chip.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043
  1. /*
  2. * Copyright (c) 2014 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/delay.h>
  18. #include <linux/list.h>
  19. #include <linux/ssb/ssb_regs.h>
  20. #include <linux/bcma/bcma.h>
  21. #include <linux/bcma/bcma_regs.h>
  22. #include <defs.h>
  23. #include <soc.h>
  24. #include <brcm_hw_ids.h>
  25. #include <brcmu_utils.h>
  26. #include <chipcommon.h>
  27. #include "debug.h"
  28. #include "chip.h"
  29. /* SOC Interconnect types (aka chip types) */
  30. #define SOCI_SB 0
  31. #define SOCI_AI 1
  32. /* PL-368 DMP definitions */
  33. #define DMP_DESC_TYPE_MSK 0x0000000F
  34. #define DMP_DESC_EMPTY 0x00000000
  35. #define DMP_DESC_VALID 0x00000001
  36. #define DMP_DESC_COMPONENT 0x00000001
  37. #define DMP_DESC_MASTER_PORT 0x00000003
  38. #define DMP_DESC_ADDRESS 0x00000005
  39. #define DMP_DESC_ADDRSIZE_GT32 0x00000008
  40. #define DMP_DESC_EOT 0x0000000F
  41. #define DMP_COMP_DESIGNER 0xFFF00000
  42. #define DMP_COMP_DESIGNER_S 20
  43. #define DMP_COMP_PARTNUM 0x000FFF00
  44. #define DMP_COMP_PARTNUM_S 8
  45. #define DMP_COMP_CLASS 0x000000F0
  46. #define DMP_COMP_CLASS_S 4
  47. #define DMP_COMP_REVISION 0xFF000000
  48. #define DMP_COMP_REVISION_S 24
  49. #define DMP_COMP_NUM_SWRAP 0x00F80000
  50. #define DMP_COMP_NUM_SWRAP_S 19
  51. #define DMP_COMP_NUM_MWRAP 0x0007C000
  52. #define DMP_COMP_NUM_MWRAP_S 14
  53. #define DMP_COMP_NUM_SPORT 0x00003E00
  54. #define DMP_COMP_NUM_SPORT_S 9
  55. #define DMP_COMP_NUM_MPORT 0x000001F0
  56. #define DMP_COMP_NUM_MPORT_S 4
  57. #define DMP_MASTER_PORT_UID 0x0000FF00
  58. #define DMP_MASTER_PORT_UID_S 8
  59. #define DMP_MASTER_PORT_NUM 0x000000F0
  60. #define DMP_MASTER_PORT_NUM_S 4
  61. #define DMP_SLAVE_ADDR_BASE 0xFFFFF000
  62. #define DMP_SLAVE_ADDR_BASE_S 12
  63. #define DMP_SLAVE_PORT_NUM 0x00000F00
  64. #define DMP_SLAVE_PORT_NUM_S 8
  65. #define DMP_SLAVE_TYPE 0x000000C0
  66. #define DMP_SLAVE_TYPE_S 6
  67. #define DMP_SLAVE_TYPE_SLAVE 0
  68. #define DMP_SLAVE_TYPE_BRIDGE 1
  69. #define DMP_SLAVE_TYPE_SWRAP 2
  70. #define DMP_SLAVE_TYPE_MWRAP 3
  71. #define DMP_SLAVE_SIZE_TYPE 0x00000030
  72. #define DMP_SLAVE_SIZE_TYPE_S 4
  73. #define DMP_SLAVE_SIZE_4K 0
  74. #define DMP_SLAVE_SIZE_8K 1
  75. #define DMP_SLAVE_SIZE_16K 2
  76. #define DMP_SLAVE_SIZE_DESC 3
  77. /* EROM CompIdentB */
  78. #define CIB_REV_MASK 0xff000000
  79. #define CIB_REV_SHIFT 24
  80. /* ARM CR4 core specific control flag bits */
  81. #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
  82. /* D11 core specific control flag bits */
  83. #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004
  84. #define D11_BCMA_IOCTL_PHYRESET 0x0008
  85. /* chip core base & ramsize */
  86. /* bcm4329 */
  87. /* SDIO device core, ID 0x829 */
  88. #define BCM4329_CORE_BUS_BASE 0x18011000
  89. /* internal memory core, ID 0x80e */
  90. #define BCM4329_CORE_SOCRAM_BASE 0x18003000
  91. /* ARM Cortex M3 core, ID 0x82a */
  92. #define BCM4329_CORE_ARM_BASE 0x18002000
  93. #define BCM4329_RAMSIZE 0x48000
  94. /* bcm43143 */
  95. /* SDIO device core */
  96. #define BCM43143_CORE_BUS_BASE 0x18002000
  97. /* internal memory core */
  98. #define BCM43143_CORE_SOCRAM_BASE 0x18004000
  99. /* ARM Cortex M3 core, ID 0x82a */
  100. #define BCM43143_CORE_ARM_BASE 0x18003000
  101. #define BCM43143_RAMSIZE 0x70000
  102. #define CORE_SB(base, field) \
  103. (base + SBCONFIGOFF + offsetof(struct sbconfig, field))
  104. #define SBCOREREV(sbidh) \
  105. ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
  106. ((sbidh) & SSB_IDHIGH_RCLO))
  107. struct sbconfig {
  108. u32 PAD[2];
  109. u32 sbipsflag; /* initiator port ocp slave flag */
  110. u32 PAD[3];
  111. u32 sbtpsflag; /* target port ocp slave flag */
  112. u32 PAD[11];
  113. u32 sbtmerrloga; /* (sonics >= 2.3) */
  114. u32 PAD;
  115. u32 sbtmerrlog; /* (sonics >= 2.3) */
  116. u32 PAD[3];
  117. u32 sbadmatch3; /* address match3 */
  118. u32 PAD;
  119. u32 sbadmatch2; /* address match2 */
  120. u32 PAD;
  121. u32 sbadmatch1; /* address match1 */
  122. u32 PAD[7];
  123. u32 sbimstate; /* initiator agent state */
  124. u32 sbintvec; /* interrupt mask */
  125. u32 sbtmstatelow; /* target state */
  126. u32 sbtmstatehigh; /* target state */
  127. u32 sbbwa0; /* bandwidth allocation table0 */
  128. u32 PAD;
  129. u32 sbimconfiglow; /* initiator configuration */
  130. u32 sbimconfighigh; /* initiator configuration */
  131. u32 sbadmatch0; /* address match0 */
  132. u32 PAD;
  133. u32 sbtmconfiglow; /* target configuration */
  134. u32 sbtmconfighigh; /* target configuration */
  135. u32 sbbconfig; /* broadcast configuration */
  136. u32 PAD;
  137. u32 sbbstate; /* broadcast state */
  138. u32 PAD[3];
  139. u32 sbactcnfg; /* activate configuration */
  140. u32 PAD[3];
  141. u32 sbflagst; /* current sbflags */
  142. u32 PAD[3];
  143. u32 sbidlow; /* identification */
  144. u32 sbidhigh; /* identification */
  145. };
  146. struct brcmf_core_priv {
  147. struct brcmf_core pub;
  148. u32 wrapbase;
  149. struct list_head list;
  150. struct brcmf_chip_priv *chip;
  151. };
  152. /* ARM CR4 core specific control flag bits */
  153. #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
  154. /* D11 core specific control flag bits */
  155. #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004
  156. #define D11_BCMA_IOCTL_PHYRESET 0x0008
  157. struct brcmf_chip_priv {
  158. struct brcmf_chip pub;
  159. const struct brcmf_buscore_ops *ops;
  160. void *ctx;
  161. /* assured first core is chipcommon, second core is buscore */
  162. struct list_head cores;
  163. u16 num_cores;
  164. bool (*iscoreup)(struct brcmf_core_priv *core);
  165. void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
  166. u32 reset);
  167. void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
  168. u32 postreset);
  169. };
  170. static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
  171. struct brcmf_core *core)
  172. {
  173. u32 regdata;
  174. regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
  175. core->rev = SBCOREREV(regdata);
  176. }
  177. static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
  178. {
  179. struct brcmf_chip_priv *ci;
  180. u32 regdata;
  181. u32 address;
  182. ci = core->chip;
  183. address = CORE_SB(core->pub.base, sbtmstatelow);
  184. regdata = ci->ops->read32(ci->ctx, address);
  185. regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
  186. SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
  187. return SSB_TMSLOW_CLOCK == regdata;
  188. }
  189. static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
  190. {
  191. struct brcmf_chip_priv *ci;
  192. u32 regdata;
  193. bool ret;
  194. ci = core->chip;
  195. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  196. ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
  197. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
  198. ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
  199. return ret;
  200. }
  201. static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
  202. u32 prereset, u32 reset)
  203. {
  204. struct brcmf_chip_priv *ci;
  205. u32 val, base;
  206. ci = core->chip;
  207. base = core->pub.base;
  208. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  209. if (val & SSB_TMSLOW_RESET)
  210. return;
  211. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  212. if ((val & SSB_TMSLOW_CLOCK) != 0) {
  213. /*
  214. * set target reject and spin until busy is clear
  215. * (preserve core-specific bits)
  216. */
  217. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  218. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  219. val | SSB_TMSLOW_REJECT);
  220. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  221. udelay(1);
  222. SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
  223. & SSB_TMSHIGH_BUSY), 100000);
  224. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
  225. if (val & SSB_TMSHIGH_BUSY)
  226. brcmf_err("core state still busy\n");
  227. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
  228. if (val & SSB_IDLOW_INITIATOR) {
  229. val = ci->ops->read32(ci->ctx,
  230. CORE_SB(base, sbimstate));
  231. val |= SSB_IMSTATE_REJECT;
  232. ci->ops->write32(ci->ctx,
  233. CORE_SB(base, sbimstate), val);
  234. val = ci->ops->read32(ci->ctx,
  235. CORE_SB(base, sbimstate));
  236. udelay(1);
  237. SPINWAIT((ci->ops->read32(ci->ctx,
  238. CORE_SB(base, sbimstate)) &
  239. SSB_IMSTATE_BUSY), 100000);
  240. }
  241. /* set reset and reject while enabling the clocks */
  242. val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  243. SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
  244. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
  245. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  246. udelay(10);
  247. /* clear the initiator reject bit */
  248. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
  249. if (val & SSB_IDLOW_INITIATOR) {
  250. val = ci->ops->read32(ci->ctx,
  251. CORE_SB(base, sbimstate));
  252. val &= ~SSB_IMSTATE_REJECT;
  253. ci->ops->write32(ci->ctx,
  254. CORE_SB(base, sbimstate), val);
  255. }
  256. }
  257. /* leave reset and reject asserted */
  258. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  259. (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
  260. udelay(1);
  261. }
  262. static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
  263. u32 prereset, u32 reset)
  264. {
  265. struct brcmf_chip_priv *ci;
  266. u32 regdata;
  267. ci = core->chip;
  268. /* if core is already in reset, skip reset */
  269. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
  270. if ((regdata & BCMA_RESET_CTL_RESET) != 0)
  271. goto in_reset_configure;
  272. /* configure reset */
  273. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  274. prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
  275. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  276. /* put in reset */
  277. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
  278. BCMA_RESET_CTL_RESET);
  279. usleep_range(10, 20);
  280. /* wait till reset is 1 */
  281. SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
  282. BCMA_RESET_CTL_RESET, 300);
  283. in_reset_configure:
  284. /* in-reset configure */
  285. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  286. reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
  287. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  288. }
  289. static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
  290. u32 reset, u32 postreset)
  291. {
  292. struct brcmf_chip_priv *ci;
  293. u32 regdata;
  294. u32 base;
  295. ci = core->chip;
  296. base = core->pub.base;
  297. /*
  298. * Must do the disable sequence first to work for
  299. * arbitrary current core state.
  300. */
  301. brcmf_chip_sb_coredisable(core, 0, 0);
  302. /*
  303. * Now do the initialization sequence.
  304. * set reset while enabling the clock and
  305. * forcing them on throughout the core
  306. */
  307. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  308. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  309. SSB_TMSLOW_RESET);
  310. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  311. udelay(1);
  312. /* clear any serror */
  313. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
  314. if (regdata & SSB_TMSHIGH_SERR)
  315. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
  316. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
  317. if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  318. regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  319. ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
  320. }
  321. /* clear reset and allow it to propagate throughout the core */
  322. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  323. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
  324. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  325. udelay(1);
  326. /* leave clock enabled */
  327. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  328. SSB_TMSLOW_CLOCK);
  329. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  330. udelay(1);
  331. }
  332. static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
  333. u32 reset, u32 postreset)
  334. {
  335. struct brcmf_chip_priv *ci;
  336. int count;
  337. ci = core->chip;
  338. /* must disable first to work for arbitrary current core state */
  339. brcmf_chip_ai_coredisable(core, prereset, reset);
  340. count = 0;
  341. while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
  342. BCMA_RESET_CTL_RESET) {
  343. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
  344. count++;
  345. if (count > 50)
  346. break;
  347. usleep_range(40, 60);
  348. }
  349. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  350. postreset | BCMA_IOCTL_CLK);
  351. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  352. }
  353. static char *brcmf_chip_name(uint chipid, char *buf, uint len)
  354. {
  355. const char *fmt;
  356. fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
  357. snprintf(buf, len, fmt, chipid);
  358. return buf;
  359. }
  360. static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
  361. u16 coreid, u32 base,
  362. u32 wrapbase)
  363. {
  364. struct brcmf_core_priv *core;
  365. core = kzalloc(sizeof(*core), GFP_KERNEL);
  366. if (!core)
  367. return ERR_PTR(-ENOMEM);
  368. core->pub.id = coreid;
  369. core->pub.base = base;
  370. core->chip = ci;
  371. core->wrapbase = wrapbase;
  372. list_add_tail(&core->list, &ci->cores);
  373. return &core->pub;
  374. }
  375. #ifdef DEBUG
  376. /* safety check for chipinfo */
  377. static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
  378. {
  379. struct brcmf_core_priv *core;
  380. bool need_socram = false;
  381. bool has_socram = false;
  382. int idx = 1;
  383. list_for_each_entry(core, &ci->cores, list) {
  384. brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
  385. idx++, core->pub.id, core->pub.rev, core->pub.base,
  386. core->wrapbase);
  387. switch (core->pub.id) {
  388. case BCMA_CORE_ARM_CM3:
  389. need_socram = true;
  390. break;
  391. case BCMA_CORE_INTERNAL_MEM:
  392. has_socram = true;
  393. break;
  394. case BCMA_CORE_ARM_CR4:
  395. if (ci->pub.rambase == 0) {
  396. brcmf_err("RAM base not provided with ARM CR4 core\n");
  397. return -ENOMEM;
  398. }
  399. break;
  400. default:
  401. break;
  402. }
  403. }
  404. /* check RAM core presence for ARM CM3 core */
  405. if (need_socram && !has_socram) {
  406. brcmf_err("RAM core not provided with ARM CM3 core\n");
  407. return -ENODEV;
  408. }
  409. return 0;
  410. }
  411. #else /* DEBUG */
  412. static inline int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
  413. {
  414. return 0;
  415. }
  416. #endif
  417. static void brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci)
  418. {
  419. switch (ci->pub.chip) {
  420. case BRCM_CC_4329_CHIP_ID:
  421. ci->pub.ramsize = BCM4329_RAMSIZE;
  422. break;
  423. case BRCM_CC_43143_CHIP_ID:
  424. ci->pub.ramsize = BCM43143_RAMSIZE;
  425. break;
  426. case BRCM_CC_43241_CHIP_ID:
  427. ci->pub.ramsize = 0x90000;
  428. break;
  429. case BRCM_CC_4330_CHIP_ID:
  430. ci->pub.ramsize = 0x48000;
  431. break;
  432. case BRCM_CC_4334_CHIP_ID:
  433. ci->pub.ramsize = 0x80000;
  434. break;
  435. case BRCM_CC_4335_CHIP_ID:
  436. ci->pub.ramsize = 0xc0000;
  437. ci->pub.rambase = 0x180000;
  438. break;
  439. case BRCM_CC_43362_CHIP_ID:
  440. ci->pub.ramsize = 0x3c000;
  441. break;
  442. case BRCM_CC_4339_CHIP_ID:
  443. case BRCM_CC_4354_CHIP_ID:
  444. case BRCM_CC_4356_CHIP_ID:
  445. case BRCM_CC_43567_CHIP_ID:
  446. case BRCM_CC_43569_CHIP_ID:
  447. case BRCM_CC_43570_CHIP_ID:
  448. ci->pub.ramsize = 0xc0000;
  449. ci->pub.rambase = 0x180000;
  450. break;
  451. case BRCM_CC_43602_CHIP_ID:
  452. ci->pub.ramsize = 0xf0000;
  453. ci->pub.rambase = 0x180000;
  454. break;
  455. default:
  456. brcmf_err("unknown chip: %s\n", ci->pub.name);
  457. break;
  458. }
  459. }
  460. static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
  461. u8 *type)
  462. {
  463. u32 val;
  464. /* read next descriptor */
  465. val = ci->ops->read32(ci->ctx, *eromaddr);
  466. *eromaddr += 4;
  467. if (!type)
  468. return val;
  469. /* determine descriptor type */
  470. *type = (val & DMP_DESC_TYPE_MSK);
  471. if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
  472. *type = DMP_DESC_ADDRESS;
  473. return val;
  474. }
  475. static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
  476. u32 *regbase, u32 *wrapbase)
  477. {
  478. u8 desc;
  479. u32 val;
  480. u8 mpnum = 0;
  481. u8 stype, sztype, wraptype;
  482. *regbase = 0;
  483. *wrapbase = 0;
  484. val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
  485. if (desc == DMP_DESC_MASTER_PORT) {
  486. mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S;
  487. wraptype = DMP_SLAVE_TYPE_MWRAP;
  488. } else if (desc == DMP_DESC_ADDRESS) {
  489. /* revert erom address */
  490. *eromaddr -= 4;
  491. wraptype = DMP_SLAVE_TYPE_SWRAP;
  492. } else {
  493. *eromaddr -= 4;
  494. return -EILSEQ;
  495. }
  496. do {
  497. /* locate address descriptor */
  498. do {
  499. val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
  500. /* unexpected table end */
  501. if (desc == DMP_DESC_EOT) {
  502. *eromaddr -= 4;
  503. return -EFAULT;
  504. }
  505. } while (desc != DMP_DESC_ADDRESS);
  506. /* skip upper 32-bit address descriptor */
  507. if (val & DMP_DESC_ADDRSIZE_GT32)
  508. brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  509. sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
  510. /* next size descriptor can be skipped */
  511. if (sztype == DMP_SLAVE_SIZE_DESC) {
  512. val = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  513. /* skip upper size descriptor if present */
  514. if (val & DMP_DESC_ADDRSIZE_GT32)
  515. brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  516. }
  517. /* only look for 4K register regions */
  518. if (sztype != DMP_SLAVE_SIZE_4K)
  519. continue;
  520. stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
  521. /* only regular slave and wrapper */
  522. if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
  523. *regbase = val & DMP_SLAVE_ADDR_BASE;
  524. if (*wrapbase == 0 && stype == wraptype)
  525. *wrapbase = val & DMP_SLAVE_ADDR_BASE;
  526. } while (*regbase == 0 || *wrapbase == 0);
  527. return 0;
  528. }
  529. static
  530. int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
  531. {
  532. struct brcmf_core *core;
  533. u32 eromaddr;
  534. u8 desc_type = 0;
  535. u32 val;
  536. u16 id;
  537. u8 nmp, nsp, nmw, nsw, rev;
  538. u32 base, wrap;
  539. int err;
  540. eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));
  541. while (desc_type != DMP_DESC_EOT) {
  542. val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
  543. if (!(val & DMP_DESC_VALID))
  544. continue;
  545. if (desc_type == DMP_DESC_EMPTY)
  546. continue;
  547. /* need a component descriptor */
  548. if (desc_type != DMP_DESC_COMPONENT)
  549. continue;
  550. id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
  551. /* next descriptor must be component as well */
  552. val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
  553. if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
  554. return -EFAULT;
  555. /* only look at cores with master port(s) */
  556. nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S;
  557. nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S;
  558. nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
  559. nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
  560. rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
  561. /* need core with ports */
  562. if (nmw + nsw == 0)
  563. continue;
  564. /* try to obtain register address info */
  565. err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
  566. if (err)
  567. continue;
  568. /* finally a core to be added */
  569. core = brcmf_chip_add_core(ci, id, base, wrap);
  570. if (IS_ERR(core))
  571. return PTR_ERR(core);
  572. core->rev = rev;
  573. }
  574. return 0;
  575. }
  576. static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
  577. {
  578. struct brcmf_core *core;
  579. u32 regdata;
  580. u32 socitype;
  581. /* Get CC core rev
  582. * Chipid is assume to be at offset 0 from SI_ENUM_BASE
  583. * For different chiptypes or old sdio hosts w/o chipcommon,
  584. * other ways of recognition should be added here.
  585. */
  586. regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
  587. ci->pub.chip = regdata & CID_ID_MASK;
  588. ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
  589. socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
  590. brcmf_chip_name(ci->pub.chip, ci->pub.name, sizeof(ci->pub.name));
  591. brcmf_dbg(INFO, "found %s chip: BCM%s, rev=%d\n",
  592. socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name,
  593. ci->pub.chiprev);
  594. if (socitype == SOCI_SB) {
  595. if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
  596. brcmf_err("SB chip is not supported\n");
  597. return -ENODEV;
  598. }
  599. ci->iscoreup = brcmf_chip_sb_iscoreup;
  600. ci->coredisable = brcmf_chip_sb_coredisable;
  601. ci->resetcore = brcmf_chip_sb_resetcore;
  602. core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
  603. SI_ENUM_BASE, 0);
  604. brcmf_chip_sb_corerev(ci, core);
  605. core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
  606. BCM4329_CORE_BUS_BASE, 0);
  607. brcmf_chip_sb_corerev(ci, core);
  608. core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
  609. BCM4329_CORE_SOCRAM_BASE, 0);
  610. brcmf_chip_sb_corerev(ci, core);
  611. core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
  612. BCM4329_CORE_ARM_BASE, 0);
  613. brcmf_chip_sb_corerev(ci, core);
  614. core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
  615. brcmf_chip_sb_corerev(ci, core);
  616. } else if (socitype == SOCI_AI) {
  617. ci->iscoreup = brcmf_chip_ai_iscoreup;
  618. ci->coredisable = brcmf_chip_ai_coredisable;
  619. ci->resetcore = brcmf_chip_ai_resetcore;
  620. brcmf_chip_dmp_erom_scan(ci);
  621. } else {
  622. brcmf_err("chip backplane type %u is not supported\n",
  623. socitype);
  624. return -ENODEV;
  625. }
  626. brcmf_chip_get_raminfo(ci);
  627. return brcmf_chip_cores_check(ci);
  628. }
  629. static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
  630. {
  631. struct brcmf_core *core;
  632. struct brcmf_core_priv *cr4;
  633. u32 val;
  634. core = brcmf_chip_get_core(&chip->pub, id);
  635. if (!core)
  636. return;
  637. switch (id) {
  638. case BCMA_CORE_ARM_CM3:
  639. brcmf_chip_coredisable(core, 0, 0);
  640. break;
  641. case BCMA_CORE_ARM_CR4:
  642. cr4 = container_of(core, struct brcmf_core_priv, pub);
  643. /* clear all IOCTL bits except HALT bit */
  644. val = chip->ops->read32(chip->ctx, cr4->wrapbase + BCMA_IOCTL);
  645. val &= ARMCR4_BCMA_IOCTL_CPUHALT;
  646. brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
  647. ARMCR4_BCMA_IOCTL_CPUHALT);
  648. break;
  649. default:
  650. brcmf_err("unknown id: %u\n", id);
  651. break;
  652. }
  653. }
  654. static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
  655. {
  656. struct brcmf_chip *pub;
  657. struct brcmf_core_priv *cc;
  658. u32 base;
  659. u32 val;
  660. int ret = 0;
  661. pub = &chip->pub;
  662. cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
  663. base = cc->pub.base;
  664. /* get chipcommon capabilites */
  665. pub->cc_caps = chip->ops->read32(chip->ctx,
  666. CORE_CC_REG(base, capabilities));
  667. /* get pmu caps & rev */
  668. if (pub->cc_caps & CC_CAP_PMU) {
  669. val = chip->ops->read32(chip->ctx,
  670. CORE_CC_REG(base, pmucapabilities));
  671. pub->pmurev = val & PCAP_REV_MASK;
  672. pub->pmucaps = val;
  673. }
  674. brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
  675. cc->pub.rev, pub->pmurev, pub->pmucaps);
  676. /* execute bus core specific setup */
  677. if (chip->ops->setup)
  678. ret = chip->ops->setup(chip->ctx, pub);
  679. /*
  680. * Make sure any on-chip ARM is off (in case strapping is wrong),
  681. * or downloaded code was already running.
  682. */
  683. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
  684. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
  685. return ret;
  686. }
  687. struct brcmf_chip *brcmf_chip_attach(void *ctx,
  688. const struct brcmf_buscore_ops *ops)
  689. {
  690. struct brcmf_chip_priv *chip;
  691. int err = 0;
  692. if (WARN_ON(!ops->read32))
  693. err = -EINVAL;
  694. if (WARN_ON(!ops->write32))
  695. err = -EINVAL;
  696. if (WARN_ON(!ops->prepare))
  697. err = -EINVAL;
  698. if (WARN_ON(!ops->exit_dl))
  699. err = -EINVAL;
  700. if (err < 0)
  701. return ERR_PTR(-EINVAL);
  702. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  703. if (!chip)
  704. return ERR_PTR(-ENOMEM);
  705. INIT_LIST_HEAD(&chip->cores);
  706. chip->num_cores = 0;
  707. chip->ops = ops;
  708. chip->ctx = ctx;
  709. err = ops->prepare(ctx);
  710. if (err < 0)
  711. goto fail;
  712. err = brcmf_chip_recognition(chip);
  713. if (err < 0)
  714. goto fail;
  715. err = brcmf_chip_setup(chip);
  716. if (err < 0)
  717. goto fail;
  718. return &chip->pub;
  719. fail:
  720. brcmf_chip_detach(&chip->pub);
  721. return ERR_PTR(err);
  722. }
  723. void brcmf_chip_detach(struct brcmf_chip *pub)
  724. {
  725. struct brcmf_chip_priv *chip;
  726. struct brcmf_core_priv *core;
  727. struct brcmf_core_priv *tmp;
  728. chip = container_of(pub, struct brcmf_chip_priv, pub);
  729. list_for_each_entry_safe(core, tmp, &chip->cores, list) {
  730. list_del(&core->list);
  731. kfree(core);
  732. }
  733. kfree(chip);
  734. }
  735. struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
  736. {
  737. struct brcmf_chip_priv *chip;
  738. struct brcmf_core_priv *core;
  739. chip = container_of(pub, struct brcmf_chip_priv, pub);
  740. list_for_each_entry(core, &chip->cores, list)
  741. if (core->pub.id == coreid)
  742. return &core->pub;
  743. return NULL;
  744. }
  745. struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
  746. {
  747. struct brcmf_chip_priv *chip;
  748. struct brcmf_core_priv *cc;
  749. chip = container_of(pub, struct brcmf_chip_priv, pub);
  750. cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
  751. if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
  752. return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
  753. return &cc->pub;
  754. }
  755. bool brcmf_chip_iscoreup(struct brcmf_core *pub)
  756. {
  757. struct brcmf_core_priv *core;
  758. core = container_of(pub, struct brcmf_core_priv, pub);
  759. return core->chip->iscoreup(core);
  760. }
  761. void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
  762. {
  763. struct brcmf_core_priv *core;
  764. core = container_of(pub, struct brcmf_core_priv, pub);
  765. core->chip->coredisable(core, prereset, reset);
  766. }
  767. void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
  768. u32 postreset)
  769. {
  770. struct brcmf_core_priv *core;
  771. core = container_of(pub, struct brcmf_core_priv, pub);
  772. core->chip->resetcore(core, prereset, reset, postreset);
  773. }
  774. static void
  775. brcmf_chip_cm3_enterdl(struct brcmf_chip_priv *chip)
  776. {
  777. struct brcmf_core *core;
  778. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
  779. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  780. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  781. D11_BCMA_IOCTL_PHYCLOCKEN,
  782. D11_BCMA_IOCTL_PHYCLOCKEN,
  783. D11_BCMA_IOCTL_PHYCLOCKEN);
  784. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
  785. brcmf_chip_resetcore(core, 0, 0, 0);
  786. }
  787. static bool brcmf_chip_cm3_exitdl(struct brcmf_chip_priv *chip)
  788. {
  789. struct brcmf_core *core;
  790. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
  791. if (!brcmf_chip_iscoreup(core)) {
  792. brcmf_err("SOCRAM core is down after reset?\n");
  793. return false;
  794. }
  795. chip->ops->exit_dl(chip->ctx, &chip->pub, 0);
  796. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
  797. brcmf_chip_resetcore(core, 0, 0, 0);
  798. return true;
  799. }
  800. static inline void
  801. brcmf_chip_cr4_enterdl(struct brcmf_chip_priv *chip)
  802. {
  803. struct brcmf_core *core;
  804. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
  805. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  806. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  807. D11_BCMA_IOCTL_PHYCLOCKEN,
  808. D11_BCMA_IOCTL_PHYCLOCKEN,
  809. D11_BCMA_IOCTL_PHYCLOCKEN);
  810. }
  811. static bool brcmf_chip_cr4_exitdl(struct brcmf_chip_priv *chip, u32 rstvec)
  812. {
  813. struct brcmf_core *core;
  814. chip->ops->exit_dl(chip->ctx, &chip->pub, rstvec);
  815. /* restore ARM */
  816. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
  817. brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
  818. return true;
  819. }
  820. void brcmf_chip_enter_download(struct brcmf_chip *pub)
  821. {
  822. struct brcmf_chip_priv *chip;
  823. struct brcmf_core *arm;
  824. brcmf_dbg(TRACE, "Enter\n");
  825. chip = container_of(pub, struct brcmf_chip_priv, pub);
  826. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
  827. if (arm) {
  828. brcmf_chip_cr4_enterdl(chip);
  829. return;
  830. }
  831. brcmf_chip_cm3_enterdl(chip);
  832. }
  833. bool brcmf_chip_exit_download(struct brcmf_chip *pub, u32 rstvec)
  834. {
  835. struct brcmf_chip_priv *chip;
  836. struct brcmf_core *arm;
  837. brcmf_dbg(TRACE, "Enter\n");
  838. chip = container_of(pub, struct brcmf_chip_priv, pub);
  839. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
  840. if (arm)
  841. return brcmf_chip_cr4_exitdl(chip, rstvec);
  842. return brcmf_chip_cm3_exitdl(chip);
  843. }
  844. bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
  845. {
  846. u32 base, addr, reg, pmu_cc3_mask = ~0;
  847. struct brcmf_chip_priv *chip;
  848. brcmf_dbg(TRACE, "Enter\n");
  849. /* old chips with PMU version less than 17 don't support save restore */
  850. if (pub->pmurev < 17)
  851. return false;
  852. base = brcmf_chip_get_chipcommon(pub)->base;
  853. chip = container_of(pub, struct brcmf_chip_priv, pub);
  854. switch (pub->chip) {
  855. case BRCM_CC_4354_CHIP_ID:
  856. /* explicitly check SR engine enable bit */
  857. pmu_cc3_mask = BIT(2);
  858. /* fall-through */
  859. case BRCM_CC_43241_CHIP_ID:
  860. case BRCM_CC_4335_CHIP_ID:
  861. case BRCM_CC_4339_CHIP_ID:
  862. /* read PMU chipcontrol register 3 */
  863. addr = CORE_CC_REG(base, chipcontrol_addr);
  864. chip->ops->write32(chip->ctx, addr, 3);
  865. addr = CORE_CC_REG(base, chipcontrol_data);
  866. reg = chip->ops->read32(chip->ctx, addr);
  867. return (reg & pmu_cc3_mask) != 0;
  868. default:
  869. addr = CORE_CC_REG(base, pmucapabilities_ext);
  870. reg = chip->ops->read32(chip->ctx, addr);
  871. if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
  872. return false;
  873. addr = CORE_CC_REG(base, retention_ctl);
  874. reg = chip->ops->read32(chip->ctx, addr);
  875. return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
  876. PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
  877. }
  878. }