wmi.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217
  1. /*
  2. * Copyright (c) 2012-2014 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/moduleparam.h>
  17. #include <linux/etherdevice.h>
  18. #include <linux/if_arp.h>
  19. #include "wil6210.h"
  20. #include "txrx.h"
  21. #include "wmi.h"
  22. #include "trace.h"
  23. static uint max_assoc_sta = 1;
  24. module_param(max_assoc_sta, uint, S_IRUGO | S_IWUSR);
  25. MODULE_PARM_DESC(max_assoc_sta, " Max number of stations associated to the AP");
  26. /**
  27. * WMI event receiving - theory of operations
  28. *
  29. * When firmware about to report WMI event, it fills memory area
  30. * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
  31. * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
  32. *
  33. * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
  34. * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
  35. * and handles events within the @wmi_event_worker. Every event get detached
  36. * from list, processed and deleted.
  37. *
  38. * Purpose for this mechanism is to release IRQ thread; otherwise,
  39. * if WMI event handling involves another WMI command flow, this 2-nd flow
  40. * won't be completed because of blocked IRQ thread.
  41. */
  42. /**
  43. * Addressing - theory of operations
  44. *
  45. * There are several buses present on the WIL6210 card.
  46. * Same memory areas are visible at different address on
  47. * the different busses. There are 3 main bus masters:
  48. * - MAC CPU (ucode)
  49. * - User CPU (firmware)
  50. * - AHB (host)
  51. *
  52. * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
  53. * AHB addresses starting from 0x880000
  54. *
  55. * Internally, firmware uses addresses that allows faster access but
  56. * are invisible from the host. To read from these addresses, alternative
  57. * AHB address must be used.
  58. *
  59. * Memory mapping
  60. * Linker address PCI/Host address
  61. * 0x880000 .. 0xa80000 2Mb BAR0
  62. * 0x800000 .. 0x807000 0x900000 .. 0x907000 28k DCCM
  63. * 0x840000 .. 0x857000 0x908000 .. 0x91f000 92k PERIPH
  64. */
  65. /**
  66. * @fw_mapping provides memory remapping table
  67. *
  68. * array size should be in sync with the declaration in the wil6210.h
  69. */
  70. const struct fw_map fw_mapping[] = {
  71. {0x000000, 0x040000, 0x8c0000, "fw_code"}, /* FW code RAM 256k */
  72. {0x800000, 0x808000, 0x900000, "fw_data"}, /* FW data RAM 32k */
  73. {0x840000, 0x860000, 0x908000, "fw_peri"}, /* periph. data RAM 128k */
  74. {0x880000, 0x88a000, 0x880000, "rgf"}, /* various RGF 40k */
  75. {0x88a000, 0x88b000, 0x88a000, "AGC_tbl"}, /* AGC table 4k */
  76. {0x88b000, 0x88c000, 0x88b000, "rgf_ext"}, /* Pcie_ext_rgf 4k */
  77. {0x8c0000, 0x949000, 0x8c0000, "upper"}, /* upper area 548k */
  78. /*
  79. * 920000..930000 ucode code RAM
  80. * 930000..932000 ucode data RAM
  81. * 932000..949000 back-door debug data
  82. */
  83. };
  84. /**
  85. * return AHB address for given firmware/ucode internal (linker) address
  86. * @x - internal address
  87. * If address have no valid AHB mapping, return 0
  88. */
  89. static u32 wmi_addr_remap(u32 x)
  90. {
  91. uint i;
  92. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
  93. if ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))
  94. return x + fw_mapping[i].host - fw_mapping[i].from;
  95. }
  96. return 0;
  97. }
  98. /**
  99. * Check address validity for WMI buffer; remap if needed
  100. * @ptr - internal (linker) fw/ucode address
  101. *
  102. * Valid buffer should be DWORD aligned
  103. *
  104. * return address for accessing buffer from the host;
  105. * if buffer is not valid, return NULL.
  106. */
  107. void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
  108. {
  109. u32 off;
  110. u32 ptr = le32_to_cpu(ptr_);
  111. if (ptr % 4)
  112. return NULL;
  113. ptr = wmi_addr_remap(ptr);
  114. if (ptr < WIL6210_FW_HOST_OFF)
  115. return NULL;
  116. off = HOSTADDR(ptr);
  117. if (off > WIL6210_MEM_SIZE - 4)
  118. return NULL;
  119. return wil->csr + off;
  120. }
  121. /**
  122. * Check address validity
  123. */
  124. void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
  125. {
  126. u32 off;
  127. if (ptr % 4)
  128. return NULL;
  129. if (ptr < WIL6210_FW_HOST_OFF)
  130. return NULL;
  131. off = HOSTADDR(ptr);
  132. if (off > WIL6210_MEM_SIZE - 4)
  133. return NULL;
  134. return wil->csr + off;
  135. }
  136. int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
  137. struct wil6210_mbox_hdr *hdr)
  138. {
  139. void __iomem *src = wmi_buffer(wil, ptr);
  140. if (!src)
  141. return -EINVAL;
  142. wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
  143. return 0;
  144. }
  145. static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  146. {
  147. struct {
  148. struct wil6210_mbox_hdr hdr;
  149. struct wil6210_mbox_hdr_wmi wmi;
  150. } __packed cmd = {
  151. .hdr = {
  152. .type = WIL_MBOX_HDR_TYPE_WMI,
  153. .flags = 0,
  154. .len = cpu_to_le16(sizeof(cmd.wmi) + len),
  155. },
  156. .wmi = {
  157. .mid = 0,
  158. .id = cpu_to_le16(cmdid),
  159. },
  160. };
  161. struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
  162. struct wil6210_mbox_ring_desc d_head;
  163. u32 next_head;
  164. void __iomem *dst;
  165. void __iomem *head = wmi_addr(wil, r->head);
  166. uint retry;
  167. if (sizeof(cmd) + len > r->entry_size) {
  168. wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
  169. (int)(sizeof(cmd) + len), r->entry_size);
  170. return -ERANGE;
  171. }
  172. might_sleep();
  173. if (!test_bit(wil_status_fwready, &wil->status)) {
  174. wil_err(wil, "WMI: cannot send command while FW not ready\n");
  175. return -EAGAIN;
  176. }
  177. if (!head) {
  178. wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
  179. return -EINVAL;
  180. }
  181. /* read Tx head till it is not busy */
  182. for (retry = 5; retry > 0; retry--) {
  183. wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
  184. if (d_head.sync == 0)
  185. break;
  186. msleep(20);
  187. }
  188. if (d_head.sync != 0) {
  189. wil_err(wil, "WMI head busy\n");
  190. return -EBUSY;
  191. }
  192. /* next head */
  193. next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
  194. wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
  195. /* wait till FW finish with previous command */
  196. for (retry = 5; retry > 0; retry--) {
  197. r->tail = ioread32(wil->csr + HOST_MBOX +
  198. offsetof(struct wil6210_mbox_ctl, tx.tail));
  199. if (next_head != r->tail)
  200. break;
  201. msleep(20);
  202. }
  203. if (next_head == r->tail) {
  204. wil_err(wil, "WMI ring full\n");
  205. return -EBUSY;
  206. }
  207. dst = wmi_buffer(wil, d_head.addr);
  208. if (!dst) {
  209. wil_err(wil, "invalid WMI buffer: 0x%08x\n",
  210. le32_to_cpu(d_head.addr));
  211. return -EINVAL;
  212. }
  213. cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
  214. /* set command */
  215. wil_dbg_wmi(wil, "WMI command 0x%04x [%d]\n", cmdid, len);
  216. wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
  217. sizeof(cmd), true);
  218. wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  219. len, true);
  220. wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
  221. wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
  222. /* mark entry as full */
  223. iowrite32(1, wil->csr + HOSTADDR(r->head) +
  224. offsetof(struct wil6210_mbox_ring_desc, sync));
  225. /* advance next ptr */
  226. iowrite32(r->head = next_head, wil->csr + HOST_MBOX +
  227. offsetof(struct wil6210_mbox_ctl, tx.head));
  228. trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
  229. /* interrupt to FW */
  230. iowrite32(SW_INT_MBOX, wil->csr + HOST_SW_INT);
  231. return 0;
  232. }
  233. int wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  234. {
  235. int rc;
  236. mutex_lock(&wil->wmi_mutex);
  237. rc = __wmi_send(wil, cmdid, buf, len);
  238. mutex_unlock(&wil->wmi_mutex);
  239. return rc;
  240. }
  241. /*=== Event handlers ===*/
  242. static void wmi_evt_ready(struct wil6210_priv *wil, int id, void *d, int len)
  243. {
  244. struct net_device *ndev = wil_to_ndev(wil);
  245. struct wireless_dev *wdev = wil->wdev;
  246. struct wmi_ready_event *evt = d;
  247. wil->fw_version = le32_to_cpu(evt->sw_version);
  248. wil->n_mids = evt->numof_additional_mids;
  249. wil_info(wil, "FW ver. %d; MAC %pM; %d MID's\n", wil->fw_version,
  250. evt->mac, wil->n_mids);
  251. if (!is_valid_ether_addr(ndev->dev_addr)) {
  252. memcpy(ndev->dev_addr, evt->mac, ETH_ALEN);
  253. memcpy(ndev->perm_addr, evt->mac, ETH_ALEN);
  254. }
  255. snprintf(wdev->wiphy->fw_version, sizeof(wdev->wiphy->fw_version),
  256. "%d", wil->fw_version);
  257. }
  258. static void wmi_evt_fw_ready(struct wil6210_priv *wil, int id, void *d,
  259. int len)
  260. {
  261. wil_dbg_wmi(wil, "WMI: got FW ready event\n");
  262. wil_set_recovery_state(wil, fw_recovery_idle);
  263. set_bit(wil_status_fwready, &wil->status);
  264. /* let the reset sequence continue */
  265. complete(&wil->wmi_ready);
  266. }
  267. static void wmi_evt_rx_mgmt(struct wil6210_priv *wil, int id, void *d, int len)
  268. {
  269. struct wmi_rx_mgmt_packet_event *data = d;
  270. struct wiphy *wiphy = wil_to_wiphy(wil);
  271. struct ieee80211_mgmt *rx_mgmt_frame =
  272. (struct ieee80211_mgmt *)data->payload;
  273. int ch_no = data->info.channel+1;
  274. u32 freq = ieee80211_channel_to_frequency(ch_no,
  275. IEEE80211_BAND_60GHZ);
  276. struct ieee80211_channel *channel = ieee80211_get_channel(wiphy, freq);
  277. s32 signal = data->info.sqi;
  278. __le16 fc = rx_mgmt_frame->frame_control;
  279. u32 d_len = le32_to_cpu(data->info.len);
  280. u16 d_status = le16_to_cpu(data->info.status);
  281. wil_dbg_wmi(wil, "MGMT: channel %d MCS %d SNR %d SQI %d%%\n",
  282. data->info.channel, data->info.mcs, data->info.snr,
  283. data->info.sqi);
  284. wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
  285. le16_to_cpu(fc));
  286. wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
  287. data->info.qid, data->info.mid, data->info.cid);
  288. if (!channel) {
  289. wil_err(wil, "Frame on unsupported channel\n");
  290. return;
  291. }
  292. if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
  293. struct cfg80211_bss *bss;
  294. u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp);
  295. u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info);
  296. u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int);
  297. const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable;
  298. size_t ie_len = d_len - offsetof(struct ieee80211_mgmt,
  299. u.beacon.variable);
  300. wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
  301. wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf);
  302. wil_dbg_wmi(wil, "Beacon interval : %d\n", bi);
  303. wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf,
  304. ie_len, true);
  305. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  306. d_len, signal, GFP_KERNEL);
  307. if (bss) {
  308. wil_dbg_wmi(wil, "Added BSS %pM\n",
  309. rx_mgmt_frame->bssid);
  310. cfg80211_put_bss(wiphy, bss);
  311. } else {
  312. wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
  313. }
  314. } else {
  315. cfg80211_rx_mgmt(wil->wdev, freq, signal,
  316. (void *)rx_mgmt_frame, d_len, 0);
  317. }
  318. }
  319. static void wmi_evt_scan_complete(struct wil6210_priv *wil, int id,
  320. void *d, int len)
  321. {
  322. if (wil->scan_request) {
  323. struct wmi_scan_complete_event *data = d;
  324. bool aborted = (data->status != WMI_SCAN_SUCCESS);
  325. wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", data->status);
  326. wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n",
  327. wil->scan_request, aborted);
  328. del_timer_sync(&wil->scan_timer);
  329. cfg80211_scan_done(wil->scan_request, aborted);
  330. wil->scan_request = NULL;
  331. } else {
  332. wil_err(wil, "SCAN_COMPLETE while not scanning\n");
  333. }
  334. }
  335. static void wmi_evt_connect(struct wil6210_priv *wil, int id, void *d, int len)
  336. {
  337. struct net_device *ndev = wil_to_ndev(wil);
  338. struct wireless_dev *wdev = wil->wdev;
  339. struct wmi_connect_event *evt = d;
  340. int ch; /* channel number */
  341. struct station_info sinfo;
  342. u8 *assoc_req_ie, *assoc_resp_ie;
  343. size_t assoc_req_ielen, assoc_resp_ielen;
  344. /* capinfo(u16) + listen_interval(u16) + IEs */
  345. const size_t assoc_req_ie_offset = sizeof(u16) * 2;
  346. /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
  347. const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
  348. if (len < sizeof(*evt)) {
  349. wil_err(wil, "Connect event too short : %d bytes\n", len);
  350. return;
  351. }
  352. if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
  353. evt->assoc_resp_len) {
  354. wil_err(wil,
  355. "Connect event corrupted : %d != %d + %d + %d + %d\n",
  356. len, (int)sizeof(*evt), evt->beacon_ie_len,
  357. evt->assoc_req_len, evt->assoc_resp_len);
  358. return;
  359. }
  360. if (evt->cid >= WIL6210_MAX_CID) {
  361. wil_err(wil, "Connect CID invalid : %d\n", evt->cid);
  362. return;
  363. }
  364. ch = evt->channel + 1;
  365. wil_dbg_wmi(wil, "Connect %pM channel [%d] cid %d\n",
  366. evt->bssid, ch, evt->cid);
  367. wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
  368. evt->assoc_info, len - sizeof(*evt), true);
  369. /* figure out IE's */
  370. assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
  371. assoc_req_ie_offset];
  372. assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
  373. if (evt->assoc_req_len <= assoc_req_ie_offset) {
  374. assoc_req_ie = NULL;
  375. assoc_req_ielen = 0;
  376. }
  377. assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
  378. evt->assoc_req_len +
  379. assoc_resp_ie_offset];
  380. assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
  381. if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
  382. assoc_resp_ie = NULL;
  383. assoc_resp_ielen = 0;
  384. }
  385. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  386. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  387. if (!test_bit(wil_status_fwconnecting, &wil->status)) {
  388. wil_err(wil, "Not in connecting state\n");
  389. return;
  390. }
  391. del_timer_sync(&wil->connect_timer);
  392. cfg80211_connect_result(ndev, evt->bssid,
  393. assoc_req_ie, assoc_req_ielen,
  394. assoc_resp_ie, assoc_resp_ielen,
  395. WLAN_STATUS_SUCCESS, GFP_KERNEL);
  396. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  397. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  398. memset(&sinfo, 0, sizeof(sinfo));
  399. sinfo.generation = wil->sinfo_gen++;
  400. if (assoc_req_ie) {
  401. sinfo.assoc_req_ies = assoc_req_ie;
  402. sinfo.assoc_req_ies_len = assoc_req_ielen;
  403. sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
  404. }
  405. cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL);
  406. }
  407. clear_bit(wil_status_fwconnecting, &wil->status);
  408. set_bit(wil_status_fwconnected, &wil->status);
  409. /* FIXME FW can transmit only ucast frames to peer */
  410. /* FIXME real ring_id instead of hard coded 0 */
  411. memcpy(wil->sta[evt->cid].addr, evt->bssid, ETH_ALEN);
  412. wil->sta[evt->cid].status = wil_sta_conn_pending;
  413. wil->pending_connect_cid = evt->cid;
  414. queue_work(wil->wmi_wq_conn, &wil->connect_worker);
  415. }
  416. static void wmi_evt_disconnect(struct wil6210_priv *wil, int id,
  417. void *d, int len)
  418. {
  419. struct wmi_disconnect_event *evt = d;
  420. u16 reason_code = le16_to_cpu(evt->protocol_reason_status);
  421. wil_dbg_wmi(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
  422. evt->bssid, reason_code, evt->disconnect_reason);
  423. wil->sinfo_gen++;
  424. mutex_lock(&wil->mutex);
  425. wil6210_disconnect(wil, evt->bssid, reason_code, true);
  426. mutex_unlock(&wil->mutex);
  427. }
  428. /*
  429. * Firmware reports EAPOL frame using WME event.
  430. * Reconstruct Ethernet frame and deliver it via normal Rx
  431. */
  432. static void wmi_evt_eapol_rx(struct wil6210_priv *wil, int id,
  433. void *d, int len)
  434. {
  435. struct net_device *ndev = wil_to_ndev(wil);
  436. struct wmi_eapol_rx_event *evt = d;
  437. u16 eapol_len = le16_to_cpu(evt->eapol_len);
  438. int sz = eapol_len + ETH_HLEN;
  439. struct sk_buff *skb;
  440. struct ethhdr *eth;
  441. int cid;
  442. struct wil_net_stats *stats = NULL;
  443. wil_dbg_wmi(wil, "EAPOL len %d from %pM\n", eapol_len,
  444. evt->src_mac);
  445. cid = wil_find_cid(wil, evt->src_mac);
  446. if (cid >= 0)
  447. stats = &wil->sta[cid].stats;
  448. if (eapol_len > 196) { /* TODO: revisit size limit */
  449. wil_err(wil, "EAPOL too large\n");
  450. return;
  451. }
  452. skb = alloc_skb(sz, GFP_KERNEL);
  453. if (!skb) {
  454. wil_err(wil, "Failed to allocate skb\n");
  455. return;
  456. }
  457. eth = (struct ethhdr *)skb_put(skb, ETH_HLEN);
  458. memcpy(eth->h_dest, ndev->dev_addr, ETH_ALEN);
  459. memcpy(eth->h_source, evt->src_mac, ETH_ALEN);
  460. eth->h_proto = cpu_to_be16(ETH_P_PAE);
  461. memcpy(skb_put(skb, eapol_len), evt->eapol, eapol_len);
  462. skb->protocol = eth_type_trans(skb, ndev);
  463. if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
  464. ndev->stats.rx_packets++;
  465. ndev->stats.rx_bytes += sz;
  466. if (stats) {
  467. stats->rx_packets++;
  468. stats->rx_bytes += sz;
  469. }
  470. } else {
  471. ndev->stats.rx_dropped++;
  472. if (stats)
  473. stats->rx_dropped++;
  474. }
  475. }
  476. static void wmi_evt_linkup(struct wil6210_priv *wil, int id, void *d, int len)
  477. {
  478. struct net_device *ndev = wil_to_ndev(wil);
  479. struct wmi_data_port_open_event *evt = d;
  480. u8 cid = evt->cid;
  481. wil_dbg_wmi(wil, "Link UP for CID %d\n", cid);
  482. if (cid >= ARRAY_SIZE(wil->sta)) {
  483. wil_err(wil, "Link UP for invalid CID %d\n", cid);
  484. return;
  485. }
  486. wil->sta[cid].data_port_open = true;
  487. netif_carrier_on(ndev);
  488. }
  489. static void wmi_evt_linkdown(struct wil6210_priv *wil, int id, void *d, int len)
  490. {
  491. struct net_device *ndev = wil_to_ndev(wil);
  492. struct wmi_wbe_link_down_event *evt = d;
  493. u8 cid = evt->cid;
  494. wil_dbg_wmi(wil, "Link DOWN for CID %d, reason %d\n",
  495. cid, le32_to_cpu(evt->reason));
  496. if (cid >= ARRAY_SIZE(wil->sta)) {
  497. wil_err(wil, "Link DOWN for invalid CID %d\n", cid);
  498. return;
  499. }
  500. wil->sta[cid].data_port_open = false;
  501. netif_carrier_off(ndev);
  502. }
  503. static void wmi_evt_ba_status(struct wil6210_priv *wil, int id, void *d,
  504. int len)
  505. {
  506. struct wmi_vring_ba_status_event *evt = d;
  507. struct wil_sta_info *sta;
  508. uint i, cid;
  509. /* TODO: use Rx BA status, not Tx one */
  510. wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d\n",
  511. evt->ringid,
  512. evt->status == WMI_BA_AGREED ? "OK" : "N/A",
  513. evt->agg_wsize, __le16_to_cpu(evt->ba_timeout));
  514. if (evt->ringid >= WIL6210_MAX_TX_RINGS) {
  515. wil_err(wil, "invalid ring id %d\n", evt->ringid);
  516. return;
  517. }
  518. mutex_lock(&wil->mutex);
  519. cid = wil->vring2cid_tid[evt->ringid][0];
  520. if (cid >= WIL6210_MAX_CID) {
  521. wil_err(wil, "invalid CID %d for vring %d\n", cid, evt->ringid);
  522. goto out;
  523. }
  524. sta = &wil->sta[cid];
  525. if (sta->status == wil_sta_unused) {
  526. wil_err(wil, "CID %d unused\n", cid);
  527. goto out;
  528. }
  529. wil_dbg_wmi(wil, "BACK for CID %d %pM\n", cid, sta->addr);
  530. for (i = 0; i < WIL_STA_TID_NUM; i++) {
  531. struct wil_tid_ampdu_rx *r;
  532. unsigned long flags;
  533. spin_lock_irqsave(&sta->tid_rx_lock, flags);
  534. r = sta->tid_rx[i];
  535. sta->tid_rx[i] = NULL;
  536. wil_tid_ampdu_rx_free(wil, r);
  537. spin_unlock_irqrestore(&sta->tid_rx_lock, flags);
  538. if ((evt->status == WMI_BA_AGREED) && evt->agg_wsize)
  539. sta->tid_rx[i] = wil_tid_ampdu_rx_alloc(wil,
  540. evt->agg_wsize, 0);
  541. }
  542. out:
  543. mutex_unlock(&wil->mutex);
  544. }
  545. static const struct {
  546. int eventid;
  547. void (*handler)(struct wil6210_priv *wil, int eventid,
  548. void *data, int data_len);
  549. } wmi_evt_handlers[] = {
  550. {WMI_READY_EVENTID, wmi_evt_ready},
  551. {WMI_FW_READY_EVENTID, wmi_evt_fw_ready},
  552. {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
  553. {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
  554. {WMI_CONNECT_EVENTID, wmi_evt_connect},
  555. {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
  556. {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
  557. {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_linkup},
  558. {WMI_WBE_LINKDOWN_EVENTID, wmi_evt_linkdown},
  559. {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
  560. };
  561. /*
  562. * Run in IRQ context
  563. * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
  564. * that will be eventually handled by the @wmi_event_worker in the thread
  565. * context of thread "wil6210_wmi"
  566. */
  567. void wmi_recv_cmd(struct wil6210_priv *wil)
  568. {
  569. struct wil6210_mbox_ring_desc d_tail;
  570. struct wil6210_mbox_hdr hdr;
  571. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  572. struct pending_wmi_event *evt;
  573. u8 *cmd;
  574. void __iomem *src;
  575. ulong flags;
  576. unsigned n;
  577. if (!test_bit(wil_status_reset_done, &wil->status)) {
  578. wil_err(wil, "Reset in progress. Cannot handle WMI event\n");
  579. return;
  580. }
  581. for (n = 0;; n++) {
  582. u16 len;
  583. bool q;
  584. r->head = ioread32(wil->csr + HOST_MBOX +
  585. offsetof(struct wil6210_mbox_ctl, rx.head));
  586. if (r->tail == r->head)
  587. break;
  588. wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n",
  589. r->head, r->tail);
  590. /* read cmd descriptor from tail */
  591. wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
  592. sizeof(struct wil6210_mbox_ring_desc));
  593. if (d_tail.sync == 0) {
  594. wil_err(wil, "Mbox evt not owned by FW?\n");
  595. break;
  596. }
  597. /* read cmd header from descriptor */
  598. if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
  599. wil_err(wil, "Mbox evt at 0x%08x?\n",
  600. le32_to_cpu(d_tail.addr));
  601. break;
  602. }
  603. len = le16_to_cpu(hdr.len);
  604. wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
  605. le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
  606. hdr.flags);
  607. /* read cmd buffer from descriptor */
  608. src = wmi_buffer(wil, d_tail.addr) +
  609. sizeof(struct wil6210_mbox_hdr);
  610. evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
  611. event.wmi) + len, 4),
  612. GFP_KERNEL);
  613. if (!evt)
  614. break;
  615. evt->event.hdr = hdr;
  616. cmd = (void *)&evt->event.wmi;
  617. wil_memcpy_fromio_32(cmd, src, len);
  618. /* mark entry as empty */
  619. iowrite32(0, wil->csr + HOSTADDR(r->tail) +
  620. offsetof(struct wil6210_mbox_ring_desc, sync));
  621. /* indicate */
  622. if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
  623. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  624. struct wil6210_mbox_hdr_wmi *wmi = &evt->event.wmi;
  625. u16 id = le16_to_cpu(wmi->id);
  626. u32 tstamp = le32_to_cpu(wmi->timestamp);
  627. wil_dbg_wmi(wil, "WMI event 0x%04x MID %d @%d msec\n",
  628. id, wmi->mid, tstamp);
  629. trace_wil6210_wmi_event(wmi, &wmi[1],
  630. len - sizeof(*wmi));
  631. }
  632. wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
  633. &evt->event.hdr, sizeof(hdr) + len, true);
  634. /* advance tail */
  635. r->tail = r->base + ((r->tail - r->base +
  636. sizeof(struct wil6210_mbox_ring_desc)) % r->size);
  637. iowrite32(r->tail, wil->csr + HOST_MBOX +
  638. offsetof(struct wil6210_mbox_ctl, rx.tail));
  639. /* add to the pending list */
  640. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  641. list_add_tail(&evt->list, &wil->pending_wmi_ev);
  642. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  643. q = queue_work(wil->wmi_wq, &wil->wmi_event_worker);
  644. wil_dbg_wmi(wil, "queue_work -> %d\n", q);
  645. }
  646. /* normally, 1 event per IRQ should be processed */
  647. wil_dbg_wmi(wil, "%s -> %d events queued\n", __func__, n);
  648. }
  649. int wmi_call(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len,
  650. u16 reply_id, void *reply, u8 reply_size, int to_msec)
  651. {
  652. int rc;
  653. int remain;
  654. mutex_lock(&wil->wmi_mutex);
  655. rc = __wmi_send(wil, cmdid, buf, len);
  656. if (rc)
  657. goto out;
  658. wil->reply_id = reply_id;
  659. wil->reply_buf = reply;
  660. wil->reply_size = reply_size;
  661. remain = wait_for_completion_timeout(&wil->wmi_call,
  662. msecs_to_jiffies(to_msec));
  663. if (0 == remain) {
  664. wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
  665. cmdid, reply_id, to_msec);
  666. rc = -ETIME;
  667. } else {
  668. wil_dbg_wmi(wil,
  669. "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
  670. cmdid, reply_id,
  671. to_msec - jiffies_to_msecs(remain));
  672. }
  673. wil->reply_id = 0;
  674. wil->reply_buf = NULL;
  675. wil->reply_size = 0;
  676. out:
  677. mutex_unlock(&wil->wmi_mutex);
  678. return rc;
  679. }
  680. int wmi_echo(struct wil6210_priv *wil)
  681. {
  682. struct wmi_echo_cmd cmd = {
  683. .value = cpu_to_le32(0x12345678),
  684. };
  685. return wmi_call(wil, WMI_ECHO_CMDID, &cmd, sizeof(cmd),
  686. WMI_ECHO_RSP_EVENTID, NULL, 0, 20);
  687. }
  688. int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
  689. {
  690. struct wmi_set_mac_address_cmd cmd;
  691. memcpy(cmd.mac, addr, ETH_ALEN);
  692. wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
  693. return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, &cmd, sizeof(cmd));
  694. }
  695. int wmi_pcp_start(struct wil6210_priv *wil, int bi, u8 wmi_nettype, u8 chan)
  696. {
  697. int rc;
  698. struct wmi_pcp_start_cmd cmd = {
  699. .bcon_interval = cpu_to_le16(bi),
  700. .network_type = wmi_nettype,
  701. .disable_sec_offload = 1,
  702. .channel = chan - 1,
  703. .pcp_max_assoc_sta = max_assoc_sta,
  704. };
  705. struct {
  706. struct wil6210_mbox_hdr_wmi wmi;
  707. struct wmi_pcp_started_event evt;
  708. } __packed reply;
  709. if (!wil->secure_pcp)
  710. cmd.disable_sec = 1;
  711. if ((cmd.pcp_max_assoc_sta > WIL6210_MAX_CID) ||
  712. (cmd.pcp_max_assoc_sta <= 0)) {
  713. wil_info(wil,
  714. "Requested connection limit %u, valid values are 1 - %d. Setting to %d\n",
  715. max_assoc_sta, WIL6210_MAX_CID, WIL6210_MAX_CID);
  716. cmd.pcp_max_assoc_sta = WIL6210_MAX_CID;
  717. }
  718. /*
  719. * Processing time may be huge, in case of secure AP it takes about
  720. * 3500ms for FW to start AP
  721. */
  722. rc = wmi_call(wil, WMI_PCP_START_CMDID, &cmd, sizeof(cmd),
  723. WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
  724. if (rc)
  725. return rc;
  726. if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
  727. rc = -EINVAL;
  728. return rc;
  729. }
  730. int wmi_pcp_stop(struct wil6210_priv *wil)
  731. {
  732. return wmi_call(wil, WMI_PCP_STOP_CMDID, NULL, 0,
  733. WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
  734. }
  735. int wmi_set_ssid(struct wil6210_priv *wil, u8 ssid_len, const void *ssid)
  736. {
  737. struct wmi_set_ssid_cmd cmd = {
  738. .ssid_len = cpu_to_le32(ssid_len),
  739. };
  740. if (ssid_len > sizeof(cmd.ssid))
  741. return -EINVAL;
  742. memcpy(cmd.ssid, ssid, ssid_len);
  743. return wmi_send(wil, WMI_SET_SSID_CMDID, &cmd, sizeof(cmd));
  744. }
  745. int wmi_get_ssid(struct wil6210_priv *wil, u8 *ssid_len, void *ssid)
  746. {
  747. int rc;
  748. struct {
  749. struct wil6210_mbox_hdr_wmi wmi;
  750. struct wmi_set_ssid_cmd cmd;
  751. } __packed reply;
  752. int len; /* reply.cmd.ssid_len in CPU order */
  753. rc = wmi_call(wil, WMI_GET_SSID_CMDID, NULL, 0, WMI_GET_SSID_EVENTID,
  754. &reply, sizeof(reply), 20);
  755. if (rc)
  756. return rc;
  757. len = le32_to_cpu(reply.cmd.ssid_len);
  758. if (len > sizeof(reply.cmd.ssid))
  759. return -EINVAL;
  760. *ssid_len = len;
  761. memcpy(ssid, reply.cmd.ssid, len);
  762. return 0;
  763. }
  764. int wmi_set_channel(struct wil6210_priv *wil, int channel)
  765. {
  766. struct wmi_set_pcp_channel_cmd cmd = {
  767. .channel = channel - 1,
  768. };
  769. return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, &cmd, sizeof(cmd));
  770. }
  771. int wmi_get_channel(struct wil6210_priv *wil, int *channel)
  772. {
  773. int rc;
  774. struct {
  775. struct wil6210_mbox_hdr_wmi wmi;
  776. struct wmi_set_pcp_channel_cmd cmd;
  777. } __packed reply;
  778. rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, NULL, 0,
  779. WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
  780. if (rc)
  781. return rc;
  782. if (reply.cmd.channel > 3)
  783. return -EINVAL;
  784. *channel = reply.cmd.channel + 1;
  785. return 0;
  786. }
  787. int wmi_p2p_cfg(struct wil6210_priv *wil, int channel)
  788. {
  789. struct wmi_p2p_cfg_cmd cmd = {
  790. .discovery_mode = WMI_DISCOVERY_MODE_NON_OFFLOAD,
  791. .channel = channel - 1,
  792. };
  793. return wmi_send(wil, WMI_P2P_CFG_CMDID, &cmd, sizeof(cmd));
  794. }
  795. int wmi_del_cipher_key(struct wil6210_priv *wil, u8 key_index,
  796. const void *mac_addr)
  797. {
  798. struct wmi_delete_cipher_key_cmd cmd = {
  799. .key_index = key_index,
  800. };
  801. if (mac_addr)
  802. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  803. return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  804. }
  805. int wmi_add_cipher_key(struct wil6210_priv *wil, u8 key_index,
  806. const void *mac_addr, int key_len, const void *key)
  807. {
  808. struct wmi_add_cipher_key_cmd cmd = {
  809. .key_index = key_index,
  810. .key_usage = WMI_KEY_USE_PAIRWISE,
  811. .key_len = key_len,
  812. };
  813. if (!key || (key_len > sizeof(cmd.key)))
  814. return -EINVAL;
  815. memcpy(cmd.key, key, key_len);
  816. if (mac_addr)
  817. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  818. return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  819. }
  820. int wmi_set_ie(struct wil6210_priv *wil, u8 type, u16 ie_len, const void *ie)
  821. {
  822. int rc;
  823. u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
  824. struct wmi_set_appie_cmd *cmd = kzalloc(len, GFP_KERNEL);
  825. if (!cmd)
  826. return -ENOMEM;
  827. if (!ie)
  828. ie_len = 0;
  829. cmd->mgmt_frm_type = type;
  830. /* BUG: FW API define ieLen as u8. Will fix FW */
  831. cmd->ie_len = cpu_to_le16(ie_len);
  832. memcpy(cmd->ie_info, ie, ie_len);
  833. rc = wmi_send(wil, WMI_SET_APPIE_CMDID, cmd, len);
  834. kfree(cmd);
  835. return rc;
  836. }
  837. /**
  838. * wmi_rxon - turn radio on/off
  839. * @on: turn on if true, off otherwise
  840. *
  841. * Only switch radio. Channel should be set separately.
  842. * No timeout for rxon - radio turned on forever unless some other call
  843. * turns it off
  844. */
  845. int wmi_rxon(struct wil6210_priv *wil, bool on)
  846. {
  847. int rc;
  848. struct {
  849. struct wil6210_mbox_hdr_wmi wmi;
  850. struct wmi_listen_started_event evt;
  851. } __packed reply;
  852. wil_info(wil, "%s(%s)\n", __func__, on ? "on" : "off");
  853. if (on) {
  854. rc = wmi_call(wil, WMI_START_LISTEN_CMDID, NULL, 0,
  855. WMI_LISTEN_STARTED_EVENTID,
  856. &reply, sizeof(reply), 100);
  857. if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS))
  858. rc = -EINVAL;
  859. } else {
  860. rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, NULL, 0,
  861. WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20);
  862. }
  863. return rc;
  864. }
  865. int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring)
  866. {
  867. struct wireless_dev *wdev = wil->wdev;
  868. struct net_device *ndev = wil_to_ndev(wil);
  869. struct wmi_cfg_rx_chain_cmd cmd = {
  870. .action = WMI_RX_CHAIN_ADD,
  871. .rx_sw_ring = {
  872. .max_mpdu_size = cpu_to_le16(mtu_max + ETH_HLEN),
  873. .ring_mem_base = cpu_to_le64(vring->pa),
  874. .ring_size = cpu_to_le16(vring->size),
  875. },
  876. .mid = 0, /* TODO - what is it? */
  877. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  878. .reorder_type = WMI_RX_SW_REORDER,
  879. };
  880. struct {
  881. struct wil6210_mbox_hdr_wmi wmi;
  882. struct wmi_cfg_rx_chain_done_event evt;
  883. } __packed evt;
  884. int rc;
  885. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  886. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  887. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  888. if (ch)
  889. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  890. cmd.sniffer_cfg.phy_info_mode =
  891. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  892. cmd.sniffer_cfg.phy_support =
  893. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  894. ? WMI_SNIFFER_CP : WMI_SNIFFER_DP);
  895. } else {
  896. /* Initialize offload (in non-sniffer mode).
  897. * Linux IP stack always calculates IP checksum
  898. * HW always calculate TCP/UDP checksum
  899. */
  900. cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
  901. }
  902. /* typical time for secure PCP is 840ms */
  903. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
  904. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  905. if (rc)
  906. return rc;
  907. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  908. wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
  909. le32_to_cpu(evt.evt.status), vring->hwtail);
  910. if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
  911. rc = -EINVAL;
  912. return rc;
  913. }
  914. int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_m, u32 *t_r)
  915. {
  916. int rc;
  917. struct wmi_temp_sense_cmd cmd = {
  918. .measure_marlon_m_en = cpu_to_le32(!!t_m),
  919. .measure_marlon_r_en = cpu_to_le32(!!t_r),
  920. };
  921. struct {
  922. struct wil6210_mbox_hdr_wmi wmi;
  923. struct wmi_temp_sense_done_event evt;
  924. } __packed reply;
  925. rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, &cmd, sizeof(cmd),
  926. WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
  927. if (rc)
  928. return rc;
  929. if (t_m)
  930. *t_m = le32_to_cpu(reply.evt.marlon_m_t1000);
  931. if (t_r)
  932. *t_r = le32_to_cpu(reply.evt.marlon_r_t1000);
  933. return 0;
  934. }
  935. int wmi_disconnect_sta(struct wil6210_priv *wil, const u8 *mac, u16 reason)
  936. {
  937. struct wmi_disconnect_sta_cmd cmd = {
  938. .disconnect_reason = cpu_to_le16(reason),
  939. };
  940. memcpy(cmd.dst_mac, mac, ETH_ALEN);
  941. wil_dbg_wmi(wil, "%s(%pM, reason %d)\n", __func__, mac, reason);
  942. return wmi_send(wil, WMI_DISCONNECT_STA_CMDID, &cmd, sizeof(cmd));
  943. }
  944. void wmi_event_flush(struct wil6210_priv *wil)
  945. {
  946. struct pending_wmi_event *evt, *t;
  947. wil_dbg_wmi(wil, "%s()\n", __func__);
  948. list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
  949. list_del(&evt->list);
  950. kfree(evt);
  951. }
  952. }
  953. static bool wmi_evt_call_handler(struct wil6210_priv *wil, int id,
  954. void *d, int len)
  955. {
  956. uint i;
  957. for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
  958. if (wmi_evt_handlers[i].eventid == id) {
  959. wmi_evt_handlers[i].handler(wil, id, d, len);
  960. return true;
  961. }
  962. }
  963. return false;
  964. }
  965. static void wmi_event_handle(struct wil6210_priv *wil,
  966. struct wil6210_mbox_hdr *hdr)
  967. {
  968. u16 len = le16_to_cpu(hdr->len);
  969. if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
  970. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  971. struct wil6210_mbox_hdr_wmi *wmi = (void *)(&hdr[1]);
  972. void *evt_data = (void *)(&wmi[1]);
  973. u16 id = le16_to_cpu(wmi->id);
  974. wil_dbg_wmi(wil, "Handle WMI 0x%04x (reply_id 0x%04x)\n",
  975. id, wil->reply_id);
  976. /* check if someone waits for this event */
  977. if (wil->reply_id && wil->reply_id == id) {
  978. if (wil->reply_buf) {
  979. memcpy(wil->reply_buf, wmi,
  980. min(len, wil->reply_size));
  981. } else {
  982. wmi_evt_call_handler(wil, id, evt_data,
  983. len - sizeof(*wmi));
  984. }
  985. wil_dbg_wmi(wil, "Complete WMI 0x%04x\n", id);
  986. complete(&wil->wmi_call);
  987. return;
  988. }
  989. /* unsolicited event */
  990. /* search for handler */
  991. if (!wmi_evt_call_handler(wil, id, evt_data,
  992. len - sizeof(*wmi))) {
  993. wil_err(wil, "Unhandled event 0x%04x\n", id);
  994. }
  995. } else {
  996. wil_err(wil, "Unknown event type\n");
  997. print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
  998. hdr, sizeof(*hdr) + len, true);
  999. }
  1000. }
  1001. /*
  1002. * Retrieve next WMI event from the pending list
  1003. */
  1004. static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
  1005. {
  1006. ulong flags;
  1007. struct list_head *ret = NULL;
  1008. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  1009. if (!list_empty(&wil->pending_wmi_ev)) {
  1010. ret = wil->pending_wmi_ev.next;
  1011. list_del(ret);
  1012. }
  1013. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  1014. return ret;
  1015. }
  1016. /*
  1017. * Handler for the WMI events
  1018. */
  1019. void wmi_event_worker(struct work_struct *work)
  1020. {
  1021. struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
  1022. wmi_event_worker);
  1023. struct pending_wmi_event *evt;
  1024. struct list_head *lh;
  1025. wil_dbg_wmi(wil, "Start %s\n", __func__);
  1026. while ((lh = next_wmi_ev(wil)) != NULL) {
  1027. evt = list_entry(lh, struct pending_wmi_event, list);
  1028. wmi_event_handle(wil, &evt->event.hdr);
  1029. kfree(evt);
  1030. }
  1031. wil_dbg_wmi(wil, "Finished %s\n", __func__);
  1032. }