDEF &&
  439. v2 != 0xCDCD && i < arraylen - 2) {
  440. rtl_set_bbreg(hw, array_table[i],
  441. MASKDWORD,
  442. array_table[i + 1]);
  443. udelay(1);
  444. READ_NEXT_PAIR(v1, v2, i);
  445. }
  446. while (v2 != 0xDEAD && i < arraylen - 2)
  447. READ_NEXT_PAIR(v1, v2, i);
  448. }
  449. }
  450. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  451. "The agctab_array_table[0] is %x Rtl818EEPHY_REGArray[1] is %x\n",
  452. array_table[i], array_table[i + 1]);
  453. }
  454. }
  455. static bool phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
  456. u8 configtype)
  457. {
  458. u32 *array_table;
  459. u16 arraylen;
  460. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  461. arraylen = RTL8188EEPHY_REG_1TARRAYLEN;
  462. array_table = RTL8188EEPHY_REG_1TARRAY;
  463. handle_branch1(hw, arraylen, array_table);
  464. } else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
  465. arraylen = RTL8188EEAGCTAB_1TARRAYLEN;
  466. array_table = RTL8188EEAGCTAB_1TARRAY;
  467. handle_branch2(hw, arraylen, array_table);
  468. }
  469. return true;
  470. }
  471. static void store_pwrindex_rate_offset(struct ieee80211_hw *hw,
  472. u32 regaddr, u32 bitmask,
  473. u32 data)
  474. {
  475. struct rtl_priv *rtlpriv = rtl_priv(hw);
  476. struct rtl_phy *rtlphy = &rtlpriv->phy;
  477. int count = rtlphy->pwrgroup_cnt;
  478. if (regaddr == RTXAGC_A_RATE18_06) {
  479. rtlphy->mcs_txpwrlevel_origoffset[count][0] = data;
  480. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  481. "MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n",
  482. count,
  483. rtlphy->mcs_txpwrlevel_origoffset[count][0]);
  484. }
  485. if (regaddr == RTXAGC_A_RATE54_24) {
  486. rtlphy->mcs_txpwrlevel_origoffset[count][1] = data;
  487. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  488. "MCSTxPowerLevelOriginalOffset[%d][1] = 0x%x\n",
  489. count,
  490. rtlphy->mcs_txpwrlevel_origoffset[count][1]);
  491. }
  492. if (regaddr == RTXAGC_A_CCK1_MCS32) {
  493. rtlphy->mcs_txpwrlevel_origoffset[count][6] = data;
  494. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  495. "MCSTxPowerLevelOriginalOffset[%d][6] = 0x%x\n",
  496. count,
  497. rtlphy->mcs_txpwrlevel_origoffset[count][6]);
  498. }
  499. if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00) {
  500. rtlphy->mcs_txpwrlevel_origoffset[count][7] = data;
  501. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  502. "MCSTxPowerLevelOriginalOffset[%d][7] = 0x%x\n",
  503. count,
  504. rtlphy->mcs_txpwrlevel_origoffset[count][7]);
  505. }
  506. if (regaddr == RTXAGC_A_MCS03_MCS00) {
  507. rtlphy->mcs_txpwrlevel_origoffset[count][2] = data;
  508. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  509. "MCSTxPowerLevelOriginalOffset[%d][2] = 0x%x\n",
  510. count,
  511. rtlphy->mcs_txpwrlevel_origoffset[count][2]);
  512. }
  513. if (regaddr == RTXAGC_A_MCS07_MCS04) {
  514. rtlphy->mcs_txpwrlevel_origoffset[count][3] = data;
  515. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  516. "MCSTxPowerLevelOriginalOffset[%d][3] = 0x%x\n",
  517. count,
  518. rtlphy->mcs_txpwrlevel_origoffset[count][3]);
  519. }
  520. if (regaddr == RTXAGC_A_MCS11_MCS08) {
  521. rtlphy->mcs_txpwrlevel_origoffset[count][4] = data;
  522. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  523. "MCSTxPowerLevelOriginalOffset[%d][4] = 0x%x\n",
  524. count,
  525. rtlphy->mcs_txpwrlevel_origoffset[count][4]);
  526. }
  527. if (regaddr == RTXAGC_A_MCS15_MCS12) {
  528. rtlphy->mcs_txpwrlevel_origoffset[count][5] = data;
  529. if (get_rf_type(rtlphy) == RF_1T1R) {
  530. count++;
  531. rtlphy->pwrgroup_cnt = count;
  532. }
  533. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  534. "MCSTxPowerLevelOriginalOffset[%d][5] = 0x%x\n",
  535. count,
  536. rtlphy->mcs_txpwrlevel_origoffset[count][5]);
  537. }
  538. if (regaddr == RTXAGC_B_RATE18_06) {
  539. rtlphy->mcs_txpwrlevel_origoffset[count][8] = data;
  540. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  541. "MCSTxPowerLevelOriginalOffset[%d][8] = 0x%x\n",
  542. count,
  543. rtlphy->mcs_txpwrlevel_origoffset[count][8]);
  544. }
  545. if (regaddr == RTXAGC_B_RATE54_24) {
  546. rtlphy->mcs_txpwrlevel_origoffset[count][9] = data;
  547. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  548. "MCSTxPowerLevelOriginalOffset[%d][9] = 0x%x\n",
  549. count,
  550. rtlphy->mcs_txpwrlevel_origoffset[count][9]);
  551. }
  552. if (regaddr == RTXAGC_B_CCK1_55_MCS32) {
  553. rtlphy->mcs_txpwrlevel_origoffset[count][14] = data;
  554. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  555. "MCSTxPowerLevelOriginalOffset[%d][14] = 0x%x\n",
  556. count,
  557. rtlphy->mcs_txpwrlevel_origoffset[count][14]);
  558. }
  559. if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff) {
  560. rtlphy->mcs_txpwrlevel_origoffset[count][15] = data;
  561. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  562. "MCSTxPowerLevelOriginalOffset[%d][15] = 0x%x\n",
  563. count,
  564. rtlphy->mcs_txpwrlevel_origoffset[count][15]);
  565. }
  566. if (regaddr == RTXAGC_B_MCS03_MCS00) {
  567. rtlphy->mcs_txpwrlevel_origoffset[count][10] = data;
  568. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  569. "MCSTxPowerLevelOriginalOffset[%d][10] = 0x%x\n",
  570. count,
  571. rtlphy->mcs_txpwrlevel_origoffset[count][10]);
  572. }
  573. if (regaddr == RTXAGC_B_MCS07_MCS04) {
  574. rtlphy->mcs_txpwrlevel_origoffset[count][11] = data;
  575. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  576. "MCSTxPowerLevelOriginalOffset[%d][11] = 0x%x\n",
  577. count,
  578. rtlphy->mcs_txpwrlevel_origoffset[count][11]);
  579. }
  580. if (regaddr == RTXAGC_B_MCS11_MCS08) {
  581. rtlphy->mcs_txpwrlevel_origoffset[count][12] = data;
  582. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  583. "MCSTxPowerLevelOriginalOffset[%d][12] = 0x%x\n",
  584. count,
  585. rtlphy->mcs_txpwrlevel_origoffset[count][12]);
  586. }
  587. if (regaddr == RTXAGC_B_MCS15_MCS12) {
  588. rtlphy->mcs_txpwrlevel_origoffset[count][13] = data;
  589. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  590. "MCSTxPowerLevelOriginalOffset[%d][13] = 0x%x\n",
  591. count,
  592. rtlphy->mcs_txpwrlevel_origoffset[count][13]);
  593. if (get_rf_type(rtlphy) != RF_1T1R) {
  594. count++;
  595. rtlphy->pwrgroup_cnt = count;
  596. }
  597. }
  598. }
  599. static bool phy_config_bb_with_pghdr(struct ieee80211_hw *hw, u8 configtype)
  600. {
  601. struct rtl_priv *rtlpriv = rtl_priv(hw);
  602. int i;
  603. u32 *phy_reg_page;
  604. u16 phy_reg_page_len;
  605. u32 v1 = 0, v2 = 0, v3 = 0;
  606. phy_reg_page_len = RTL8188EEPHY_REG_ARRAY_PGLEN;
  607. phy_reg_page = RTL8188EEPHY_REG_ARRAY_PG;
  608. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  609. for (i = 0; i < phy_reg_page_len; i = i + 3) {
  610. v1 = phy_reg_page[i];
  611. v2 = phy_reg_page[i+1];
  612. v3 = phy_reg_page[i+2];
  613. if (v1 < 0xcdcdcdcd) {
  614. if (phy_reg_page[i] == 0xfe)
  615. mdelay(50);
  616. else if (phy_reg_page[i] == 0xfd)
  617. mdelay(5);
  618. else if (phy_reg_page[i] == 0xfc)
  619. mdelay(1);
  620. else if (phy_reg_page[i] == 0xfb)
  621. udelay(50);
  622. else if (phy_reg_page[i] == 0xfa)
  623. udelay(5);
  624. else if (phy_reg_page[i] == 0xf9)
  625. udelay(1);
  626. store_pwrindex_rate_offset(hw, phy_reg_page[i],
  627. phy_reg_page[i + 1],
  628. phy_reg_page[i + 2]);
  629. continue;
  630. } else {
  631. if (!_rtl88e_check_condition(hw,
  632. phy_reg_page[i])) {
  633. /*don't need the hw_body*/
  634. i += 2; /* skip the pair of expression*/
  635. /* to protect 'i+1' 'i+2' not overrun */
  636. if (i >= phy_reg_page_len - 2)
  637. break;
  638. v1 = phy_reg_page[i];
  639. v2 = phy_reg_page[i+1];
  640. v3 = phy_reg_page[i+2];
  641. while (v2 != 0xDEAD &&
  642. i < phy_reg_page_len - 5) {
  643. i += 3;
  644. v1 = phy_reg_page[i];
  645. v2 = phy_reg_page[i+1];
  646. v3 = phy_reg_page[i+2];
  647. }
  648. }
  649. }
  650. }
  651. } else {
  652. RT_TRACE(rtlpriv, COMP_SEND, DBG_TRACE,
  653. "configtype != BaseBand_Config_PHY_REG\n");
  654. }
  655. return true;
  656. }
  657. #define READ_NEXT_RF_PAIR(v1, v2, i) \
  658. do { \
  659. i += 2; \
  660. v1 = radioa_array_table[i]; \
  661. v2 = radioa_array_table[i+1]; \
  662. } while (0)
  663. static void process_path_a(struct ieee80211_hw *hw,
  664. u16 radioa_arraylen,
  665. u32 *radioa_array_table)
  666. {
  667. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  668. u32 v1, v2;
  669. int i;
  670. for (i = 0; i < radioa_arraylen; i = i + 2) {
  671. v1 = radioa_array_table[i];
  672. v2 = radioa_array_table[i+1];
  673. if (v1 < 0xcdcdcdcd) {
  674. _rtl8188e_config_rf_radio_a(hw, v1, v2);
  675. } else { /*This line is the start line of branch.*/
  676. /* to protect READ_NEXT_PAIR not overrun */
  677. if (i >= radioa_arraylen - 2)
  678. break;
  679. if (!_rtl88e_check_condition(hw, radioa_array_table[i])) {
  680. /*Discard the following (offset, data) pairs*/
  681. READ_NEXT_RF_PAIR(v1, v2, i);
  682. while (v2 != 0xDEAD &&
  683. v2 != 0xCDEF &&
  684. v2 != 0xCDCD &&
  685. i < radioa_arraylen - 2) {
  686. READ_NEXT_RF_PAIR(v1, v2, i);
  687. }
  688. i -= 2; /* prevent from for-loop += 2*/
  689. } else { /* Configure matched pairs and
  690. * skip to end of if-else.
  691. */
  692. READ_NEXT_RF_PAIR(v1, v2, i);
  693. while (v2 != 0xDEAD &&
  694. v2 != 0xCDEF &&
  695. v2 != 0xCDCD &&
  696. i < radioa_arraylen - 2) {
  697. _rtl8188e_config_rf_radio_a(hw, v1, v2);
  698. READ_NEXT_RF_PAIR(v1, v2, i);
  699. }
  700. while (v2 != 0xDEAD &&
  701. i < radioa_arraylen - 2)
  702. READ_NEXT_RF_PAIR(v1, v2, i);
  703. }
  704. }
  705. }
  706. if (rtlhal->oem_id == RT_CID_819X_HP)
  707. _rtl8188e_config_rf_radio_a(hw, 0x52, 0x7E4BD);
  708. }
  709. bool rtl88e_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
  710. enum radio_path rfpath)
  711. {
  712. struct rtl_priv *rtlpriv = rtl_priv(hw);
  713. bool rtstatus = true;
  714. u32 *radioa_array_table;
  715. u16 radioa_arraylen;
  716. radioa_arraylen = RTL8188EE_RADIOA_1TARRAYLEN;
  717. radioa_array_table = RTL8188EE_RADIOA_1TARRAY;
  718. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  719. "Radio_A:RTL8188EE_RADIOA_1TARRAY %d\n", radioa_arraylen);
  720. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Radio No %x\n", rfpath);
  721. rtstatus = true;
  722. switch (rfpath) {
  723. case RF90_PATH_A:
  724. process_path_a(hw, radioa_arraylen, radioa_array_table);
  725. break;
  726. case RF90_PATH_B:
  727. case RF90_PATH_C:
  728. case RF90_PATH_D:
  729. break;
  730. }
  731. return true;
  732. }
  733. void rtl88e_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
  734. {
  735. struct rtl_priv *rtlpriv = rtl_priv(hw);
  736. struct rtl_phy *rtlphy = &rtlpriv->phy;
  737. rtlphy->default_initialgain[0] =
  738. (u8)rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0);
  739. rtlphy->default_initialgain[1] =
  740. (u8)rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0);
  741. rtlphy->default_initialgain[2] =
  742. (u8)rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, MASKBYTE0);
  743. rtlphy->default_initialgain[3] =
  744. (u8)rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, MASKBYTE0);
  745. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  746. "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n",
  747. rtlphy->default_initialgain[0],
  748. rtlphy->default_initialgain[1],
  749. rtlphy->default_initialgain[2],
  750. rtlphy->default_initialgain[3]);
  751. rtlphy->framesync = (u8)rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
  752. MASKBYTE0);
  753. rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
  754. MASKDWORD);
  755. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  756. "Default framesync (0x%x) = 0x%x\n",
  757. ROFDM0_RXDETECTOR3, rtlphy->framesync);
  758. }
  759. static void _rtl88e_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw)
  760. {
  761. struct rtl_priv *rtlpriv = rtl_priv(hw);
  762. struct rtl_phy *rtlphy = &rtlpriv->phy;
  763. rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  764. rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  765. rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  766. rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  767. rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  768. rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  769. rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  770. rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  771. rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE;
  772. rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE;
  773. rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE;
  774. rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE;
  775. rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset =
  776. RFPGA0_XA_LSSIPARAMETER;
  777. rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset =
  778. RFPGA0_XB_LSSIPARAMETER;
  779. rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER;
  780. rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER;
  781. rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER;
  782. rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER;
  783. rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  784. rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  785. rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  786. rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  787. rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
  788. rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
  789. rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
  790. rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
  791. rtlphy->phyreg_def[RF90_PATH_A].rfsw_ctrl =
  792. RFPGA0_XAB_SWITCHCONTROL;
  793. rtlphy->phyreg_def[RF90_PATH_B].rfsw_ctrl =
  794. RFPGA0_XAB_SWITCHCONTROL;
  795. rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl =
  796. RFPGA0_XCD_SWITCHCONTROL;
  797. rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl =
  798. RFPGA0_XCD_SWITCHCONTROL;
  799. rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1;
  800. rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1;
  801. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
  802. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;
  803. rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2;
  804. rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2;
  805. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
  806. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;
  807. rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbal = ROFDM0_XARXIQIMBALANCE;
  808. rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbal = ROFDM0_XBRXIQIMBALANCE;
  809. rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBANLANCE;
  810. rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBALANCE;
  811. rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE;
  812. rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE;
  813. rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
  814. rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;
  815. rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbal = ROFDM0_XATXIQIMBALANCE;
  816. rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbal = ROFDM0_XBTXIQIMBALANCE;
  817. rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTXIQIMBALANCE;
  818. rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTXIQIMBALANCE;
  819. rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATXAFE;
  820. rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTXAFE;
  821. rtlphy->phyreg_def[RF90_PATH_A].rf_rb = RFPGA0_XA_LSSIREADBACK;
  822. rtlphy->phyreg_def[RF90_PATH_B].rf_rb = RFPGA0_XB_LSSIREADBACK;
  823. rtlphy->phyreg_def[RF90_PATH_A].rf_rbpi = TRANSCEIVEA_HSPI_READBACK;
  824. rtlphy->phyreg_def[RF90_PATH_B].rf_rbpi = TRANSCEIVEB_HSPI_READBACK;
  825. }
  826. void rtl88e_phy_get_txpower_level(struct ieee80211_hw *hw, long *powerlevel)
  827. {
  828. struct rtl_priv *rtlpriv = rtl_priv(hw);
  829. struct rtl_phy *rtlphy = &rtlpriv->phy;
  830. u8 txpwr_level;
  831. long txpwr_dbm;
  832. txpwr_level = rtlphy->cur_cck_txpwridx;
  833. txpwr_dbm = _rtl88e_phy_txpwr_idx_to_dbm(hw,
  834. WIRELESS_MODE_B, txpwr_level);
  835. txpwr_level = rtlphy->cur_ofdm24g_txpwridx;
  836. if (_rtl88e_phy_txpwr_idx_to_dbm(hw,
  837. WIRELESS_MODE_G,
  838. txpwr_level) > txpwr_dbm)
  839. txpwr_dbm =
  840. _rtl88e_phy_txpwr_idx_to_dbm(hw, WIRELESS_MODE_G,
  841. txpwr_level);
  842. txpwr_level = rtlphy->cur_ofdm24g_txpwridx;
  843. if (_rtl88e_phy_txpwr_idx_to_dbm(hw,
  844. WIRELESS_MODE_N_24G,
  845. txpwr_level) > txpwr_dbm)
  846. txpwr_dbm =
  847. _rtl88e_phy_txpwr_idx_to_dbm(hw, WIRELESS_MODE_N_24G,
  848. txpwr_level);
  849. *powerlevel = txpwr_dbm;
  850. }
  851. static void handle_path_a(struct rtl_efuse *rtlefuse, u8 index,
  852. u8 *cckpowerlevel, u8 *ofdmpowerlevel,
  853. u8 *bw20powerlevel, u8 *bw40powerlevel)
  854. {
  855. cckpowerlevel[RF90_PATH_A] =
  856. rtlefuse->txpwrlevel_cck[RF90_PATH_A][index];
  857. /*-8~7 */
  858. if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][index] > 0x0f)
  859. bw20powerlevel[RF90_PATH_A] =
  860. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] -
  861. (~(rtlefuse->txpwr_ht20diff[RF90_PATH_A][index]) + 1);
  862. else
  863. bw20powerlevel[RF90_PATH_A] =
  864. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] +
  865. rtlefuse->txpwr_ht20diff[RF90_PATH_A][index];
  866. if (rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][index] > 0xf)
  867. ofdmpowerlevel[RF90_PATH_A] =
  868. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] -
  869. (~(rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][index])+1);
  870. else
  871. ofdmpowerlevel[RF90_PATH_A] =
  872. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] +
  873. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][index];
  874. bw40powerlevel[RF90_PATH_A] =
  875. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index];
  876. }
  877. static void _rtl88e_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
  878. u8 *cckpowerlevel, u8 *ofdmpowerlevel,
  879. u8 *bw20powerlevel, u8 *bw40powerlevel)
  880. {
  881. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  882. u8 index = (channel - 1);
  883. u8 rf_path = 0;
  884. for (rf_path = 0; rf_path < 2; rf_path++) {
  885. if (rf_path == RF90_PATH_A) {
  886. handle_path_a(rtlefuse, index, cckpowerlevel,
  887. ofdmpowerlevel, bw20powerlevel,
  888. bw40powerlevel);
  889. } else if (rf_path == RF90_PATH_B) {
  890. cckpowerlevel[RF90_PATH_B] =
  891. rtlefuse->txpwrlevel_cck[RF90_PATH_B][index];
  892. bw20powerlevel[RF90_PATH_B] =
  893. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index] +
  894. rtlefuse->txpwr_ht20diff[RF90_PATH_B][index];
  895. ofdmpowerlevel[RF90_PATH_B] =
  896. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index] +
  897. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][index];
  898. bw40powerlevel[RF90_PATH_B] =
  899. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index];
  900. }
  901. }
  902. }
  903. static void _rtl88e_ccxpower_index_check(struct ieee80211_hw *hw,
  904. u8 channel, u8 *cckpowerlevel,
  905. u8 *ofdmpowerlevel, u8 *bw20powerlevel,
  906. u8 *bw40powerlevel)
  907. {
  908. struct rtl_priv *rtlpriv = rtl_priv(hw);
  909. struct rtl_phy *rtlphy = &rtlpriv->phy;
  910. rtlphy->cur_cck_txpwridx = cckpowerlevel[0];
  911. rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0];
  912. rtlphy->cur_bw20_txpwridx = bw20powerlevel[0];
  913. rtlphy->cur_bw40_txpwridx = bw40powerlevel[0];
  914. }
  915. void rtl88e_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
  916. {
  917. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  918. u8 cckpowerlevel[MAX_TX_COUNT] = {0};
  919. u8 ofdmpowerlevel[MAX_TX_COUNT] = {0};
  920. u8 bw20powerlevel[MAX_TX_COUNT] = {0};
  921. u8 bw40powerlevel[MAX_TX_COUNT] = {0};
  922. if (!rtlefuse->txpwr_fromeprom)
  923. return;
  924. _rtl88e_get_txpower_index(hw, channel,
  925. &cckpowerlevel[0], &ofdmpowerlevel[0],
  926. &bw20powerlevel[0], &bw40powerlevel[0]);
  927. _rtl88e_ccxpower_index_check(hw, channel,
  928. &cckpowerlevel[0], &ofdmpowerlevel[0],
  929. &bw20powerlevel[0], &bw40powerlevel[0]);
  930. rtl88e_phy_rf6052_set_cck_txpower(hw, &cckpowerlevel[0]);
  931. rtl88e_phy_rf6052_set_ofdm_txpower(hw, &ofdmpowerlevel[0],
  932. &bw20powerlevel[0],
  933. &bw40powerlevel[0], channel);
  934. }
  935. static long _rtl88e_phy_txpwr_idx_to_dbm(struct ieee80211_hw *hw,
  936. enum wireless_mode wirelessmode,
  937. u8 txpwridx)
  938. {
  939. long offset;
  940. long pwrout_dbm;
  941. switch (wirelessmode) {
  942. case WIRELESS_MODE_B:
  943. offset = -7;
  944. break;
  945. case WIRELESS_MODE_G:
  946. case WIRELESS_MODE_N_24G:
  947. offset = -8;
  948. break;
  949. default:
  950. offset = -8;
  951. break;
  952. }
  953. pwrout_dbm = txpwridx / 2 + offset;
  954. return pwrout_dbm;
  955. }
  956. void rtl88e_phy_scan_operation_backup(struct ieee80211_hw *hw, u8 operation)
  957. {
  958. struct rtl_priv *rtlpriv = rtl_priv(hw);
  959. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  960. enum io_type iotype;
  961. if (!is_hal_stop(rtlhal)) {
  962. switch (operation) {
  963. case SCAN_OPT_BACKUP_BAND0:
  964. iotype = IO_CMD_PAUSE_BAND0_DM_BY_SCAN;
  965. rtlpriv->cfg->ops->set_hw_reg(hw,
  966. HW_VAR_IO_CMD,
  967. (u8 *)&iotype);
  968. break;
  969. case SCAN_OPT_RESTORE:
  970. iotype = IO_CMD_RESUME_DM_BY_SCAN;
  971. rtlpriv->cfg->ops->set_hw_reg(hw,
  972. HW_VAR_IO_CMD,
  973. (u8 *)&iotype);
  974. break;
  975. default:
  976. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  977. "Unknown Scan Backup operation.\n");
  978. break;
  979. }
  980. }
  981. }
  982. void rtl88e_phy_set_bw_mode_callback(struct ieee80211_hw *hw)
  983. {
  984. struct rtl_priv *rtlpriv = rtl_priv(hw);
  985. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  986. struct rtl_phy *rtlphy = &rtlpriv->phy;
  987. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  988. u8 reg_bw_opmode;
  989. u8 reg_prsr_rsc;
  990. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
  991. "Switch to %s bandwidth\n",
  992. rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
  993. "20MHz" : "40MHz");
  994. if (is_hal_stop(rtlhal)) {
  995. rtlphy->set_bwmode_inprogress = false;
  996. return;
  997. }
  998. reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
  999. reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
  1000. switch (rtlphy->current_chan_bw) {
  1001. case HT_CHANNEL_WIDTH_20:
  1002. reg_bw_opmode |= BW_OPMODE_20MHZ;
  1003. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  1004. break;
  1005. case HT_CHANNEL_WIDTH_20_40:
  1006. reg_bw_opmode &= ~BW_OPMODE_20MHZ;
  1007. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  1008. reg_prsr_rsc =
  1009. (reg_prsr_rsc & 0x90) | (mac->cur_40_prime_sc << 5);
  1010. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
  1011. break;
  1012. default:
  1013. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1014. "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
  1015. break;
  1016. }
  1017. switch (rtlphy->current_chan_bw) {
  1018. case HT_CHANNEL_WIDTH_20:
  1019. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
  1020. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
  1021. /* rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);*/
  1022. break;
  1023. case HT_CHANNEL_WIDTH_20_40:
  1024. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
  1025. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
  1026. rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND,
  1027. (mac->cur_40_prime_sc >> 1));
  1028. rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
  1029. /*rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 0);*/
  1030. rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
  1031. (mac->cur_40_prime_sc ==
  1032. HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
  1033. break;
  1034. default:
  1035. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1036. "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
  1037. break;
  1038. }
  1039. rtl88e_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
  1040. rtlphy->set_bwmode_inprogress = false;
  1041. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD, "\n");
  1042. }
  1043. void rtl88e_phy_set_bw_mode(struct ieee80211_hw *hw,
  1044. enum nl80211_channel_type ch_type)
  1045. {
  1046. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1047. struct rtl_phy *rtlphy = &rtlpriv->phy;
  1048. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1049. u8 tmp_bw = rtlphy->current_chan_bw;
  1050. if (rtlphy->set_bwmode_inprogress)
  1051. return;
  1052. rtlphy->set_bwmode_inprogress = true;
  1053. if ((!is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
  1054. rtl88e_phy_set_bw_mode_callback(hw);
  1055. } else {
  1056. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1057. "false driver sleep or unload\n");
  1058. rtlphy->set_bwmode_inprogress = false;
  1059. rtlphy->current_chan_bw = tmp_bw;
  1060. }
  1061. }
  1062. void rtl88e_phy_sw_chnl_callback(struct ieee80211_hw *hw)
  1063. {
  1064. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1065. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1066. struct rtl_phy *rtlphy = &rtlpriv->phy;
  1067. u32 delay;
  1068. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
  1069. "switch to channel%d\n", rtlphy->current_channel);
  1070. if (is_hal_stop(rtlhal))
  1071. return;
  1072. do {
  1073. if (!rtlphy->sw_chnl_inprogress)
  1074. break;
  1075. if (!_rtl88e_phy_sw_chnl_step_by_step
  1076. (hw, rtlphy->current_channel, &rtlphy->sw_chnl_stage,
  1077. &rtlphy->sw_chnl_step, &delay)) {
  1078. if (delay > 0)
  1079. mdelay(delay);
  1080. else
  1081. continue;
  1082. } else {
  1083. rtlphy->sw_chnl_inprogress = false;
  1084. }
  1085. break;
  1086. } while (true);
  1087. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "\n");
  1088. }
  1089. u8 rtl88e_phy_sw_chnl(struct ieee80211_hw *hw)
  1090. {
  1091. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1092. struct rtl_phy *rtlphy = &rtlpriv->phy;
  1093. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1094. if (rtlphy->sw_chnl_inprogress)
  1095. return 0;
  1096. if (rtlphy->set_bwmode_inprogress)
  1097. return 0;
  1098. RT_ASSERT((rtlphy->current_channel <= 14),
  1099. "WIRELESS_MODE_G but channel>14");
  1100. rtlphy->sw_chnl_inprogress = true;
  1101. rtlphy->sw_chnl_stage = 0;
  1102. rtlphy->sw_chnl_step = 0;
  1103. if (!(is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
  1104. rtl88e_phy_sw_chnl_callback(hw);
  1105. RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD,
  1106. "sw_chnl_inprogress false schdule workitem current channel %d\n",
  1107. rtlphy->current_channel);
  1108. rtlphy->sw_chnl_inprogress = false;
  1109. } else {
  1110. RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD,
  1111. "sw_chnl_inprogress false driver sleep or unload\n");
  1112. rtlphy->sw_chnl_inprogress = false;
  1113. }
  1114. return 1;
  1115. }
  1116. static bool _rtl88e_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
  1117. u8 channel, u8 *stage, u8 *step,
  1118. u32 *delay)
  1119. {
  1120. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1121. struct rtl_phy *rtlphy = &rtlpriv->phy;
  1122. struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
  1123. u32 precommoncmdcnt;
  1124. struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
  1125. u32 postcommoncmdcnt;
  1126. struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
  1127. u32 rfdependcmdcnt;
  1128. struct swchnlcmd *currentcmd = NULL;
  1129. u8 rfpath;
  1130. u8 num_total_rfpath = rtlphy->num_total_rfpath;
  1131. precommoncmdcnt = 0;
  1132. _rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  1133. MAX_PRECMD_CNT,
  1134. CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
  1135. _rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  1136. MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
  1137. postcommoncmdcnt = 0;
  1138. _rtl88e_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
  1139. MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
  1140. rfdependcmdcnt = 0;
  1141. RT_ASSERT((channel >= 1 && channel <= 14),
  1142. "illegal channel for Zebra: %d\n", channel);
  1143. _rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  1144. MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
  1145. RF_CHNLBW, channel, 10);
  1146. _rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  1147. MAX_RFDEPENDCMD_CNT, CMDID_END, 0, 0,
  1148. 0);
  1149. do {
  1150. switch (*stage) {
  1151. case 0:
  1152. currentcmd = &precommoncmd[*step];
  1153. break;
  1154. case 1:
  1155. currentcmd = &rfdependcmd[*step];
  1156. break;
  1157. case 2:
  1158. currentcmd = &postcommoncmd[*step];
  1159. break;
  1160. default:
  1161. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1162. "Invalid 'stage' = %d, Check it!\n", *stage);
  1163. return true;
  1164. }
  1165. if (currentcmd->cmdid == CMDID_END) {
  1166. if ((*stage) == 2)
  1167. return true;
  1168. (*stage)++;
  1169. (*step) = 0;
  1170. continue;
  1171. }
  1172. switch (currentcmd->cmdid) {
  1173. case CMDID_SET_TXPOWEROWER_LEVEL:
  1174. rtl88e_phy_set_txpower_level(hw, channel);
  1175. break;
  1176. case CMDID_WRITEPORT_ULONG:
  1177. rtl_write_dword(rtlpriv, currentcmd->para1,
  1178. currentcmd->para2);
  1179. break;
  1180. case CMDID_WRITEPORT_USHORT:
  1181. rtl_write_word(rtlpriv, currentcmd->para1,
  1182. (u16)currentcmd->para2);
  1183. break;
  1184. case CMDID_WRITEPORT_UCHAR:
  1185. rtl_write_byte(rtlpriv, currentcmd->para1,
  1186. (u8)currentcmd->para2);
  1187. break;
  1188. case CMDID_RF_WRITEREG:
  1189. for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
  1190. rtlphy->rfreg_chnlval[rfpath] =
  1191. ((rtlphy->rfreg_chnlval[rfpath] &
  1192. 0xfffffc00) | currentcmd->para2);
  1193. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  1194. currentcmd->para1,
  1195. RFREG_OFFSET_MASK,
  1196. rtlphy->rfreg_chnlval[rfpath]);
  1197. }
  1198. break;
  1199. default:
  1200. RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
  1201. "switch case not process\n");
  1202. break;
  1203. }
  1204. break;
  1205. } while (true);
  1206. (*delay) = currentcmd->msdelay;
  1207. (*step)++;
  1208. return false;
  1209. }
  1210. static bool _rtl88e_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
  1211. u32 cmdtableidx, u32 cmdtablesz,
  1212. enum swchnlcmd_id cmdid,
  1213. u32 para1, u32 para2, u32 msdelay)
  1214. {
  1215. struct swchnlcmd *pcmd;
  1216. if (cmdtable == NULL) {
  1217. RT_ASSERT(false, "cmdtable cannot be NULL.\n");
  1218. return false;
  1219. }
  1220. if (cmdtableidx >= cmdtablesz)
  1221. return false;
  1222. pcmd = cmdtable + cmdtableidx;
  1223. pcmd->cmdid = cmdid;
  1224. pcmd->para1 = para1;
  1225. pcmd->para2 = para2;
  1226. pcmd->msdelay = msdelay;
  1227. return true;
  1228. }
  1229. static u8 _rtl88e_phy_path_a_iqk(struct ieee80211_hw *hw, bool config_pathb)
  1230. {
  1231. u32 reg_eac, reg_e94, reg_e9c, reg_ea4;
  1232. u8 result = 0x00;
  1233. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c1c);
  1234. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x30008c1c);
  1235. rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x8214032a);
  1236. rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x28160000);
  1237. rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
  1238. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000);
  1239. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
  1240. mdelay(IQK_DELAY_TIME);
  1241. reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
  1242. reg_e94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
  1243. reg_e9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
  1244. reg_ea4 = rtl_get_bbreg(hw, 0xea4, MASKDWORD);
  1245. if (!(reg_eac & BIT(28)) &&
  1246. (((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
  1247. (((reg_e9c & 0x03FF0000) >> 16) != 0x42))
  1248. result |= 0x01;
  1249. return result;
  1250. }
  1251. static u8 _rtl88e_phy_path_b_iqk(struct ieee80211_hw *hw)
  1252. {
  1253. u32 reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc;
  1254. u8 result = 0x00;
  1255. rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000002);
  1256. rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000000);
  1257. mdelay(IQK_DELAY_TIME);
  1258. reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
  1259. reg_eb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD);
  1260. reg_ebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD);
  1261. reg_ec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD);
  1262. reg_ecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD);
  1263. if (!(reg_eac & BIT(31)) &&
  1264. (((reg_eb4 & 0x03FF0000) >> 16) != 0x142) &&
  1265. (((reg_ebc & 0x03FF0000) >> 16) != 0x42))
  1266. result |= 0x01;
  1267. else
  1268. return result;
  1269. if (!(reg_eac & BIT(30)) &&
  1270. (((reg_ec4 & 0x03FF0000) >> 16) != 0x132) &&
  1271. (((reg_ecc & 0x03FF0000) >> 16) != 0x36))
  1272. result |= 0x02;
  1273. return result;
  1274. }
  1275. static u8 _rtl88e_phy_path_a_rx_iqk(struct ieee80211_hw *hw, bool config_pathb)
  1276. {
  1277. u32 reg_eac, reg_e94, reg_e9c, reg_ea4, u32temp;
  1278. u8 result = 0x00;
  1279. /*Get TXIMR Setting*/
  1280. /*Modify RX IQK mode table*/
  1281. rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
  1282. rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
  1283. rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
  1284. rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f);
  1285. rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf117b);
  1286. rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
  1287. /*IQK Setting*/
  1288. rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, 0x01007c00);
  1289. rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x81004800);
  1290. /*path a IQK setting*/
  1291. rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x10008c1c);
  1292. rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x30008c1c);
  1293. rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160804);
  1294. rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160000);
  1295. /*LO calibration Setting*/
  1296. rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
  1297. /*one shot,path A LOK & iqk*/
  1298. rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
  1299. rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
  1300. mdelay(IQK_DELAY_TIME);
  1301. reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
  1302. reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
  1303. reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
  1304. if (!(reg_eac & BIT(28)) &&
  1305. (((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
  1306. (((reg_e9c & 0x03FF0000) >> 16) != 0x42))
  1307. result |= 0x01;
  1308. else
  1309. return result;
  1310. u32temp = 0x80007C00 | (reg_e94&0x3FF0000) |
  1311. ((reg_e9c&0x3FF0000) >> 16);
  1312. rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, u32temp);
  1313. /*RX IQK*/
  1314. /*Modify RX IQK mode table*/
  1315. rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
  1316. rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
  1317. rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
  1318. rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f);
  1319. rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf7ffa);
  1320. rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
  1321. /*IQK Setting*/
  1322. rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800);
  1323. /*path a IQK setting*/
  1324. rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x30008c1c);
  1325. rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x10008c1c);
  1326. rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160c05);
  1327. rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160c05);
  1328. /*LO calibration Setting*/
  1329. rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
  1330. /*one shot,path A LOK & iqk*/
  1331. rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
  1332. rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
  1333. mdelay(IQK_DELAY_TIME);
  1334. reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
  1335. reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
  1336. reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
  1337. reg_ea4 = rtl_get_bbreg(hw, RRX_POWER_BEFORE_IQK_A_2, MASKDWORD);
  1338. if (!(reg_eac & BIT(27)) &&
  1339. (((reg_ea4 & 0x03FF0000) >> 16) != 0x132) &&
  1340. (((reg_eac & 0x03FF0000) >> 16) != 0x36))
  1341. result |= 0x02;
  1342. return result;
  1343. }
  1344. static void _rtl88e_phy_path_a_fill_iqk_matrix(struct ieee80211_hw *hw,
  1345. bool iqk_ok, long result[][8],
  1346. u8 final_candidate, bool btxonly)
  1347. {
  1348. u32 oldval_0, x, tx0_a, reg;
  1349. long y, tx0_c;
  1350. if (final_candidate == 0xFF) {
  1351. return;
  1352. } else if (iqk_ok) {
  1353. oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATXIQIMBALANCE,
  1354. MASKDWORD) >> 22) & 0x3FF;
  1355. x = result[final_candidate][0];
  1356. if ((x & 0x00000200) != 0)
  1357. x = x | 0xFFFFFC00;
  1358. tx0_a = (x * oldval_0) >> 8;
  1359. rtl_set_bbreg(hw, ROFDM0_XATXIQIMBALANCE, 0x3FF, tx0_a);
  1360. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(31),
  1361. ((x * oldval_0 >> 7) & 0x1));
  1362. y = result[final_candidate][1];
  1363. if ((y & 0x00000200) != 0)
  1364. y = y | 0xFFFFFC00;
  1365. tx0_c = (y * oldval_0) >> 8;
  1366. rtl_set_bbreg(hw, ROFDM0_XCTXAFE, 0xF0000000,
  1367. ((tx0_c & 0x3C0) >> 6));
  1368. rtl_set_bbreg(hw, ROFDM0_XATXIQIMBALANCE, 0x003F0000,
  1369. (tx0_c & 0x3F));
  1370. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(29),
  1371. ((y * oldval_0 >> 7) & 0x1));
  1372. if (btxonly)
  1373. return;
  1374. reg = result[final_candidate][2];
  1375. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0x3FF, reg);
  1376. reg = result[final_candidate][3] & 0x3F;
  1377. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0xFC00, reg);
  1378. reg = (result[final_candidate][3] >> 6) & 0xF;
  1379. rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg);
  1380. }
  1381. }
  1382. static void _rtl88e_phy_save_adda_registers(struct ieee80211_hw *hw,
  1383. u32 *addareg, u32 *addabackup,
  1384. u32 registernum)
  1385. {
  1386. u32 i;
  1387. for (i = 0; i < registernum; i++)
  1388. addabackup[i] = rtl_get_bbreg(hw, addareg[i], MASKDWORD);
  1389. }
  1390. static void _rtl88e_phy_save_mac_registers(struct ieee80211_hw *hw,
  1391. u32 *macreg, u32 *macbackup)
  1392. {
  1393. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1394. u32 i;
  1395. for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
  1396. macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]);
  1397. macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]);
  1398. }
  1399. static void _rtl88e_phy_reload_adda_registers(struct ieee80211_hw *hw,
  1400. u32 *addareg, u32 *addabackup,
  1401. u32 regiesternum)
  1402. {
  1403. u32 i;
  1404. for (i = 0; i < regiesternum; i++)
  1405. rtl_set_bbreg(hw, addareg[i], MASKDWORD, addabackup[i]);
  1406. }
  1407. static void _rtl88e_phy_reload_mac_registers(struct ieee80211_hw *hw,
  1408. u32 *macreg, u32 *macbackup)
  1409. {
  1410. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1411. u32 i;
  1412. for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
  1413. rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]);
  1414. rtl_write_dword(rtlpriv, macreg[i], macbackup[i]);
  1415. }
  1416. static void _rtl88e_phy_path_adda_on(struct ieee80211_hw *hw,
  1417. u32 *addareg, bool is_patha_on, bool is2t)
  1418. {
  1419. u32 pathon;
  1420. u32 i;
  1421. pathon = is_patha_on ? 0x04db25a4 : 0x0b1b25a4;
  1422. if (false == is2t) {
  1423. pathon = 0x0bdb25a0;
  1424. rtl_set_bbreg(hw, addareg[0], MASKDWORD, 0x0b1b25a0);
  1425. } else {
  1426. rtl_set_bbreg(hw, addareg[0], MASKDWORD, pathon);
  1427. }
  1428. for (i = 1; i < IQK_ADDA_REG_NUM; i++)
  1429. rtl_set_bbreg(hw, addareg[i], MASKDWORD, pathon);
  1430. }
  1431. static void _rtl88e_phy_mac_setting_calibration(struct ieee80211_hw *hw,
  1432. u32 *macreg, u32 *macbackup)
  1433. {
  1434. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1435. u32 i = 0;
  1436. rtl_write_byte(rtlpriv, macreg[i], 0x3F);
  1437. for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
  1438. rtl_write_byte(rtlpriv, macreg[i],
  1439. (u8) (macbackup[i] & (~BIT(3))));
  1440. rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5))));
  1441. }
  1442. static void _rtl88e_phy_path_a_standby(struct ieee80211_hw *hw)
  1443. {
  1444. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x0);
  1445. rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000);
  1446. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
  1447. }
  1448. static void _rtl88e_phy_pi_mode_switch(struct ieee80211_hw *hw, bool pi_mode)
  1449. {
  1450. u32 mode;
  1451. mode = pi_mode ? 0x01000100 : 0x01000000;
  1452. rtl_set_bbreg(hw, 0x820, MASKDWORD, mode);
  1453. rtl_set_bbreg(hw, 0x828, MASKDWORD, mode);
  1454. }
  1455. static bool _rtl88e_phy_simularity_compare(struct ieee80211_hw *hw,
  1456. long result[][8], u8 c1, u8 c2)
  1457. {
  1458. u32 i, j, diff, simularity_bitmap, bound;
  1459. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1460. u8 final_candidate[2] = { 0xFF, 0xFF };
  1461. bool bresult = true, is2t = IS_92C_SERIAL(rtlhal->version);
  1462. if (is2t)
  1463. bound = 8;
  1464. else
  1465. bound = 4;
  1466. simularity_bitmap = 0;
  1467. for (i = 0; i < bound; i++) {
  1468. diff = (result[c1][i] > result[c2][i]) ?
  1469. (result[c1][i] - result[c2][i]) :
  1470. (result[c2][i] - result[c1][i]);
  1471. if (diff > MAX_TOLERANCE) {
  1472. if ((i == 2 || i == 6) && !simularity_bitmap) {
  1473. if (result[c1][i] + result[c1][i + 1] == 0)
  1474. final_candidate[(i / 4)] = c2;
  1475. else if (result[c2][i] + result[c2][i + 1] == 0)
  1476. final_candidate[(i / 4)] = c1;
  1477. else
  1478. simularity_bitmap = simularity_bitmap |
  1479. (1 << i);
  1480. } else
  1481. simularity_bitmap =
  1482. simularity_bitmap | (1 << i);
  1483. }
  1484. }
  1485. if (simularity_bitmap == 0) {
  1486. for (i = 0; i < (bound / 4); i++) {
  1487. if (final_candidate[i] != 0xFF) {
  1488. for (j = i * 4; j < (i + 1) * 4 - 2; j++)
  1489. result[3][j] =
  1490. result[final_candidate[i]][j];
  1491. bresult = false;
  1492. }
  1493. }
  1494. return bresult;
  1495. } else if (!(simularity_bitmap & 0x0F)) {
  1496. for (i = 0; i < 4; i++)
  1497. result[3][i] = result[c1][i];
  1498. return false;
  1499. } else if (!(simularity_bitmap & 0xF0) && is2t) {
  1500. for (i = 4; i < 8; i++)
  1501. result[3][i] = result[c1][i];
  1502. return false;
  1503. } else {
  1504. return false;
  1505. }
  1506. }
  1507. static void _rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw,
  1508. long result[][8], u8 t, bool is2t)
  1509. {
  1510. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1511. struct rtl_phy *rtlphy = &rtlpriv->phy;
  1512. u32 i;
  1513. u8 patha_ok, pathb_ok;
  1514. u32 adda_reg[IQK_ADDA_REG_NUM] = {
  1515. 0x85c, 0xe6c, 0xe70, 0xe74,
  1516. 0xe78, 0xe7c, 0xe80, 0xe84,
  1517. 0xe88, 0xe8c, 0xed0, 0xed4,
  1518. 0xed8, 0xedc, 0xee0, 0xeec
  1519. };
  1520. u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
  1521. 0x522, 0x550, 0x551, 0x040
  1522. };
  1523. u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
  1524. ROFDM0_TRXPATHENABLE, ROFDM0_TRMUXPAR,
  1525. RFPGA0_XCD_RFINTERFACESW, 0xb68, 0xb6c,
  1526. 0x870, 0x860, 0x864, 0x800
  1527. };
  1528. const u32 retrycount = 2;
  1529. if (t == 0) {
  1530. _rtl88e_phy_save_adda_registers(hw, adda_reg,
  1531. rtlphy->adda_backup, 16);
  1532. _rtl88e_phy_save_mac_registers(hw, iqk_mac_reg,
  1533. rtlphy->iqk_mac_backup);
  1534. _rtl88e_phy_save_adda_registers(hw, iqk_bb_reg,
  1535. rtlphy->iqk_bb_backup,
  1536. IQK_BB_REG_NUM);
  1537. }
  1538. _rtl88e_phy_path_adda_on(hw, adda_reg, true, is2t);
  1539. if (t == 0) {
  1540. rtlphy->rfpi_enable =
  1541. (u8)rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1, BIT(8));
  1542. }
  1543. if (!rtlphy->rfpi_enable)
  1544. _rtl88e_phy_pi_mode_switch(hw, true);
  1545. /*BB Setting*/
  1546. rtl_set_bbreg(hw, 0x800, BIT(24), 0x00);
  1547. rtl_set_bbreg(hw, 0xc04, MASKDWORD, 0x03a05600);
  1548. rtl_set_bbreg(hw, 0xc08, MASKDWORD, 0x000800e4);
  1549. rtl_set_bbreg(hw, 0x874, MASKDWORD, 0x22204000);
  1550. rtl_set_bbreg(hw, 0x870, BIT(10), 0x01);
  1551. rtl_set_bbreg(hw, 0x870, BIT(26), 0x01);
  1552. rtl_set_bbreg(hw, 0x860, BIT(10), 0x00);
  1553. rtl_set_bbreg(hw, 0x864, BIT(10), 0x00);
  1554. if (is2t) {
  1555. rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000);
  1556. rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00010000);
  1557. }
  1558. _rtl88e_phy_mac_setting_calibration(hw, iqk_mac_reg,
  1559. rtlphy->iqk_mac_backup);
  1560. rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000);
  1561. if (is2t)
  1562. rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000);
  1563. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
  1564. rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x01007c00);
  1565. rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x81004800);
  1566. for (i = 0; i < retrycount; i++) {
  1567. patha_ok = _rtl88e_phy_path_a_iqk(hw, is2t);
  1568. if (patha_ok == 0x01) {
  1569. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1570. "Path A Tx IQK Success!!\n");
  1571. result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
  1572. 0x3FF0000) >> 16;
  1573. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
  1574. 0x3FF0000) >> 16;
  1575. break;
  1576. }
  1577. }
  1578. for (i = 0; i < retrycount; i++) {
  1579. patha_ok = _rtl88e_phy_path_a_rx_iqk(hw, is2t);
  1580. if (patha_ok == 0x03) {
  1581. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1582. "Path A Rx IQK Success!!\n");
  1583. result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
  1584. 0x3FF0000) >> 16;
  1585. result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
  1586. 0x3FF0000) >> 16;
  1587. break;
  1588. } else {
  1589. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1590. "Path a RX iqk fail!!!\n");
  1591. }
  1592. }
  1593. if (0 == patha_ok)
  1594. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1595. "Path A IQK Success!!\n");
  1596. if (is2t) {
  1597. _rtl88e_phy_path_a_standby(hw);
  1598. _rtl88e_phy_path_adda_on(hw, adda_reg, false, is2t);
  1599. for (i = 0; i < retrycount; i++) {
  1600. pathb_ok = _rtl88e_phy_path_b_iqk(hw);
  1601. if (pathb_ok == 0x03) {
  1602. result[t][4] = (rtl_get_bbreg(hw,
  1603. 0xeb4,
  1604. MASKDWORD) &
  1605. 0x3FF0000) >> 16;
  1606. result[t][5] =
  1607. (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
  1608. 0x3FF0000) >> 16;
  1609. result[t][6] =
  1610. (rtl_get_bbreg(hw, 0xec4, MASKDWORD) &
  1611. 0x3FF0000) >> 16;
  1612. result[t][7] =
  1613. (rtl_get_bbreg(hw, 0xecc, MASKDWORD) &
  1614. 0x3FF0000) >> 16;
  1615. break;
  1616. } else if (i == (retrycount - 1) && pathb_ok == 0x01) {
  1617. result[t][4] = (rtl_get_bbreg(hw,
  1618. 0xeb4,
  1619. MASKDWORD) &
  1620. 0x3FF0000) >> 16;
  1621. }
  1622. result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
  1623. 0x3FF0000) >> 16;
  1624. }
  1625. }
  1626. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0);
  1627. if (t != 0) {
  1628. if (!rtlphy->rfpi_enable)
  1629. _rtl88e_phy_pi_mode_switch(hw, false);
  1630. _rtl88e_phy_reload_adda_registers(hw, adda_reg,
  1631. rtlphy->adda_backup, 16);
  1632. _rtl88e_phy_reload_mac_registers(hw, iqk_mac_reg,
  1633. rtlphy->iqk_mac_backup);
  1634. _rtl88e_phy_reload_adda_registers(hw, iqk_bb_reg,
  1635. rtlphy->iqk_bb_backup,
  1636. IQK_BB_REG_NUM);
  1637. rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00032ed3);
  1638. if (is2t)
  1639. rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00032ed3);
  1640. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x01008c00);
  1641. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x01008c00);
  1642. }
  1643. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "88ee IQK Finish!!\n");
  1644. }
  1645. static void _rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
  1646. {
  1647. u8 tmpreg;
  1648. u32 rf_a_mode = 0, rf_b_mode = 0, lc_cal;
  1649. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1650. tmpreg = rtl_read_byte(rtlpriv, 0xd03);
  1651. if ((tmpreg & 0x70) != 0)
  1652. rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
  1653. else
  1654. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1655. if ((tmpreg & 0x70) != 0) {
  1656. rf_a_mode = rtl_get_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS);
  1657. if (is2t)
  1658. rf_b_mode = rtl_get_rfreg(hw, RF90_PATH_B, 0x00,
  1659. MASK12BITS);
  1660. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS,
  1661. (rf_a_mode & 0x8FFFF) | 0x10000);
  1662. if (is2t)
  1663. rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS,
  1664. (rf_b_mode & 0x8FFFF) | 0x10000);
  1665. }
  1666. lc_cal = rtl_get_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS);
  1667. rtl_set_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS, lc_cal | 0x08000);
  1668. mdelay(100);
  1669. if ((tmpreg & 0x70) != 0) {
  1670. rtl_write_byte(rtlpriv, 0xd03, tmpreg);
  1671. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS, rf_a_mode);
  1672. if (is2t)
  1673. rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS,
  1674. rf_b_mode);
  1675. } else {
  1676. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  1677. }
  1678. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
  1679. }
  1680. static void _rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw,
  1681. bool bmain, bool is2t)
  1682. {
  1683. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1684. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1685. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1686. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
  1687. if (is_hal_stop(rtlhal)) {
  1688. u8 u1btmp;
  1689. u1btmp = rtl_read_byte(rtlpriv, REG_LEDCFG0);
  1690. rtl_write_byte(rtlpriv, REG_LEDCFG0, u1btmp | BIT(7));
  1691. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(13), 0x01);
  1692. }
  1693. if (is2t) {
  1694. if (bmain)
  1695. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
  1696. BIT(5) | BIT(6), 0x1);
  1697. else
  1698. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
  1699. BIT(5) | BIT(6), 0x2);
  1700. } else {
  1701. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BIT(8) | BIT(9), 0);
  1702. rtl_set_bbreg(hw, 0x914, MASKLWORD, 0x0201);
  1703. /* We use the RF definition of MAIN and AUX,
  1704. * left antenna and right antenna repectively.
  1705. * Default output at AUX.
  1706. */
  1707. if (bmain) {
  1708. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
  1709. BIT(14) | BIT(13) | BIT(12), 0);
  1710. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
  1711. BIT(5) | BIT(4) | BIT(3), 0);
  1712. if (rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
  1713. rtl_set_bbreg(hw, RCONFIG_RAM64x16, BIT(31), 0);
  1714. } else {
  1715. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
  1716. BIT(14) | BIT(13) | BIT(12), 1);
  1717. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
  1718. BIT(5) | BIT(4) | BIT(3), 1);
  1719. if (rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
  1720. rtl_set_bbreg(hw, RCONFIG_RAM64x16, BIT(31), 1);
  1721. }
  1722. }
  1723. }
  1724. #undef IQK_ADDA_REG_NUM
  1725. #undef IQK_DELAY_TIME
  1726. void rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw, bool b_recovery)
  1727. {
  1728. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1729. struct rtl_phy *rtlphy = &rtlpriv->phy;
  1730. long result[4][8];
  1731. u8 i, final_candidate;
  1732. bool b_patha_ok, b_pathb_ok;
  1733. long reg_e94, reg_e9c, reg_ea4, reg_eac, reg_eb4, reg_ebc, reg_ec4,
  1734. reg_ecc, reg_tmp = 0;
  1735. bool is12simular, is13simular, is23simular;
  1736. u32 iqk_bb_reg[9] = {
  1737. ROFDM0_XARXIQIMBALANCE,
  1738. ROFDM0_XBRXIQIMBALANCE,
  1739. ROFDM0_ECCATHRESHOLD,
  1740. ROFDM0_AGCRSSITABLE,
  1741. ROFDM0_XATXIQIMBALANCE,
  1742. ROFDM0_XBTXIQIMBALANCE,
  1743. ROFDM0_XCTXAFE,
  1744. ROFDM0_XDTXAFE,
  1745. ROFDM0_RXIQEXTANTA
  1746. };
  1747. if (b_recovery) {
  1748. _rtl88e_phy_reload_adda_registers(hw,
  1749. iqk_bb_reg,
  1750. rtlphy->iqk_bb_backup, 9);
  1751. return;
  1752. }
  1753. for (i = 0; i < 8; i++) {
  1754. result[0][i] = 0;
  1755. result[1][i] = 0;
  1756. result[2][i] = 0;
  1757. result[3][i] = 0;
  1758. }
  1759. final_candidate = 0xff;
  1760. b_patha_ok = false;
  1761. b_pathb_ok = false;
  1762. is12simular = false;
  1763. is23simular = false;
  1764. is13simular = false;
  1765. for (i = 0; i < 3; i++) {
  1766. if (get_rf_type(rtlphy) == RF_2T2R)
  1767. _rtl88e_phy_iq_calibrate(hw, result, i, true);
  1768. else
  1769. _rtl88e_phy_iq_calibrate(hw, result, i, false);
  1770. if (i == 1) {
  1771. is12simular =
  1772. _rtl88e_phy_simularity_compare(hw, result, 0, 1);
  1773. if (is12simular) {
  1774. final_candidate = 0;
  1775. break;
  1776. }
  1777. }
  1778. if (i == 2) {
  1779. is13simular =
  1780. _rtl88e_phy_simularity_compare(hw, result, 0, 2);
  1781. if (is13simular) {
  1782. final_candidate = 0;
  1783. break;
  1784. }
  1785. is23simular =
  1786. _rtl88e_phy_simularity_compare(hw, result, 1, 2);
  1787. if (is23simular) {
  1788. final_candidate = 1;
  1789. } else {
  1790. for (i = 0; i < 8; i++)
  1791. reg_tmp += result[3][i];
  1792. if (reg_tmp != 0)
  1793. final_candidate = 3;
  1794. else
  1795. final_candidate = 0xFF;
  1796. }
  1797. }
  1798. }
  1799. for (i = 0; i < 4; i++) {
  1800. reg_e94 = result[i][0];
  1801. reg_e9c = result[i][1];
  1802. reg_ea4 = result[i][2];
  1803. reg_eac = result[i][3];
  1804. reg_eb4 = result[i][4];
  1805. reg_ebc = result[i][5];
  1806. reg_ec4 = result[i][6];
  1807. reg_ecc = result[i][7];
  1808. }
  1809. if (final_candidate != 0xff) {
  1810. reg_e94 = result[final_candidate][0];
  1811. reg_e9c = result[final_candidate][1];
  1812. reg_ea4 = result[final_candidate][2];
  1813. reg_eac = result[final_candidate][3];
  1814. reg_eb4 = result[final_candidate][4];
  1815. reg_ebc = result[final_candidate][5];
  1816. reg_ec4 = result[final_candidate][6];
  1817. reg_ecc = result[final_candidate][7];
  1818. rtlphy->reg_eb4 = reg_eb4;
  1819. rtlphy->reg_ebc = reg_ebc;
  1820. rtlphy->reg_e94 = reg_e94;
  1821. rtlphy->reg_e9c = reg_e9c;
  1822. b_patha_ok = true;
  1823. b_pathb_ok = true;
  1824. } else {
  1825. rtlphy->reg_e94 = 0x100;
  1826. rtlphy->reg_eb4 = 0x100;
  1827. rtlphy->reg_e9c = 0x0;
  1828. rtlphy->reg_ebc = 0x0;
  1829. }
  1830. if (reg_e94 != 0) /*&&(reg_ea4 != 0) */
  1831. _rtl88e_phy_path_a_fill_iqk_matrix(hw, b_patha_ok, result,
  1832. final_candidate,
  1833. (reg_ea4 == 0));
  1834. if (final_candidate != 0xFF) {
  1835. for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
  1836. rtlphy->iqk_matrix[0].value[0][i] =
  1837. result[final_candidate][i];
  1838. rtlphy->iqk_matrix[0].iqk_done = true;
  1839. }
  1840. _rtl88e_phy_save_adda_registers(hw, iqk_bb_reg,
  1841. rtlphy->iqk_bb_backup, 9);
  1842. }
  1843. void rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw)
  1844. {
  1845. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1846. struct rtl_phy *rtlphy = &rtlpriv->phy;
  1847. struct rtl_hal *rtlhal = &rtlpriv->rtlhal;
  1848. u32 timeout = 2000, timecount = 0;
  1849. while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
  1850. udelay(50);
  1851. timecount += 50;
  1852. }
  1853. rtlphy->lck_inprogress = true;
  1854. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1855. "LCK:Start!!! currentband %x delay %d ms\n",
  1856. rtlhal->current_bandtype, timecount);
  1857. _rtl88e_phy_lc_calibrate(hw, false);
  1858. rtlphy->lck_inprogress = false;
  1859. }
  1860. void rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw, bool bmain)
  1861. {
  1862. _rtl88e_phy_set_rfpath_switch(hw, bmain, false);
  1863. }
  1864. bool rtl88e_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
  1865. {
  1866. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1867. struct rtl_phy *rtlphy = &rtlpriv->phy;
  1868. bool postprocessing = false;
  1869. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  1870. "-->IO Cmd(%#x), set_io_inprogress(%d)\n",
  1871. iotype, rtlphy->set_io_inprogress);
  1872. do {
  1873. switch (iotype) {
  1874. case IO_CMD_RESUME_DM_BY_SCAN:
  1875. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  1876. "[IO CMD] Resume DM after scan.\n");
  1877. postprocessing = true;
  1878. break;
  1879. case IO_CMD_PAUSE_BAND0_DM_BY_SCAN:
  1880. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  1881. "[IO CMD] Pause DM before scan.\n");
  1882. postprocessing = true;
  1883. break;
  1884. default:
  1885. RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
  1886. "switch case not process\n");
  1887. break;
  1888. }
  1889. } while (false);
  1890. if (postprocessing && !rtlphy->set_io_inprogress) {
  1891. rtlphy->set_io_inprogress = true;
  1892. rtlphy->current_io_type = iotype;
  1893. } else {
  1894. return false;
  1895. }
  1896. rtl88e_phy_set_io(hw);
  1897. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "IO Type(%#x)\n", iotype);
  1898. return true;
  1899. }
  1900. static void rtl88e_phy_set_io(struct ieee80211_hw *hw)
  1901. {
  1902. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1903. struct rtl_phy *rtlphy = &rtlpriv->phy;
  1904. struct dig_t *dm_digtable = &rtlpriv->dm_digtable;
  1905. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  1906. "--->Cmd(%#x), set_io_inprogress(%d)\n",
  1907. rtlphy->current_io_type, rtlphy->set_io_inprogress);
  1908. switch (rtlphy->current_io_type) {
  1909. case IO_CMD_RESUME_DM_BY_SCAN:
  1910. dm_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1;
  1911. /*rtl92c_dm_write_dig(hw);*/
  1912. rtl88e_phy_set_txpower_level(hw, rtlphy->current_channel);
  1913. rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x83);
  1914. break;
  1915. case IO_CMD_PAUSE_BAND0_DM_BY_SCAN:
  1916. rtlphy->initgain_backup.xaagccore1 = dm_digtable->cur_igvalue;
  1917. dm_digtable->cur_igvalue = 0x17;
  1918. rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x40);
  1919. break;
  1920. default:
  1921. RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
  1922. "switch case not process\n");
  1923. break;
  1924. }
  1925. rtlphy->set_io_inprogress = false;
  1926. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  1927. "(%#x)\n", rtlphy->current_io_type);
  1928. }
  1929. static void rtl88ee_phy_set_rf_on(struct ieee80211_hw *hw)
  1930. {
  1931. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1932. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  1933. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  1934. /*rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);*/
  1935. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  1936. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  1937. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  1938. }
  1939. static void _rtl88ee_phy_set_rf_sleep(struct ieee80211_hw *hw)
  1940. {
  1941. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1942. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1943. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
  1944. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  1945. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
  1946. }
  1947. static bool _rtl88ee_phy_set_rf_power_state(struct ieee80211_hw *hw,
  1948. enum rf_pwrstate rfpwr_state)
  1949. {
  1950. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1951. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1952. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1953. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1954. bool bresult = true;
  1955. u8 i, queue_id;
  1956. struct rtl8192_tx_ring *ring = NULL;
  1957. switch (rfpwr_state) {
  1958. case ERFON:
  1959. if ((ppsc->rfpwr_state == ERFOFF) &&
  1960. RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
  1961. bool rtstatus;
  1962. u32 initializecount = 0;
  1963. do {
  1964. initializecount++;
  1965. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1966. "IPS Set eRf nic enable\n");
  1967. rtstatus = rtl_ps_enable_nic(hw);
  1968. } while (!rtstatus &&
  1969. (initializecount < 10));
  1970. RT_CLEAR_PS_LEVEL(ppsc,
  1971. RT_RF_OFF_LEVL_HALT_NIC);
  1972. } else {
  1973. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1974. "Set ERFON sleeped:%d ms\n",
  1975. jiffies_to_msecs(jiffies -
  1976. ppsc->
  1977. last_sleep_jiffies));
  1978. ppsc->last_awake_jiffies = jiffies;
  1979. rtl88ee_phy_set_rf_on(hw);
  1980. }
  1981. if (mac->link_state == MAC80211_LINKED) {
  1982. rtlpriv->cfg->ops->led_control(hw,
  1983. LED_CTL_LINK);
  1984. } else {
  1985. rtlpriv->cfg->ops->led_control(hw,
  1986. LED_CTL_NO_LINK);
  1987. }
  1988. break;
  1989. case ERFOFF:
  1990. for (queue_id = 0, i = 0;
  1991. queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
  1992. ring = &pcipriv->dev.tx_ring[queue_id];
  1993. if (queue_id == BEACON_QUEUE ||
  1994. skb_queue_len(&ring->queue) == 0) {
  1995. queue_id++;
  1996. continue;
  1997. } else {
  1998. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1999. "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
  2000. (i + 1), queue_id,
  2001. skb_queue_len(&ring->queue));
  2002. udelay(10);
  2003. i++;
  2004. }
  2005. if (i >= MAX_DOZE_WAITING_TIMES_9x) {
  2006. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  2007. "\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
  2008. MAX_DOZE_WAITING_TIMES_9x,
  2009. queue_id,
  2010. skb_queue_len(&ring->queue));
  2011. break;
  2012. }
  2013. }
  2014. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
  2015. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2016. "IPS Set eRf nic disable\n");
  2017. rtl_ps_disable_nic(hw);
  2018. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  2019. } else {
  2020. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) {
  2021. rtlpriv->cfg->ops->led_control(hw,
  2022. LED_CTL_NO_LINK);
  2023. } else {
  2024. rtlpriv->cfg->ops->led_control(hw,
  2025. LED_CTL_POWER_OFF);
  2026. }
  2027. }
  2028. break;
  2029. case ERFSLEEP:{
  2030. if (ppsc->rfpwr_state == ERFOFF)
  2031. break;
  2032. for (queue_id = 0, i = 0;
  2033. queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
  2034. ring = &pcipriv->dev.tx_ring[queue_id];
  2035. if (skb_queue_len(&ring->queue) == 0) {
  2036. queue_id++;
  2037. continue;
  2038. } else {
  2039. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  2040. "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
  2041. (i + 1), queue_id,
  2042. skb_queue_len(&ring->queue));
  2043. udelay(10);
  2044. i++;
  2045. }
  2046. if (i >= MAX_DOZE_WAITING_TIMES_9x) {
  2047. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  2048. "\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
  2049. MAX_DOZE_WAITING_TIMES_9x,
  2050. queue_id,
  2051. skb_queue_len(&ring->queue));
  2052. break;
  2053. }
  2054. }
  2055. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2056. "Set ERFSLEEP awaked:%d ms\n",
  2057. jiffies_to_msecs(jiffies -
  2058. ppsc->last_awake_jiffies));
  2059. ppsc->last_sleep_jiffies = jiffies;
  2060. _rtl88ee_phy_set_rf_sleep(hw);
  2061. break;
  2062. }
  2063. default:
  2064. RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
  2065. "switch case not process\n");
  2066. bresult = false;
  2067. break;
  2068. }
  2069. if (bresult)
  2070. ppsc->rfpwr_state = rfpwr_state;
  2071. return bresult;
  2072. }
  2073. bool rtl88e_phy_set_rf_power_state(struct ieee80211_hw *hw,
  2074. enum rf_pwrstate rfpwr_state)
  2075. {
  2076. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  2077. bool bresult = false;
  2078. if (rfpwr_state == ppsc->rfpwr_state)
  2079. return bresult;
  2080. bresult = _rtl88ee_phy_set_rf_power_state(hw, rfpwr_state);
  2081. return bresult;
  2082. }