spi-nor.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155
  1. /*
  2. * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
  3. * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
  4. *
  5. * Copyright (C) 2005, Intec Automation Inc.
  6. * Copyright (C) 2014, Freescale Semiconductor, Inc.
  7. *
  8. * This code is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/err.h>
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/device.h>
  16. #include <linux/mutex.h>
  17. #include <linux/math64.h>
  18. #include <linux/mtd/cfi.h>
  19. #include <linux/mtd/mtd.h>
  20. #include <linux/of_platform.h>
  21. #include <linux/spi/flash.h>
  22. #include <linux/mtd/spi-nor.h>
  23. /* Define max times to check status register before we give up. */
  24. #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
  25. #define SPI_NOR_MAX_ID_LEN 6
  26. struct flash_info {
  27. /*
  28. * This array stores the ID bytes.
  29. * The first three bytes are the JEDIC ID.
  30. * JEDEC ID zero means "no ID" (mostly older chips).
  31. */
  32. u8 id[SPI_NOR_MAX_ID_LEN];
  33. u8 id_len;
  34. /* The size listed here is what works with SPINOR_OP_SE, which isn't
  35. * necessarily called a "sector" by the vendor.
  36. */
  37. unsigned sector_size;
  38. u16 n_sectors;
  39. u16 page_size;
  40. u16 addr_width;
  41. u16 flags;
  42. #define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
  43. #define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
  44. #define SST_WRITE 0x04 /* use SST byte programming */
  45. #define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
  46. #define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
  47. #define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
  48. #define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
  49. #define USE_FSR 0x80 /* use flag status register */
  50. };
  51. #define JEDEC_MFR(info) ((info)->id[0])
  52. static const struct spi_device_id *spi_nor_match_id(const char *name);
  53. /*
  54. * Read the status register, returning its value in the location
  55. * Return the status register value.
  56. * Returns negative if error occurred.
  57. */
  58. static int read_sr(struct spi_nor *nor)
  59. {
  60. int ret;
  61. u8 val;
  62. ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
  63. if (ret < 0) {
  64. pr_err("error %d reading SR\n", (int) ret);
  65. return ret;
  66. }
  67. return val;
  68. }
  69. /*
  70. * Read the flag status register, returning its value in the location
  71. * Return the status register value.
  72. * Returns negative if error occurred.
  73. */
  74. static int read_fsr(struct spi_nor *nor)
  75. {
  76. int ret;
  77. u8 val;
  78. ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
  79. if (ret < 0) {
  80. pr_err("error %d reading FSR\n", ret);
  81. return ret;
  82. }
  83. return val;
  84. }
  85. /*
  86. * Read configuration register, returning its value in the
  87. * location. Return the configuration register value.
  88. * Returns negative if error occured.
  89. */
  90. static int read_cr(struct spi_nor *nor)
  91. {
  92. int ret;
  93. u8 val;
  94. ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
  95. if (ret < 0) {
  96. dev_err(nor->dev, "error %d reading CR\n", ret);
  97. return ret;
  98. }
  99. return val;
  100. }
  101. /*
  102. * Dummy Cycle calculation for different type of read.
  103. * It can be used to support more commands with
  104. * different dummy cycle requirements.
  105. */
  106. static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
  107. {
  108. switch (nor->flash_read) {
  109. case SPI_NOR_FAST:
  110. case SPI_NOR_DUAL:
  111. case SPI_NOR_QUAD:
  112. return 8;
  113. case SPI_NOR_NORMAL:
  114. return 0;
  115. }
  116. return 0;
  117. }
  118. /*
  119. * Write status register 1 byte
  120. * Returns negative if error occurred.
  121. */
  122. static inline int write_sr(struct spi_nor *nor, u8 val)
  123. {
  124. nor->cmd_buf[0] = val;
  125. return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
  126. }
  127. /*
  128. * Set write enable latch with Write Enable command.
  129. * Returns negative if error occurred.
  130. */
  131. static inline int write_enable(struct spi_nor *nor)
  132. {
  133. return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
  134. }
  135. /*
  136. * Send write disble instruction to the chip.
  137. */
  138. static inline int write_disable(struct spi_nor *nor)
  139. {
  140. return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
  141. }
  142. static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
  143. {
  144. return mtd->priv;
  145. }
  146. /* Enable/disable 4-byte addressing mode. */
  147. static inline int set_4byte(struct spi_nor *nor, struct flash_info *info,
  148. int enable)
  149. {
  150. int status;
  151. bool need_wren = false;
  152. u8 cmd;
  153. switch (JEDEC_MFR(info)) {
  154. case CFI_MFR_ST: /* Micron, actually */
  155. /* Some Micron need WREN command; all will accept it */
  156. need_wren = true;
  157. case CFI_MFR_MACRONIX:
  158. case 0xEF /* winbond */:
  159. if (need_wren)
  160. write_enable(nor);
  161. cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
  162. status = nor->write_reg(nor, cmd, NULL, 0, 0);
  163. if (need_wren)
  164. write_disable(nor);
  165. return status;
  166. default:
  167. /* Spansion style */
  168. nor->cmd_buf[0] = enable << 7;
  169. return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
  170. }
  171. }
  172. static inline int spi_nor_sr_ready(struct spi_nor *nor)
  173. {
  174. int sr = read_sr(nor);
  175. if (sr < 0)
  176. return sr;
  177. else
  178. return !(sr & SR_WIP);
  179. }
  180. static inline int spi_nor_fsr_ready(struct spi_nor *nor)
  181. {
  182. int fsr = read_fsr(nor);
  183. if (fsr < 0)
  184. return fsr;
  185. else
  186. return fsr & FSR_READY;
  187. }
  188. static int spi_nor_ready(struct spi_nor *nor)
  189. {
  190. int sr, fsr;
  191. sr = spi_nor_sr_ready(nor);
  192. if (sr < 0)
  193. return sr;
  194. fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
  195. if (fsr < 0)
  196. return fsr;
  197. return sr && fsr;
  198. }
  199. /*
  200. * Service routine to read status register until ready, or timeout occurs.
  201. * Returns non-zero if error.
  202. */
  203. static int spi_nor_wait_till_ready(struct spi_nor *nor)
  204. {
  205. unsigned long deadline;
  206. int timeout = 0, ret;
  207. deadline = jiffies + MAX_READY_WAIT_JIFFIES;
  208. while (!timeout) {
  209. if (time_after_eq(jiffies, deadline))
  210. timeout = 1;
  211. ret = spi_nor_ready(nor);
  212. if (ret < 0)
  213. return ret;
  214. if (ret)
  215. return 0;
  216. cond_resched();
  217. }
  218. dev_err(nor->dev, "flash operation timed out\n");
  219. return -ETIMEDOUT;
  220. }
  221. /*
  222. * Erase the whole flash memory
  223. *
  224. * Returns 0 if successful, non-zero otherwise.
  225. */
  226. static int erase_chip(struct spi_nor *nor)
  227. {
  228. dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
  229. return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
  230. }
  231. static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  232. {
  233. int ret = 0;
  234. mutex_lock(&nor->lock);
  235. if (nor->prepare) {
  236. ret = nor->prepare(nor, ops);
  237. if (ret) {
  238. dev_err(nor->dev, "failed in the preparation.\n");
  239. mutex_unlock(&nor->lock);
  240. return ret;
  241. }
  242. }
  243. return ret;
  244. }
  245. static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  246. {
  247. if (nor->unprepare)
  248. nor->unprepare(nor, ops);
  249. mutex_unlock(&nor->lock);
  250. }
  251. /*
  252. * Erase an address range on the nor chip. The address range may extend
  253. * one or more erase sectors. Return an error is there is a problem erasing.
  254. */
  255. static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
  256. {
  257. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  258. u32 addr, len;
  259. uint32_t rem;
  260. int ret;
  261. dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
  262. (long long)instr->len);
  263. div_u64_rem(instr->len, mtd->erasesize, &rem);
  264. if (rem)
  265. return -EINVAL;
  266. addr = instr->addr;
  267. len = instr->len;
  268. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
  269. if (ret)
  270. return ret;
  271. /* whole-chip erase? */
  272. if (len == mtd->size) {
  273. write_enable(nor);
  274. if (erase_chip(nor)) {
  275. ret = -EIO;
  276. goto erase_err;
  277. }
  278. ret = spi_nor_wait_till_ready(nor);
  279. if (ret)
  280. goto erase_err;
  281. /* REVISIT in some cases we could speed up erasing large regions
  282. * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
  283. * to use "small sector erase", but that's not always optimal.
  284. */
  285. /* "sector"-at-a-time erase */
  286. } else {
  287. while (len) {
  288. write_enable(nor);
  289. if (nor->erase(nor, addr)) {
  290. ret = -EIO;
  291. goto erase_err;
  292. }
  293. addr += mtd->erasesize;
  294. len -= mtd->erasesize;
  295. ret = spi_nor_wait_till_ready(nor);
  296. if (ret)
  297. goto erase_err;
  298. }
  299. }
  300. write_disable(nor);
  301. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
  302. instr->state = MTD_ERASE_DONE;
  303. mtd_erase_callback(instr);
  304. return ret;
  305. erase_err:
  306. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
  307. instr->state = MTD_ERASE_FAILED;
  308. return ret;
  309. }
  310. static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  311. {
  312. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  313. uint32_t offset = ofs;
  314. uint8_t status_old, status_new;
  315. int ret = 0;
  316. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
  317. if (ret)
  318. return ret;
  319. status_old = read_sr(nor);
  320. if (offset < mtd->size - (mtd->size / 2))
  321. status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
  322. else if (offset < mtd->size - (mtd->size / 4))
  323. status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
  324. else if (offset < mtd->size - (mtd->size / 8))
  325. status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
  326. else if (offset < mtd->size - (mtd->size / 16))
  327. status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
  328. else if (offset < mtd->size - (mtd->size / 32))
  329. status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
  330. else if (offset < mtd->size - (mtd->size / 64))
  331. status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
  332. else
  333. status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
  334. /* Only modify protection if it will not unlock other areas */
  335. if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
  336. (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
  337. write_enable(nor);
  338. ret = write_sr(nor, status_new);
  339. if (ret)
  340. goto err;
  341. }
  342. err:
  343. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
  344. return ret;
  345. }
  346. static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  347. {
  348. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  349. uint32_t offset = ofs;
  350. uint8_t status_old, status_new;
  351. int ret = 0;
  352. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
  353. if (ret)
  354. return ret;
  355. status_old = read_sr(nor);
  356. if (offset+len > mtd->size - (mtd->size / 64))
  357. status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
  358. else if (offset+len > mtd->size - (mtd->size / 32))
  359. status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
  360. else if (offset+len > mtd->size - (mtd->size / 16))
  361. status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
  362. else if (offset+len > mtd->size - (mtd->size / 8))
  363. status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
  364. else if (offset+len > mtd->size - (mtd->size / 4))
  365. status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
  366. else if (offset+len > mtd->size - (mtd->size / 2))
  367. status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
  368. else
  369. status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
  370. /* Only modify protection if it will not lock other areas */
  371. if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
  372. (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
  373. write_enable(nor);
  374. ret = write_sr(nor, status_new);
  375. if (ret)
  376. goto err;
  377. }
  378. err:
  379. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
  380. return ret;
  381. }
  382. /* Used when the "_ext_id" is two bytes at most */
  383. #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
  384. ((kernel_ulong_t)&(struct flash_info) { \
  385. .id = { \
  386. ((_jedec_id) >> 16) & 0xff, \
  387. ((_jedec_id) >> 8) & 0xff, \
  388. (_jedec_id) & 0xff, \
  389. ((_ext_id) >> 8) & 0xff, \
  390. (_ext_id) & 0xff, \
  391. }, \
  392. .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
  393. .sector_size = (_sector_size), \
  394. .n_sectors = (_n_sectors), \
  395. .page_size = 256, \
  396. .flags = (_flags), \
  397. })
  398. #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
  399. ((kernel_ulong_t)&(struct flash_info) { \
  400. .id = { \
  401. ((_jedec_id) >> 16) & 0xff, \
  402. ((_jedec_id) >> 8) & 0xff, \
  403. (_jedec_id) & 0xff, \
  404. ((_ext_id) >> 16) & 0xff, \
  405. ((_ext_id) >> 8) & 0xff, \
  406. (_ext_id) & 0xff, \
  407. }, \
  408. .id_len = 6, \
  409. .sector_size = (_sector_size), \
  410. .n_sectors = (_n_sectors), \
  411. .page_size = 256, \
  412. .flags = (_flags), \
  413. })
  414. #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
  415. ((kernel_ulong_t)&(struct flash_info) { \
  416. .sector_size = (_sector_size), \
  417. .n_sectors = (_n_sectors), \
  418. .page_size = (_page_size), \
  419. .addr_width = (_addr_width), \
  420. .flags = (_flags), \
  421. })
  422. /* NOTE: double check command sets and memory organization when you add
  423. * more nor chips. This current list focusses on newer chips, which
  424. * have been converging on command sets which including JEDEC ID.
  425. */
  426. static const struct spi_device_id spi_nor_ids[] = {
  427. /* Atmel -- some are (confusingly) marketed as "DataFlash" */
  428. { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
  429. { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
  430. { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
  431. { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
  432. { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
  433. { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
  434. { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
  435. { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
  436. { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
  437. { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
  438. /* EON -- en25xxx */
  439. { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
  440. { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
  441. { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
  442. { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
  443. { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
  444. { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
  445. { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
  446. /* ESMT */
  447. { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
  448. /* Everspin */
  449. { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  450. { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  451. /* Fujitsu */
  452. { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
  453. /* GigaDevice */
  454. { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
  455. { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
  456. /* Intel/Numonyx -- xxxs33b */
  457. { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
  458. { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
  459. { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
  460. /* Macronix */
  461. { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
  462. { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
  463. { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
  464. { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
  465. { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
  466. { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
  467. { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
  468. { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
  469. { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
  470. { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
  471. { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
  472. { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
  473. { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
  474. /* Micron */
  475. { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
  476. { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
  477. { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
  478. { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
  479. { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
  480. { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
  481. { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, USE_FSR) },
  482. { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, USE_FSR) },
  483. /* PMC */
  484. { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
  485. { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
  486. { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
  487. /* Spansion -- single (large) sector size only, at least
  488. * for the chips listed here (without boot sectors).
  489. */
  490. { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  491. { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
  492. { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
  493. { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  494. { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  495. { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
  496. { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
  497. { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
  498. { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
  499. { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
  500. { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
  501. { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
  502. { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
  503. { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
  504. { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
  505. { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
  506. { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
  507. { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
  508. { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
  509. { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, 0) },
  510. /* SST -- large erase sizes are "overlays", "sectors" are 4K */
  511. { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
  512. { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
  513. { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
  514. { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
  515. { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
  516. { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
  517. { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
  518. { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
  519. { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
  520. { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
  521. /* ST Microelectronics -- newer production may have feature updates */
  522. { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
  523. { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
  524. { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
  525. { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
  526. { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
  527. { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
  528. { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
  529. { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
  530. { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
  531. { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
  532. { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
  533. { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
  534. { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
  535. { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
  536. { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
  537. { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
  538. { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
  539. { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
  540. { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
  541. { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
  542. { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
  543. { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
  544. { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
  545. { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
  546. { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
  547. { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
  548. { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
  549. { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
  550. { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
  551. { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
  552. /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
  553. { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
  554. { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
  555. { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
  556. { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
  557. { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
  558. { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
  559. { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
  560. { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
  561. { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
  562. { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
  563. { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
  564. { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
  565. { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
  566. { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
  567. /* Catalyst / On Semiconductor -- non-JEDEC */
  568. { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  569. { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  570. { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  571. { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  572. { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  573. { },
  574. };
  575. static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
  576. {
  577. int tmp;
  578. u8 id[SPI_NOR_MAX_ID_LEN];
  579. struct flash_info *info;
  580. tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
  581. if (tmp < 0) {
  582. dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
  583. return ERR_PTR(tmp);
  584. }
  585. for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
  586. info = (void *)spi_nor_ids[tmp].driver_data;
  587. if (info->id_len) {
  588. if (!memcmp(info->id, id, info->id_len))
  589. return &spi_nor_ids[tmp];
  590. }
  591. }
  592. dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
  593. id[0], id[1], id[2]);
  594. return ERR_PTR(-ENODEV);
  595. }
  596. static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
  597. size_t *retlen, u_char *buf)
  598. {
  599. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  600. int ret;
  601. dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
  602. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
  603. if (ret)
  604. return ret;
  605. ret = nor->read(nor, from, len, retlen, buf);
  606. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
  607. return ret;
  608. }
  609. static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
  610. size_t *retlen, const u_char *buf)
  611. {
  612. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  613. size_t actual;
  614. int ret;
  615. dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
  616. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
  617. if (ret)
  618. return ret;
  619. write_enable(nor);
  620. nor->sst_write_second = false;
  621. actual = to % 2;
  622. /* Start write from odd address. */
  623. if (actual) {
  624. nor->program_opcode = SPINOR_OP_BP;
  625. /* write one byte. */
  626. nor->write(nor, to, 1, retlen, buf);
  627. ret = spi_nor_wait_till_ready(nor);
  628. if (ret)
  629. goto time_out;
  630. }
  631. to += actual;
  632. /* Write out most of the data here. */
  633. for (; actual < len - 1; actual += 2) {
  634. nor->program_opcode = SPINOR_OP_AAI_WP;
  635. /* write two bytes. */
  636. nor->write(nor, to, 2, retlen, buf + actual);
  637. ret = spi_nor_wait_till_ready(nor);
  638. if (ret)
  639. goto time_out;
  640. to += 2;
  641. nor->sst_write_second = true;
  642. }
  643. nor->sst_write_second = false;
  644. write_disable(nor);
  645. ret = spi_nor_wait_till_ready(nor);
  646. if (ret)
  647. goto time_out;
  648. /* Write out trailing byte if it exists. */
  649. if (actual != len) {
  650. write_enable(nor);
  651. nor->program_opcode = SPINOR_OP_BP;
  652. nor->write(nor, to, 1, retlen, buf + actual);
  653. ret = spi_nor_wait_till_ready(nor);
  654. if (ret)
  655. goto time_out;
  656. write_disable(nor);
  657. }
  658. time_out:
  659. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
  660. return ret;
  661. }
  662. /*
  663. * Write an address range to the nor chip. Data must be written in
  664. * FLASH_PAGESIZE chunks. The address range may be any size provided
  665. * it is within the physical boundaries.
  666. */
  667. static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
  668. size_t *retlen, const u_char *buf)
  669. {
  670. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  671. u32 page_offset, page_size, i;
  672. int ret;
  673. dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
  674. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
  675. if (ret)
  676. return ret;
  677. write_enable(nor);
  678. page_offset = to & (nor->page_size - 1);
  679. /* do all the bytes fit onto one page? */
  680. if (page_offset + len <= nor->page_size) {
  681. nor->write(nor, to, len, retlen, buf);
  682. } else {
  683. /* the size of data remaining on the first page */
  684. page_size = nor->page_size - page_offset;
  685. nor->write(nor, to, page_size, retlen, buf);
  686. /* write everything in nor->page_size chunks */
  687. for (i = page_size; i < len; i += page_size) {
  688. page_size = len - i;
  689. if (page_size > nor->page_size)
  690. page_size = nor->page_size;
  691. ret = spi_nor_wait_till_ready(nor);
  692. if (ret)
  693. goto write_err;
  694. write_enable(nor);
  695. nor->write(nor, to + i, page_size, retlen, buf + i);
  696. }
  697. }
  698. ret = spi_nor_wait_till_ready(nor);
  699. write_err:
  700. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
  701. return ret;
  702. }
  703. static int macronix_quad_enable(struct spi_nor *nor)
  704. {
  705. int ret, val;
  706. val = read_sr(nor);
  707. write_enable(nor);
  708. nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
  709. nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
  710. if (spi_nor_wait_till_ready(nor))
  711. return 1;
  712. ret = read_sr(nor);
  713. if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
  714. dev_err(nor->dev, "Macronix Quad bit not set\n");
  715. return -EINVAL;
  716. }
  717. return 0;
  718. }
  719. /*
  720. * Write status Register and configuration register with 2 bytes
  721. * The first byte will be written to the status register, while the
  722. * second byte will be written to the configuration register.
  723. * Return negative if error occured.
  724. */
  725. static int write_sr_cr(struct spi_nor *nor, u16 val)
  726. {
  727. nor->cmd_buf[0] = val & 0xff;
  728. nor->cmd_buf[1] = (val >> 8);
  729. return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
  730. }
  731. static int spansion_quad_enable(struct spi_nor *nor)
  732. {
  733. int ret;
  734. int quad_en = CR_QUAD_EN_SPAN << 8;
  735. write_enable(nor);
  736. ret = write_sr_cr(nor, quad_en);
  737. if (ret < 0) {
  738. dev_err(nor->dev,
  739. "error while writing configuration register\n");
  740. return -EINVAL;
  741. }
  742. /* read back and check it */
  743. ret = read_cr(nor);
  744. if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
  745. dev_err(nor->dev, "Spansion Quad bit not set\n");
  746. return -EINVAL;
  747. }
  748. return 0;
  749. }
  750. static int set_quad_mode(struct spi_nor *nor, struct flash_info *info)
  751. {
  752. int status;
  753. switch (JEDEC_MFR(info)) {
  754. case CFI_MFR_MACRONIX:
  755. status = macronix_quad_enable(nor);
  756. if (status) {
  757. dev_err(nor->dev, "Macronix quad-read not enabled\n");
  758. return -EINVAL;
  759. }
  760. return status;
  761. default:
  762. status = spansion_quad_enable(nor);
  763. if (status) {
  764. dev_err(nor->dev, "Spansion quad-read not enabled\n");
  765. return -EINVAL;
  766. }
  767. return status;
  768. }
  769. }
  770. static int spi_nor_check(struct spi_nor *nor)
  771. {
  772. if (!nor->dev || !nor->read || !nor->write ||
  773. !nor->read_reg || !nor->write_reg || !nor->erase) {
  774. pr_err("spi-nor: please fill all the necessary fields!\n");
  775. return -EINVAL;
  776. }
  777. return 0;
  778. }
  779. int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
  780. {
  781. const struct spi_device_id *id = NULL;
  782. struct flash_info *info;
  783. struct device *dev = nor->dev;
  784. struct mtd_info *mtd = nor->mtd;
  785. struct device_node *np = dev->of_node;
  786. int ret;
  787. int i;
  788. ret = spi_nor_check(nor);
  789. if (ret)
  790. return ret;
  791. /* Try to auto-detect if chip name wasn't specified */
  792. if (!name)
  793. id = spi_nor_read_id(nor);
  794. else
  795. id = spi_nor_match_id(name);
  796. if (IS_ERR_OR_NULL(id))
  797. return -ENOENT;
  798. info = (void *)id->driver_data;
  799. /*
  800. * If caller has specified name of flash model that can normally be
  801. * detected using JEDEC, let's verify it.
  802. */
  803. if (name && info->id_len) {
  804. const struct spi_device_id *jid;
  805. jid = spi_nor_read_id(nor);
  806. if (IS_ERR(jid)) {
  807. return PTR_ERR(jid);
  808. } else if (jid != id) {
  809. /*
  810. * JEDEC knows better, so overwrite platform ID. We
  811. * can't trust partitions any longer, but we'll let
  812. * mtd apply them anyway, since some partitions may be
  813. * marked read-only, and we don't want to lose that
  814. * information, even if it's not 100% accurate.
  815. */
  816. dev_warn(dev, "found %s, expected %s\n",
  817. jid->name, id->name);
  818. id = jid;
  819. info = (void *)jid->driver_data;
  820. }
  821. }
  822. mutex_init(&nor->lock);
  823. /*
  824. * Atmel, SST and Intel/Numonyx serial nor tend to power
  825. * up with the software protection bits set
  826. */
  827. if (JEDEC_MFR(info) == CFI_MFR_ATMEL ||
  828. JEDEC_MFR(info) == CFI_MFR_INTEL ||
  829. JEDEC_MFR(info) == CFI_MFR_SST) {
  830. write_enable(nor);
  831. write_sr(nor, 0);
  832. }
  833. if (!mtd->name)
  834. mtd->name = dev_name(dev);
  835. mtd->type = MTD_NORFLASH;
  836. mtd->writesize = 1;
  837. mtd->flags = MTD_CAP_NORFLASH;
  838. mtd->size = info->sector_size * info->n_sectors;
  839. mtd->_erase = spi_nor_erase;
  840. mtd->_read = spi_nor_read;
  841. /* nor protection support for STmicro chips */
  842. if (JEDEC_MFR(info) == CFI_MFR_ST) {
  843. mtd->_lock = spi_nor_lock;
  844. mtd->_unlock = spi_nor_unlock;
  845. }
  846. /* sst nor chips use AAI word program */
  847. if (info->flags & SST_WRITE)
  848. mtd->_write = sst_write;
  849. else
  850. mtd->_write = spi_nor_write;
  851. if (info->flags & USE_FSR)
  852. nor->flags |= SNOR_F_USE_FSR;
  853. #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
  854. /* prefer "small sector" erase if possible */
  855. if (info->flags & SECT_4K) {
  856. nor->erase_opcode = SPINOR_OP_BE_4K;
  857. mtd->erasesize = 4096;
  858. } else if (info->flags & SECT_4K_PMC) {
  859. nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
  860. mtd->erasesize = 4096;
  861. } else
  862. #endif
  863. {
  864. nor->erase_opcode = SPINOR_OP_SE;
  865. mtd->erasesize = info->sector_size;
  866. }
  867. if (info->flags & SPI_NOR_NO_ERASE)
  868. mtd->flags |= MTD_NO_ERASE;
  869. mtd->dev.parent = dev;
  870. nor->page_size = info->page_size;
  871. mtd->writebufsize = nor->page_size;
  872. if (np) {
  873. /* If we were instantiated by DT, use it */
  874. if (of_property_read_bool(np, "m25p,fast-read"))
  875. nor->flash_read = SPI_NOR_FAST;
  876. else
  877. nor->flash_read = SPI_NOR_NORMAL;
  878. } else {
  879. /* If we weren't instantiated by DT, default to fast-read */
  880. nor->flash_read = SPI_NOR_FAST;
  881. }
  882. /* Some devices cannot do fast-read, no matter what DT tells us */
  883. if (info->flags & SPI_NOR_NO_FR)
  884. nor->flash_read = SPI_NOR_NORMAL;
  885. /* Quad/Dual-read mode takes precedence over fast/normal */
  886. if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
  887. ret = set_quad_mode(nor, info);
  888. if (ret) {
  889. dev_err(dev, "quad mode not supported\n");
  890. return ret;
  891. }
  892. nor->flash_read = SPI_NOR_QUAD;
  893. } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
  894. nor->flash_read = SPI_NOR_DUAL;
  895. }
  896. /* Default commands */
  897. switch (nor->flash_read) {
  898. case SPI_NOR_QUAD:
  899. nor->read_opcode = SPINOR_OP_READ_1_1_4;
  900. break;
  901. case SPI_NOR_DUAL:
  902. nor->read_opcode = SPINOR_OP_READ_1_1_2;
  903. break;
  904. case SPI_NOR_FAST:
  905. nor->read_opcode = SPINOR_OP_READ_FAST;
  906. break;
  907. case SPI_NOR_NORMAL:
  908. nor->read_opcode = SPINOR_OP_READ;
  909. break;
  910. default:
  911. dev_err(dev, "No Read opcode defined\n");
  912. return -EINVAL;
  913. }
  914. nor->program_opcode = SPINOR_OP_PP;
  915. if (info->addr_width)
  916. nor->addr_width = info->addr_width;
  917. else if (mtd->size > 0x1000000) {
  918. /* enable 4-byte addressing if the device exceeds 16MiB */
  919. nor->addr_width = 4;
  920. if (JEDEC_MFR(info) == CFI_MFR_AMD) {
  921. /* Dedicated 4-byte command set */
  922. switch (nor->flash_read) {
  923. case SPI_NOR_QUAD:
  924. nor->read_opcode = SPINOR_OP_READ4_1_1_4;
  925. break;
  926. case SPI_NOR_DUAL:
  927. nor->read_opcode = SPINOR_OP_READ4_1_1_2;
  928. break;
  929. case SPI_NOR_FAST:
  930. nor->read_opcode = SPINOR_OP_READ4_FAST;
  931. break;
  932. case SPI_NOR_NORMAL:
  933. nor->read_opcode = SPINOR_OP_READ4;
  934. break;
  935. }
  936. nor->program_opcode = SPINOR_OP_PP_4B;
  937. /* No small sector erase for 4-byte command set */
  938. nor->erase_opcode = SPINOR_OP_SE_4B;
  939. mtd->erasesize = info->sector_size;
  940. } else
  941. set_4byte(nor, info, 1);
  942. } else {
  943. nor->addr_width = 3;
  944. }
  945. nor->read_dummy = spi_nor_read_dummy_cycles(nor);
  946. dev_info(dev, "%s (%lld Kbytes)\n", id->name,
  947. (long long)mtd->size >> 10);
  948. dev_dbg(dev,
  949. "mtd .name = %s, .size = 0x%llx (%lldMiB), "
  950. ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
  951. mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
  952. mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
  953. if (mtd->numeraseregions)
  954. for (i = 0; i < mtd->numeraseregions; i++)
  955. dev_dbg(dev,
  956. "mtd.eraseregions[%d] = { .offset = 0x%llx, "
  957. ".erasesize = 0x%.8x (%uKiB), "
  958. ".numblocks = %d }\n",
  959. i, (long long)mtd->eraseregions[i].offset,
  960. mtd->eraseregions[i].erasesize,
  961. mtd->eraseregions[i].erasesize / 1024,
  962. mtd->eraseregions[i].numblocks);
  963. return 0;
  964. }
  965. EXPORT_SYMBOL_GPL(spi_nor_scan);
  966. static const struct spi_device_id *spi_nor_match_id(const char *name)
  967. {
  968. const struct spi_device_id *id = spi_nor_ids;
  969. while (id->name[0]) {
  970. if (!strcmp(name, id->name))
  971. return id;
  972. id++;
  973. }
  974. return NULL;
  975. }
  976. MODULE_LICENSE("GPL");
  977. MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
  978. MODULE_AUTHOR("Mike Lavender");
  979. MODULE_DESCRIPTION("framework for SPI NOR");