xmit.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  46. struct ath_atx_tid *tid, struct sk_buff *skb);
  47. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  48. int tx_flags, struct ath_txq *txq);
  49. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  50. struct ath_txq *txq, struct list_head *bf_q,
  51. struct ath_tx_status *ts, int txok);
  52. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  53. struct list_head *head, bool internal);
  54. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  55. struct ath_tx_status *ts, int nframes, int nbad,
  56. int txok);
  57. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  58. int seqno);
  59. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  60. struct ath_txq *txq,
  61. struct ath_atx_tid *tid,
  62. struct sk_buff *skb);
  63. enum {
  64. MCS_HT20,
  65. MCS_HT20_SGI,
  66. MCS_HT40,
  67. MCS_HT40_SGI,
  68. };
  69. /*********************/
  70. /* Aggregation logic */
  71. /*********************/
  72. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  73. __acquires(&txq->axq_lock)
  74. {
  75. spin_lock_bh(&txq->axq_lock);
  76. }
  77. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  78. __releases(&txq->axq_lock)
  79. {
  80. spin_unlock_bh(&txq->axq_lock);
  81. }
  82. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  83. __releases(&txq->axq_lock)
  84. {
  85. struct sk_buff_head q;
  86. struct sk_buff *skb;
  87. __skb_queue_head_init(&q);
  88. skb_queue_splice_init(&txq->complete_q, &q);
  89. spin_unlock_bh(&txq->axq_lock);
  90. while ((skb = __skb_dequeue(&q)))
  91. ieee80211_tx_status(sc->hw, skb);
  92. }
  93. static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
  94. struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. struct list_head *list;
  98. struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
  99. struct ath_chanctx *ctx = avp->chanctx;
  100. if (!ctx)
  101. return;
  102. if (tid->sched)
  103. return;
  104. tid->sched = true;
  105. list_add_tail(&tid->list, &ac->tid_q);
  106. if (ac->sched)
  107. return;
  108. ac->sched = true;
  109. list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
  110. list_add_tail(&ac->list, list);
  111. }
  112. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  113. {
  114. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  115. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  116. sizeof(tx_info->rate_driver_data));
  117. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  118. }
  119. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  120. {
  121. if (!tid->an->sta)
  122. return;
  123. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  124. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  125. }
  126. static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
  127. struct ath_buf *bf)
  128. {
  129. ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
  130. ARRAY_SIZE(bf->rates));
  131. }
  132. static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
  133. struct sk_buff *skb)
  134. {
  135. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  136. struct ath_frame_info *fi = get_frame_info(skb);
  137. int q = fi->txq;
  138. if (q < 0)
  139. return;
  140. txq = sc->tx.txq_map[q];
  141. if (WARN_ON(--txq->pending_frames < 0))
  142. txq->pending_frames = 0;
  143. if (txq->stopped &&
  144. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  145. if (ath9k_is_chanctx_enabled())
  146. ieee80211_wake_queue(sc->hw, info->hw_queue);
  147. else
  148. ieee80211_wake_queue(sc->hw, q);
  149. txq->stopped = false;
  150. }
  151. }
  152. static struct ath_atx_tid *
  153. ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
  154. {
  155. u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
  156. return ATH_AN_2_TID(an, tidno);
  157. }
  158. static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
  159. {
  160. return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
  161. }
  162. static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
  163. {
  164. struct sk_buff *skb;
  165. skb = __skb_dequeue(&tid->retry_q);
  166. if (!skb)
  167. skb = __skb_dequeue(&tid->buf_q);
  168. return skb;
  169. }
  170. /*
  171. * ath_tx_tid_change_state:
  172. * - clears a-mpdu flag of previous session
  173. * - force sequence number allocation to fix next BlockAck Window
  174. */
  175. static void
  176. ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
  177. {
  178. struct ath_txq *txq = tid->ac->txq;
  179. struct ieee80211_tx_info *tx_info;
  180. struct sk_buff *skb, *tskb;
  181. struct ath_buf *bf;
  182. struct ath_frame_info *fi;
  183. skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
  184. fi = get_frame_info(skb);
  185. bf = fi->bf;
  186. tx_info = IEEE80211_SKB_CB(skb);
  187. tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
  188. if (bf)
  189. continue;
  190. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  191. if (!bf) {
  192. __skb_unlink(skb, &tid->buf_q);
  193. ath_txq_skb_done(sc, txq, skb);
  194. ieee80211_free_txskb(sc->hw, skb);
  195. continue;
  196. }
  197. }
  198. }
  199. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  200. {
  201. struct ath_txq *txq = tid->ac->txq;
  202. struct sk_buff *skb;
  203. struct ath_buf *bf;
  204. struct list_head bf_head;
  205. struct ath_tx_status ts;
  206. struct ath_frame_info *fi;
  207. bool sendbar = false;
  208. INIT_LIST_HEAD(&bf_head);
  209. memset(&ts, 0, sizeof(ts));
  210. while ((skb = __skb_dequeue(&tid->retry_q))) {
  211. fi = get_frame_info(skb);
  212. bf = fi->bf;
  213. if (!bf) {
  214. ath_txq_skb_done(sc, txq, skb);
  215. ieee80211_free_txskb(sc->hw, skb);
  216. continue;
  217. }
  218. if (fi->baw_tracked) {
  219. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  220. sendbar = true;
  221. }
  222. list_add_tail(&bf->list, &bf_head);
  223. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  224. }
  225. if (sendbar) {
  226. ath_txq_unlock(sc, txq);
  227. ath_send_bar(tid, tid->seq_start);
  228. ath_txq_lock(sc, txq);
  229. }
  230. }
  231. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  232. int seqno)
  233. {
  234. int index, cindex;
  235. index = ATH_BA_INDEX(tid->seq_start, seqno);
  236. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  237. __clear_bit(cindex, tid->tx_buf);
  238. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  239. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  240. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  241. if (tid->bar_index >= 0)
  242. tid->bar_index--;
  243. }
  244. }
  245. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  246. struct ath_buf *bf)
  247. {
  248. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  249. u16 seqno = bf->bf_state.seqno;
  250. int index, cindex;
  251. index = ATH_BA_INDEX(tid->seq_start, seqno);
  252. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  253. __set_bit(cindex, tid->tx_buf);
  254. fi->baw_tracked = 1;
  255. if (index >= ((tid->baw_tail - tid->baw_head) &
  256. (ATH_TID_MAX_BUFS - 1))) {
  257. tid->baw_tail = cindex;
  258. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  259. }
  260. }
  261. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  262. struct ath_atx_tid *tid)
  263. {
  264. struct sk_buff *skb;
  265. struct ath_buf *bf;
  266. struct list_head bf_head;
  267. struct ath_tx_status ts;
  268. struct ath_frame_info *fi;
  269. memset(&ts, 0, sizeof(ts));
  270. INIT_LIST_HEAD(&bf_head);
  271. while ((skb = ath_tid_dequeue(tid))) {
  272. fi = get_frame_info(skb);
  273. bf = fi->bf;
  274. if (!bf) {
  275. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  276. continue;
  277. }
  278. list_add_tail(&bf->list, &bf_head);
  279. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  280. }
  281. }
  282. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  283. struct sk_buff *skb, int count)
  284. {
  285. struct ath_frame_info *fi = get_frame_info(skb);
  286. struct ath_buf *bf = fi->bf;
  287. struct ieee80211_hdr *hdr;
  288. int prev = fi->retries;
  289. TX_STAT_INC(txq->axq_qnum, a_retries);
  290. fi->retries += count;
  291. if (prev > 0)
  292. return;
  293. hdr = (struct ieee80211_hdr *)skb->data;
  294. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  295. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  296. sizeof(*hdr), DMA_TO_DEVICE);
  297. }
  298. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  299. {
  300. struct ath_buf *bf = NULL;
  301. spin_lock_bh(&sc->tx.txbuflock);
  302. if (unlikely(list_empty(&sc->tx.txbuf))) {
  303. spin_unlock_bh(&sc->tx.txbuflock);
  304. return NULL;
  305. }
  306. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  307. list_del(&bf->list);
  308. spin_unlock_bh(&sc->tx.txbuflock);
  309. return bf;
  310. }
  311. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  312. {
  313. spin_lock_bh(&sc->tx.txbuflock);
  314. list_add_tail(&bf->list, &sc->tx.txbuf);
  315. spin_unlock_bh(&sc->tx.txbuflock);
  316. }
  317. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  318. {
  319. struct ath_buf *tbf;
  320. tbf = ath_tx_get_buffer(sc);
  321. if (WARN_ON(!tbf))
  322. return NULL;
  323. ATH_TXBUF_RESET(tbf);
  324. tbf->bf_mpdu = bf->bf_mpdu;
  325. tbf->bf_buf_addr = bf->bf_buf_addr;
  326. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  327. tbf->bf_state = bf->bf_state;
  328. tbf->bf_state.stale = false;
  329. return tbf;
  330. }
  331. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  332. struct ath_tx_status *ts, int txok,
  333. int *nframes, int *nbad)
  334. {
  335. struct ath_frame_info *fi;
  336. u16 seq_st = 0;
  337. u32 ba[WME_BA_BMP_SIZE >> 5];
  338. int ba_index;
  339. int isaggr = 0;
  340. *nbad = 0;
  341. *nframes = 0;
  342. isaggr = bf_isaggr(bf);
  343. if (isaggr) {
  344. seq_st = ts->ts_seqnum;
  345. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  346. }
  347. while (bf) {
  348. fi = get_frame_info(bf->bf_mpdu);
  349. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  350. (*nframes)++;
  351. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  352. (*nbad)++;
  353. bf = bf->bf_next;
  354. }
  355. }
  356. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  357. struct ath_buf *bf, struct list_head *bf_q,
  358. struct ath_tx_status *ts, int txok)
  359. {
  360. struct ath_node *an = NULL;
  361. struct sk_buff *skb;
  362. struct ieee80211_sta *sta;
  363. struct ieee80211_hw *hw = sc->hw;
  364. struct ieee80211_hdr *hdr;
  365. struct ieee80211_tx_info *tx_info;
  366. struct ath_atx_tid *tid = NULL;
  367. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  368. struct list_head bf_head;
  369. struct sk_buff_head bf_pending;
  370. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  371. u32 ba[WME_BA_BMP_SIZE >> 5];
  372. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  373. bool rc_update = true, isba;
  374. struct ieee80211_tx_rate rates[4];
  375. struct ath_frame_info *fi;
  376. int nframes;
  377. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  378. int i, retries;
  379. int bar_index = -1;
  380. skb = bf->bf_mpdu;
  381. hdr = (struct ieee80211_hdr *)skb->data;
  382. tx_info = IEEE80211_SKB_CB(skb);
  383. memcpy(rates, bf->rates, sizeof(rates));
  384. retries = ts->ts_longretry + 1;
  385. for (i = 0; i < ts->ts_rateindex; i++)
  386. retries += rates[i].count;
  387. rcu_read_lock();
  388. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  389. if (!sta) {
  390. rcu_read_unlock();
  391. INIT_LIST_HEAD(&bf_head);
  392. while (bf) {
  393. bf_next = bf->bf_next;
  394. if (!bf->bf_state.stale || bf_next != NULL)
  395. list_move_tail(&bf->list, &bf_head);
  396. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  397. bf = bf_next;
  398. }
  399. return;
  400. }
  401. an = (struct ath_node *)sta->drv_priv;
  402. tid = ath_get_skb_tid(sc, an, skb);
  403. seq_first = tid->seq_start;
  404. isba = ts->ts_flags & ATH9K_TX_BA;
  405. /*
  406. * The hardware occasionally sends a tx status for the wrong TID.
  407. * In this case, the BA status cannot be considered valid and all
  408. * subframes need to be retransmitted
  409. *
  410. * Only BlockAcks have a TID and therefore normal Acks cannot be
  411. * checked
  412. */
  413. if (isba && tid->tidno != ts->tid)
  414. txok = false;
  415. isaggr = bf_isaggr(bf);
  416. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  417. if (isaggr && txok) {
  418. if (ts->ts_flags & ATH9K_TX_BA) {
  419. seq_st = ts->ts_seqnum;
  420. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  421. } else {
  422. /*
  423. * AR5416 can become deaf/mute when BA
  424. * issue happens. Chip needs to be reset.
  425. * But AP code may have sychronization issues
  426. * when perform internal reset in this routine.
  427. * Only enable reset in STA mode for now.
  428. */
  429. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  430. needreset = 1;
  431. }
  432. }
  433. __skb_queue_head_init(&bf_pending);
  434. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  435. while (bf) {
  436. u16 seqno = bf->bf_state.seqno;
  437. txfail = txpending = sendbar = 0;
  438. bf_next = bf->bf_next;
  439. skb = bf->bf_mpdu;
  440. tx_info = IEEE80211_SKB_CB(skb);
  441. fi = get_frame_info(skb);
  442. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
  443. !tid->active) {
  444. /*
  445. * Outside of the current BlockAck window,
  446. * maybe part of a previous session
  447. */
  448. txfail = 1;
  449. } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  450. /* transmit completion, subframe is
  451. * acked by block ack */
  452. acked_cnt++;
  453. } else if (!isaggr && txok) {
  454. /* transmit completion */
  455. acked_cnt++;
  456. } else if (flush) {
  457. txpending = 1;
  458. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  459. if (txok || !an->sleeping)
  460. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  461. retries);
  462. txpending = 1;
  463. } else {
  464. txfail = 1;
  465. txfail_cnt++;
  466. bar_index = max_t(int, bar_index,
  467. ATH_BA_INDEX(seq_first, seqno));
  468. }
  469. /*
  470. * Make sure the last desc is reclaimed if it
  471. * not a holding desc.
  472. */
  473. INIT_LIST_HEAD(&bf_head);
  474. if (bf_next != NULL || !bf_last->bf_state.stale)
  475. list_move_tail(&bf->list, &bf_head);
  476. if (!txpending) {
  477. /*
  478. * complete the acked-ones/xretried ones; update
  479. * block-ack window
  480. */
  481. ath_tx_update_baw(sc, tid, seqno);
  482. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  483. memcpy(tx_info->control.rates, rates, sizeof(rates));
  484. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  485. rc_update = false;
  486. if (bf == bf->bf_lastbf)
  487. ath_dynack_sample_tx_ts(sc->sc_ah,
  488. bf->bf_mpdu,
  489. ts);
  490. }
  491. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  492. !txfail);
  493. } else {
  494. if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
  495. tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
  496. ieee80211_sta_eosp(sta);
  497. }
  498. /* retry the un-acked ones */
  499. if (bf->bf_next == NULL && bf_last->bf_state.stale) {
  500. struct ath_buf *tbf;
  501. tbf = ath_clone_txbuf(sc, bf_last);
  502. /*
  503. * Update tx baw and complete the
  504. * frame with failed status if we
  505. * run out of tx buf.
  506. */
  507. if (!tbf) {
  508. ath_tx_update_baw(sc, tid, seqno);
  509. ath_tx_complete_buf(sc, bf, txq,
  510. &bf_head, ts, 0);
  511. bar_index = max_t(int, bar_index,
  512. ATH_BA_INDEX(seq_first, seqno));
  513. break;
  514. }
  515. fi->bf = tbf;
  516. }
  517. /*
  518. * Put this buffer to the temporary pending
  519. * queue to retain ordering
  520. */
  521. __skb_queue_tail(&bf_pending, skb);
  522. }
  523. bf = bf_next;
  524. }
  525. /* prepend un-acked frames to the beginning of the pending frame queue */
  526. if (!skb_queue_empty(&bf_pending)) {
  527. if (an->sleeping)
  528. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  529. skb_queue_splice_tail(&bf_pending, &tid->retry_q);
  530. if (!an->sleeping) {
  531. ath_tx_queue_tid(sc, txq, tid);
  532. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  533. tid->ac->clear_ps_filter = true;
  534. }
  535. }
  536. if (bar_index >= 0) {
  537. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  538. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  539. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  540. ath_txq_unlock(sc, txq);
  541. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  542. ath_txq_lock(sc, txq);
  543. }
  544. rcu_read_unlock();
  545. if (needreset)
  546. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  547. }
  548. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  549. {
  550. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  551. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  552. }
  553. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  554. struct ath_tx_status *ts, struct ath_buf *bf,
  555. struct list_head *bf_head)
  556. {
  557. struct ieee80211_tx_info *info;
  558. bool txok, flush;
  559. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  560. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  561. txq->axq_tx_inprogress = false;
  562. txq->axq_depth--;
  563. if (bf_is_ampdu_not_probing(bf))
  564. txq->axq_ampdu_depth--;
  565. ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
  566. ts->ts_rateindex);
  567. if (!bf_isampdu(bf)) {
  568. if (!flush) {
  569. info = IEEE80211_SKB_CB(bf->bf_mpdu);
  570. memcpy(info->control.rates, bf->rates,
  571. sizeof(info->control.rates));
  572. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  573. ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
  574. }
  575. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  576. } else
  577. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  578. if (!flush)
  579. ath_txq_schedule(sc, txq);
  580. }
  581. static bool ath_lookup_legacy(struct ath_buf *bf)
  582. {
  583. struct sk_buff *skb;
  584. struct ieee80211_tx_info *tx_info;
  585. struct ieee80211_tx_rate *rates;
  586. int i;
  587. skb = bf->bf_mpdu;
  588. tx_info = IEEE80211_SKB_CB(skb);
  589. rates = tx_info->control.rates;
  590. for (i = 0; i < 4; i++) {
  591. if (!rates[i].count || rates[i].idx < 0)
  592. break;
  593. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  594. return true;
  595. }
  596. return false;
  597. }
  598. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  599. struct ath_atx_tid *tid)
  600. {
  601. struct sk_buff *skb;
  602. struct ieee80211_tx_info *tx_info;
  603. struct ieee80211_tx_rate *rates;
  604. u32 max_4ms_framelen, frmlen;
  605. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  606. int q = tid->ac->txq->mac80211_qnum;
  607. int i;
  608. skb = bf->bf_mpdu;
  609. tx_info = IEEE80211_SKB_CB(skb);
  610. rates = bf->rates;
  611. /*
  612. * Find the lowest frame length among the rate series that will have a
  613. * 4ms (or TXOP limited) transmit duration.
  614. */
  615. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  616. for (i = 0; i < 4; i++) {
  617. int modeidx;
  618. if (!rates[i].count)
  619. continue;
  620. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  621. legacy = 1;
  622. break;
  623. }
  624. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  625. modeidx = MCS_HT40;
  626. else
  627. modeidx = MCS_HT20;
  628. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  629. modeidx++;
  630. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  631. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  632. }
  633. /*
  634. * limit aggregate size by the minimum rate if rate selected is
  635. * not a probe rate, if rate selected is a probe rate then
  636. * avoid aggregation of this packet.
  637. */
  638. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  639. return 0;
  640. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  641. /*
  642. * Override the default aggregation limit for BTCOEX.
  643. */
  644. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  645. if (bt_aggr_limit)
  646. aggr_limit = bt_aggr_limit;
  647. if (tid->an->maxampdu)
  648. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  649. return aggr_limit;
  650. }
  651. /*
  652. * Returns the number of delimiters to be added to
  653. * meet the minimum required mpdudensity.
  654. */
  655. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  656. struct ath_buf *bf, u16 frmlen,
  657. bool first_subfrm)
  658. {
  659. #define FIRST_DESC_NDELIMS 60
  660. u32 nsymbits, nsymbols;
  661. u16 minlen;
  662. u8 flags, rix;
  663. int width, streams, half_gi, ndelim, mindelim;
  664. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  665. /* Select standard number of delimiters based on frame length alone */
  666. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  667. /*
  668. * If encryption enabled, hardware requires some more padding between
  669. * subframes.
  670. * TODO - this could be improved to be dependent on the rate.
  671. * The hardware can keep up at lower rates, but not higher rates
  672. */
  673. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  674. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  675. ndelim += ATH_AGGR_ENCRYPTDELIM;
  676. /*
  677. * Add delimiter when using RTS/CTS with aggregation
  678. * and non enterprise AR9003 card
  679. */
  680. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  681. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  682. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  683. /*
  684. * Convert desired mpdu density from microeconds to bytes based
  685. * on highest rate in rate series (i.e. first rate) to determine
  686. * required minimum length for subframe. Take into account
  687. * whether high rate is 20 or 40Mhz and half or full GI.
  688. *
  689. * If there is no mpdu density restriction, no further calculation
  690. * is needed.
  691. */
  692. if (tid->an->mpdudensity == 0)
  693. return ndelim;
  694. rix = bf->rates[0].idx;
  695. flags = bf->rates[0].flags;
  696. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  697. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  698. if (half_gi)
  699. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  700. else
  701. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  702. if (nsymbols == 0)
  703. nsymbols = 1;
  704. streams = HT_RC_2_STREAMS(rix);
  705. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  706. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  707. if (frmlen < minlen) {
  708. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  709. ndelim = max(mindelim, ndelim);
  710. }
  711. return ndelim;
  712. }
  713. static struct ath_buf *
  714. ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
  715. struct ath_atx_tid *tid, struct sk_buff_head **q)
  716. {
  717. struct ieee80211_tx_info *tx_info;
  718. struct ath_frame_info *fi;
  719. struct sk_buff *skb;
  720. struct ath_buf *bf;
  721. u16 seqno;
  722. while (1) {
  723. *q = &tid->retry_q;
  724. if (skb_queue_empty(*q))
  725. *q = &tid->buf_q;
  726. skb = skb_peek(*q);
  727. if (!skb)
  728. break;
  729. fi = get_frame_info(skb);
  730. bf = fi->bf;
  731. if (!fi->bf)
  732. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  733. else
  734. bf->bf_state.stale = false;
  735. if (!bf) {
  736. __skb_unlink(skb, *q);
  737. ath_txq_skb_done(sc, txq, skb);
  738. ieee80211_free_txskb(sc->hw, skb);
  739. continue;
  740. }
  741. bf->bf_next = NULL;
  742. bf->bf_lastbf = bf;
  743. tx_info = IEEE80211_SKB_CB(skb);
  744. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  745. /*
  746. * No aggregation session is running, but there may be frames
  747. * from a previous session or a failed attempt in the queue.
  748. * Send them out as normal data frames
  749. */
  750. if (!tid->active)
  751. tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
  752. if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
  753. bf->bf_state.bf_type = 0;
  754. return bf;
  755. }
  756. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  757. seqno = bf->bf_state.seqno;
  758. /* do not step over block-ack window */
  759. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
  760. break;
  761. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  762. struct ath_tx_status ts = {};
  763. struct list_head bf_head;
  764. INIT_LIST_HEAD(&bf_head);
  765. list_add(&bf->list, &bf_head);
  766. __skb_unlink(skb, *q);
  767. ath_tx_update_baw(sc, tid, seqno);
  768. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  769. continue;
  770. }
  771. return bf;
  772. }
  773. return NULL;
  774. }
  775. static bool
  776. ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
  777. struct ath_atx_tid *tid, struct list_head *bf_q,
  778. struct ath_buf *bf_first, struct sk_buff_head *tid_q,
  779. int *aggr_len)
  780. {
  781. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  782. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  783. int nframes = 0, ndelim;
  784. u16 aggr_limit = 0, al = 0, bpad = 0,
  785. al_delta, h_baw = tid->baw_size / 2;
  786. struct ieee80211_tx_info *tx_info;
  787. struct ath_frame_info *fi;
  788. struct sk_buff *skb;
  789. bool closed = false;
  790. bf = bf_first;
  791. aggr_limit = ath_lookup_rate(sc, bf, tid);
  792. do {
  793. skb = bf->bf_mpdu;
  794. fi = get_frame_info(skb);
  795. /* do not exceed aggregation limit */
  796. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  797. if (nframes) {
  798. if (aggr_limit < al + bpad + al_delta ||
  799. ath_lookup_legacy(bf) || nframes >= h_baw)
  800. break;
  801. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  802. if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
  803. !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
  804. break;
  805. }
  806. /* add padding for previous frame to aggregation length */
  807. al += bpad + al_delta;
  808. /*
  809. * Get the delimiters needed to meet the MPDU
  810. * density for this node.
  811. */
  812. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  813. !nframes);
  814. bpad = PADBYTES(al_delta) + (ndelim << 2);
  815. nframes++;
  816. bf->bf_next = NULL;
  817. /* link buffers of this frame to the aggregate */
  818. if (!fi->baw_tracked)
  819. ath_tx_addto_baw(sc, tid, bf);
  820. bf->bf_state.ndelim = ndelim;
  821. __skb_unlink(skb, tid_q);
  822. list_add_tail(&bf->list, bf_q);
  823. if (bf_prev)
  824. bf_prev->bf_next = bf;
  825. bf_prev = bf;
  826. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  827. if (!bf) {
  828. closed = true;
  829. break;
  830. }
  831. } while (ath_tid_has_buffered(tid));
  832. bf = bf_first;
  833. bf->bf_lastbf = bf_prev;
  834. if (bf == bf_prev) {
  835. al = get_frame_info(bf->bf_mpdu)->framelen;
  836. bf->bf_state.bf_type = BUF_AMPDU;
  837. } else {
  838. TX_STAT_INC(txq->axq_qnum, a_aggr);
  839. }
  840. *aggr_len = al;
  841. return closed;
  842. #undef PADBYTES
  843. }
  844. /*
  845. * rix - rate index
  846. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  847. * width - 0 for 20 MHz, 1 for 40 MHz
  848. * half_gi - to use 4us v/s 3.6 us for symbol time
  849. */
  850. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  851. int width, int half_gi, bool shortPreamble)
  852. {
  853. u32 nbits, nsymbits, duration, nsymbols;
  854. int streams;
  855. /* find number of symbols: PLCP + data */
  856. streams = HT_RC_2_STREAMS(rix);
  857. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  858. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  859. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  860. if (!half_gi)
  861. duration = SYMBOL_TIME(nsymbols);
  862. else
  863. duration = SYMBOL_TIME_HALFGI(nsymbols);
  864. /* addup duration for legacy/ht training and signal fields */
  865. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  866. return duration;
  867. }
  868. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  869. {
  870. int streams = HT_RC_2_STREAMS(mcs);
  871. int symbols, bits;
  872. int bytes = 0;
  873. usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  874. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  875. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  876. bits -= OFDM_PLCP_BITS;
  877. bytes = bits / 8;
  878. if (bytes > 65532)
  879. bytes = 65532;
  880. return bytes;
  881. }
  882. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  883. {
  884. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  885. int mcs;
  886. /* 4ms is the default (and maximum) duration */
  887. if (!txop || txop > 4096)
  888. txop = 4096;
  889. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  890. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  891. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  892. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  893. for (mcs = 0; mcs < 32; mcs++) {
  894. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  895. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  896. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  897. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  898. }
  899. }
  900. static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
  901. u8 rateidx)
  902. {
  903. u8 max_power;
  904. struct ath_hw *ah = sc->sc_ah;
  905. if (sc->tx99_state)
  906. return MAX_RATE_POWER;
  907. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  908. /* ar9002 is not sipported for the moment */
  909. return MAX_RATE_POWER;
  910. }
  911. if (!bf->bf_state.bfs_paprd) {
  912. struct sk_buff *skb = bf->bf_mpdu;
  913. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  914. struct ath_frame_info *fi = get_frame_info(skb);
  915. if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
  916. max_power = min(ah->tx_power_stbc[rateidx],
  917. fi->tx_power);
  918. else
  919. max_power = min(ah->tx_power[rateidx], fi->tx_power);
  920. } else {
  921. max_power = ah->paprd_training_power;
  922. }
  923. return max_power;
  924. }
  925. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  926. struct ath_tx_info *info, int len, bool rts)
  927. {
  928. struct ath_hw *ah = sc->sc_ah;
  929. struct ath_common *common = ath9k_hw_common(ah);
  930. struct sk_buff *skb;
  931. struct ieee80211_tx_info *tx_info;
  932. struct ieee80211_tx_rate *rates;
  933. const struct ieee80211_rate *rate;
  934. struct ieee80211_hdr *hdr;
  935. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  936. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  937. int i;
  938. u8 rix = 0;
  939. skb = bf->bf_mpdu;
  940. tx_info = IEEE80211_SKB_CB(skb);
  941. rates = bf->rates;
  942. hdr = (struct ieee80211_hdr *)skb->data;
  943. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  944. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  945. info->rtscts_rate = fi->rtscts_rate;
  946. for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
  947. bool is_40, is_sgi, is_sp;
  948. int phy;
  949. if (!rates[i].count || (rates[i].idx < 0))
  950. continue;
  951. rix = rates[i].idx;
  952. info->rates[i].Tries = rates[i].count;
  953. /*
  954. * Handle RTS threshold for unaggregated HT frames.
  955. */
  956. if (bf_isampdu(bf) && !bf_isaggr(bf) &&
  957. (rates[i].flags & IEEE80211_TX_RC_MCS) &&
  958. unlikely(rts_thresh != (u32) -1)) {
  959. if (!rts_thresh || (len > rts_thresh))
  960. rts = true;
  961. }
  962. if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  963. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  964. info->flags |= ATH9K_TXDESC_RTSENA;
  965. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  966. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  967. info->flags |= ATH9K_TXDESC_CTSENA;
  968. }
  969. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  970. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  971. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  972. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  973. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  974. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  975. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  976. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  977. /* MCS rates */
  978. info->rates[i].Rate = rix | 0x80;
  979. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  980. ah->txchainmask, info->rates[i].Rate);
  981. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  982. is_40, is_sgi, is_sp);
  983. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  984. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  985. info->txpower[i] = ath_get_rate_txpower(sc, bf, rix);
  986. continue;
  987. }
  988. /* legacy rates */
  989. rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
  990. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  991. !(rate->flags & IEEE80211_RATE_ERP_G))
  992. phy = WLAN_RC_PHY_CCK;
  993. else
  994. phy = WLAN_RC_PHY_OFDM;
  995. info->rates[i].Rate = rate->hw_value;
  996. if (rate->hw_value_short) {
  997. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  998. info->rates[i].Rate |= rate->hw_value_short;
  999. } else {
  1000. is_sp = false;
  1001. }
  1002. if (bf->bf_state.bfs_paprd)
  1003. info->rates[i].ChSel = ah->txchainmask;
  1004. else
  1005. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  1006. ah->txchainmask, info->rates[i].Rate);
  1007. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  1008. phy, rate->bitrate * 100, len, rix, is_sp);
  1009. info->txpower[i] = ath_get_rate_txpower(sc, bf, rix);
  1010. }
  1011. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  1012. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  1013. info->flags &= ~ATH9K_TXDESC_RTSENA;
  1014. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  1015. if (info->flags & ATH9K_TXDESC_RTSENA)
  1016. info->flags &= ~ATH9K_TXDESC_CTSENA;
  1017. }
  1018. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  1019. {
  1020. struct ieee80211_hdr *hdr;
  1021. enum ath9k_pkt_type htype;
  1022. __le16 fc;
  1023. hdr = (struct ieee80211_hdr *)skb->data;
  1024. fc = hdr->frame_control;
  1025. if (ieee80211_is_beacon(fc))
  1026. htype = ATH9K_PKT_TYPE_BEACON;
  1027. else if (ieee80211_is_probe_resp(fc))
  1028. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  1029. else if (ieee80211_is_atim(fc))
  1030. htype = ATH9K_PKT_TYPE_ATIM;
  1031. else if (ieee80211_is_pspoll(fc))
  1032. htype = ATH9K_PKT_TYPE_PSPOLL;
  1033. else
  1034. htype = ATH9K_PKT_TYPE_NORMAL;
  1035. return htype;
  1036. }
  1037. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  1038. struct ath_txq *txq, int len)
  1039. {
  1040. struct ath_hw *ah = sc->sc_ah;
  1041. struct ath_buf *bf_first = NULL;
  1042. struct ath_tx_info info;
  1043. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  1044. bool rts = false;
  1045. memset(&info, 0, sizeof(info));
  1046. info.is_first = true;
  1047. info.is_last = true;
  1048. info.qcu = txq->axq_qnum;
  1049. while (bf) {
  1050. struct sk_buff *skb = bf->bf_mpdu;
  1051. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1052. struct ath_frame_info *fi = get_frame_info(skb);
  1053. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  1054. info.type = get_hw_packet_type(skb);
  1055. if (bf->bf_next)
  1056. info.link = bf->bf_next->bf_daddr;
  1057. else
  1058. info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
  1059. if (!bf_first) {
  1060. bf_first = bf;
  1061. if (!sc->tx99_state)
  1062. info.flags = ATH9K_TXDESC_INTREQ;
  1063. if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
  1064. txq == sc->tx.uapsdq)
  1065. info.flags |= ATH9K_TXDESC_CLRDMASK;
  1066. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1067. info.flags |= ATH9K_TXDESC_NOACK;
  1068. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1069. info.flags |= ATH9K_TXDESC_LDPC;
  1070. if (bf->bf_state.bfs_paprd)
  1071. info.flags |= (u32) bf->bf_state.bfs_paprd <<
  1072. ATH9K_TXDESC_PAPRD_S;
  1073. /*
  1074. * mac80211 doesn't handle RTS threshold for HT because
  1075. * the decision has to be taken based on AMPDU length
  1076. * and aggregation is done entirely inside ath9k.
  1077. * Set the RTS/CTS flag for the first subframe based
  1078. * on the threshold.
  1079. */
  1080. if (aggr && (bf == bf_first) &&
  1081. unlikely(rts_thresh != (u32) -1)) {
  1082. /*
  1083. * "len" is the size of the entire AMPDU.
  1084. */
  1085. if (!rts_thresh || (len > rts_thresh))
  1086. rts = true;
  1087. }
  1088. if (!aggr)
  1089. len = fi->framelen;
  1090. ath_buf_set_rate(sc, bf, &info, len, rts);
  1091. }
  1092. info.buf_addr[0] = bf->bf_buf_addr;
  1093. info.buf_len[0] = skb->len;
  1094. info.pkt_len = fi->framelen;
  1095. info.keyix = fi->keyix;
  1096. info.keytype = fi->keytype;
  1097. if (aggr) {
  1098. if (bf == bf_first)
  1099. info.aggr = AGGR_BUF_FIRST;
  1100. else if (bf == bf_first->bf_lastbf)
  1101. info.aggr = AGGR_BUF_LAST;
  1102. else
  1103. info.aggr = AGGR_BUF_MIDDLE;
  1104. info.ndelim = bf->bf_state.ndelim;
  1105. info.aggr_len = len;
  1106. }
  1107. if (bf == bf_first->bf_lastbf)
  1108. bf_first = NULL;
  1109. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  1110. bf = bf->bf_next;
  1111. }
  1112. }
  1113. static void
  1114. ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
  1115. struct ath_atx_tid *tid, struct list_head *bf_q,
  1116. struct ath_buf *bf_first, struct sk_buff_head *tid_q)
  1117. {
  1118. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  1119. struct sk_buff *skb;
  1120. int nframes = 0;
  1121. do {
  1122. struct ieee80211_tx_info *tx_info;
  1123. skb = bf->bf_mpdu;
  1124. nframes++;
  1125. __skb_unlink(skb, tid_q);
  1126. list_add_tail(&bf->list, bf_q);
  1127. if (bf_prev)
  1128. bf_prev->bf_next = bf;
  1129. bf_prev = bf;
  1130. if (nframes >= 2)
  1131. break;
  1132. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1133. if (!bf)
  1134. break;
  1135. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1136. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
  1137. break;
  1138. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1139. } while (1);
  1140. }
  1141. static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  1142. struct ath_atx_tid *tid, bool *stop)
  1143. {
  1144. struct ath_buf *bf;
  1145. struct ieee80211_tx_info *tx_info;
  1146. struct sk_buff_head *tid_q;
  1147. struct list_head bf_q;
  1148. int aggr_len = 0;
  1149. bool aggr, last = true;
  1150. if (!ath_tid_has_buffered(tid))
  1151. return false;
  1152. INIT_LIST_HEAD(&bf_q);
  1153. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1154. if (!bf)
  1155. return false;
  1156. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1157. aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
  1158. if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
  1159. (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
  1160. *stop = true;
  1161. return false;
  1162. }
  1163. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1164. if (aggr)
  1165. last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
  1166. tid_q, &aggr_len);
  1167. else
  1168. ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
  1169. if (list_empty(&bf_q))
  1170. return false;
  1171. if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
  1172. tid->ac->clear_ps_filter = false;
  1173. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1174. }
  1175. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  1176. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1177. return true;
  1178. }
  1179. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  1180. u16 tid, u16 *ssn)
  1181. {
  1182. struct ath_atx_tid *txtid;
  1183. struct ath_txq *txq;
  1184. struct ath_node *an;
  1185. u8 density;
  1186. an = (struct ath_node *)sta->drv_priv;
  1187. txtid = ATH_AN_2_TID(an, tid);
  1188. txq = txtid->ac->txq;
  1189. ath_txq_lock(sc, txq);
  1190. /* update ampdu factor/density, they may have changed. This may happen
  1191. * in HT IBSS when a beacon with HT-info is received after the station
  1192. * has already been added.
  1193. */
  1194. if (sta->ht_cap.ht_supported) {
  1195. an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  1196. sta->ht_cap.ampdu_factor)) - 1;
  1197. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  1198. an->mpdudensity = density;
  1199. }
  1200. /* force sequence number allocation for pending frames */
  1201. ath_tx_tid_change_state(sc, txtid);
  1202. txtid->active = true;
  1203. *ssn = txtid->seq_start = txtid->seq_next;
  1204. txtid->bar_index = -1;
  1205. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1206. txtid->baw_head = txtid->baw_tail = 0;
  1207. ath_txq_unlock_complete(sc, txq);
  1208. return 0;
  1209. }
  1210. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1211. {
  1212. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1213. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1214. struct ath_txq *txq = txtid->ac->txq;
  1215. ath_txq_lock(sc, txq);
  1216. txtid->active = false;
  1217. ath_tx_flush_tid(sc, txtid);
  1218. ath_tx_tid_change_state(sc, txtid);
  1219. ath_txq_unlock_complete(sc, txq);
  1220. }
  1221. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1222. struct ath_node *an)
  1223. {
  1224. struct ath_atx_tid *tid;
  1225. struct ath_atx_ac *ac;
  1226. struct ath_txq *txq;
  1227. bool buffered;
  1228. int tidno;
  1229. for (tidno = 0, tid = &an->tid[tidno];
  1230. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1231. ac = tid->ac;
  1232. txq = ac->txq;
  1233. ath_txq_lock(sc, txq);
  1234. if (!tid->sched) {
  1235. ath_txq_unlock(sc, txq);
  1236. continue;
  1237. }
  1238. buffered = ath_tid_has_buffered(tid);
  1239. tid->sched = false;
  1240. list_del(&tid->list);
  1241. if (ac->sched) {
  1242. ac->sched = false;
  1243. list_del(&ac->list);
  1244. }
  1245. ath_txq_unlock(sc, txq);
  1246. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1247. }
  1248. }
  1249. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1250. {
  1251. struct ath_atx_tid *tid;
  1252. struct ath_atx_ac *ac;
  1253. struct ath_txq *txq;
  1254. int tidno;
  1255. for (tidno = 0, tid = &an->tid[tidno];
  1256. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1257. ac = tid->ac;
  1258. txq = ac->txq;
  1259. ath_txq_lock(sc, txq);
  1260. ac->clear_ps_filter = true;
  1261. if (ath_tid_has_buffered(tid)) {
  1262. ath_tx_queue_tid(sc, txq, tid);
  1263. ath_txq_schedule(sc, txq);
  1264. }
  1265. ath_txq_unlock_complete(sc, txq);
  1266. }
  1267. }
  1268. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
  1269. u16 tidno)
  1270. {
  1271. struct ath_atx_tid *tid;
  1272. struct ath_node *an;
  1273. struct ath_txq *txq;
  1274. an = (struct ath_node *)sta->drv_priv;
  1275. tid = ATH_AN_2_TID(an, tidno);
  1276. txq = tid->ac->txq;
  1277. ath_txq_lock(sc, txq);
  1278. tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1279. if (ath_tid_has_buffered(tid)) {
  1280. ath_tx_queue_tid(sc, txq, tid);
  1281. ath_txq_schedule(sc, txq);
  1282. }
  1283. ath_txq_unlock_complete(sc, txq);
  1284. }
  1285. void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
  1286. struct ieee80211_sta *sta,
  1287. u16 tids, int nframes,
  1288. enum ieee80211_frame_release_type reason,
  1289. bool more_data)
  1290. {
  1291. struct ath_softc *sc = hw->priv;
  1292. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1293. struct ath_txq *txq = sc->tx.uapsdq;
  1294. struct ieee80211_tx_info *info;
  1295. struct list_head bf_q;
  1296. struct ath_buf *bf_tail = NULL, *bf;
  1297. struct sk_buff_head *tid_q;
  1298. int sent = 0;
  1299. int i;
  1300. INIT_LIST_HEAD(&bf_q);
  1301. for (i = 0; tids && nframes; i++, tids >>= 1) {
  1302. struct ath_atx_tid *tid;
  1303. if (!(tids & 1))
  1304. continue;
  1305. tid = ATH_AN_2_TID(an, i);
  1306. ath_txq_lock(sc, tid->ac->txq);
  1307. while (nframes > 0) {
  1308. bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
  1309. if (!bf)
  1310. break;
  1311. __skb_unlink(bf->bf_mpdu, tid_q);
  1312. list_add_tail(&bf->list, &bf_q);
  1313. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1314. if (bf_isampdu(bf)) {
  1315. ath_tx_addto_baw(sc, tid, bf);
  1316. bf->bf_state.bf_type &= ~BUF_AGGR;
  1317. }
  1318. if (bf_tail)
  1319. bf_tail->bf_next = bf;
  1320. bf_tail = bf;
  1321. nframes--;
  1322. sent++;
  1323. TX_STAT_INC(txq->axq_qnum, a_queued_hw);
  1324. if (an->sta && !ath_tid_has_buffered(tid))
  1325. ieee80211_sta_set_buffered(an->sta, i, false);
  1326. }
  1327. ath_txq_unlock_complete(sc, tid->ac->txq);
  1328. }
  1329. if (list_empty(&bf_q))
  1330. return;
  1331. info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
  1332. info->flags |= IEEE80211_TX_STATUS_EOSP;
  1333. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1334. ath_txq_lock(sc, txq);
  1335. ath_tx_fill_desc(sc, bf, txq, 0);
  1336. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1337. ath_txq_unlock(sc, txq);
  1338. }
  1339. /********************/
  1340. /* Queue Management */
  1341. /********************/
  1342. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1343. {
  1344. struct ath_hw *ah = sc->sc_ah;
  1345. struct ath9k_tx_queue_info qi;
  1346. static const int subtype_txq_to_hwq[] = {
  1347. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1348. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1349. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1350. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1351. };
  1352. int axq_qnum, i;
  1353. memset(&qi, 0, sizeof(qi));
  1354. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1355. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1356. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1357. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1358. qi.tqi_physCompBuf = 0;
  1359. /*
  1360. * Enable interrupts only for EOL and DESC conditions.
  1361. * We mark tx descriptors to receive a DESC interrupt
  1362. * when a tx queue gets deep; otherwise waiting for the
  1363. * EOL to reap descriptors. Note that this is done to
  1364. * reduce interrupt load and this only defers reaping
  1365. * descriptors, never transmitting frames. Aside from
  1366. * reducing interrupts this also permits more concurrency.
  1367. * The only potential downside is if the tx queue backs
  1368. * up in which case the top half of the kernel may backup
  1369. * due to a lack of tx descriptors.
  1370. *
  1371. * The UAPSD queue is an exception, since we take a desc-
  1372. * based intr on the EOSP frames.
  1373. */
  1374. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1375. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1376. } else {
  1377. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1378. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1379. else
  1380. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1381. TXQ_FLAG_TXDESCINT_ENABLE;
  1382. }
  1383. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1384. if (axq_qnum == -1) {
  1385. /*
  1386. * NB: don't print a message, this happens
  1387. * normally on parts with too few tx queues
  1388. */
  1389. return NULL;
  1390. }
  1391. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1392. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1393. txq->axq_qnum = axq_qnum;
  1394. txq->mac80211_qnum = -1;
  1395. txq->axq_link = NULL;
  1396. __skb_queue_head_init(&txq->complete_q);
  1397. INIT_LIST_HEAD(&txq->axq_q);
  1398. spin_lock_init(&txq->axq_lock);
  1399. txq->axq_depth = 0;
  1400. txq->axq_ampdu_depth = 0;
  1401. txq->axq_tx_inprogress = false;
  1402. sc->tx.txqsetup |= 1<<axq_qnum;
  1403. txq->txq_headidx = txq->txq_tailidx = 0;
  1404. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1405. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1406. }
  1407. return &sc->tx.txq[axq_qnum];
  1408. }
  1409. int ath_txq_update(struct ath_softc *sc, int qnum,
  1410. struct ath9k_tx_queue_info *qinfo)
  1411. {
  1412. struct ath_hw *ah = sc->sc_ah;
  1413. int error = 0;
  1414. struct ath9k_tx_queue_info qi;
  1415. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1416. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1417. qi.tqi_aifs = qinfo->tqi_aifs;
  1418. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1419. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1420. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1421. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1422. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1423. ath_err(ath9k_hw_common(sc->sc_ah),
  1424. "Unable to update hardware queue %u!\n", qnum);
  1425. error = -EIO;
  1426. } else {
  1427. ath9k_hw_resettxqueue(ah, qnum);
  1428. }
  1429. return error;
  1430. }
  1431. int ath_cabq_update(struct ath_softc *sc)
  1432. {
  1433. struct ath9k_tx_queue_info qi;
  1434. struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
  1435. int qnum = sc->beacon.cabq->axq_qnum;
  1436. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1437. qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
  1438. ATH_CABQ_READY_TIME) / 100;
  1439. ath_txq_update(sc, qnum, &qi);
  1440. return 0;
  1441. }
  1442. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1443. struct list_head *list)
  1444. {
  1445. struct ath_buf *bf, *lastbf;
  1446. struct list_head bf_head;
  1447. struct ath_tx_status ts;
  1448. memset(&ts, 0, sizeof(ts));
  1449. ts.ts_status = ATH9K_TX_FLUSH;
  1450. INIT_LIST_HEAD(&bf_head);
  1451. while (!list_empty(list)) {
  1452. bf = list_first_entry(list, struct ath_buf, list);
  1453. if (bf->bf_state.stale) {
  1454. list_del(&bf->list);
  1455. ath_tx_return_buffer(sc, bf);
  1456. continue;
  1457. }
  1458. lastbf = bf->bf_lastbf;
  1459. list_cut_position(&bf_head, list, &lastbf->list);
  1460. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1461. }
  1462. }
  1463. /*
  1464. * Drain a given TX queue (could be Beacon or Data)
  1465. *
  1466. * This assumes output has been stopped and
  1467. * we do not need to block ath_tx_tasklet.
  1468. */
  1469. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1470. {
  1471. ath_txq_lock(sc, txq);
  1472. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1473. int idx = txq->txq_tailidx;
  1474. while (!list_empty(&txq->txq_fifo[idx])) {
  1475. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1476. INCR(idx, ATH_TXFIFO_DEPTH);
  1477. }
  1478. txq->txq_tailidx = idx;
  1479. }
  1480. txq->axq_link = NULL;
  1481. txq->axq_tx_inprogress = false;
  1482. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1483. ath_txq_unlock_complete(sc, txq);
  1484. }
  1485. bool ath_drain_all_txq(struct ath_softc *sc)
  1486. {
  1487. struct ath_hw *ah = sc->sc_ah;
  1488. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1489. struct ath_txq *txq;
  1490. int i;
  1491. u32 npend = 0;
  1492. if (test_bit(ATH_OP_INVALID, &common->op_flags))
  1493. return true;
  1494. ath9k_hw_abort_tx_dma(ah);
  1495. /* Check if any queue remains active */
  1496. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1497. if (!ATH_TXQ_SETUP(sc, i))
  1498. continue;
  1499. if (!sc->tx.txq[i].axq_depth)
  1500. continue;
  1501. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1502. npend |= BIT(i);
  1503. }
  1504. if (npend)
  1505. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1506. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1507. if (!ATH_TXQ_SETUP(sc, i))
  1508. continue;
  1509. /*
  1510. * The caller will resume queues with ieee80211_wake_queues.
  1511. * Mark the queue as not stopped to prevent ath_tx_complete
  1512. * from waking the queue too early.
  1513. */
  1514. txq = &sc->tx.txq[i];
  1515. txq->stopped = false;
  1516. ath_draintxq(sc, txq);
  1517. }
  1518. return !npend;
  1519. }
  1520. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1521. {
  1522. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1523. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1524. }
  1525. /* For each acq entry, for each tid, try to schedule packets
  1526. * for transmit until ampdu_depth has reached min Q depth.
  1527. */
  1528. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1529. {
  1530. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1531. struct ath_atx_ac *ac, *last_ac;
  1532. struct ath_atx_tid *tid, *last_tid;
  1533. struct list_head *ac_list;
  1534. bool sent = false;
  1535. if (txq->mac80211_qnum < 0)
  1536. return;
  1537. if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
  1538. return;
  1539. spin_lock_bh(&sc->chan_lock);
  1540. ac_list = &sc->cur_chan->acq[txq->mac80211_qnum];
  1541. if (list_empty(ac_list)) {
  1542. spin_unlock_bh(&sc->chan_lock);
  1543. return;
  1544. }
  1545. rcu_read_lock();
  1546. last_ac = list_entry(ac_list->prev, struct ath_atx_ac, list);
  1547. while (!list_empty(ac_list)) {
  1548. bool stop = false;
  1549. if (sc->cur_chan->stopped)
  1550. break;
  1551. ac = list_first_entry(ac_list, struct ath_atx_ac, list);
  1552. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1553. list_del(&ac->list);
  1554. ac->sched = false;
  1555. while (!list_empty(&ac->tid_q)) {
  1556. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1557. list);
  1558. list_del(&tid->list);
  1559. tid->sched = false;
  1560. if (ath_tx_sched_aggr(sc, txq, tid, &stop))
  1561. sent = true;
  1562. /*
  1563. * add tid to round-robin queue if more frames
  1564. * are pending for the tid
  1565. */
  1566. if (ath_tid_has_buffered(tid))
  1567. ath_tx_queue_tid(sc, txq, tid);
  1568. if (stop || tid == last_tid)
  1569. break;
  1570. }
  1571. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1572. ac->sched = true;
  1573. list_add_tail(&ac->list, ac_list);
  1574. }
  1575. if (stop)
  1576. break;
  1577. if (ac == last_ac) {
  1578. if (!sent)
  1579. break;
  1580. sent = false;
  1581. last_ac = list_entry(ac_list->prev,
  1582. struct ath_atx_ac, list);
  1583. }
  1584. }
  1585. rcu_read_unlock();
  1586. spin_unlock_bh(&sc->chan_lock);
  1587. }
  1588. void ath_txq_schedule_all(struct ath_softc *sc)
  1589. {
  1590. struct ath_txq *txq;
  1591. int i;
  1592. for (i = 0; i < IEEE80211_NUM_ACS; i++) {
  1593. txq = sc->tx.txq_map[i];
  1594. spin_lock_bh(&txq->axq_lock);
  1595. ath_txq_schedule(sc, txq);
  1596. spin_unlock_bh(&txq->axq_lock);
  1597. }
  1598. }
  1599. /***********/
  1600. /* TX, DMA */
  1601. /***********/
  1602. /*
  1603. * Insert a chain of ath_buf (descriptors) on a txq and
  1604. * assume the descriptors are already chained together by caller.
  1605. */
  1606. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1607. struct list_head *head, bool internal)
  1608. {
  1609. struct ath_hw *ah = sc->sc_ah;
  1610. struct ath_common *common = ath9k_hw_common(ah);
  1611. struct ath_buf *bf, *bf_last;
  1612. bool puttxbuf = false;
  1613. bool edma;
  1614. /*
  1615. * Insert the frame on the outbound list and
  1616. * pass it on to the hardware.
  1617. */
  1618. if (list_empty(head))
  1619. return;
  1620. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1621. bf = list_first_entry(head, struct ath_buf, list);
  1622. bf_last = list_entry(head->prev, struct ath_buf, list);
  1623. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1624. txq->axq_qnum, txq->axq_depth);
  1625. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1626. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1627. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1628. puttxbuf = true;
  1629. } else {
  1630. list_splice_tail_init(head, &txq->axq_q);
  1631. if (txq->axq_link) {
  1632. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1633. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1634. txq->axq_qnum, txq->axq_link,
  1635. ito64(bf->bf_daddr), bf->bf_desc);
  1636. } else if (!edma)
  1637. puttxbuf = true;
  1638. txq->axq_link = bf_last->bf_desc;
  1639. }
  1640. if (puttxbuf) {
  1641. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1642. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1643. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1644. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1645. }
  1646. if (!edma || sc->tx99_state) {
  1647. TX_STAT_INC(txq->axq_qnum, txstart);
  1648. ath9k_hw_txstart(ah, txq->axq_qnum);
  1649. }
  1650. if (!internal) {
  1651. while (bf) {
  1652. txq->axq_depth++;
  1653. if (bf_is_ampdu_not_probing(bf))
  1654. txq->axq_ampdu_depth++;
  1655. bf_last = bf->bf_lastbf;
  1656. bf = bf_last->bf_next;
  1657. bf_last->bf_next = NULL;
  1658. }
  1659. }
  1660. }
  1661. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1662. struct ath_atx_tid *tid, struct sk_buff *skb)
  1663. {
  1664. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1665. struct ath_frame_info *fi = get_frame_info(skb);
  1666. struct list_head bf_head;
  1667. struct ath_buf *bf = fi->bf;
  1668. INIT_LIST_HEAD(&bf_head);
  1669. list_add_tail(&bf->list, &bf_head);
  1670. bf->bf_state.bf_type = 0;
  1671. if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
  1672. bf->bf_state.bf_type = BUF_AMPDU;
  1673. ath_tx_addto_baw(sc, tid, bf);
  1674. }
  1675. bf->bf_next = NULL;
  1676. bf->bf_lastbf = bf;
  1677. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1678. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1679. TX_STAT_INC(txq->axq_qnum, queued);
  1680. }
  1681. static void setup_frame_info(struct ieee80211_hw *hw,
  1682. struct ieee80211_sta *sta,
  1683. struct sk_buff *skb,
  1684. int framelen)
  1685. {
  1686. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1687. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1688. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1689. const struct ieee80211_rate *rate;
  1690. struct ath_frame_info *fi = get_frame_info(skb);
  1691. struct ath_node *an = NULL;
  1692. enum ath9k_key_type keytype;
  1693. bool short_preamble = false;
  1694. /*
  1695. * We check if Short Preamble is needed for the CTS rate by
  1696. * checking the BSS's global flag.
  1697. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1698. */
  1699. if (tx_info->control.vif &&
  1700. tx_info->control.vif->bss_conf.use_short_preamble)
  1701. short_preamble = true;
  1702. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1703. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1704. if (sta)
  1705. an = (struct ath_node *) sta->drv_priv;
  1706. memset(fi, 0, sizeof(*fi));
  1707. fi->txq = -1;
  1708. if (hw_key)
  1709. fi->keyix = hw_key->hw_key_idx;
  1710. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1711. fi->keyix = an->ps_key;
  1712. else
  1713. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1714. fi->keytype = keytype;
  1715. fi->framelen = framelen;
  1716. fi->tx_power = MAX_RATE_POWER;
  1717. if (!rate)
  1718. return;
  1719. fi->rtscts_rate = rate->hw_value;
  1720. if (short_preamble)
  1721. fi->rtscts_rate |= rate->hw_value_short;
  1722. }
  1723. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1724. {
  1725. struct ath_hw *ah = sc->sc_ah;
  1726. struct ath9k_channel *curchan = ah->curchan;
  1727. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
  1728. (chainmask == 0x7) && (rate < 0x90))
  1729. return 0x3;
  1730. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1731. IS_CCK_RATE(rate))
  1732. return 0x2;
  1733. else
  1734. return chainmask;
  1735. }
  1736. /*
  1737. * Assign a descriptor (and sequence number if necessary,
  1738. * and map buffer for DMA. Frees skb on error
  1739. */
  1740. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1741. struct ath_txq *txq,
  1742. struct ath_atx_tid *tid,
  1743. struct sk_buff *skb)
  1744. {
  1745. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1746. struct ath_frame_info *fi = get_frame_info(skb);
  1747. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1748. struct ath_buf *bf;
  1749. int fragno;
  1750. u16 seqno;
  1751. bf = ath_tx_get_buffer(sc);
  1752. if (!bf) {
  1753. ath_dbg(common, XMIT, "TX buffers are full\n");
  1754. return NULL;
  1755. }
  1756. ATH_TXBUF_RESET(bf);
  1757. if (tid && ieee80211_is_data_present(hdr->frame_control)) {
  1758. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1759. seqno = tid->seq_next;
  1760. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1761. if (fragno)
  1762. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1763. if (!ieee80211_has_morefrags(hdr->frame_control))
  1764. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1765. bf->bf_state.seqno = seqno;
  1766. }
  1767. bf->bf_mpdu = skb;
  1768. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1769. skb->len, DMA_TO_DEVICE);
  1770. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1771. bf->bf_mpdu = NULL;
  1772. bf->bf_buf_addr = 0;
  1773. ath_err(ath9k_hw_common(sc->sc_ah),
  1774. "dma_mapping_error() on TX\n");
  1775. ath_tx_return_buffer(sc, bf);
  1776. return NULL;
  1777. }
  1778. fi->bf = bf;
  1779. return bf;
  1780. }
  1781. void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
  1782. {
  1783. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1784. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1785. struct ieee80211_vif *vif = info->control.vif;
  1786. struct ath_vif *avp;
  1787. if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
  1788. return;
  1789. if (!vif)
  1790. return;
  1791. avp = (struct ath_vif *)vif->drv_priv;
  1792. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1793. avp->seq_no += 0x10;
  1794. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1795. hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
  1796. }
  1797. static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
  1798. struct ath_tx_control *txctl)
  1799. {
  1800. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1801. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1802. struct ieee80211_sta *sta = txctl->sta;
  1803. struct ieee80211_vif *vif = info->control.vif;
  1804. struct ath_vif *avp;
  1805. struct ath_softc *sc = hw->priv;
  1806. int frmlen = skb->len + FCS_LEN;
  1807. int padpos, padsize;
  1808. /* NOTE: sta can be NULL according to net/mac80211.h */
  1809. if (sta)
  1810. txctl->an = (struct ath_node *)sta->drv_priv;
  1811. else if (vif && ieee80211_is_data(hdr->frame_control)) {
  1812. avp = (void *)vif->drv_priv;
  1813. txctl->an = &avp->mcast_node;
  1814. }
  1815. if (info->control.hw_key)
  1816. frmlen += info->control.hw_key->icv_len;
  1817. ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
  1818. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1819. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1820. !ieee80211_is_data(hdr->frame_control))
  1821. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1822. /* Add the padding after the header if this is not already done */
  1823. padpos = ieee80211_hdrlen(hdr->frame_control);
  1824. padsize = padpos & 3;
  1825. if (padsize && skb->len > padpos) {
  1826. if (skb_headroom(skb) < padsize)
  1827. return -ENOMEM;
  1828. skb_push(skb, padsize);
  1829. memmove(skb->data, skb->data + padsize, padpos);
  1830. }
  1831. setup_frame_info(hw, sta, skb, frmlen);
  1832. return 0;
  1833. }
  1834. /* Upon failure caller should free skb */
  1835. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1836. struct ath_tx_control *txctl)
  1837. {
  1838. struct ieee80211_hdr *hdr;
  1839. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1840. struct ieee80211_sta *sta = txctl->sta;
  1841. struct ieee80211_vif *vif = info->control.vif;
  1842. struct ath_frame_info *fi = get_frame_info(skb);
  1843. struct ath_vif *avp = NULL;
  1844. struct ath_softc *sc = hw->priv;
  1845. struct ath_txq *txq = txctl->txq;
  1846. struct ath_atx_tid *tid = NULL;
  1847. struct ath_buf *bf;
  1848. bool queue, skip_uapsd = false;
  1849. int q, ret;
  1850. if (vif)
  1851. avp = (void *)vif->drv_priv;
  1852. if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
  1853. txctl->force_channel = true;
  1854. ret = ath_tx_prepare(hw, skb, txctl);
  1855. if (ret)
  1856. return ret;
  1857. hdr = (struct ieee80211_hdr *) skb->data;
  1858. /*
  1859. * At this point, the vif, hw_key and sta pointers in the tx control
  1860. * info are no longer valid (overwritten by the ath_frame_info data.
  1861. */
  1862. q = skb_get_queue_mapping(skb);
  1863. ath_txq_lock(sc, txq);
  1864. if (txq == sc->tx.txq_map[q]) {
  1865. fi->txq = q;
  1866. if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1867. !txq->stopped) {
  1868. if (ath9k_is_chanctx_enabled())
  1869. ieee80211_stop_queue(sc->hw, info->hw_queue);
  1870. else
  1871. ieee80211_stop_queue(sc->hw, q);
  1872. txq->stopped = true;
  1873. }
  1874. }
  1875. queue = ieee80211_is_data_present(hdr->frame_control);
  1876. /* Force queueing of all frames that belong to a virtual interface on
  1877. * a different channel context, to ensure that they are sent on the
  1878. * correct channel.
  1879. */
  1880. if (((avp && avp->chanctx != sc->cur_chan) ||
  1881. sc->cur_chan->stopped) && !txctl->force_channel) {
  1882. if (!txctl->an)
  1883. txctl->an = &avp->mcast_node;
  1884. queue = true;
  1885. skip_uapsd = true;
  1886. }
  1887. if (txctl->an && queue)
  1888. tid = ath_get_skb_tid(sc, txctl->an, skb);
  1889. if (!skip_uapsd && (info->flags & IEEE80211_TX_CTL_PS_RESPONSE)) {
  1890. ath_txq_unlock(sc, txq);
  1891. txq = sc->tx.uapsdq;
  1892. ath_txq_lock(sc, txq);
  1893. } else if (txctl->an && queue) {
  1894. WARN_ON(tid->ac->txq != txctl->txq);
  1895. if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  1896. tid->ac->clear_ps_filter = true;
  1897. /*
  1898. * Add this frame to software queue for scheduling later
  1899. * for aggregation.
  1900. */
  1901. TX_STAT_INC(txq->axq_qnum, a_queued_sw);
  1902. __skb_queue_tail(&tid->buf_q, skb);
  1903. if (!txctl->an->sleeping)
  1904. ath_tx_queue_tid(sc, txq, tid);
  1905. ath_txq_schedule(sc, txq);
  1906. goto out;
  1907. }
  1908. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1909. if (!bf) {
  1910. ath_txq_skb_done(sc, txq, skb);
  1911. if (txctl->paprd)
  1912. dev_kfree_skb_any(skb);
  1913. else
  1914. ieee80211_free_txskb(sc->hw, skb);
  1915. goto out;
  1916. }
  1917. bf->bf_state.bfs_paprd = txctl->paprd;
  1918. if (txctl->paprd)
  1919. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1920. ath_set_rates(vif, sta, bf);
  1921. ath_tx_send_normal(sc, txq, tid, skb);
  1922. out:
  1923. ath_txq_unlock(sc, txq);
  1924. return 0;
  1925. }
  1926. void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
  1927. struct sk_buff *skb)
  1928. {
  1929. struct ath_softc *sc = hw->priv;
  1930. struct ath_tx_control txctl = {
  1931. .txq = sc->beacon.cabq
  1932. };
  1933. struct ath_tx_info info = {};
  1934. struct ieee80211_hdr *hdr;
  1935. struct ath_buf *bf_tail = NULL;
  1936. struct ath_buf *bf;
  1937. LIST_HEAD(bf_q);
  1938. int duration = 0;
  1939. int max_duration;
  1940. max_duration =
  1941. sc->cur_chan->beacon.beacon_interval * 1000 *
  1942. sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
  1943. do {
  1944. struct ath_frame_info *fi = get_frame_info(skb);
  1945. if (ath_tx_prepare(hw, skb, &txctl))
  1946. break;
  1947. bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
  1948. if (!bf)
  1949. break;
  1950. bf->bf_lastbf = bf;
  1951. ath_set_rates(vif, NULL, bf);
  1952. ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
  1953. duration += info.rates[0].PktDuration;
  1954. if (bf_tail)
  1955. bf_tail->bf_next = bf;
  1956. list_add_tail(&bf->list, &bf_q);
  1957. bf_tail = bf;
  1958. skb = NULL;
  1959. if (duration > max_duration)
  1960. break;
  1961. skb = ieee80211_get_buffered_bc(hw, vif);
  1962. } while(skb);
  1963. if (skb)
  1964. ieee80211_free_txskb(hw, skb);
  1965. if (list_empty(&bf_q))
  1966. return;
  1967. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1968. hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
  1969. if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
  1970. hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
  1971. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  1972. sizeof(*hdr), DMA_TO_DEVICE);
  1973. }
  1974. ath_txq_lock(sc, txctl.txq);
  1975. ath_tx_fill_desc(sc, bf, txctl.txq, 0);
  1976. ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
  1977. TX_STAT_INC(txctl.txq->axq_qnum, queued);
  1978. ath_txq_unlock(sc, txctl.txq);
  1979. }
  1980. /*****************/
  1981. /* TX Completion */
  1982. /*****************/
  1983. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1984. int tx_flags, struct ath_txq *txq)
  1985. {
  1986. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1987. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1988. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1989. int padpos, padsize;
  1990. unsigned long flags;
  1991. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1992. if (sc->sc_ah->caldata)
  1993. set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
  1994. if (!(tx_flags & ATH_TX_ERROR))
  1995. /* Frame was ACKed */
  1996. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1997. padpos = ieee80211_hdrlen(hdr->frame_control);
  1998. padsize = padpos & 3;
  1999. if (padsize && skb->len>padpos+padsize) {
  2000. /*
  2001. * Remove MAC header padding before giving the frame back to
  2002. * mac80211.
  2003. */
  2004. memmove(skb->data + padsize, skb->data, padpos);
  2005. skb_pull(skb, padsize);
  2006. }
  2007. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  2008. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  2009. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  2010. ath_dbg(common, PS,
  2011. "Going back to sleep after having received TX status (0x%lx)\n",
  2012. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  2013. PS_WAIT_FOR_CAB |
  2014. PS_WAIT_FOR_PSPOLL_DATA |
  2015. PS_WAIT_FOR_TX_ACK));
  2016. }
  2017. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  2018. __skb_queue_tail(&txq->complete_q, skb);
  2019. ath_txq_skb_done(sc, txq, skb);
  2020. }
  2021. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  2022. struct ath_txq *txq, struct list_head *bf_q,
  2023. struct ath_tx_status *ts, int txok)
  2024. {
  2025. struct sk_buff *skb = bf->bf_mpdu;
  2026. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  2027. unsigned long flags;
  2028. int tx_flags = 0;
  2029. if (!txok)
  2030. tx_flags |= ATH_TX_ERROR;
  2031. if (ts->ts_status & ATH9K_TXERR_FILT)
  2032. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  2033. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  2034. bf->bf_buf_addr = 0;
  2035. if (sc->tx99_state)
  2036. goto skip_tx_complete;
  2037. if (bf->bf_state.bfs_paprd) {
  2038. if (time_after(jiffies,
  2039. bf->bf_state.bfs_paprd_timestamp +
  2040. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  2041. dev_kfree_skb_any(skb);
  2042. else
  2043. complete(&sc->paprd_complete);
  2044. } else {
  2045. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  2046. ath_tx_complete(sc, skb, tx_flags, txq);
  2047. }
  2048. skip_tx_complete:
  2049. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  2050. * accidentally reference it later.
  2051. */
  2052. bf->bf_mpdu = NULL;
  2053. /*
  2054. * Return the list of ath_buf of this mpdu to free queue
  2055. */
  2056. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  2057. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  2058. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  2059. }
  2060. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  2061. struct ath_tx_status *ts, int nframes, int nbad,
  2062. int txok)
  2063. {
  2064. struct sk_buff *skb = bf->bf_mpdu;
  2065. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  2066. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  2067. struct ieee80211_hw *hw = sc->hw;
  2068. struct ath_hw *ah = sc->sc_ah;
  2069. u8 i, tx_rateindex;
  2070. if (txok)
  2071. tx_info->status.ack_signal = ts->ts_rssi;
  2072. tx_rateindex = ts->ts_rateindex;
  2073. WARN_ON(tx_rateindex >= hw->max_rates);
  2074. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  2075. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  2076. BUG_ON(nbad > nframes);
  2077. }
  2078. tx_info->status.ampdu_len = nframes;
  2079. tx_info->status.ampdu_ack_len = nframes - nbad;
  2080. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  2081. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  2082. /*
  2083. * If an underrun error is seen assume it as an excessive
  2084. * retry only if max frame trigger level has been reached
  2085. * (2 KB for single stream, and 4 KB for dual stream).
  2086. * Adjust the long retry as if the frame was tried
  2087. * hw->max_rate_tries times to affect how rate control updates
  2088. * PER for the failed rate.
  2089. * In case of congestion on the bus penalizing this type of
  2090. * underruns should help hardware actually transmit new frames
  2091. * successfully by eventually preferring slower rates.
  2092. * This itself should also alleviate congestion on the bus.
  2093. */
  2094. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  2095. ATH9K_TX_DELIM_UNDERRUN)) &&
  2096. ieee80211_is_data(hdr->frame_control) &&
  2097. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  2098. tx_info->status.rates[tx_rateindex].count =
  2099. hw->max_rate_tries;
  2100. }
  2101. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  2102. tx_info->status.rates[i].count = 0;
  2103. tx_info->status.rates[i].idx = -1;
  2104. }
  2105. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  2106. }
  2107. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  2108. {
  2109. struct ath_hw *ah = sc->sc_ah;
  2110. struct ath_common *common = ath9k_hw_common(ah);
  2111. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  2112. struct list_head bf_head;
  2113. struct ath_desc *ds;
  2114. struct ath_tx_status ts;
  2115. int status;
  2116. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  2117. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  2118. txq->axq_link);
  2119. ath_txq_lock(sc, txq);
  2120. for (;;) {
  2121. if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
  2122. break;
  2123. if (list_empty(&txq->axq_q)) {
  2124. txq->axq_link = NULL;
  2125. ath_txq_schedule(sc, txq);
  2126. break;
  2127. }
  2128. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  2129. /*
  2130. * There is a race condition that a BH gets scheduled
  2131. * after sw writes TxE and before hw re-load the last
  2132. * descriptor to get the newly chained one.
  2133. * Software must keep the last DONE descriptor as a
  2134. * holding descriptor - software does so by marking
  2135. * it with the STALE flag.
  2136. */
  2137. bf_held = NULL;
  2138. if (bf->bf_state.stale) {
  2139. bf_held = bf;
  2140. if (list_is_last(&bf_held->list, &txq->axq_q))
  2141. break;
  2142. bf = list_entry(bf_held->list.next, struct ath_buf,
  2143. list);
  2144. }
  2145. lastbf = bf->bf_lastbf;
  2146. ds = lastbf->bf_desc;
  2147. memset(&ts, 0, sizeof(ts));
  2148. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  2149. if (status == -EINPROGRESS)
  2150. break;
  2151. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2152. /*
  2153. * Remove ath_buf's of the same transmit unit from txq,
  2154. * however leave the last descriptor back as the holding
  2155. * descriptor for hw.
  2156. */
  2157. lastbf->bf_state.stale = true;
  2158. INIT_LIST_HEAD(&bf_head);
  2159. if (!list_is_singular(&lastbf->list))
  2160. list_cut_position(&bf_head,
  2161. &txq->axq_q, lastbf->list.prev);
  2162. if (bf_held) {
  2163. list_del(&bf_held->list);
  2164. ath_tx_return_buffer(sc, bf_held);
  2165. }
  2166. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2167. }
  2168. ath_txq_unlock_complete(sc, txq);
  2169. }
  2170. void ath_tx_tasklet(struct ath_softc *sc)
  2171. {
  2172. struct ath_hw *ah = sc->sc_ah;
  2173. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  2174. int i;
  2175. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2176. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  2177. ath_tx_processq(sc, &sc->tx.txq[i]);
  2178. }
  2179. }
  2180. void ath_tx_edma_tasklet(struct ath_softc *sc)
  2181. {
  2182. struct ath_tx_status ts;
  2183. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2184. struct ath_hw *ah = sc->sc_ah;
  2185. struct ath_txq *txq;
  2186. struct ath_buf *bf, *lastbf;
  2187. struct list_head bf_head;
  2188. struct list_head *fifo_list;
  2189. int status;
  2190. for (;;) {
  2191. if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
  2192. break;
  2193. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  2194. if (status == -EINPROGRESS)
  2195. break;
  2196. if (status == -EIO) {
  2197. ath_dbg(common, XMIT, "Error processing tx status\n");
  2198. break;
  2199. }
  2200. /* Process beacon completions separately */
  2201. if (ts.qid == sc->beacon.beaconq) {
  2202. sc->beacon.tx_processed = true;
  2203. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  2204. if (ath9k_is_chanctx_enabled()) {
  2205. ath_chanctx_event(sc, NULL,
  2206. ATH_CHANCTX_EVENT_BEACON_SENT);
  2207. }
  2208. ath9k_csa_update(sc);
  2209. continue;
  2210. }
  2211. txq = &sc->tx.txq[ts.qid];
  2212. ath_txq_lock(sc, txq);
  2213. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2214. fifo_list = &txq->txq_fifo[txq->txq_tailidx];
  2215. if (list_empty(fifo_list)) {
  2216. ath_txq_unlock(sc, txq);
  2217. return;
  2218. }
  2219. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2220. if (bf->bf_state.stale) {
  2221. list_del(&bf->list);
  2222. ath_tx_return_buffer(sc, bf);
  2223. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2224. }
  2225. lastbf = bf->bf_lastbf;
  2226. INIT_LIST_HEAD(&bf_head);
  2227. if (list_is_last(&lastbf->list, fifo_list)) {
  2228. list_splice_tail_init(fifo_list, &bf_head);
  2229. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  2230. if (!list_empty(&txq->axq_q)) {
  2231. struct list_head bf_q;
  2232. INIT_LIST_HEAD(&bf_q);
  2233. txq->axq_link = NULL;
  2234. list_splice_tail_init(&txq->axq_q, &bf_q);
  2235. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  2236. }
  2237. } else {
  2238. lastbf->bf_state.stale = true;
  2239. if (bf != lastbf)
  2240. list_cut_position(&bf_head, fifo_list,
  2241. lastbf->list.prev);
  2242. }
  2243. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2244. ath_txq_unlock_complete(sc, txq);
  2245. }
  2246. }
  2247. /*****************/
  2248. /* Init, Cleanup */
  2249. /*****************/
  2250. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  2251. {
  2252. struct ath_descdma *dd = &sc->txsdma;
  2253. u8 txs_len = sc->sc_ah->caps.txs_len;
  2254. dd->dd_desc_len = size * txs_len;
  2255. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  2256. &dd->dd_desc_paddr, GFP_KERNEL);
  2257. if (!dd->dd_desc)
  2258. return -ENOMEM;
  2259. return 0;
  2260. }
  2261. static int ath_tx_edma_init(struct ath_softc *sc)
  2262. {
  2263. int err;
  2264. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  2265. if (!err)
  2266. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  2267. sc->txsdma.dd_desc_paddr,
  2268. ATH_TXSTATUS_RING_SIZE);
  2269. return err;
  2270. }
  2271. int ath_tx_init(struct ath_softc *sc, int nbufs)
  2272. {
  2273. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2274. int error = 0;
  2275. spin_lock_init(&sc->tx.txbuflock);
  2276. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  2277. "tx", nbufs, 1, 1);
  2278. if (error != 0) {
  2279. ath_err(common,
  2280. "Failed to allocate tx descriptors: %d\n", error);
  2281. return error;
  2282. }
  2283. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  2284. "beacon", ATH_BCBUF, 1, 1);
  2285. if (error != 0) {
  2286. ath_err(common,
  2287. "Failed to allocate beacon descriptors: %d\n", error);
  2288. return error;
  2289. }
  2290. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  2291. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  2292. error = ath_tx_edma_init(sc);
  2293. return error;
  2294. }
  2295. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  2296. {
  2297. struct ath_atx_tid *tid;
  2298. struct ath_atx_ac *ac;
  2299. int tidno, acno;
  2300. for (tidno = 0, tid = &an->tid[tidno];
  2301. tidno < IEEE80211_NUM_TIDS;
  2302. tidno++, tid++) {
  2303. tid->an = an;
  2304. tid->tidno = tidno;
  2305. tid->seq_start = tid->seq_next = 0;
  2306. tid->baw_size = WME_MAX_BA;
  2307. tid->baw_head = tid->baw_tail = 0;
  2308. tid->sched = false;
  2309. tid->active = false;
  2310. __skb_queue_head_init(&tid->buf_q);
  2311. __skb_queue_head_init(&tid->retry_q);
  2312. acno = TID_TO_WME_AC(tidno);
  2313. tid->ac = &an->ac[acno];
  2314. }
  2315. for (acno = 0, ac = &an->ac[acno];
  2316. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  2317. ac->sched = false;
  2318. ac->clear_ps_filter = true;
  2319. ac->txq = sc->tx.txq_map[acno];
  2320. INIT_LIST_HEAD(&ac->tid_q);
  2321. }
  2322. }
  2323. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2324. {
  2325. struct ath_atx_ac *ac;
  2326. struct ath_atx_tid *tid;
  2327. struct ath_txq *txq;
  2328. int tidno;
  2329. for (tidno = 0, tid = &an->tid[tidno];
  2330. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  2331. ac = tid->ac;
  2332. txq = ac->txq;
  2333. ath_txq_lock(sc, txq);
  2334. if (tid->sched) {
  2335. list_del(&tid->list);
  2336. tid->sched = false;
  2337. }
  2338. if (ac->sched) {
  2339. list_del(&ac->list);
  2340. tid->ac->sched = false;
  2341. }
  2342. ath_tid_drain(sc, txq, tid);
  2343. tid->active = false;
  2344. ath_txq_unlock(sc, txq);
  2345. }
  2346. }
  2347. #ifdef CONFIG_ATH9K_TX99
  2348. int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
  2349. struct ath_tx_control *txctl)
  2350. {
  2351. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  2352. struct ath_frame_info *fi = get_frame_info(skb);
  2353. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2354. struct ath_buf *bf;
  2355. int padpos, padsize;
  2356. padpos = ieee80211_hdrlen(hdr->frame_control);
  2357. padsize = padpos & 3;
  2358. if (padsize && skb->len > padpos) {
  2359. if (skb_headroom(skb) < padsize) {
  2360. ath_dbg(common, XMIT,
  2361. "tx99 padding failed\n");
  2362. return -EINVAL;
  2363. }
  2364. skb_push(skb, padsize);
  2365. memmove(skb->data, skb->data + padsize, padpos);
  2366. }
  2367. fi->keyix = ATH9K_TXKEYIX_INVALID;
  2368. fi->framelen = skb->len + FCS_LEN;
  2369. fi->keytype = ATH9K_KEY_TYPE_CLEAR;
  2370. bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
  2371. if (!bf) {
  2372. ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
  2373. return -EINVAL;
  2374. }
  2375. ath_set_rates(sc->tx99_vif, NULL, bf);
  2376. ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
  2377. ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
  2378. ath_tx_send_normal(sc, txctl->txq, NULL, skb);
  2379. return 0;
  2380. }
  2381. #endif /* CONFIG_ATH9K_TX99 */