msgbuf.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495
  1. /* Copyright (c) 2014 Broadcom Corporation
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  14. */
  15. /*******************************************************************************
  16. * Communicates with the dongle by using dcmd codes.
  17. * For certain dcmd codes, the dongle interprets string data from the host.
  18. ******************************************************************************/
  19. #include <linux/types.h>
  20. #include <linux/netdevice.h>
  21. #include <brcmu_utils.h>
  22. #include <brcmu_wifi.h>
  23. #include "core.h"
  24. #include "debug.h"
  25. #include "proto.h"
  26. #include "msgbuf.h"
  27. #include "commonring.h"
  28. #include "flowring.h"
  29. #include "bus.h"
  30. #include "tracepoint.h"
  31. #define MSGBUF_IOCTL_RESP_TIMEOUT 2000
  32. #define MSGBUF_TYPE_GEN_STATUS 0x1
  33. #define MSGBUF_TYPE_RING_STATUS 0x2
  34. #define MSGBUF_TYPE_FLOW_RING_CREATE 0x3
  35. #define MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT 0x4
  36. #define MSGBUF_TYPE_FLOW_RING_DELETE 0x5
  37. #define MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT 0x6
  38. #define MSGBUF_TYPE_FLOW_RING_FLUSH 0x7
  39. #define MSGBUF_TYPE_FLOW_RING_FLUSH_CMPLT 0x8
  40. #define MSGBUF_TYPE_IOCTLPTR_REQ 0x9
  41. #define MSGBUF_TYPE_IOCTLPTR_REQ_ACK 0xA
  42. #define MSGBUF_TYPE_IOCTLRESP_BUF_POST 0xB
  43. #define MSGBUF_TYPE_IOCTL_CMPLT 0xC
  44. #define MSGBUF_TYPE_EVENT_BUF_POST 0xD
  45. #define MSGBUF_TYPE_WL_EVENT 0xE
  46. #define MSGBUF_TYPE_TX_POST 0xF
  47. #define MSGBUF_TYPE_TX_STATUS 0x10
  48. #define MSGBUF_TYPE_RXBUF_POST 0x11
  49. #define MSGBUF_TYPE_RX_CMPLT 0x12
  50. #define MSGBUF_TYPE_LPBK_DMAXFER 0x13
  51. #define MSGBUF_TYPE_LPBK_DMAXFER_CMPLT 0x14
  52. #define NR_TX_PKTIDS 2048
  53. #define NR_RX_PKTIDS 1024
  54. #define BRCMF_IOCTL_REQ_PKTID 0xFFFE
  55. #define BRCMF_MSGBUF_MAX_PKT_SIZE 2048
  56. #define BRCMF_MSGBUF_RXBUFPOST_THRESHOLD 32
  57. #define BRCMF_MSGBUF_MAX_IOCTLRESPBUF_POST 8
  58. #define BRCMF_MSGBUF_MAX_EVENTBUF_POST 8
  59. #define BRCMF_MSGBUF_PKT_FLAGS_FRAME_802_3 0x01
  60. #define BRCMF_MSGBUF_PKT_FLAGS_PRIO_SHIFT 5
  61. #define BRCMF_MSGBUF_TX_FLUSH_CNT1 32
  62. #define BRCMF_MSGBUF_TX_FLUSH_CNT2 96
  63. struct msgbuf_common_hdr {
  64. u8 msgtype;
  65. u8 ifidx;
  66. u8 flags;
  67. u8 rsvd0;
  68. __le32 request_id;
  69. };
  70. struct msgbuf_buf_addr {
  71. __le32 low_addr;
  72. __le32 high_addr;
  73. };
  74. struct msgbuf_ioctl_req_hdr {
  75. struct msgbuf_common_hdr msg;
  76. __le32 cmd;
  77. __le16 trans_id;
  78. __le16 input_buf_len;
  79. __le16 output_buf_len;
  80. __le16 rsvd0[3];
  81. struct msgbuf_buf_addr req_buf_addr;
  82. __le32 rsvd1[2];
  83. };
  84. struct msgbuf_tx_msghdr {
  85. struct msgbuf_common_hdr msg;
  86. u8 txhdr[ETH_HLEN];
  87. u8 flags;
  88. u8 seg_cnt;
  89. struct msgbuf_buf_addr metadata_buf_addr;
  90. struct msgbuf_buf_addr data_buf_addr;
  91. __le16 metadata_buf_len;
  92. __le16 data_len;
  93. __le32 rsvd0;
  94. };
  95. struct msgbuf_rx_bufpost {
  96. struct msgbuf_common_hdr msg;
  97. __le16 metadata_buf_len;
  98. __le16 data_buf_len;
  99. __le32 rsvd0;
  100. struct msgbuf_buf_addr metadata_buf_addr;
  101. struct msgbuf_buf_addr data_buf_addr;
  102. };
  103. struct msgbuf_rx_ioctl_resp_or_event {
  104. struct msgbuf_common_hdr msg;
  105. __le16 host_buf_len;
  106. __le16 rsvd0[3];
  107. struct msgbuf_buf_addr host_buf_addr;
  108. __le32 rsvd1[4];
  109. };
  110. struct msgbuf_completion_hdr {
  111. __le16 status;
  112. __le16 flow_ring_id;
  113. };
  114. struct msgbuf_rx_event {
  115. struct msgbuf_common_hdr msg;
  116. struct msgbuf_completion_hdr compl_hdr;
  117. __le16 event_data_len;
  118. __le16 seqnum;
  119. __le16 rsvd0[4];
  120. };
  121. struct msgbuf_ioctl_resp_hdr {
  122. struct msgbuf_common_hdr msg;
  123. struct msgbuf_completion_hdr compl_hdr;
  124. __le16 resp_len;
  125. __le16 trans_id;
  126. __le32 cmd;
  127. __le32 rsvd0;
  128. };
  129. struct msgbuf_tx_status {
  130. struct msgbuf_common_hdr msg;
  131. struct msgbuf_completion_hdr compl_hdr;
  132. __le16 metadata_len;
  133. __le16 tx_status;
  134. };
  135. struct msgbuf_rx_complete {
  136. struct msgbuf_common_hdr msg;
  137. struct msgbuf_completion_hdr compl_hdr;
  138. __le16 metadata_len;
  139. __le16 data_len;
  140. __le16 data_offset;
  141. __le16 flags;
  142. __le32 rx_status_0;
  143. __le32 rx_status_1;
  144. __le32 rsvd0;
  145. };
  146. struct msgbuf_tx_flowring_create_req {
  147. struct msgbuf_common_hdr msg;
  148. u8 da[ETH_ALEN];
  149. u8 sa[ETH_ALEN];
  150. u8 tid;
  151. u8 if_flags;
  152. __le16 flow_ring_id;
  153. u8 tc;
  154. u8 priority;
  155. __le16 int_vector;
  156. __le16 max_items;
  157. __le16 len_item;
  158. struct msgbuf_buf_addr flow_ring_addr;
  159. };
  160. struct msgbuf_tx_flowring_delete_req {
  161. struct msgbuf_common_hdr msg;
  162. __le16 flow_ring_id;
  163. __le16 reason;
  164. __le32 rsvd0[7];
  165. };
  166. struct msgbuf_flowring_create_resp {
  167. struct msgbuf_common_hdr msg;
  168. struct msgbuf_completion_hdr compl_hdr;
  169. __le32 rsvd0[3];
  170. };
  171. struct msgbuf_flowring_delete_resp {
  172. struct msgbuf_common_hdr msg;
  173. struct msgbuf_completion_hdr compl_hdr;
  174. __le32 rsvd0[3];
  175. };
  176. struct msgbuf_flowring_flush_resp {
  177. struct msgbuf_common_hdr msg;
  178. struct msgbuf_completion_hdr compl_hdr;
  179. __le32 rsvd0[3];
  180. };
  181. struct brcmf_msgbuf_work_item {
  182. struct list_head queue;
  183. u32 flowid;
  184. int ifidx;
  185. u8 sa[ETH_ALEN];
  186. u8 da[ETH_ALEN];
  187. };
  188. struct brcmf_msgbuf {
  189. struct brcmf_pub *drvr;
  190. struct brcmf_commonring **commonrings;
  191. struct brcmf_commonring **flowrings;
  192. dma_addr_t *flowring_dma_handle;
  193. u16 nrof_flowrings;
  194. u16 rx_dataoffset;
  195. u32 max_rxbufpost;
  196. u16 rx_metadata_offset;
  197. u32 rxbufpost;
  198. u32 max_ioctlrespbuf;
  199. u32 cur_ioctlrespbuf;
  200. u32 max_eventbuf;
  201. u32 cur_eventbuf;
  202. void *ioctbuf;
  203. dma_addr_t ioctbuf_handle;
  204. u32 ioctbuf_phys_hi;
  205. u32 ioctbuf_phys_lo;
  206. int ioctl_resp_status;
  207. u32 ioctl_resp_ret_len;
  208. u32 ioctl_resp_pktid;
  209. u16 data_seq_no;
  210. u16 ioctl_seq_no;
  211. u32 reqid;
  212. wait_queue_head_t ioctl_resp_wait;
  213. bool ctl_completed;
  214. struct brcmf_msgbuf_pktids *tx_pktids;
  215. struct brcmf_msgbuf_pktids *rx_pktids;
  216. struct brcmf_flowring *flow;
  217. struct workqueue_struct *txflow_wq;
  218. struct work_struct txflow_work;
  219. unsigned long *flow_map;
  220. unsigned long *txstatus_done_map;
  221. struct work_struct flowring_work;
  222. spinlock_t flowring_work_lock;
  223. struct list_head work_queue;
  224. };
  225. struct brcmf_msgbuf_pktid {
  226. atomic_t allocated;
  227. u16 data_offset;
  228. struct sk_buff *skb;
  229. dma_addr_t physaddr;
  230. };
  231. struct brcmf_msgbuf_pktids {
  232. u32 array_size;
  233. u32 last_allocated_idx;
  234. enum dma_data_direction direction;
  235. struct brcmf_msgbuf_pktid *array;
  236. };
  237. /* dma flushing needs implementation for mips and arm platforms. Should
  238. * be put in util. Note, this is not real flushing. It is virtual non
  239. * cached memory. Only write buffers should have to be drained. Though
  240. * this may be different depending on platform......
  241. */
  242. #define brcmf_dma_flush(addr, len)
  243. #define brcmf_dma_invalidate_cache(addr, len)
  244. static void brcmf_msgbuf_rxbuf_ioctlresp_post(struct brcmf_msgbuf *msgbuf);
  245. static struct brcmf_msgbuf_pktids *
  246. brcmf_msgbuf_init_pktids(u32 nr_array_entries,
  247. enum dma_data_direction direction)
  248. {
  249. struct brcmf_msgbuf_pktid *array;
  250. struct brcmf_msgbuf_pktids *pktids;
  251. array = kcalloc(nr_array_entries, sizeof(*array), GFP_KERNEL);
  252. if (!array)
  253. return NULL;
  254. pktids = kzalloc(sizeof(*pktids), GFP_KERNEL);
  255. if (!pktids) {
  256. kfree(array);
  257. return NULL;
  258. }
  259. pktids->array = array;
  260. pktids->array_size = nr_array_entries;
  261. return pktids;
  262. }
  263. static int
  264. brcmf_msgbuf_alloc_pktid(struct device *dev,
  265. struct brcmf_msgbuf_pktids *pktids,
  266. struct sk_buff *skb, u16 data_offset,
  267. dma_addr_t *physaddr, u32 *idx)
  268. {
  269. struct brcmf_msgbuf_pktid *array;
  270. u32 count;
  271. array = pktids->array;
  272. *physaddr = dma_map_single(dev, skb->data + data_offset,
  273. skb->len - data_offset, pktids->direction);
  274. if (dma_mapping_error(dev, *physaddr)) {
  275. brcmf_err("dma_map_single failed !!\n");
  276. return -ENOMEM;
  277. }
  278. *idx = pktids->last_allocated_idx;
  279. count = 0;
  280. do {
  281. (*idx)++;
  282. if (*idx == pktids->array_size)
  283. *idx = 0;
  284. if (array[*idx].allocated.counter == 0)
  285. if (atomic_cmpxchg(&array[*idx].allocated, 0, 1) == 0)
  286. break;
  287. count++;
  288. } while (count < pktids->array_size);
  289. if (count == pktids->array_size)
  290. return -ENOMEM;
  291. array[*idx].data_offset = data_offset;
  292. array[*idx].physaddr = *physaddr;
  293. array[*idx].skb = skb;
  294. pktids->last_allocated_idx = *idx;
  295. return 0;
  296. }
  297. static struct sk_buff *
  298. brcmf_msgbuf_get_pktid(struct device *dev, struct brcmf_msgbuf_pktids *pktids,
  299. u32 idx)
  300. {
  301. struct brcmf_msgbuf_pktid *pktid;
  302. struct sk_buff *skb;
  303. if (idx >= pktids->array_size) {
  304. brcmf_err("Invalid packet id %d (max %d)\n", idx,
  305. pktids->array_size);
  306. return NULL;
  307. }
  308. if (pktids->array[idx].allocated.counter) {
  309. pktid = &pktids->array[idx];
  310. dma_unmap_single(dev, pktid->physaddr,
  311. pktid->skb->len - pktid->data_offset,
  312. pktids->direction);
  313. skb = pktid->skb;
  314. pktid->allocated.counter = 0;
  315. return skb;
  316. } else {
  317. brcmf_err("Invalid packet id %d (not in use)\n", idx);
  318. }
  319. return NULL;
  320. }
  321. static void
  322. brcmf_msgbuf_release_array(struct device *dev,
  323. struct brcmf_msgbuf_pktids *pktids)
  324. {
  325. struct brcmf_msgbuf_pktid *array;
  326. struct brcmf_msgbuf_pktid *pktid;
  327. u32 count;
  328. array = pktids->array;
  329. count = 0;
  330. do {
  331. if (array[count].allocated.counter) {
  332. pktid = &array[count];
  333. dma_unmap_single(dev, pktid->physaddr,
  334. pktid->skb->len - pktid->data_offset,
  335. pktids->direction);
  336. brcmu_pkt_buf_free_skb(pktid->skb);
  337. }
  338. count++;
  339. } while (count < pktids->array_size);
  340. kfree(array);
  341. kfree(pktids);
  342. }
  343. static void brcmf_msgbuf_release_pktids(struct brcmf_msgbuf *msgbuf)
  344. {
  345. if (msgbuf->rx_pktids)
  346. brcmf_msgbuf_release_array(msgbuf->drvr->bus_if->dev,
  347. msgbuf->rx_pktids);
  348. if (msgbuf->tx_pktids)
  349. brcmf_msgbuf_release_array(msgbuf->drvr->bus_if->dev,
  350. msgbuf->tx_pktids);
  351. }
  352. static int brcmf_msgbuf_tx_ioctl(struct brcmf_pub *drvr, int ifidx,
  353. uint cmd, void *buf, uint len)
  354. {
  355. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  356. struct brcmf_commonring *commonring;
  357. struct msgbuf_ioctl_req_hdr *request;
  358. u16 buf_len;
  359. void *ret_ptr;
  360. int err;
  361. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  362. brcmf_commonring_lock(commonring);
  363. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  364. if (!ret_ptr) {
  365. brcmf_err("Failed to reserve space in commonring\n");
  366. brcmf_commonring_unlock(commonring);
  367. return -ENOMEM;
  368. }
  369. msgbuf->reqid++;
  370. request = (struct msgbuf_ioctl_req_hdr *)ret_ptr;
  371. request->msg.msgtype = MSGBUF_TYPE_IOCTLPTR_REQ;
  372. request->msg.ifidx = (u8)ifidx;
  373. request->msg.flags = 0;
  374. request->msg.request_id = cpu_to_le32(BRCMF_IOCTL_REQ_PKTID);
  375. request->cmd = cpu_to_le32(cmd);
  376. request->output_buf_len = cpu_to_le16(len);
  377. request->trans_id = cpu_to_le16(msgbuf->reqid);
  378. buf_len = min_t(u16, len, BRCMF_TX_IOCTL_MAX_MSG_SIZE);
  379. request->input_buf_len = cpu_to_le16(buf_len);
  380. request->req_buf_addr.high_addr = cpu_to_le32(msgbuf->ioctbuf_phys_hi);
  381. request->req_buf_addr.low_addr = cpu_to_le32(msgbuf->ioctbuf_phys_lo);
  382. if (buf)
  383. memcpy(msgbuf->ioctbuf, buf, buf_len);
  384. else
  385. memset(msgbuf->ioctbuf, 0, buf_len);
  386. brcmf_dma_flush(ioctl_buf, buf_len);
  387. err = brcmf_commonring_write_complete(commonring);
  388. brcmf_commonring_unlock(commonring);
  389. return err;
  390. }
  391. static int brcmf_msgbuf_ioctl_resp_wait(struct brcmf_msgbuf *msgbuf)
  392. {
  393. return wait_event_timeout(msgbuf->ioctl_resp_wait,
  394. msgbuf->ctl_completed,
  395. msecs_to_jiffies(MSGBUF_IOCTL_RESP_TIMEOUT));
  396. }
  397. static void brcmf_msgbuf_ioctl_resp_wake(struct brcmf_msgbuf *msgbuf)
  398. {
  399. if (waitqueue_active(&msgbuf->ioctl_resp_wait)) {
  400. msgbuf->ctl_completed = true;
  401. wake_up(&msgbuf->ioctl_resp_wait);
  402. }
  403. }
  404. static int brcmf_msgbuf_query_dcmd(struct brcmf_pub *drvr, int ifidx,
  405. uint cmd, void *buf, uint len)
  406. {
  407. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  408. struct sk_buff *skb = NULL;
  409. int timeout;
  410. int err;
  411. brcmf_dbg(MSGBUF, "ifidx=%d, cmd=%d, len=%d\n", ifidx, cmd, len);
  412. msgbuf->ctl_completed = false;
  413. err = brcmf_msgbuf_tx_ioctl(drvr, ifidx, cmd, buf, len);
  414. if (err)
  415. return err;
  416. timeout = brcmf_msgbuf_ioctl_resp_wait(msgbuf);
  417. if (!timeout) {
  418. brcmf_err("Timeout on response for query command\n");
  419. return -EIO;
  420. }
  421. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  422. msgbuf->rx_pktids,
  423. msgbuf->ioctl_resp_pktid);
  424. if (msgbuf->ioctl_resp_ret_len != 0) {
  425. if (!skb) {
  426. brcmf_err("Invalid packet id idx recv'd %d\n",
  427. msgbuf->ioctl_resp_pktid);
  428. return -EBADF;
  429. }
  430. memcpy(buf, skb->data, (len < msgbuf->ioctl_resp_ret_len) ?
  431. len : msgbuf->ioctl_resp_ret_len);
  432. }
  433. brcmu_pkt_buf_free_skb(skb);
  434. return msgbuf->ioctl_resp_status;
  435. }
  436. static int brcmf_msgbuf_set_dcmd(struct brcmf_pub *drvr, int ifidx,
  437. uint cmd, void *buf, uint len)
  438. {
  439. return brcmf_msgbuf_query_dcmd(drvr, ifidx, cmd, buf, len);
  440. }
  441. static int brcmf_msgbuf_hdrpull(struct brcmf_pub *drvr, bool do_fws,
  442. u8 *ifidx, struct sk_buff *skb)
  443. {
  444. return -ENODEV;
  445. }
  446. static void
  447. brcmf_msgbuf_remove_flowring(struct brcmf_msgbuf *msgbuf, u16 flowid)
  448. {
  449. u32 dma_sz;
  450. void *dma_buf;
  451. brcmf_dbg(MSGBUF, "Removing flowring %d\n", flowid);
  452. dma_sz = BRCMF_H2D_TXFLOWRING_MAX_ITEM * BRCMF_H2D_TXFLOWRING_ITEMSIZE;
  453. dma_buf = msgbuf->flowrings[flowid]->buf_addr;
  454. dma_free_coherent(msgbuf->drvr->bus_if->dev, dma_sz, dma_buf,
  455. msgbuf->flowring_dma_handle[flowid]);
  456. brcmf_flowring_delete(msgbuf->flow, flowid);
  457. }
  458. static struct brcmf_msgbuf_work_item *
  459. brcmf_msgbuf_dequeue_work(struct brcmf_msgbuf *msgbuf)
  460. {
  461. struct brcmf_msgbuf_work_item *work = NULL;
  462. ulong flags;
  463. spin_lock_irqsave(&msgbuf->flowring_work_lock, flags);
  464. if (!list_empty(&msgbuf->work_queue)) {
  465. work = list_first_entry(&msgbuf->work_queue,
  466. struct brcmf_msgbuf_work_item, queue);
  467. list_del(&work->queue);
  468. }
  469. spin_unlock_irqrestore(&msgbuf->flowring_work_lock, flags);
  470. return work;
  471. }
  472. static u32
  473. brcmf_msgbuf_flowring_create_worker(struct brcmf_msgbuf *msgbuf,
  474. struct brcmf_msgbuf_work_item *work)
  475. {
  476. struct msgbuf_tx_flowring_create_req *create;
  477. struct brcmf_commonring *commonring;
  478. void *ret_ptr;
  479. u32 flowid;
  480. void *dma_buf;
  481. u32 dma_sz;
  482. long long address;
  483. int err;
  484. flowid = work->flowid;
  485. dma_sz = BRCMF_H2D_TXFLOWRING_MAX_ITEM * BRCMF_H2D_TXFLOWRING_ITEMSIZE;
  486. dma_buf = dma_alloc_coherent(msgbuf->drvr->bus_if->dev, dma_sz,
  487. &msgbuf->flowring_dma_handle[flowid],
  488. GFP_KERNEL);
  489. if (!dma_buf) {
  490. brcmf_err("dma_alloc_coherent failed\n");
  491. brcmf_flowring_delete(msgbuf->flow, flowid);
  492. return BRCMF_FLOWRING_INVALID_ID;
  493. }
  494. brcmf_commonring_config(msgbuf->flowrings[flowid],
  495. BRCMF_H2D_TXFLOWRING_MAX_ITEM,
  496. BRCMF_H2D_TXFLOWRING_ITEMSIZE, dma_buf);
  497. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  498. brcmf_commonring_lock(commonring);
  499. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  500. if (!ret_ptr) {
  501. brcmf_err("Failed to reserve space in commonring\n");
  502. brcmf_commonring_unlock(commonring);
  503. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  504. return BRCMF_FLOWRING_INVALID_ID;
  505. }
  506. create = (struct msgbuf_tx_flowring_create_req *)ret_ptr;
  507. create->msg.msgtype = MSGBUF_TYPE_FLOW_RING_CREATE;
  508. create->msg.ifidx = work->ifidx;
  509. create->msg.request_id = 0;
  510. create->tid = brcmf_flowring_tid(msgbuf->flow, flowid);
  511. create->flow_ring_id = cpu_to_le16(flowid +
  512. BRCMF_NROF_H2D_COMMON_MSGRINGS);
  513. memcpy(create->sa, work->sa, ETH_ALEN);
  514. memcpy(create->da, work->da, ETH_ALEN);
  515. address = (long long)(long)msgbuf->flowring_dma_handle[flowid];
  516. create->flow_ring_addr.high_addr = cpu_to_le32(address >> 32);
  517. create->flow_ring_addr.low_addr = cpu_to_le32(address & 0xffffffff);
  518. create->max_items = cpu_to_le16(BRCMF_H2D_TXFLOWRING_MAX_ITEM);
  519. create->len_item = cpu_to_le16(BRCMF_H2D_TXFLOWRING_ITEMSIZE);
  520. brcmf_dbg(MSGBUF, "Send Flow Create Req flow ID %d for peer %pM prio %d ifindex %d\n",
  521. flowid, work->da, create->tid, work->ifidx);
  522. err = brcmf_commonring_write_complete(commonring);
  523. brcmf_commonring_unlock(commonring);
  524. if (err) {
  525. brcmf_err("Failed to write commonring\n");
  526. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  527. return BRCMF_FLOWRING_INVALID_ID;
  528. }
  529. return flowid;
  530. }
  531. static void brcmf_msgbuf_flowring_worker(struct work_struct *work)
  532. {
  533. struct brcmf_msgbuf *msgbuf;
  534. struct brcmf_msgbuf_work_item *create;
  535. msgbuf = container_of(work, struct brcmf_msgbuf, flowring_work);
  536. while ((create = brcmf_msgbuf_dequeue_work(msgbuf))) {
  537. brcmf_msgbuf_flowring_create_worker(msgbuf, create);
  538. kfree(create);
  539. }
  540. }
  541. static u32 brcmf_msgbuf_flowring_create(struct brcmf_msgbuf *msgbuf, int ifidx,
  542. struct sk_buff *skb)
  543. {
  544. struct brcmf_msgbuf_work_item *create;
  545. struct ethhdr *eh = (struct ethhdr *)(skb->data);
  546. u32 flowid;
  547. ulong flags;
  548. create = kzalloc(sizeof(*create), GFP_ATOMIC);
  549. if (create == NULL)
  550. return BRCMF_FLOWRING_INVALID_ID;
  551. flowid = brcmf_flowring_create(msgbuf->flow, eh->h_dest,
  552. skb->priority, ifidx);
  553. if (flowid == BRCMF_FLOWRING_INVALID_ID) {
  554. kfree(create);
  555. return flowid;
  556. }
  557. create->flowid = flowid;
  558. create->ifidx = ifidx;
  559. memcpy(create->sa, eh->h_source, ETH_ALEN);
  560. memcpy(create->da, eh->h_dest, ETH_ALEN);
  561. spin_lock_irqsave(&msgbuf->flowring_work_lock, flags);
  562. list_add_tail(&create->queue, &msgbuf->work_queue);
  563. spin_unlock_irqrestore(&msgbuf->flowring_work_lock, flags);
  564. schedule_work(&msgbuf->flowring_work);
  565. return flowid;
  566. }
  567. static void brcmf_msgbuf_txflow(struct brcmf_msgbuf *msgbuf, u8 flowid)
  568. {
  569. struct brcmf_flowring *flow = msgbuf->flow;
  570. struct brcmf_commonring *commonring;
  571. void *ret_ptr;
  572. u32 count;
  573. struct sk_buff *skb;
  574. dma_addr_t physaddr;
  575. u32 pktid;
  576. struct msgbuf_tx_msghdr *tx_msghdr;
  577. long long address;
  578. commonring = msgbuf->flowrings[flowid];
  579. if (!brcmf_commonring_write_available(commonring))
  580. return;
  581. brcmf_commonring_lock(commonring);
  582. count = BRCMF_MSGBUF_TX_FLUSH_CNT2 - BRCMF_MSGBUF_TX_FLUSH_CNT1;
  583. while (brcmf_flowring_qlen(flow, flowid)) {
  584. skb = brcmf_flowring_dequeue(flow, flowid);
  585. if (skb == NULL) {
  586. brcmf_err("No SKB, but qlen %d\n",
  587. brcmf_flowring_qlen(flow, flowid));
  588. break;
  589. }
  590. skb_orphan(skb);
  591. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  592. msgbuf->tx_pktids, skb, ETH_HLEN,
  593. &physaddr, &pktid)) {
  594. brcmf_flowring_reinsert(flow, flowid, skb);
  595. brcmf_err("No PKTID available !!\n");
  596. break;
  597. }
  598. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  599. if (!ret_ptr) {
  600. brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  601. msgbuf->tx_pktids, pktid);
  602. brcmf_flowring_reinsert(flow, flowid, skb);
  603. break;
  604. }
  605. count++;
  606. tx_msghdr = (struct msgbuf_tx_msghdr *)ret_ptr;
  607. tx_msghdr->msg.msgtype = MSGBUF_TYPE_TX_POST;
  608. tx_msghdr->msg.request_id = cpu_to_le32(pktid);
  609. tx_msghdr->msg.ifidx = brcmf_flowring_ifidx_get(flow, flowid);
  610. tx_msghdr->flags = BRCMF_MSGBUF_PKT_FLAGS_FRAME_802_3;
  611. tx_msghdr->flags |= (skb->priority & 0x07) <<
  612. BRCMF_MSGBUF_PKT_FLAGS_PRIO_SHIFT;
  613. tx_msghdr->seg_cnt = 1;
  614. memcpy(tx_msghdr->txhdr, skb->data, ETH_HLEN);
  615. tx_msghdr->data_len = cpu_to_le16(skb->len - ETH_HLEN);
  616. address = (long long)(long)physaddr;
  617. tx_msghdr->data_buf_addr.high_addr = cpu_to_le32(address >> 32);
  618. tx_msghdr->data_buf_addr.low_addr =
  619. cpu_to_le32(address & 0xffffffff);
  620. tx_msghdr->metadata_buf_len = 0;
  621. tx_msghdr->metadata_buf_addr.high_addr = 0;
  622. tx_msghdr->metadata_buf_addr.low_addr = 0;
  623. if (count >= BRCMF_MSGBUF_TX_FLUSH_CNT2) {
  624. brcmf_commonring_write_complete(commonring);
  625. count = 0;
  626. }
  627. }
  628. if (count)
  629. brcmf_commonring_write_complete(commonring);
  630. brcmf_commonring_unlock(commonring);
  631. }
  632. static void brcmf_msgbuf_txflow_worker(struct work_struct *worker)
  633. {
  634. struct brcmf_msgbuf *msgbuf;
  635. u32 flowid;
  636. msgbuf = container_of(worker, struct brcmf_msgbuf, txflow_work);
  637. for_each_set_bit(flowid, msgbuf->flow_map, msgbuf->nrof_flowrings) {
  638. clear_bit(flowid, msgbuf->flow_map);
  639. brcmf_msgbuf_txflow(msgbuf, flowid);
  640. }
  641. }
  642. static int brcmf_msgbuf_schedule_txdata(struct brcmf_msgbuf *msgbuf, u32 flowid)
  643. {
  644. set_bit(flowid, msgbuf->flow_map);
  645. queue_work(msgbuf->txflow_wq, &msgbuf->txflow_work);
  646. return 0;
  647. }
  648. static int brcmf_msgbuf_txdata(struct brcmf_pub *drvr, int ifidx,
  649. u8 offset, struct sk_buff *skb)
  650. {
  651. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  652. struct brcmf_flowring *flow = msgbuf->flow;
  653. struct ethhdr *eh = (struct ethhdr *)(skb->data);
  654. u32 flowid;
  655. flowid = brcmf_flowring_lookup(flow, eh->h_dest, skb->priority, ifidx);
  656. if (flowid == BRCMF_FLOWRING_INVALID_ID) {
  657. flowid = brcmf_msgbuf_flowring_create(msgbuf, ifidx, skb);
  658. if (flowid == BRCMF_FLOWRING_INVALID_ID)
  659. return -ENOMEM;
  660. }
  661. brcmf_flowring_enqueue(flow, flowid, skb);
  662. brcmf_msgbuf_schedule_txdata(msgbuf, flowid);
  663. return 0;
  664. }
  665. static void
  666. brcmf_msgbuf_configure_addr_mode(struct brcmf_pub *drvr, int ifidx,
  667. enum proto_addr_mode addr_mode)
  668. {
  669. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  670. brcmf_flowring_configure_addr_mode(msgbuf->flow, ifidx, addr_mode);
  671. }
  672. static void
  673. brcmf_msgbuf_delete_peer(struct brcmf_pub *drvr, int ifidx, u8 peer[ETH_ALEN])
  674. {
  675. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  676. brcmf_flowring_delete_peer(msgbuf->flow, ifidx, peer);
  677. }
  678. static void
  679. brcmf_msgbuf_add_tdls_peer(struct brcmf_pub *drvr, int ifidx, u8 peer[ETH_ALEN])
  680. {
  681. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  682. brcmf_flowring_add_tdls_peer(msgbuf->flow, ifidx, peer);
  683. }
  684. static void
  685. brcmf_msgbuf_process_ioctl_complete(struct brcmf_msgbuf *msgbuf, void *buf)
  686. {
  687. struct msgbuf_ioctl_resp_hdr *ioctl_resp;
  688. ioctl_resp = (struct msgbuf_ioctl_resp_hdr *)buf;
  689. msgbuf->ioctl_resp_status =
  690. (s16)le16_to_cpu(ioctl_resp->compl_hdr.status);
  691. msgbuf->ioctl_resp_ret_len = le16_to_cpu(ioctl_resp->resp_len);
  692. msgbuf->ioctl_resp_pktid = le32_to_cpu(ioctl_resp->msg.request_id);
  693. brcmf_msgbuf_ioctl_resp_wake(msgbuf);
  694. if (msgbuf->cur_ioctlrespbuf)
  695. msgbuf->cur_ioctlrespbuf--;
  696. brcmf_msgbuf_rxbuf_ioctlresp_post(msgbuf);
  697. }
  698. static void
  699. brcmf_msgbuf_process_txstatus(struct brcmf_msgbuf *msgbuf, void *buf)
  700. {
  701. struct msgbuf_tx_status *tx_status;
  702. u32 idx;
  703. struct sk_buff *skb;
  704. u16 flowid;
  705. tx_status = (struct msgbuf_tx_status *)buf;
  706. idx = le32_to_cpu(tx_status->msg.request_id);
  707. flowid = le16_to_cpu(tx_status->compl_hdr.flow_ring_id);
  708. flowid -= BRCMF_NROF_H2D_COMMON_MSGRINGS;
  709. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  710. msgbuf->tx_pktids, idx);
  711. if (!skb) {
  712. brcmf_err("Invalid packet id idx recv'd %d\n", idx);
  713. return;
  714. }
  715. set_bit(flowid, msgbuf->txstatus_done_map);
  716. brcmf_txfinalize(msgbuf->drvr, skb, tx_status->msg.ifidx, true);
  717. }
  718. static u32 brcmf_msgbuf_rxbuf_data_post(struct brcmf_msgbuf *msgbuf, u32 count)
  719. {
  720. struct brcmf_commonring *commonring;
  721. void *ret_ptr;
  722. struct sk_buff *skb;
  723. u16 alloced;
  724. u32 pktlen;
  725. dma_addr_t physaddr;
  726. struct msgbuf_rx_bufpost *rx_bufpost;
  727. long long address;
  728. u32 pktid;
  729. u32 i;
  730. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_RXPOST_SUBMIT];
  731. ret_ptr = brcmf_commonring_reserve_for_write_multiple(commonring,
  732. count,
  733. &alloced);
  734. if (!ret_ptr) {
  735. brcmf_err("Failed to reserve space in commonring\n");
  736. return 0;
  737. }
  738. for (i = 0; i < alloced; i++) {
  739. rx_bufpost = (struct msgbuf_rx_bufpost *)ret_ptr;
  740. memset(rx_bufpost, 0, sizeof(*rx_bufpost));
  741. skb = brcmu_pkt_buf_get_skb(BRCMF_MSGBUF_MAX_PKT_SIZE);
  742. if (skb == NULL) {
  743. brcmf_err("Failed to alloc SKB\n");
  744. brcmf_commonring_write_cancel(commonring, alloced - i);
  745. break;
  746. }
  747. pktlen = skb->len;
  748. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  749. msgbuf->rx_pktids, skb, 0,
  750. &physaddr, &pktid)) {
  751. dev_kfree_skb_any(skb);
  752. brcmf_err("No PKTID available !!\n");
  753. brcmf_commonring_write_cancel(commonring, alloced - i);
  754. break;
  755. }
  756. if (msgbuf->rx_metadata_offset) {
  757. address = (long long)(long)physaddr;
  758. rx_bufpost->metadata_buf_len =
  759. cpu_to_le16(msgbuf->rx_metadata_offset);
  760. rx_bufpost->metadata_buf_addr.high_addr =
  761. cpu_to_le32(address >> 32);
  762. rx_bufpost->metadata_buf_addr.low_addr =
  763. cpu_to_le32(address & 0xffffffff);
  764. skb_pull(skb, msgbuf->rx_metadata_offset);
  765. pktlen = skb->len;
  766. physaddr += msgbuf->rx_metadata_offset;
  767. }
  768. rx_bufpost->msg.msgtype = MSGBUF_TYPE_RXBUF_POST;
  769. rx_bufpost->msg.request_id = cpu_to_le32(pktid);
  770. address = (long long)(long)physaddr;
  771. rx_bufpost->data_buf_len = cpu_to_le16((u16)pktlen);
  772. rx_bufpost->data_buf_addr.high_addr =
  773. cpu_to_le32(address >> 32);
  774. rx_bufpost->data_buf_addr.low_addr =
  775. cpu_to_le32(address & 0xffffffff);
  776. ret_ptr += brcmf_commonring_len_item(commonring);
  777. }
  778. if (i)
  779. brcmf_commonring_write_complete(commonring);
  780. return i;
  781. }
  782. static void
  783. brcmf_msgbuf_rxbuf_data_fill(struct brcmf_msgbuf *msgbuf)
  784. {
  785. u32 fillbufs;
  786. u32 retcount;
  787. fillbufs = msgbuf->max_rxbufpost - msgbuf->rxbufpost;
  788. while (fillbufs) {
  789. retcount = brcmf_msgbuf_rxbuf_data_post(msgbuf, fillbufs);
  790. if (!retcount)
  791. break;
  792. msgbuf->rxbufpost += retcount;
  793. fillbufs -= retcount;
  794. }
  795. }
  796. static void
  797. brcmf_msgbuf_update_rxbufpost_count(struct brcmf_msgbuf *msgbuf, u16 rxcnt)
  798. {
  799. msgbuf->rxbufpost -= rxcnt;
  800. if (msgbuf->rxbufpost <= (msgbuf->max_rxbufpost -
  801. BRCMF_MSGBUF_RXBUFPOST_THRESHOLD))
  802. brcmf_msgbuf_rxbuf_data_fill(msgbuf);
  803. }
  804. static u32
  805. brcmf_msgbuf_rxbuf_ctrl_post(struct brcmf_msgbuf *msgbuf, bool event_buf,
  806. u32 count)
  807. {
  808. struct brcmf_commonring *commonring;
  809. void *ret_ptr;
  810. struct sk_buff *skb;
  811. u16 alloced;
  812. u32 pktlen;
  813. dma_addr_t physaddr;
  814. struct msgbuf_rx_ioctl_resp_or_event *rx_bufpost;
  815. long long address;
  816. u32 pktid;
  817. u32 i;
  818. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  819. brcmf_commonring_lock(commonring);
  820. ret_ptr = brcmf_commonring_reserve_for_write_multiple(commonring,
  821. count,
  822. &alloced);
  823. if (!ret_ptr) {
  824. brcmf_err("Failed to reserve space in commonring\n");
  825. brcmf_commonring_unlock(commonring);
  826. return 0;
  827. }
  828. for (i = 0; i < alloced; i++) {
  829. rx_bufpost = (struct msgbuf_rx_ioctl_resp_or_event *)ret_ptr;
  830. memset(rx_bufpost, 0, sizeof(*rx_bufpost));
  831. skb = brcmu_pkt_buf_get_skb(BRCMF_MSGBUF_MAX_PKT_SIZE);
  832. if (skb == NULL) {
  833. brcmf_err("Failed to alloc SKB\n");
  834. brcmf_commonring_write_cancel(commonring, alloced - i);
  835. break;
  836. }
  837. pktlen = skb->len;
  838. if (brcmf_msgbuf_alloc_pktid(msgbuf->drvr->bus_if->dev,
  839. msgbuf->rx_pktids, skb, 0,
  840. &physaddr, &pktid)) {
  841. dev_kfree_skb_any(skb);
  842. brcmf_err("No PKTID available !!\n");
  843. brcmf_commonring_write_cancel(commonring, alloced - i);
  844. break;
  845. }
  846. if (event_buf)
  847. rx_bufpost->msg.msgtype = MSGBUF_TYPE_EVENT_BUF_POST;
  848. else
  849. rx_bufpost->msg.msgtype =
  850. MSGBUF_TYPE_IOCTLRESP_BUF_POST;
  851. rx_bufpost->msg.request_id = cpu_to_le32(pktid);
  852. address = (long long)(long)physaddr;
  853. rx_bufpost->host_buf_len = cpu_to_le16((u16)pktlen);
  854. rx_bufpost->host_buf_addr.high_addr =
  855. cpu_to_le32(address >> 32);
  856. rx_bufpost->host_buf_addr.low_addr =
  857. cpu_to_le32(address & 0xffffffff);
  858. ret_ptr += brcmf_commonring_len_item(commonring);
  859. }
  860. if (i)
  861. brcmf_commonring_write_complete(commonring);
  862. brcmf_commonring_unlock(commonring);
  863. return i;
  864. }
  865. static void brcmf_msgbuf_rxbuf_ioctlresp_post(struct brcmf_msgbuf *msgbuf)
  866. {
  867. u32 count;
  868. count = msgbuf->max_ioctlrespbuf - msgbuf->cur_ioctlrespbuf;
  869. count = brcmf_msgbuf_rxbuf_ctrl_post(msgbuf, false, count);
  870. msgbuf->cur_ioctlrespbuf += count;
  871. }
  872. static void brcmf_msgbuf_rxbuf_event_post(struct brcmf_msgbuf *msgbuf)
  873. {
  874. u32 count;
  875. count = msgbuf->max_eventbuf - msgbuf->cur_eventbuf;
  876. count = brcmf_msgbuf_rxbuf_ctrl_post(msgbuf, true, count);
  877. msgbuf->cur_eventbuf += count;
  878. }
  879. static void
  880. brcmf_msgbuf_rx_skb(struct brcmf_msgbuf *msgbuf, struct sk_buff *skb,
  881. u8 ifidx)
  882. {
  883. struct brcmf_if *ifp;
  884. /* The ifidx is the idx to map to matching netdev/ifp. When receiving
  885. * events this is easy because it contains the bssidx which maps
  886. * 1-on-1 to the netdev/ifp. But for data frames the ifidx is rcvd.
  887. * bssidx 1 is used for p2p0 and no data can be received or
  888. * transmitted on it. Therefor bssidx is ifidx + 1 if ifidx > 0
  889. */
  890. if (ifidx)
  891. (ifidx)++;
  892. ifp = msgbuf->drvr->iflist[ifidx];
  893. if (!ifp || !ifp->ndev) {
  894. brcmf_err("Received pkt for invalid ifidx %d\n", ifidx);
  895. brcmu_pkt_buf_free_skb(skb);
  896. return;
  897. }
  898. brcmf_netif_rx(ifp, skb);
  899. }
  900. static void brcmf_msgbuf_process_event(struct brcmf_msgbuf *msgbuf, void *buf)
  901. {
  902. struct msgbuf_rx_event *event;
  903. u32 idx;
  904. u16 buflen;
  905. struct sk_buff *skb;
  906. event = (struct msgbuf_rx_event *)buf;
  907. idx = le32_to_cpu(event->msg.request_id);
  908. buflen = le16_to_cpu(event->event_data_len);
  909. if (msgbuf->cur_eventbuf)
  910. msgbuf->cur_eventbuf--;
  911. brcmf_msgbuf_rxbuf_event_post(msgbuf);
  912. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  913. msgbuf->rx_pktids, idx);
  914. if (!skb)
  915. return;
  916. if (msgbuf->rx_dataoffset)
  917. skb_pull(skb, msgbuf->rx_dataoffset);
  918. skb_trim(skb, buflen);
  919. brcmf_msgbuf_rx_skb(msgbuf, skb, event->msg.ifidx);
  920. }
  921. static void
  922. brcmf_msgbuf_process_rx_complete(struct brcmf_msgbuf *msgbuf, void *buf)
  923. {
  924. struct msgbuf_rx_complete *rx_complete;
  925. struct sk_buff *skb;
  926. u16 data_offset;
  927. u16 buflen;
  928. u32 idx;
  929. brcmf_msgbuf_update_rxbufpost_count(msgbuf, 1);
  930. rx_complete = (struct msgbuf_rx_complete *)buf;
  931. data_offset = le16_to_cpu(rx_complete->data_offset);
  932. buflen = le16_to_cpu(rx_complete->data_len);
  933. idx = le32_to_cpu(rx_complete->msg.request_id);
  934. skb = brcmf_msgbuf_get_pktid(msgbuf->drvr->bus_if->dev,
  935. msgbuf->rx_pktids, idx);
  936. if (data_offset)
  937. skb_pull(skb, data_offset);
  938. else if (msgbuf->rx_dataoffset)
  939. skb_pull(skb, msgbuf->rx_dataoffset);
  940. skb_trim(skb, buflen);
  941. brcmf_msgbuf_rx_skb(msgbuf, skb, rx_complete->msg.ifidx);
  942. }
  943. static void
  944. brcmf_msgbuf_process_flow_ring_create_response(struct brcmf_msgbuf *msgbuf,
  945. void *buf)
  946. {
  947. struct msgbuf_flowring_create_resp *flowring_create_resp;
  948. u16 status;
  949. u16 flowid;
  950. flowring_create_resp = (struct msgbuf_flowring_create_resp *)buf;
  951. flowid = le16_to_cpu(flowring_create_resp->compl_hdr.flow_ring_id);
  952. flowid -= BRCMF_NROF_H2D_COMMON_MSGRINGS;
  953. status = le16_to_cpu(flowring_create_resp->compl_hdr.status);
  954. if (status) {
  955. brcmf_err("Flowring creation failed, code %d\n", status);
  956. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  957. return;
  958. }
  959. brcmf_dbg(MSGBUF, "Flowring %d Create response status %d\n", flowid,
  960. status);
  961. brcmf_flowring_open(msgbuf->flow, flowid);
  962. brcmf_msgbuf_schedule_txdata(msgbuf, flowid);
  963. }
  964. static void
  965. brcmf_msgbuf_process_flow_ring_delete_response(struct brcmf_msgbuf *msgbuf,
  966. void *buf)
  967. {
  968. struct msgbuf_flowring_delete_resp *flowring_delete_resp;
  969. u16 status;
  970. u16 flowid;
  971. flowring_delete_resp = (struct msgbuf_flowring_delete_resp *)buf;
  972. flowid = le16_to_cpu(flowring_delete_resp->compl_hdr.flow_ring_id);
  973. flowid -= BRCMF_NROF_H2D_COMMON_MSGRINGS;
  974. status = le16_to_cpu(flowring_delete_resp->compl_hdr.status);
  975. if (status) {
  976. brcmf_err("Flowring deletion failed, code %d\n", status);
  977. brcmf_flowring_delete(msgbuf->flow, flowid);
  978. return;
  979. }
  980. brcmf_dbg(MSGBUF, "Flowring %d Delete response status %d\n", flowid,
  981. status);
  982. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  983. }
  984. static void brcmf_msgbuf_process_msgtype(struct brcmf_msgbuf *msgbuf, void *buf)
  985. {
  986. struct msgbuf_common_hdr *msg;
  987. msg = (struct msgbuf_common_hdr *)buf;
  988. switch (msg->msgtype) {
  989. case MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT:
  990. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_FLOW_RING_CREATE_CMPLT\n");
  991. brcmf_msgbuf_process_flow_ring_create_response(msgbuf, buf);
  992. break;
  993. case MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT:
  994. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_FLOW_RING_DELETE_CMPLT\n");
  995. brcmf_msgbuf_process_flow_ring_delete_response(msgbuf, buf);
  996. break;
  997. case MSGBUF_TYPE_IOCTLPTR_REQ_ACK:
  998. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_IOCTLPTR_REQ_ACK\n");
  999. break;
  1000. case MSGBUF_TYPE_IOCTL_CMPLT:
  1001. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_IOCTL_CMPLT\n");
  1002. brcmf_msgbuf_process_ioctl_complete(msgbuf, buf);
  1003. break;
  1004. case MSGBUF_TYPE_WL_EVENT:
  1005. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_WL_EVENT\n");
  1006. brcmf_msgbuf_process_event(msgbuf, buf);
  1007. break;
  1008. case MSGBUF_TYPE_TX_STATUS:
  1009. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_TX_STATUS\n");
  1010. brcmf_msgbuf_process_txstatus(msgbuf, buf);
  1011. break;
  1012. case MSGBUF_TYPE_RX_CMPLT:
  1013. brcmf_dbg(MSGBUF, "MSGBUF_TYPE_RX_CMPLT\n");
  1014. brcmf_msgbuf_process_rx_complete(msgbuf, buf);
  1015. break;
  1016. default:
  1017. brcmf_err("Unsupported msgtype %d\n", msg->msgtype);
  1018. break;
  1019. }
  1020. }
  1021. static void brcmf_msgbuf_process_rx(struct brcmf_msgbuf *msgbuf,
  1022. struct brcmf_commonring *commonring)
  1023. {
  1024. void *buf;
  1025. u16 count;
  1026. again:
  1027. buf = brcmf_commonring_get_read_ptr(commonring, &count);
  1028. if (buf == NULL)
  1029. return;
  1030. while (count) {
  1031. brcmf_msgbuf_process_msgtype(msgbuf,
  1032. buf + msgbuf->rx_dataoffset);
  1033. buf += brcmf_commonring_len_item(commonring);
  1034. count--;
  1035. }
  1036. brcmf_commonring_read_complete(commonring);
  1037. if (commonring->r_ptr == 0)
  1038. goto again;
  1039. }
  1040. int brcmf_proto_msgbuf_rx_trigger(struct device *dev)
  1041. {
  1042. struct brcmf_bus *bus_if = dev_get_drvdata(dev);
  1043. struct brcmf_pub *drvr = bus_if->drvr;
  1044. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1045. void *buf;
  1046. u32 flowid;
  1047. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_RX_COMPLETE];
  1048. brcmf_msgbuf_process_rx(msgbuf, buf);
  1049. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_TX_COMPLETE];
  1050. brcmf_msgbuf_process_rx(msgbuf, buf);
  1051. buf = msgbuf->commonrings[BRCMF_D2H_MSGRING_CONTROL_COMPLETE];
  1052. brcmf_msgbuf_process_rx(msgbuf, buf);
  1053. for_each_set_bit(flowid, msgbuf->txstatus_done_map,
  1054. msgbuf->nrof_flowrings) {
  1055. clear_bit(flowid, msgbuf->txstatus_done_map);
  1056. if (brcmf_flowring_qlen(msgbuf->flow, flowid))
  1057. brcmf_msgbuf_schedule_txdata(msgbuf, flowid);
  1058. }
  1059. return 0;
  1060. }
  1061. void brcmf_msgbuf_delete_flowring(struct brcmf_pub *drvr, u8 flowid)
  1062. {
  1063. struct brcmf_msgbuf *msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1064. struct msgbuf_tx_flowring_delete_req *delete;
  1065. struct brcmf_commonring *commonring;
  1066. void *ret_ptr;
  1067. u8 ifidx;
  1068. int err;
  1069. commonring = msgbuf->commonrings[BRCMF_H2D_MSGRING_CONTROL_SUBMIT];
  1070. brcmf_commonring_lock(commonring);
  1071. ret_ptr = brcmf_commonring_reserve_for_write(commonring);
  1072. if (!ret_ptr) {
  1073. brcmf_err("FW unaware, flowring will be removed !!\n");
  1074. brcmf_commonring_unlock(commonring);
  1075. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  1076. return;
  1077. }
  1078. delete = (struct msgbuf_tx_flowring_delete_req *)ret_ptr;
  1079. ifidx = brcmf_flowring_ifidx_get(msgbuf->flow, flowid);
  1080. delete->msg.msgtype = MSGBUF_TYPE_FLOW_RING_DELETE;
  1081. delete->msg.ifidx = ifidx;
  1082. delete->msg.request_id = 0;
  1083. delete->flow_ring_id = cpu_to_le16(flowid +
  1084. BRCMF_NROF_H2D_COMMON_MSGRINGS);
  1085. delete->reason = 0;
  1086. brcmf_dbg(MSGBUF, "Send Flow Delete Req flow ID %d, ifindex %d\n",
  1087. flowid, ifidx);
  1088. err = brcmf_commonring_write_complete(commonring);
  1089. brcmf_commonring_unlock(commonring);
  1090. if (err) {
  1091. brcmf_err("Failed to submit RING_DELETE, flowring will be removed\n");
  1092. brcmf_msgbuf_remove_flowring(msgbuf, flowid);
  1093. }
  1094. }
  1095. int brcmf_proto_msgbuf_attach(struct brcmf_pub *drvr)
  1096. {
  1097. struct brcmf_bus_msgbuf *if_msgbuf;
  1098. struct brcmf_msgbuf *msgbuf;
  1099. long long address;
  1100. u32 count;
  1101. if_msgbuf = drvr->bus_if->msgbuf;
  1102. msgbuf = kzalloc(sizeof(*msgbuf), GFP_KERNEL);
  1103. if (!msgbuf)
  1104. goto fail;
  1105. msgbuf->txflow_wq = create_singlethread_workqueue("msgbuf_txflow");
  1106. if (msgbuf->txflow_wq == NULL) {
  1107. brcmf_err("workqueue creation failed\n");
  1108. goto fail;
  1109. }
  1110. INIT_WORK(&msgbuf->txflow_work, brcmf_msgbuf_txflow_worker);
  1111. count = BITS_TO_LONGS(if_msgbuf->nrof_flowrings);
  1112. count = count * sizeof(unsigned long);
  1113. msgbuf->flow_map = kzalloc(count, GFP_KERNEL);
  1114. if (!msgbuf->flow_map)
  1115. goto fail;
  1116. msgbuf->txstatus_done_map = kzalloc(count, GFP_KERNEL);
  1117. if (!msgbuf->txstatus_done_map)
  1118. goto fail;
  1119. msgbuf->drvr = drvr;
  1120. msgbuf->ioctbuf = dma_alloc_coherent(drvr->bus_if->dev,
  1121. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1122. &msgbuf->ioctbuf_handle,
  1123. GFP_KERNEL);
  1124. if (!msgbuf->ioctbuf)
  1125. goto fail;
  1126. address = (long long)(long)msgbuf->ioctbuf_handle;
  1127. msgbuf->ioctbuf_phys_hi = address >> 32;
  1128. msgbuf->ioctbuf_phys_lo = address & 0xffffffff;
  1129. drvr->proto->hdrpull = brcmf_msgbuf_hdrpull;
  1130. drvr->proto->query_dcmd = brcmf_msgbuf_query_dcmd;
  1131. drvr->proto->set_dcmd = brcmf_msgbuf_set_dcmd;
  1132. drvr->proto->txdata = brcmf_msgbuf_txdata;
  1133. drvr->proto->configure_addr_mode = brcmf_msgbuf_configure_addr_mode;
  1134. drvr->proto->delete_peer = brcmf_msgbuf_delete_peer;
  1135. drvr->proto->add_tdls_peer = brcmf_msgbuf_add_tdls_peer;
  1136. drvr->proto->pd = msgbuf;
  1137. init_waitqueue_head(&msgbuf->ioctl_resp_wait);
  1138. msgbuf->commonrings =
  1139. (struct brcmf_commonring **)if_msgbuf->commonrings;
  1140. msgbuf->flowrings = (struct brcmf_commonring **)if_msgbuf->flowrings;
  1141. msgbuf->nrof_flowrings = if_msgbuf->nrof_flowrings;
  1142. msgbuf->flowring_dma_handle = kzalloc(msgbuf->nrof_flowrings *
  1143. sizeof(*msgbuf->flowring_dma_handle), GFP_KERNEL);
  1144. if (!msgbuf->flowring_dma_handle)
  1145. goto fail;
  1146. msgbuf->rx_dataoffset = if_msgbuf->rx_dataoffset;
  1147. msgbuf->max_rxbufpost = if_msgbuf->max_rxbufpost;
  1148. msgbuf->max_ioctlrespbuf = BRCMF_MSGBUF_MAX_IOCTLRESPBUF_POST;
  1149. msgbuf->max_eventbuf = BRCMF_MSGBUF_MAX_EVENTBUF_POST;
  1150. msgbuf->tx_pktids = brcmf_msgbuf_init_pktids(NR_TX_PKTIDS,
  1151. DMA_TO_DEVICE);
  1152. if (!msgbuf->tx_pktids)
  1153. goto fail;
  1154. msgbuf->rx_pktids = brcmf_msgbuf_init_pktids(NR_RX_PKTIDS,
  1155. DMA_FROM_DEVICE);
  1156. if (!msgbuf->rx_pktids)
  1157. goto fail;
  1158. msgbuf->flow = brcmf_flowring_attach(drvr->bus_if->dev,
  1159. if_msgbuf->nrof_flowrings);
  1160. if (!msgbuf->flow)
  1161. goto fail;
  1162. brcmf_dbg(MSGBUF, "Feeding buffers, rx data %d, rx event %d, rx ioctl resp %d\n",
  1163. msgbuf->max_rxbufpost, msgbuf->max_eventbuf,
  1164. msgbuf->max_ioctlrespbuf);
  1165. count = 0;
  1166. do {
  1167. brcmf_msgbuf_rxbuf_data_fill(msgbuf);
  1168. if (msgbuf->max_rxbufpost != msgbuf->rxbufpost)
  1169. msleep(10);
  1170. else
  1171. break;
  1172. count++;
  1173. } while (count < 10);
  1174. brcmf_msgbuf_rxbuf_event_post(msgbuf);
  1175. brcmf_msgbuf_rxbuf_ioctlresp_post(msgbuf);
  1176. INIT_WORK(&msgbuf->flowring_work, brcmf_msgbuf_flowring_worker);
  1177. spin_lock_init(&msgbuf->flowring_work_lock);
  1178. INIT_LIST_HEAD(&msgbuf->work_queue);
  1179. return 0;
  1180. fail:
  1181. if (msgbuf) {
  1182. kfree(msgbuf->flow_map);
  1183. kfree(msgbuf->txstatus_done_map);
  1184. brcmf_msgbuf_release_pktids(msgbuf);
  1185. kfree(msgbuf->flowring_dma_handle);
  1186. if (msgbuf->ioctbuf)
  1187. dma_free_coherent(drvr->bus_if->dev,
  1188. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1189. msgbuf->ioctbuf,
  1190. msgbuf->ioctbuf_handle);
  1191. kfree(msgbuf);
  1192. }
  1193. return -ENOMEM;
  1194. }
  1195. void brcmf_proto_msgbuf_detach(struct brcmf_pub *drvr)
  1196. {
  1197. struct brcmf_msgbuf *msgbuf;
  1198. struct brcmf_msgbuf_work_item *work;
  1199. brcmf_dbg(TRACE, "Enter\n");
  1200. if (drvr->proto->pd) {
  1201. msgbuf = (struct brcmf_msgbuf *)drvr->proto->pd;
  1202. cancel_work_sync(&msgbuf->flowring_work);
  1203. while (!list_empty(&msgbuf->work_queue)) {
  1204. work = list_first_entry(&msgbuf->work_queue,
  1205. struct brcmf_msgbuf_work_item,
  1206. queue);
  1207. list_del(&work->queue);
  1208. kfree(work);
  1209. }
  1210. kfree(msgbuf->flow_map);
  1211. kfree(msgbuf->txstatus_done_map);
  1212. if (msgbuf->txflow_wq)
  1213. destroy_workqueue(msgbuf->txflow_wq);
  1214. brcmf_flowring_detach(msgbuf->flow);
  1215. dma_free_coherent(drvr->bus_if->dev,
  1216. BRCMF_TX_IOCTL_MAX_MSG_SIZE,
  1217. msgbuf->ioctbuf, msgbuf->ioctbuf_handle);
  1218. brcmf_msgbuf_release_pktids(msgbuf);
  1219. kfree(msgbuf->flowring_dma_handle);
  1220. kfree(msgbuf);
  1221. drvr->proto->pd = NULL;
  1222. }
  1223. }