fsl-quadspi.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988
  1. /*
  2. * Freescale QuadSPI driver.
  3. *
  4. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/errno.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/sched.h>
  17. #include <linux/delay.h>
  18. #include <linux/io.h>
  19. #include <linux/clk.h>
  20. #include <linux/err.h>
  21. #include <linux/of.h>
  22. #include <linux/of_device.h>
  23. #include <linux/timer.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/completion.h>
  26. #include <linux/mtd/mtd.h>
  27. #include <linux/mtd/partitions.h>
  28. #include <linux/mtd/spi-nor.h>
  29. /* The registers */
  30. #define QUADSPI_MCR 0x00
  31. #define QUADSPI_MCR_RESERVED_SHIFT 16
  32. #define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
  33. #define QUADSPI_MCR_MDIS_SHIFT 14
  34. #define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
  35. #define QUADSPI_MCR_CLR_TXF_SHIFT 11
  36. #define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
  37. #define QUADSPI_MCR_CLR_RXF_SHIFT 10
  38. #define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
  39. #define QUADSPI_MCR_DDR_EN_SHIFT 7
  40. #define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
  41. #define QUADSPI_MCR_END_CFG_SHIFT 2
  42. #define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
  43. #define QUADSPI_MCR_SWRSTHD_SHIFT 1
  44. #define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
  45. #define QUADSPI_MCR_SWRSTSD_SHIFT 0
  46. #define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
  47. #define QUADSPI_IPCR 0x08
  48. #define QUADSPI_IPCR_SEQID_SHIFT 24
  49. #define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
  50. #define QUADSPI_BUF0CR 0x10
  51. #define QUADSPI_BUF1CR 0x14
  52. #define QUADSPI_BUF2CR 0x18
  53. #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
  54. #define QUADSPI_BUF3CR 0x1c
  55. #define QUADSPI_BUF3CR_ALLMST_SHIFT 31
  56. #define QUADSPI_BUF3CR_ALLMST (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
  57. #define QUADSPI_BFGENCR 0x20
  58. #define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
  59. #define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
  60. #define QUADSPI_BFGENCR_SEQID_SHIFT 12
  61. #define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
  62. #define QUADSPI_BUF0IND 0x30
  63. #define QUADSPI_BUF1IND 0x34
  64. #define QUADSPI_BUF2IND 0x38
  65. #define QUADSPI_SFAR 0x100
  66. #define QUADSPI_SMPR 0x108
  67. #define QUADSPI_SMPR_DDRSMP_SHIFT 16
  68. #define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
  69. #define QUADSPI_SMPR_FSDLY_SHIFT 6
  70. #define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
  71. #define QUADSPI_SMPR_FSPHS_SHIFT 5
  72. #define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
  73. #define QUADSPI_SMPR_HSENA_SHIFT 0
  74. #define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
  75. #define QUADSPI_RBSR 0x10c
  76. #define QUADSPI_RBSR_RDBFL_SHIFT 8
  77. #define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
  78. #define QUADSPI_RBCT 0x110
  79. #define QUADSPI_RBCT_WMRK_MASK 0x1F
  80. #define QUADSPI_RBCT_RXBRD_SHIFT 8
  81. #define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
  82. #define QUADSPI_TBSR 0x150
  83. #define QUADSPI_TBDR 0x154
  84. #define QUADSPI_SR 0x15c
  85. #define QUADSPI_SR_IP_ACC_SHIFT 1
  86. #define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
  87. #define QUADSPI_SR_AHB_ACC_SHIFT 2
  88. #define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
  89. #define QUADSPI_FR 0x160
  90. #define QUADSPI_FR_TFF_MASK 0x1
  91. #define QUADSPI_SFA1AD 0x180
  92. #define QUADSPI_SFA2AD 0x184
  93. #define QUADSPI_SFB1AD 0x188
  94. #define QUADSPI_SFB2AD 0x18c
  95. #define QUADSPI_RBDR 0x200
  96. #define QUADSPI_LUTKEY 0x300
  97. #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
  98. #define QUADSPI_LCKCR 0x304
  99. #define QUADSPI_LCKER_LOCK 0x1
  100. #define QUADSPI_LCKER_UNLOCK 0x2
  101. #define QUADSPI_RSER 0x164
  102. #define QUADSPI_RSER_TFIE (0x1 << 0)
  103. #define QUADSPI_LUT_BASE 0x310
  104. /*
  105. * The definition of the LUT register shows below:
  106. *
  107. * ---------------------------------------------------
  108. * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
  109. * ---------------------------------------------------
  110. */
  111. #define OPRND0_SHIFT 0
  112. #define PAD0_SHIFT 8
  113. #define INSTR0_SHIFT 10
  114. #define OPRND1_SHIFT 16
  115. /* Instruction set for the LUT register. */
  116. #define LUT_STOP 0
  117. #define LUT_CMD 1
  118. #define LUT_ADDR 2
  119. #define LUT_DUMMY 3
  120. #define LUT_MODE 4
  121. #define LUT_MODE2 5
  122. #define LUT_MODE4 6
  123. #define LUT_READ 7
  124. #define LUT_WRITE 8
  125. #define LUT_JMP_ON_CS 9
  126. #define LUT_ADDR_DDR 10
  127. #define LUT_MODE_DDR 11
  128. #define LUT_MODE2_DDR 12
  129. #define LUT_MODE4_DDR 13
  130. #define LUT_READ_DDR 14
  131. #define LUT_WRITE_DDR 15
  132. #define LUT_DATA_LEARN 16
  133. /*
  134. * The PAD definitions for LUT register.
  135. *
  136. * The pad stands for the lines number of IO[0:3].
  137. * For example, the Quad read need four IO lines, so you should
  138. * set LUT_PAD4 which means we use four IO lines.
  139. */
  140. #define LUT_PAD1 0
  141. #define LUT_PAD2 1
  142. #define LUT_PAD4 2
  143. /* Oprands for the LUT register. */
  144. #define ADDR24BIT 0x18
  145. #define ADDR32BIT 0x20
  146. /* Macros for constructing the LUT register. */
  147. #define LUT0(ins, pad, opr) \
  148. (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
  149. ((LUT_##ins) << INSTR0_SHIFT))
  150. #define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
  151. /* other macros for LUT register. */
  152. #define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
  153. #define QUADSPI_LUT_NUM 64
  154. /* SEQID -- we can have 16 seqids at most. */
  155. #define SEQID_QUAD_READ 0
  156. #define SEQID_WREN 1
  157. #define SEQID_WRDI 2
  158. #define SEQID_RDSR 3
  159. #define SEQID_SE 4
  160. #define SEQID_CHIP_ERASE 5
  161. #define SEQID_PP 6
  162. #define SEQID_RDID 7
  163. #define SEQID_WRSR 8
  164. #define SEQID_RDCR 9
  165. #define SEQID_EN4B 10
  166. #define SEQID_BRWR 11
  167. enum fsl_qspi_devtype {
  168. FSL_QUADSPI_VYBRID,
  169. FSL_QUADSPI_IMX6SX,
  170. };
  171. struct fsl_qspi_devtype_data {
  172. enum fsl_qspi_devtype devtype;
  173. int rxfifo;
  174. int txfifo;
  175. };
  176. static struct fsl_qspi_devtype_data vybrid_data = {
  177. .devtype = FSL_QUADSPI_VYBRID,
  178. .rxfifo = 128,
  179. .txfifo = 64
  180. };
  181. static struct fsl_qspi_devtype_data imx6sx_data = {
  182. .devtype = FSL_QUADSPI_IMX6SX,
  183. .rxfifo = 128,
  184. .txfifo = 512
  185. };
  186. #define FSL_QSPI_MAX_CHIP 4
  187. struct fsl_qspi {
  188. struct mtd_info mtd[FSL_QSPI_MAX_CHIP];
  189. struct spi_nor nor[FSL_QSPI_MAX_CHIP];
  190. void __iomem *iobase;
  191. void __iomem *ahb_base; /* Used when read from AHB bus */
  192. u32 memmap_phy;
  193. struct clk *clk, *clk_en;
  194. struct device *dev;
  195. struct completion c;
  196. struct fsl_qspi_devtype_data *devtype_data;
  197. u32 nor_size;
  198. u32 nor_num;
  199. u32 clk_rate;
  200. unsigned int chip_base_addr; /* We may support two chips. */
  201. };
  202. static inline int is_vybrid_qspi(struct fsl_qspi *q)
  203. {
  204. return q->devtype_data->devtype == FSL_QUADSPI_VYBRID;
  205. }
  206. static inline int is_imx6sx_qspi(struct fsl_qspi *q)
  207. {
  208. return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX;
  209. }
  210. /*
  211. * An IC bug makes us to re-arrange the 32-bit data.
  212. * The following chips, such as IMX6SLX, have fixed this bug.
  213. */
  214. static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
  215. {
  216. return is_vybrid_qspi(q) ? __swab32(a) : a;
  217. }
  218. static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
  219. {
  220. writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
  221. writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
  222. }
  223. static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
  224. {
  225. writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
  226. writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
  227. }
  228. static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
  229. {
  230. struct fsl_qspi *q = dev_id;
  231. u32 reg;
  232. /* clear interrupt */
  233. reg = readl(q->iobase + QUADSPI_FR);
  234. writel(reg, q->iobase + QUADSPI_FR);
  235. if (reg & QUADSPI_FR_TFF_MASK)
  236. complete(&q->c);
  237. dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
  238. return IRQ_HANDLED;
  239. }
  240. static void fsl_qspi_init_lut(struct fsl_qspi *q)
  241. {
  242. void __iomem *base = q->iobase;
  243. int rxfifo = q->devtype_data->rxfifo;
  244. u32 lut_base;
  245. u8 cmd, addrlen, dummy;
  246. int i;
  247. fsl_qspi_unlock_lut(q);
  248. /* Clear all the LUT table */
  249. for (i = 0; i < QUADSPI_LUT_NUM; i++)
  250. writel(0, base + QUADSPI_LUT_BASE + i * 4);
  251. /* Quad Read */
  252. lut_base = SEQID_QUAD_READ * 4;
  253. if (q->nor_size <= SZ_16M) {
  254. cmd = SPINOR_OP_READ_1_1_4;
  255. addrlen = ADDR24BIT;
  256. dummy = 8;
  257. } else {
  258. /* use the 4-byte address */
  259. cmd = SPINOR_OP_READ_1_1_4;
  260. addrlen = ADDR32BIT;
  261. dummy = 8;
  262. }
  263. writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
  264. base + QUADSPI_LUT(lut_base));
  265. writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo),
  266. base + QUADSPI_LUT(lut_base + 1));
  267. /* Write enable */
  268. lut_base = SEQID_WREN * 4;
  269. writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
  270. /* Page Program */
  271. lut_base = SEQID_PP * 4;
  272. if (q->nor_size <= SZ_16M) {
  273. cmd = SPINOR_OP_PP;
  274. addrlen = ADDR24BIT;
  275. } else {
  276. /* use the 4-byte address */
  277. cmd = SPINOR_OP_PP;
  278. addrlen = ADDR32BIT;
  279. }
  280. writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
  281. base + QUADSPI_LUT(lut_base));
  282. writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));
  283. /* Read Status */
  284. lut_base = SEQID_RDSR * 4;
  285. writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1),
  286. base + QUADSPI_LUT(lut_base));
  287. /* Erase a sector */
  288. lut_base = SEQID_SE * 4;
  289. if (q->nor_size <= SZ_16M) {
  290. cmd = SPINOR_OP_SE;
  291. addrlen = ADDR24BIT;
  292. } else {
  293. /* use the 4-byte address */
  294. cmd = SPINOR_OP_SE;
  295. addrlen = ADDR32BIT;
  296. }
  297. writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
  298. base + QUADSPI_LUT(lut_base));
  299. /* Erase the whole chip */
  300. lut_base = SEQID_CHIP_ERASE * 4;
  301. writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
  302. base + QUADSPI_LUT(lut_base));
  303. /* READ ID */
  304. lut_base = SEQID_RDID * 4;
  305. writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8),
  306. base + QUADSPI_LUT(lut_base));
  307. /* Write Register */
  308. lut_base = SEQID_WRSR * 4;
  309. writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2),
  310. base + QUADSPI_LUT(lut_base));
  311. /* Read Configuration Register */
  312. lut_base = SEQID_RDCR * 4;
  313. writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1),
  314. base + QUADSPI_LUT(lut_base));
  315. /* Write disable */
  316. lut_base = SEQID_WRDI * 4;
  317. writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
  318. /* Enter 4 Byte Mode (Micron) */
  319. lut_base = SEQID_EN4B * 4;
  320. writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
  321. /* Enter 4 Byte Mode (Spansion) */
  322. lut_base = SEQID_BRWR * 4;
  323. writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
  324. fsl_qspi_lock_lut(q);
  325. }
  326. /* Get the SEQID for the command */
  327. static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
  328. {
  329. switch (cmd) {
  330. case SPINOR_OP_READ_1_1_4:
  331. return SEQID_QUAD_READ;
  332. case SPINOR_OP_WREN:
  333. return SEQID_WREN;
  334. case SPINOR_OP_WRDI:
  335. return SEQID_WRDI;
  336. case SPINOR_OP_RDSR:
  337. return SEQID_RDSR;
  338. case SPINOR_OP_SE:
  339. return SEQID_SE;
  340. case SPINOR_OP_CHIP_ERASE:
  341. return SEQID_CHIP_ERASE;
  342. case SPINOR_OP_PP:
  343. return SEQID_PP;
  344. case SPINOR_OP_RDID:
  345. return SEQID_RDID;
  346. case SPINOR_OP_WRSR:
  347. return SEQID_WRSR;
  348. case SPINOR_OP_RDCR:
  349. return SEQID_RDCR;
  350. case SPINOR_OP_EN4B:
  351. return SEQID_EN4B;
  352. case SPINOR_OP_BRWR:
  353. return SEQID_BRWR;
  354. default:
  355. dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
  356. break;
  357. }
  358. return -EINVAL;
  359. }
  360. static int
  361. fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
  362. {
  363. void __iomem *base = q->iobase;
  364. int seqid;
  365. u32 reg, reg2;
  366. int err;
  367. init_completion(&q->c);
  368. dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
  369. q->chip_base_addr, addr, len, cmd);
  370. /* save the reg */
  371. reg = readl(base + QUADSPI_MCR);
  372. writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
  373. writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
  374. base + QUADSPI_RBCT);
  375. writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
  376. do {
  377. reg2 = readl(base + QUADSPI_SR);
  378. if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
  379. udelay(1);
  380. dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
  381. continue;
  382. }
  383. break;
  384. } while (1);
  385. /* trigger the LUT now */
  386. seqid = fsl_qspi_get_seqid(q, cmd);
  387. writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);
  388. /* Wait for the interrupt. */
  389. err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000));
  390. if (!err) {
  391. dev_err(q->dev,
  392. "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
  393. cmd, addr, readl(base + QUADSPI_FR),
  394. readl(base + QUADSPI_SR));
  395. err = -ETIMEDOUT;
  396. } else {
  397. err = 0;
  398. }
  399. /* restore the MCR */
  400. writel(reg, base + QUADSPI_MCR);
  401. return err;
  402. }
  403. /* Read out the data from the QUADSPI_RBDR buffer registers. */
  404. static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
  405. {
  406. u32 tmp;
  407. int i = 0;
  408. while (len > 0) {
  409. tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
  410. tmp = fsl_qspi_endian_xchg(q, tmp);
  411. dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
  412. q->chip_base_addr, tmp);
  413. if (len >= 4) {
  414. *((u32 *)rxbuf) = tmp;
  415. rxbuf += 4;
  416. } else {
  417. memcpy(rxbuf, &tmp, len);
  418. break;
  419. }
  420. len -= 4;
  421. i++;
  422. }
  423. }
  424. /*
  425. * If we have changed the content of the flash by writing or erasing,
  426. * we need to invalidate the AHB buffer. If we do not do so, we may read out
  427. * the wrong data. The spec tells us reset the AHB domain and Serial Flash
  428. * domain at the same time.
  429. */
  430. static inline void fsl_qspi_invalid(struct fsl_qspi *q)
  431. {
  432. u32 reg;
  433. reg = readl(q->iobase + QUADSPI_MCR);
  434. reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
  435. writel(reg, q->iobase + QUADSPI_MCR);
  436. /*
  437. * The minimum delay : 1 AHB + 2 SFCK clocks.
  438. * Delay 1 us is enough.
  439. */
  440. udelay(1);
  441. reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
  442. writel(reg, q->iobase + QUADSPI_MCR);
  443. }
  444. static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
  445. u8 opcode, unsigned int to, u32 *txbuf,
  446. unsigned count, size_t *retlen)
  447. {
  448. int ret, i, j;
  449. u32 tmp;
  450. dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
  451. q->chip_base_addr, to, count);
  452. /* clear the TX FIFO. */
  453. tmp = readl(q->iobase + QUADSPI_MCR);
  454. writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR);
  455. /* fill the TX data to the FIFO */
  456. for (j = 0, i = ((count + 3) / 4); j < i; j++) {
  457. tmp = fsl_qspi_endian_xchg(q, *txbuf);
  458. writel(tmp, q->iobase + QUADSPI_TBDR);
  459. txbuf++;
  460. }
  461. /* Trigger it */
  462. ret = fsl_qspi_runcmd(q, opcode, to, count);
  463. if (ret == 0 && retlen)
  464. *retlen += count;
  465. return ret;
  466. }
  467. static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
  468. {
  469. int nor_size = q->nor_size;
  470. void __iomem *base = q->iobase;
  471. writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
  472. writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
  473. writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
  474. writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
  475. }
  476. /*
  477. * There are two different ways to read out the data from the flash:
  478. * the "IP Command Read" and the "AHB Command Read".
  479. *
  480. * The IC guy suggests we use the "AHB Command Read" which is faster
  481. * then the "IP Command Read". (What's more is that there is a bug in
  482. * the "IP Command Read" in the Vybrid.)
  483. *
  484. * After we set up the registers for the "AHB Command Read", we can use
  485. * the memcpy to read the data directly. A "missed" access to the buffer
  486. * causes the controller to clear the buffer, and use the sequence pointed
  487. * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
  488. */
  489. static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
  490. {
  491. void __iomem *base = q->iobase;
  492. int seqid;
  493. /* AHB configuration for access buffer 0/1/2 .*/
  494. writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
  495. writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
  496. writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
  497. writel(QUADSPI_BUF3CR_ALLMST, base + QUADSPI_BUF3CR);
  498. /* We only use the buffer3 */
  499. writel(0, base + QUADSPI_BUF0IND);
  500. writel(0, base + QUADSPI_BUF1IND);
  501. writel(0, base + QUADSPI_BUF2IND);
  502. /* Set the default lut sequence for AHB Read. */
  503. seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
  504. writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
  505. q->iobase + QUADSPI_BFGENCR);
  506. }
  507. /* We use this function to do some basic init for spi_nor_scan(). */
  508. static int fsl_qspi_nor_setup(struct fsl_qspi *q)
  509. {
  510. void __iomem *base = q->iobase;
  511. u32 reg;
  512. int ret;
  513. /* the default frequency, we will change it in the future.*/
  514. ret = clk_set_rate(q->clk, 66000000);
  515. if (ret)
  516. return ret;
  517. /* Init the LUT table. */
  518. fsl_qspi_init_lut(q);
  519. /* Disable the module */
  520. writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
  521. base + QUADSPI_MCR);
  522. reg = readl(base + QUADSPI_SMPR);
  523. writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
  524. | QUADSPI_SMPR_FSPHS_MASK
  525. | QUADSPI_SMPR_HSENA_MASK
  526. | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
  527. /* Enable the module */
  528. writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
  529. base + QUADSPI_MCR);
  530. /* enable the interrupt */
  531. writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
  532. return 0;
  533. }
  534. static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
  535. {
  536. unsigned long rate = q->clk_rate;
  537. int ret;
  538. if (is_imx6sx_qspi(q))
  539. rate *= 4;
  540. ret = clk_set_rate(q->clk, rate);
  541. if (ret)
  542. return ret;
  543. /* Init the LUT table again. */
  544. fsl_qspi_init_lut(q);
  545. /* Init for AHB read */
  546. fsl_qspi_init_abh_read(q);
  547. return 0;
  548. }
  549. static struct of_device_id fsl_qspi_dt_ids[] = {
  550. { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
  551. { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
  552. { /* sentinel */ }
  553. };
  554. MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
  555. static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
  556. {
  557. q->chip_base_addr = q->nor_size * (nor - q->nor);
  558. }
  559. static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  560. {
  561. int ret;
  562. struct fsl_qspi *q = nor->priv;
  563. ret = fsl_qspi_runcmd(q, opcode, 0, len);
  564. if (ret)
  565. return ret;
  566. fsl_qspi_read_data(q, len, buf);
  567. return 0;
  568. }
  569. static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
  570. int write_enable)
  571. {
  572. struct fsl_qspi *q = nor->priv;
  573. int ret;
  574. if (!buf) {
  575. ret = fsl_qspi_runcmd(q, opcode, 0, 1);
  576. if (ret)
  577. return ret;
  578. if (opcode == SPINOR_OP_CHIP_ERASE)
  579. fsl_qspi_invalid(q);
  580. } else if (len > 0) {
  581. ret = fsl_qspi_nor_write(q, nor, opcode, 0,
  582. (u32 *)buf, len, NULL);
  583. } else {
  584. dev_err(q->dev, "invalid cmd %d\n", opcode);
  585. ret = -EINVAL;
  586. }
  587. return ret;
  588. }
  589. static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
  590. size_t len, size_t *retlen, const u_char *buf)
  591. {
  592. struct fsl_qspi *q = nor->priv;
  593. fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
  594. (u32 *)buf, len, retlen);
  595. /* invalid the data in the AHB buffer. */
  596. fsl_qspi_invalid(q);
  597. }
  598. static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
  599. size_t len, size_t *retlen, u_char *buf)
  600. {
  601. struct fsl_qspi *q = nor->priv;
  602. u8 cmd = nor->read_opcode;
  603. dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n",
  604. cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len);
  605. /* Read out the data directly from the AHB buffer.*/
  606. memcpy(buf, q->ahb_base + q->chip_base_addr + from, len);
  607. *retlen += len;
  608. return 0;
  609. }
  610. static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
  611. {
  612. struct fsl_qspi *q = nor->priv;
  613. int ret;
  614. dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
  615. nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs);
  616. ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
  617. if (ret)
  618. return ret;
  619. fsl_qspi_invalid(q);
  620. return 0;
  621. }
  622. static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  623. {
  624. struct fsl_qspi *q = nor->priv;
  625. int ret;
  626. ret = clk_enable(q->clk_en);
  627. if (ret)
  628. return ret;
  629. ret = clk_enable(q->clk);
  630. if (ret) {
  631. clk_disable(q->clk_en);
  632. return ret;
  633. }
  634. fsl_qspi_set_base_addr(q, nor);
  635. return 0;
  636. }
  637. static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  638. {
  639. struct fsl_qspi *q = nor->priv;
  640. clk_disable(q->clk);
  641. clk_disable(q->clk_en);
  642. }
  643. static int fsl_qspi_probe(struct platform_device *pdev)
  644. {
  645. struct device_node *np = pdev->dev.of_node;
  646. struct mtd_part_parser_data ppdata;
  647. struct device *dev = &pdev->dev;
  648. struct fsl_qspi *q;
  649. struct resource *res;
  650. struct spi_nor *nor;
  651. struct mtd_info *mtd;
  652. int ret, i = 0;
  653. bool has_second_chip = false;
  654. const struct of_device_id *of_id =
  655. of_match_device(fsl_qspi_dt_ids, &pdev->dev);
  656. q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
  657. if (!q)
  658. return -ENOMEM;
  659. q->nor_num = of_get_child_count(dev->of_node);
  660. if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
  661. return -ENODEV;
  662. /* find the resources */
  663. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
  664. q->iobase = devm_ioremap_resource(dev, res);
  665. if (IS_ERR(q->iobase)) {
  666. ret = PTR_ERR(q->iobase);
  667. goto map_failed;
  668. }
  669. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  670. "QuadSPI-memory");
  671. q->ahb_base = devm_ioremap_resource(dev, res);
  672. if (IS_ERR(q->ahb_base)) {
  673. ret = PTR_ERR(q->ahb_base);
  674. goto map_failed;
  675. }
  676. q->memmap_phy = res->start;
  677. /* find the clocks */
  678. q->clk_en = devm_clk_get(dev, "qspi_en");
  679. if (IS_ERR(q->clk_en)) {
  680. ret = PTR_ERR(q->clk_en);
  681. goto map_failed;
  682. }
  683. q->clk = devm_clk_get(dev, "qspi");
  684. if (IS_ERR(q->clk)) {
  685. ret = PTR_ERR(q->clk);
  686. goto map_failed;
  687. }
  688. ret = clk_prepare_enable(q->clk_en);
  689. if (ret) {
  690. dev_err(dev, "can not enable the qspi_en clock\n");
  691. goto map_failed;
  692. }
  693. ret = clk_prepare_enable(q->clk);
  694. if (ret) {
  695. dev_err(dev, "can not enable the qspi clock\n");
  696. goto clk_failed;
  697. }
  698. /* find the irq */
  699. ret = platform_get_irq(pdev, 0);
  700. if (ret < 0) {
  701. dev_err(dev, "failed to get the irq\n");
  702. goto irq_failed;
  703. }
  704. ret = devm_request_irq(dev, ret,
  705. fsl_qspi_irq_handler, 0, pdev->name, q);
  706. if (ret) {
  707. dev_err(dev, "failed to request irq.\n");
  708. goto irq_failed;
  709. }
  710. q->dev = dev;
  711. q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data;
  712. platform_set_drvdata(pdev, q);
  713. ret = fsl_qspi_nor_setup(q);
  714. if (ret)
  715. goto irq_failed;
  716. if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
  717. has_second_chip = true;
  718. /* iterate the subnodes. */
  719. for_each_available_child_of_node(dev->of_node, np) {
  720. char modalias[40];
  721. /* skip the holes */
  722. if (!has_second_chip)
  723. i *= 2;
  724. nor = &q->nor[i];
  725. mtd = &q->mtd[i];
  726. nor->mtd = mtd;
  727. nor->dev = dev;
  728. nor->priv = q;
  729. mtd->priv = nor;
  730. /* fill the hooks */
  731. nor->read_reg = fsl_qspi_read_reg;
  732. nor->write_reg = fsl_qspi_write_reg;
  733. nor->read = fsl_qspi_read;
  734. nor->write = fsl_qspi_write;
  735. nor->erase = fsl_qspi_erase;
  736. nor->prepare = fsl_qspi_prep;
  737. nor->unprepare = fsl_qspi_unprep;
  738. ret = of_modalias_node(np, modalias, sizeof(modalias));
  739. if (ret < 0)
  740. goto map_failed;
  741. ret = of_property_read_u32(np, "spi-max-frequency",
  742. &q->clk_rate);
  743. if (ret < 0)
  744. goto map_failed;
  745. /* set the chip address for READID */
  746. fsl_qspi_set_base_addr(q, nor);
  747. ret = spi_nor_scan(nor, modalias, SPI_NOR_QUAD);
  748. if (ret)
  749. goto map_failed;
  750. ppdata.of_node = np;
  751. ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
  752. if (ret)
  753. goto map_failed;
  754. /* Set the correct NOR size now. */
  755. if (q->nor_size == 0) {
  756. q->nor_size = mtd->size;
  757. /* Map the SPI NOR to accessiable address */
  758. fsl_qspi_set_map_addr(q);
  759. }
  760. /*
  761. * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
  762. * may writes 265 bytes per time. The write is working in the
  763. * unit of the TX FIFO, not in the unit of the SPI NOR's page
  764. * size.
  765. *
  766. * So shrink the spi_nor->page_size if it is larger then the
  767. * TX FIFO.
  768. */
  769. if (nor->page_size > q->devtype_data->txfifo)
  770. nor->page_size = q->devtype_data->txfifo;
  771. i++;
  772. }
  773. /* finish the rest init. */
  774. ret = fsl_qspi_nor_setup_last(q);
  775. if (ret)
  776. goto last_init_failed;
  777. clk_disable(q->clk);
  778. clk_disable(q->clk_en);
  779. dev_info(dev, "QuadSPI SPI NOR flash driver\n");
  780. return 0;
  781. last_init_failed:
  782. for (i = 0; i < q->nor_num; i++)
  783. mtd_device_unregister(&q->mtd[i]);
  784. irq_failed:
  785. clk_disable_unprepare(q->clk);
  786. clk_failed:
  787. clk_disable_unprepare(q->clk_en);
  788. map_failed:
  789. dev_err(dev, "Freescale QuadSPI probe failed\n");
  790. return ret;
  791. }
  792. static int fsl_qspi_remove(struct platform_device *pdev)
  793. {
  794. struct fsl_qspi *q = platform_get_drvdata(pdev);
  795. int i;
  796. for (i = 0; i < q->nor_num; i++)
  797. mtd_device_unregister(&q->mtd[i]);
  798. /* disable the hardware */
  799. writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
  800. writel(0x0, q->iobase + QUADSPI_RSER);
  801. clk_unprepare(q->clk);
  802. clk_unprepare(q->clk_en);
  803. return 0;
  804. }
  805. static struct platform_driver fsl_qspi_driver = {
  806. .driver = {
  807. .name = "fsl-quadspi",
  808. .bus = &platform_bus_type,
  809. .of_match_table = fsl_qspi_dt_ids,
  810. },
  811. .probe = fsl_qspi_probe,
  812. .remove = fsl_qspi_remove,
  813. };
  814. module_platform_driver(fsl_qspi_driver);
  815. MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
  816. MODULE_AUTHOR("Freescale Semiconductor Inc.");
  817. MODULE_LICENSE("GPL v2");