mxc_nand.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609
  1. /*
  2. * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
  3. * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
  17. * MA 02110-1301, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/mtd/mtd.h>
  24. #include <linux/mtd/nand.h>
  25. #include <linux/mtd/partitions.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/clk.h>
  30. #include <linux/err.h>
  31. #include <linux/io.h>
  32. #include <linux/irq.h>
  33. #include <linux/completion.h>
  34. #include <linux/of.h>
  35. #include <linux/of_device.h>
  36. #include <linux/of_mtd.h>
  37. #include <asm/mach/flash.h>
  38. #include <linux/platform_data/mtd-mxc_nand.h>
  39. #define DRIVER_NAME "mxc_nand"
  40. /* Addresses for NFC registers */
  41. #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
  42. #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
  43. #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
  44. #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
  45. #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
  46. #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
  47. #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
  48. #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
  49. #define NFC_V1_V2_WRPROT (host->regs + 0x12)
  50. #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
  51. #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
  52. #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
  53. #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
  54. #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
  55. #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
  56. #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
  57. #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
  58. #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
  59. #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
  60. #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
  61. #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
  62. #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
  63. #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
  64. #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
  65. #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
  66. #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
  67. #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
  68. #define NFC_V1_V2_CONFIG1_RST (1 << 6)
  69. #define NFC_V1_V2_CONFIG1_CE (1 << 7)
  70. #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
  71. #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
  72. #define NFC_V2_CONFIG1_FP_INT (1 << 11)
  73. #define NFC_V1_V2_CONFIG2_INT (1 << 15)
  74. /*
  75. * Operation modes for the NFC. Valid for v1, v2 and v3
  76. * type controllers.
  77. */
  78. #define NFC_CMD (1 << 0)
  79. #define NFC_ADDR (1 << 1)
  80. #define NFC_INPUT (1 << 2)
  81. #define NFC_OUTPUT (1 << 3)
  82. #define NFC_ID (1 << 4)
  83. #define NFC_STATUS (1 << 5)
  84. #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
  85. #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
  86. #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
  87. #define NFC_V3_CONFIG1_SP_EN (1 << 0)
  88. #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
  89. #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
  90. #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
  91. #define NFC_V3_WRPROT (host->regs_ip + 0x0)
  92. #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
  93. #define NFC_V3_WRPROT_LOCK (1 << 1)
  94. #define NFC_V3_WRPROT_UNLOCK (1 << 2)
  95. #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
  96. #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
  97. #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
  98. #define NFC_V3_CONFIG2_PS_512 (0 << 0)
  99. #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
  100. #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
  101. #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
  102. #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
  103. #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
  104. #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
  105. #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
  106. #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
  107. #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
  108. #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
  109. #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
  110. #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
  111. #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
  112. #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
  113. #define NFC_V3_CONFIG3_FW8 (1 << 3)
  114. #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
  115. #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
  116. #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
  117. #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
  118. #define NFC_V3_IPC (host->regs_ip + 0x2C)
  119. #define NFC_V3_IPC_CREQ (1 << 0)
  120. #define NFC_V3_IPC_INT (1 << 31)
  121. #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
  122. struct mxc_nand_host;
  123. struct mxc_nand_devtype_data {
  124. void (*preset)(struct mtd_info *);
  125. void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
  126. void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
  127. void (*send_page)(struct mtd_info *, unsigned int);
  128. void (*send_read_id)(struct mxc_nand_host *);
  129. uint16_t (*get_dev_status)(struct mxc_nand_host *);
  130. int (*check_int)(struct mxc_nand_host *);
  131. void (*irq_control)(struct mxc_nand_host *, int);
  132. u32 (*get_ecc_status)(struct mxc_nand_host *);
  133. struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
  134. void (*select_chip)(struct mtd_info *mtd, int chip);
  135. int (*correct_data)(struct mtd_info *mtd, u_char *dat,
  136. u_char *read_ecc, u_char *calc_ecc);
  137. /*
  138. * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
  139. * (CONFIG1:INT_MSK is set). To handle this the driver uses
  140. * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
  141. */
  142. int irqpending_quirk;
  143. int needs_ip;
  144. size_t regs_offset;
  145. size_t spare0_offset;
  146. size_t axi_offset;
  147. int spare_len;
  148. int eccbytes;
  149. int eccsize;
  150. int ppb_shift;
  151. };
  152. struct mxc_nand_host {
  153. struct mtd_info mtd;
  154. struct nand_chip nand;
  155. struct device *dev;
  156. void __iomem *spare0;
  157. void __iomem *main_area0;
  158. void __iomem *base;
  159. void __iomem *regs;
  160. void __iomem *regs_axi;
  161. void __iomem *regs_ip;
  162. int status_request;
  163. struct clk *clk;
  164. int clk_act;
  165. int irq;
  166. int eccsize;
  167. int active_cs;
  168. struct completion op_completion;
  169. uint8_t *data_buf;
  170. unsigned int buf_start;
  171. const struct mxc_nand_devtype_data *devtype_data;
  172. struct mxc_nand_platform_data pdata;
  173. };
  174. /* OOB placement block for use with hardware ecc generation */
  175. static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
  176. .eccbytes = 5,
  177. .eccpos = {6, 7, 8, 9, 10},
  178. .oobfree = {{0, 5}, {12, 4}, }
  179. };
  180. static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
  181. .eccbytes = 20,
  182. .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
  183. 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
  184. .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
  185. };
  186. /* OOB description for 512 byte pages with 16 byte OOB */
  187. static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
  188. .eccbytes = 1 * 9,
  189. .eccpos = {
  190. 7, 8, 9, 10, 11, 12, 13, 14, 15
  191. },
  192. .oobfree = {
  193. {.offset = 0, .length = 5}
  194. }
  195. };
  196. /* OOB description for 2048 byte pages with 64 byte OOB */
  197. static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
  198. .eccbytes = 4 * 9,
  199. .eccpos = {
  200. 7, 8, 9, 10, 11, 12, 13, 14, 15,
  201. 23, 24, 25, 26, 27, 28, 29, 30, 31,
  202. 39, 40, 41, 42, 43, 44, 45, 46, 47,
  203. 55, 56, 57, 58, 59, 60, 61, 62, 63
  204. },
  205. .oobfree = {
  206. {.offset = 2, .length = 4},
  207. {.offset = 16, .length = 7},
  208. {.offset = 32, .length = 7},
  209. {.offset = 48, .length = 7}
  210. }
  211. };
  212. /* OOB description for 4096 byte pages with 128 byte OOB */
  213. static struct nand_ecclayout nandv2_hw_eccoob_4k = {
  214. .eccbytes = 8 * 9,
  215. .eccpos = {
  216. 7, 8, 9, 10, 11, 12, 13, 14, 15,
  217. 23, 24, 25, 26, 27, 28, 29, 30, 31,
  218. 39, 40, 41, 42, 43, 44, 45, 46, 47,
  219. 55, 56, 57, 58, 59, 60, 61, 62, 63,
  220. 71, 72, 73, 74, 75, 76, 77, 78, 79,
  221. 87, 88, 89, 90, 91, 92, 93, 94, 95,
  222. 103, 104, 105, 106, 107, 108, 109, 110, 111,
  223. 119, 120, 121, 122, 123, 124, 125, 126, 127,
  224. },
  225. .oobfree = {
  226. {.offset = 2, .length = 4},
  227. {.offset = 16, .length = 7},
  228. {.offset = 32, .length = 7},
  229. {.offset = 48, .length = 7},
  230. {.offset = 64, .length = 7},
  231. {.offset = 80, .length = 7},
  232. {.offset = 96, .length = 7},
  233. {.offset = 112, .length = 7},
  234. }
  235. };
  236. static const char * const part_probes[] = {
  237. "cmdlinepart", "RedBoot", "ofpart", NULL };
  238. static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
  239. {
  240. int i;
  241. u32 *t = trg;
  242. const __iomem u32 *s = src;
  243. for (i = 0; i < (size >> 2); i++)
  244. *t++ = __raw_readl(s++);
  245. }
  246. static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
  247. {
  248. /* __iowrite32_copy use 32bit size values so divide by 4 */
  249. __iowrite32_copy(trg, src, size / 4);
  250. }
  251. static int check_int_v3(struct mxc_nand_host *host)
  252. {
  253. uint32_t tmp;
  254. tmp = readl(NFC_V3_IPC);
  255. if (!(tmp & NFC_V3_IPC_INT))
  256. return 0;
  257. tmp &= ~NFC_V3_IPC_INT;
  258. writel(tmp, NFC_V3_IPC);
  259. return 1;
  260. }
  261. static int check_int_v1_v2(struct mxc_nand_host *host)
  262. {
  263. uint32_t tmp;
  264. tmp = readw(NFC_V1_V2_CONFIG2);
  265. if (!(tmp & NFC_V1_V2_CONFIG2_INT))
  266. return 0;
  267. if (!host->devtype_data->irqpending_quirk)
  268. writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
  269. return 1;
  270. }
  271. static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
  272. {
  273. uint16_t tmp;
  274. tmp = readw(NFC_V1_V2_CONFIG1);
  275. if (activate)
  276. tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
  277. else
  278. tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
  279. writew(tmp, NFC_V1_V2_CONFIG1);
  280. }
  281. static void irq_control_v3(struct mxc_nand_host *host, int activate)
  282. {
  283. uint32_t tmp;
  284. tmp = readl(NFC_V3_CONFIG2);
  285. if (activate)
  286. tmp &= ~NFC_V3_CONFIG2_INT_MSK;
  287. else
  288. tmp |= NFC_V3_CONFIG2_INT_MSK;
  289. writel(tmp, NFC_V3_CONFIG2);
  290. }
  291. static void irq_control(struct mxc_nand_host *host, int activate)
  292. {
  293. if (host->devtype_data->irqpending_quirk) {
  294. if (activate)
  295. enable_irq(host->irq);
  296. else
  297. disable_irq_nosync(host->irq);
  298. } else {
  299. host->devtype_data->irq_control(host, activate);
  300. }
  301. }
  302. static u32 get_ecc_status_v1(struct mxc_nand_host *host)
  303. {
  304. return readw(NFC_V1_V2_ECC_STATUS_RESULT);
  305. }
  306. static u32 get_ecc_status_v2(struct mxc_nand_host *host)
  307. {
  308. return readl(NFC_V1_V2_ECC_STATUS_RESULT);
  309. }
  310. static u32 get_ecc_status_v3(struct mxc_nand_host *host)
  311. {
  312. return readl(NFC_V3_ECC_STATUS_RESULT);
  313. }
  314. static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
  315. {
  316. struct mxc_nand_host *host = dev_id;
  317. if (!host->devtype_data->check_int(host))
  318. return IRQ_NONE;
  319. irq_control(host, 0);
  320. complete(&host->op_completion);
  321. return IRQ_HANDLED;
  322. }
  323. /* This function polls the NANDFC to wait for the basic operation to
  324. * complete by checking the INT bit of config2 register.
  325. */
  326. static void wait_op_done(struct mxc_nand_host *host, int useirq)
  327. {
  328. int max_retries = 8000;
  329. if (useirq) {
  330. if (!host->devtype_data->check_int(host)) {
  331. reinit_completion(&host->op_completion);
  332. irq_control(host, 1);
  333. wait_for_completion(&host->op_completion);
  334. }
  335. } else {
  336. while (max_retries-- > 0) {
  337. if (host->devtype_data->check_int(host))
  338. break;
  339. udelay(1);
  340. }
  341. if (max_retries < 0)
  342. pr_debug("%s: INT not set\n", __func__);
  343. }
  344. }
  345. static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
  346. {
  347. /* fill command */
  348. writel(cmd, NFC_V3_FLASH_CMD);
  349. /* send out command */
  350. writel(NFC_CMD, NFC_V3_LAUNCH);
  351. /* Wait for operation to complete */
  352. wait_op_done(host, useirq);
  353. }
  354. /* This function issues the specified command to the NAND device and
  355. * waits for completion. */
  356. static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
  357. {
  358. pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
  359. writew(cmd, NFC_V1_V2_FLASH_CMD);
  360. writew(NFC_CMD, NFC_V1_V2_CONFIG2);
  361. if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
  362. int max_retries = 100;
  363. /* Reset completion is indicated by NFC_CONFIG2 */
  364. /* being set to 0 */
  365. while (max_retries-- > 0) {
  366. if (readw(NFC_V1_V2_CONFIG2) == 0) {
  367. break;
  368. }
  369. udelay(1);
  370. }
  371. if (max_retries < 0)
  372. pr_debug("%s: RESET failed\n", __func__);
  373. } else {
  374. /* Wait for operation to complete */
  375. wait_op_done(host, useirq);
  376. }
  377. }
  378. static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
  379. {
  380. /* fill address */
  381. writel(addr, NFC_V3_FLASH_ADDR0);
  382. /* send out address */
  383. writel(NFC_ADDR, NFC_V3_LAUNCH);
  384. wait_op_done(host, 0);
  385. }
  386. /* This function sends an address (or partial address) to the
  387. * NAND device. The address is used to select the source/destination for
  388. * a NAND command. */
  389. static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
  390. {
  391. pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
  392. writew(addr, NFC_V1_V2_FLASH_ADDR);
  393. writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
  394. /* Wait for operation to complete */
  395. wait_op_done(host, islast);
  396. }
  397. static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
  398. {
  399. struct nand_chip *nand_chip = mtd->priv;
  400. struct mxc_nand_host *host = nand_chip->priv;
  401. uint32_t tmp;
  402. tmp = readl(NFC_V3_CONFIG1);
  403. tmp &= ~(7 << 4);
  404. writel(tmp, NFC_V3_CONFIG1);
  405. /* transfer data from NFC ram to nand */
  406. writel(ops, NFC_V3_LAUNCH);
  407. wait_op_done(host, false);
  408. }
  409. static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
  410. {
  411. struct nand_chip *nand_chip = mtd->priv;
  412. struct mxc_nand_host *host = nand_chip->priv;
  413. /* NANDFC buffer 0 is used for page read/write */
  414. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  415. writew(ops, NFC_V1_V2_CONFIG2);
  416. /* Wait for operation to complete */
  417. wait_op_done(host, true);
  418. }
  419. static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
  420. {
  421. struct nand_chip *nand_chip = mtd->priv;
  422. struct mxc_nand_host *host = nand_chip->priv;
  423. int bufs, i;
  424. if (mtd->writesize > 512)
  425. bufs = 4;
  426. else
  427. bufs = 1;
  428. for (i = 0; i < bufs; i++) {
  429. /* NANDFC buffer 0 is used for page read/write */
  430. writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
  431. writew(ops, NFC_V1_V2_CONFIG2);
  432. /* Wait for operation to complete */
  433. wait_op_done(host, true);
  434. }
  435. }
  436. static void send_read_id_v3(struct mxc_nand_host *host)
  437. {
  438. struct nand_chip *this = &host->nand;
  439. /* Read ID into main buffer */
  440. writel(NFC_ID, NFC_V3_LAUNCH);
  441. wait_op_done(host, true);
  442. memcpy32_fromio(host->data_buf, host->main_area0, 16);
  443. if (this->options & NAND_BUSWIDTH_16) {
  444. /* compress the ID info */
  445. host->data_buf[1] = host->data_buf[2];
  446. host->data_buf[2] = host->data_buf[4];
  447. host->data_buf[3] = host->data_buf[6];
  448. host->data_buf[4] = host->data_buf[8];
  449. host->data_buf[5] = host->data_buf[10];
  450. }
  451. }
  452. /* Request the NANDFC to perform a read of the NAND device ID. */
  453. static void send_read_id_v1_v2(struct mxc_nand_host *host)
  454. {
  455. struct nand_chip *this = &host->nand;
  456. /* NANDFC buffer 0 is used for device ID output */
  457. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  458. writew(NFC_ID, NFC_V1_V2_CONFIG2);
  459. /* Wait for operation to complete */
  460. wait_op_done(host, true);
  461. memcpy32_fromio(host->data_buf, host->main_area0, 16);
  462. if (this->options & NAND_BUSWIDTH_16) {
  463. /* compress the ID info */
  464. host->data_buf[1] = host->data_buf[2];
  465. host->data_buf[2] = host->data_buf[4];
  466. host->data_buf[3] = host->data_buf[6];
  467. host->data_buf[4] = host->data_buf[8];
  468. host->data_buf[5] = host->data_buf[10];
  469. }
  470. }
  471. static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
  472. {
  473. writew(NFC_STATUS, NFC_V3_LAUNCH);
  474. wait_op_done(host, true);
  475. return readl(NFC_V3_CONFIG1) >> 16;
  476. }
  477. /* This function requests the NANDFC to perform a read of the
  478. * NAND device status and returns the current status. */
  479. static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
  480. {
  481. void __iomem *main_buf = host->main_area0;
  482. uint32_t store;
  483. uint16_t ret;
  484. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  485. /*
  486. * The device status is stored in main_area0. To
  487. * prevent corruption of the buffer save the value
  488. * and restore it afterwards.
  489. */
  490. store = readl(main_buf);
  491. writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
  492. wait_op_done(host, true);
  493. ret = readw(main_buf);
  494. writel(store, main_buf);
  495. return ret;
  496. }
  497. /* This functions is used by upper layer to checks if device is ready */
  498. static int mxc_nand_dev_ready(struct mtd_info *mtd)
  499. {
  500. /*
  501. * NFC handles R/B internally. Therefore, this function
  502. * always returns status as ready.
  503. */
  504. return 1;
  505. }
  506. static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
  507. {
  508. /*
  509. * If HW ECC is enabled, we turn it on during init. There is
  510. * no need to enable again here.
  511. */
  512. }
  513. static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
  514. u_char *read_ecc, u_char *calc_ecc)
  515. {
  516. struct nand_chip *nand_chip = mtd->priv;
  517. struct mxc_nand_host *host = nand_chip->priv;
  518. /*
  519. * 1-Bit errors are automatically corrected in HW. No need for
  520. * additional correction. 2-Bit errors cannot be corrected by
  521. * HW ECC, so we need to return failure
  522. */
  523. uint16_t ecc_status = get_ecc_status_v1(host);
  524. if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
  525. pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
  526. return -1;
  527. }
  528. return 0;
  529. }
  530. static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
  531. u_char *read_ecc, u_char *calc_ecc)
  532. {
  533. struct nand_chip *nand_chip = mtd->priv;
  534. struct mxc_nand_host *host = nand_chip->priv;
  535. u32 ecc_stat, err;
  536. int no_subpages = 1;
  537. int ret = 0;
  538. u8 ecc_bit_mask, err_limit;
  539. ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
  540. err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
  541. no_subpages = mtd->writesize >> 9;
  542. ecc_stat = host->devtype_data->get_ecc_status(host);
  543. do {
  544. err = ecc_stat & ecc_bit_mask;
  545. if (err > err_limit) {
  546. printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
  547. return -1;
  548. } else {
  549. ret += err;
  550. }
  551. ecc_stat >>= 4;
  552. } while (--no_subpages);
  553. pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
  554. return ret;
  555. }
  556. static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
  557. u_char *ecc_code)
  558. {
  559. return 0;
  560. }
  561. static u_char mxc_nand_read_byte(struct mtd_info *mtd)
  562. {
  563. struct nand_chip *nand_chip = mtd->priv;
  564. struct mxc_nand_host *host = nand_chip->priv;
  565. uint8_t ret;
  566. /* Check for status request */
  567. if (host->status_request)
  568. return host->devtype_data->get_dev_status(host) & 0xFF;
  569. ret = *(uint8_t *)(host->data_buf + host->buf_start);
  570. host->buf_start++;
  571. return ret;
  572. }
  573. static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
  574. {
  575. struct nand_chip *nand_chip = mtd->priv;
  576. struct mxc_nand_host *host = nand_chip->priv;
  577. uint16_t ret;
  578. ret = *(uint16_t *)(host->data_buf + host->buf_start);
  579. host->buf_start += 2;
  580. return ret;
  581. }
  582. /* Write data of length len to buffer buf. The data to be
  583. * written on NAND Flash is first copied to RAMbuffer. After the Data Input
  584. * Operation by the NFC, the data is written to NAND Flash */
  585. static void mxc_nand_write_buf(struct mtd_info *mtd,
  586. const u_char *buf, int len)
  587. {
  588. struct nand_chip *nand_chip = mtd->priv;
  589. struct mxc_nand_host *host = nand_chip->priv;
  590. u16 col = host->buf_start;
  591. int n = mtd->oobsize + mtd->writesize - col;
  592. n = min(n, len);
  593. memcpy(host->data_buf + col, buf, n);
  594. host->buf_start += n;
  595. }
  596. /* Read the data buffer from the NAND Flash. To read the data from NAND
  597. * Flash first the data output cycle is initiated by the NFC, which copies
  598. * the data to RAMbuffer. This data of length len is then copied to buffer buf.
  599. */
  600. static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  601. {
  602. struct nand_chip *nand_chip = mtd->priv;
  603. struct mxc_nand_host *host = nand_chip->priv;
  604. u16 col = host->buf_start;
  605. int n = mtd->oobsize + mtd->writesize - col;
  606. n = min(n, len);
  607. memcpy(buf, host->data_buf + col, n);
  608. host->buf_start += n;
  609. }
  610. /* This function is used by upper layer for select and
  611. * deselect of the NAND chip */
  612. static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
  613. {
  614. struct nand_chip *nand_chip = mtd->priv;
  615. struct mxc_nand_host *host = nand_chip->priv;
  616. if (chip == -1) {
  617. /* Disable the NFC clock */
  618. if (host->clk_act) {
  619. clk_disable_unprepare(host->clk);
  620. host->clk_act = 0;
  621. }
  622. return;
  623. }
  624. if (!host->clk_act) {
  625. /* Enable the NFC clock */
  626. clk_prepare_enable(host->clk);
  627. host->clk_act = 1;
  628. }
  629. }
  630. static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
  631. {
  632. struct nand_chip *nand_chip = mtd->priv;
  633. struct mxc_nand_host *host = nand_chip->priv;
  634. if (chip == -1) {
  635. /* Disable the NFC clock */
  636. if (host->clk_act) {
  637. clk_disable_unprepare(host->clk);
  638. host->clk_act = 0;
  639. }
  640. return;
  641. }
  642. if (!host->clk_act) {
  643. /* Enable the NFC clock */
  644. clk_prepare_enable(host->clk);
  645. host->clk_act = 1;
  646. }
  647. host->active_cs = chip;
  648. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  649. }
  650. /*
  651. * Function to transfer data to/from spare area.
  652. */
  653. static void copy_spare(struct mtd_info *mtd, bool bfrom)
  654. {
  655. struct nand_chip *this = mtd->priv;
  656. struct mxc_nand_host *host = this->priv;
  657. u16 i, j;
  658. u16 n = mtd->writesize >> 9;
  659. u8 *d = host->data_buf + mtd->writesize;
  660. u8 __iomem *s = host->spare0;
  661. u16 t = host->devtype_data->spare_len;
  662. j = (mtd->oobsize / n >> 1) << 1;
  663. if (bfrom) {
  664. for (i = 0; i < n - 1; i++)
  665. memcpy32_fromio(d + i * j, s + i * t, j);
  666. /* the last section */
  667. memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
  668. } else {
  669. for (i = 0; i < n - 1; i++)
  670. memcpy32_toio(&s[i * t], &d[i * j], j);
  671. /* the last section */
  672. memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
  673. }
  674. }
  675. static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
  676. {
  677. struct nand_chip *nand_chip = mtd->priv;
  678. struct mxc_nand_host *host = nand_chip->priv;
  679. /* Write out column address, if necessary */
  680. if (column != -1) {
  681. /*
  682. * MXC NANDFC can only perform full page+spare or
  683. * spare-only read/write. When the upper layers
  684. * perform a read/write buf operation, the saved column
  685. * address is used to index into the full page.
  686. */
  687. host->devtype_data->send_addr(host, 0, page_addr == -1);
  688. if (mtd->writesize > 512)
  689. /* another col addr cycle for 2k page */
  690. host->devtype_data->send_addr(host, 0, false);
  691. }
  692. /* Write out page address, if necessary */
  693. if (page_addr != -1) {
  694. /* paddr_0 - p_addr_7 */
  695. host->devtype_data->send_addr(host, (page_addr & 0xff), false);
  696. if (mtd->writesize > 512) {
  697. if (mtd->size >= 0x10000000) {
  698. /* paddr_8 - paddr_15 */
  699. host->devtype_data->send_addr(host,
  700. (page_addr >> 8) & 0xff,
  701. false);
  702. host->devtype_data->send_addr(host,
  703. (page_addr >> 16) & 0xff,
  704. true);
  705. } else
  706. /* paddr_8 - paddr_15 */
  707. host->devtype_data->send_addr(host,
  708. (page_addr >> 8) & 0xff, true);
  709. } else {
  710. /* One more address cycle for higher density devices */
  711. if (mtd->size >= 0x4000000) {
  712. /* paddr_8 - paddr_15 */
  713. host->devtype_data->send_addr(host,
  714. (page_addr >> 8) & 0xff,
  715. false);
  716. host->devtype_data->send_addr(host,
  717. (page_addr >> 16) & 0xff,
  718. true);
  719. } else
  720. /* paddr_8 - paddr_15 */
  721. host->devtype_data->send_addr(host,
  722. (page_addr >> 8) & 0xff, true);
  723. }
  724. }
  725. }
  726. /*
  727. * v2 and v3 type controllers can do 4bit or 8bit ecc depending
  728. * on how much oob the nand chip has. For 8bit ecc we need at least
  729. * 26 bytes of oob data per 512 byte block.
  730. */
  731. static int get_eccsize(struct mtd_info *mtd)
  732. {
  733. int oobbytes_per_512 = 0;
  734. oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
  735. if (oobbytes_per_512 < 26)
  736. return 4;
  737. else
  738. return 8;
  739. }
  740. static void preset_v1(struct mtd_info *mtd)
  741. {
  742. struct nand_chip *nand_chip = mtd->priv;
  743. struct mxc_nand_host *host = nand_chip->priv;
  744. uint16_t config1 = 0;
  745. if (nand_chip->ecc.mode == NAND_ECC_HW)
  746. config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
  747. if (!host->devtype_data->irqpending_quirk)
  748. config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
  749. host->eccsize = 1;
  750. writew(config1, NFC_V1_V2_CONFIG1);
  751. /* preset operation */
  752. /* Unlock the internal RAM Buffer */
  753. writew(0x2, NFC_V1_V2_CONFIG);
  754. /* Blocks to be unlocked */
  755. writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
  756. writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
  757. /* Unlock Block Command for given address range */
  758. writew(0x4, NFC_V1_V2_WRPROT);
  759. }
  760. static void preset_v2(struct mtd_info *mtd)
  761. {
  762. struct nand_chip *nand_chip = mtd->priv;
  763. struct mxc_nand_host *host = nand_chip->priv;
  764. uint16_t config1 = 0;
  765. if (nand_chip->ecc.mode == NAND_ECC_HW)
  766. config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
  767. config1 |= NFC_V2_CONFIG1_FP_INT;
  768. if (!host->devtype_data->irqpending_quirk)
  769. config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
  770. if (mtd->writesize) {
  771. uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
  772. host->eccsize = get_eccsize(mtd);
  773. if (host->eccsize == 4)
  774. config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
  775. config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
  776. } else {
  777. host->eccsize = 1;
  778. }
  779. writew(config1, NFC_V1_V2_CONFIG1);
  780. /* preset operation */
  781. /* Unlock the internal RAM Buffer */
  782. writew(0x2, NFC_V1_V2_CONFIG);
  783. /* Blocks to be unlocked */
  784. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
  785. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
  786. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
  787. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
  788. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
  789. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
  790. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
  791. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
  792. /* Unlock Block Command for given address range */
  793. writew(0x4, NFC_V1_V2_WRPROT);
  794. }
  795. static void preset_v3(struct mtd_info *mtd)
  796. {
  797. struct nand_chip *chip = mtd->priv;
  798. struct mxc_nand_host *host = chip->priv;
  799. uint32_t config2, config3;
  800. int i, addr_phases;
  801. writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
  802. writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
  803. /* Unlock the internal RAM Buffer */
  804. writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
  805. NFC_V3_WRPROT);
  806. /* Blocks to be unlocked */
  807. for (i = 0; i < NAND_MAX_CHIPS; i++)
  808. writel(0x0 | (0xffff << 16),
  809. NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
  810. writel(0, NFC_V3_IPC);
  811. config2 = NFC_V3_CONFIG2_ONE_CYCLE |
  812. NFC_V3_CONFIG2_2CMD_PHASES |
  813. NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
  814. NFC_V3_CONFIG2_ST_CMD(0x70) |
  815. NFC_V3_CONFIG2_INT_MSK |
  816. NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
  817. if (chip->ecc.mode == NAND_ECC_HW)
  818. config2 |= NFC_V3_CONFIG2_ECC_EN;
  819. addr_phases = fls(chip->pagemask) >> 3;
  820. if (mtd->writesize == 2048) {
  821. config2 |= NFC_V3_CONFIG2_PS_2048;
  822. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
  823. } else if (mtd->writesize == 4096) {
  824. config2 |= NFC_V3_CONFIG2_PS_4096;
  825. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
  826. } else {
  827. config2 |= NFC_V3_CONFIG2_PS_512;
  828. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
  829. }
  830. if (mtd->writesize) {
  831. config2 |= NFC_V3_CONFIG2_PPB(
  832. ffs(mtd->erasesize / mtd->writesize) - 6,
  833. host->devtype_data->ppb_shift);
  834. host->eccsize = get_eccsize(mtd);
  835. if (host->eccsize == 8)
  836. config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
  837. }
  838. writel(config2, NFC_V3_CONFIG2);
  839. config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
  840. NFC_V3_CONFIG3_NO_SDMA |
  841. NFC_V3_CONFIG3_RBB_MODE |
  842. NFC_V3_CONFIG3_SBB(6) | /* Reset default */
  843. NFC_V3_CONFIG3_ADD_OP(0);
  844. if (!(chip->options & NAND_BUSWIDTH_16))
  845. config3 |= NFC_V3_CONFIG3_FW8;
  846. writel(config3, NFC_V3_CONFIG3);
  847. writel(0, NFC_V3_DELAY_LINE);
  848. }
  849. /* Used by the upper layer to write command to NAND Flash for
  850. * different operations to be carried out on NAND Flash */
  851. static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
  852. int column, int page_addr)
  853. {
  854. struct nand_chip *nand_chip = mtd->priv;
  855. struct mxc_nand_host *host = nand_chip->priv;
  856. pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
  857. command, column, page_addr);
  858. /* Reset command state information */
  859. host->status_request = false;
  860. /* Command pre-processing step */
  861. switch (command) {
  862. case NAND_CMD_RESET:
  863. host->devtype_data->preset(mtd);
  864. host->devtype_data->send_cmd(host, command, false);
  865. break;
  866. case NAND_CMD_STATUS:
  867. host->buf_start = 0;
  868. host->status_request = true;
  869. host->devtype_data->send_cmd(host, command, true);
  870. mxc_do_addr_cycle(mtd, column, page_addr);
  871. break;
  872. case NAND_CMD_READ0:
  873. case NAND_CMD_READOOB:
  874. if (command == NAND_CMD_READ0)
  875. host->buf_start = column;
  876. else
  877. host->buf_start = column + mtd->writesize;
  878. command = NAND_CMD_READ0; /* only READ0 is valid */
  879. host->devtype_data->send_cmd(host, command, false);
  880. mxc_do_addr_cycle(mtd, column, page_addr);
  881. if (mtd->writesize > 512)
  882. host->devtype_data->send_cmd(host,
  883. NAND_CMD_READSTART, true);
  884. host->devtype_data->send_page(mtd, NFC_OUTPUT);
  885. memcpy32_fromio(host->data_buf, host->main_area0,
  886. mtd->writesize);
  887. copy_spare(mtd, true);
  888. break;
  889. case NAND_CMD_SEQIN:
  890. if (column >= mtd->writesize)
  891. /* call ourself to read a page */
  892. mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
  893. host->buf_start = column;
  894. host->devtype_data->send_cmd(host, command, false);
  895. mxc_do_addr_cycle(mtd, column, page_addr);
  896. break;
  897. case NAND_CMD_PAGEPROG:
  898. memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
  899. copy_spare(mtd, false);
  900. host->devtype_data->send_page(mtd, NFC_INPUT);
  901. host->devtype_data->send_cmd(host, command, true);
  902. mxc_do_addr_cycle(mtd, column, page_addr);
  903. break;
  904. case NAND_CMD_READID:
  905. host->devtype_data->send_cmd(host, command, true);
  906. mxc_do_addr_cycle(mtd, column, page_addr);
  907. host->devtype_data->send_read_id(host);
  908. host->buf_start = column;
  909. break;
  910. case NAND_CMD_ERASE1:
  911. case NAND_CMD_ERASE2:
  912. host->devtype_data->send_cmd(host, command, false);
  913. mxc_do_addr_cycle(mtd, column, page_addr);
  914. break;
  915. }
  916. }
  917. /*
  918. * The generic flash bbt decriptors overlap with our ecc
  919. * hardware, so define some i.MX specific ones.
  920. */
  921. static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
  922. static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
  923. static struct nand_bbt_descr bbt_main_descr = {
  924. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  925. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  926. .offs = 0,
  927. .len = 4,
  928. .veroffs = 4,
  929. .maxblocks = 4,
  930. .pattern = bbt_pattern,
  931. };
  932. static struct nand_bbt_descr bbt_mirror_descr = {
  933. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  934. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  935. .offs = 0,
  936. .len = 4,
  937. .veroffs = 4,
  938. .maxblocks = 4,
  939. .pattern = mirror_pattern,
  940. };
  941. /* v1 + irqpending_quirk: i.MX21 */
  942. static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
  943. .preset = preset_v1,
  944. .send_cmd = send_cmd_v1_v2,
  945. .send_addr = send_addr_v1_v2,
  946. .send_page = send_page_v1,
  947. .send_read_id = send_read_id_v1_v2,
  948. .get_dev_status = get_dev_status_v1_v2,
  949. .check_int = check_int_v1_v2,
  950. .irq_control = irq_control_v1_v2,
  951. .get_ecc_status = get_ecc_status_v1,
  952. .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
  953. .ecclayout_2k = &nandv1_hw_eccoob_largepage,
  954. .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
  955. .select_chip = mxc_nand_select_chip_v1_v3,
  956. .correct_data = mxc_nand_correct_data_v1,
  957. .irqpending_quirk = 1,
  958. .needs_ip = 0,
  959. .regs_offset = 0xe00,
  960. .spare0_offset = 0x800,
  961. .spare_len = 16,
  962. .eccbytes = 3,
  963. .eccsize = 1,
  964. };
  965. /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
  966. static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
  967. .preset = preset_v1,
  968. .send_cmd = send_cmd_v1_v2,
  969. .send_addr = send_addr_v1_v2,
  970. .send_page = send_page_v1,
  971. .send_read_id = send_read_id_v1_v2,
  972. .get_dev_status = get_dev_status_v1_v2,
  973. .check_int = check_int_v1_v2,
  974. .irq_control = irq_control_v1_v2,
  975. .get_ecc_status = get_ecc_status_v1,
  976. .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
  977. .ecclayout_2k = &nandv1_hw_eccoob_largepage,
  978. .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
  979. .select_chip = mxc_nand_select_chip_v1_v3,
  980. .correct_data = mxc_nand_correct_data_v1,
  981. .irqpending_quirk = 0,
  982. .needs_ip = 0,
  983. .regs_offset = 0xe00,
  984. .spare0_offset = 0x800,
  985. .axi_offset = 0,
  986. .spare_len = 16,
  987. .eccbytes = 3,
  988. .eccsize = 1,
  989. };
  990. /* v21: i.MX25, i.MX35 */
  991. static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
  992. .preset = preset_v2,
  993. .send_cmd = send_cmd_v1_v2,
  994. .send_addr = send_addr_v1_v2,
  995. .send_page = send_page_v2,
  996. .send_read_id = send_read_id_v1_v2,
  997. .get_dev_status = get_dev_status_v1_v2,
  998. .check_int = check_int_v1_v2,
  999. .irq_control = irq_control_v1_v2,
  1000. .get_ecc_status = get_ecc_status_v2,
  1001. .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
  1002. .ecclayout_2k = &nandv2_hw_eccoob_largepage,
  1003. .ecclayout_4k = &nandv2_hw_eccoob_4k,
  1004. .select_chip = mxc_nand_select_chip_v2,
  1005. .correct_data = mxc_nand_correct_data_v2_v3,
  1006. .irqpending_quirk = 0,
  1007. .needs_ip = 0,
  1008. .regs_offset = 0x1e00,
  1009. .spare0_offset = 0x1000,
  1010. .axi_offset = 0,
  1011. .spare_len = 64,
  1012. .eccbytes = 9,
  1013. .eccsize = 0,
  1014. };
  1015. /* v3.2a: i.MX51 */
  1016. static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
  1017. .preset = preset_v3,
  1018. .send_cmd = send_cmd_v3,
  1019. .send_addr = send_addr_v3,
  1020. .send_page = send_page_v3,
  1021. .send_read_id = send_read_id_v3,
  1022. .get_dev_status = get_dev_status_v3,
  1023. .check_int = check_int_v3,
  1024. .irq_control = irq_control_v3,
  1025. .get_ecc_status = get_ecc_status_v3,
  1026. .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
  1027. .ecclayout_2k = &nandv2_hw_eccoob_largepage,
  1028. .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
  1029. .select_chip = mxc_nand_select_chip_v1_v3,
  1030. .correct_data = mxc_nand_correct_data_v2_v3,
  1031. .irqpending_quirk = 0,
  1032. .needs_ip = 1,
  1033. .regs_offset = 0,
  1034. .spare0_offset = 0x1000,
  1035. .axi_offset = 0x1e00,
  1036. .spare_len = 64,
  1037. .eccbytes = 0,
  1038. .eccsize = 0,
  1039. .ppb_shift = 7,
  1040. };
  1041. /* v3.2b: i.MX53 */
  1042. static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
  1043. .preset = preset_v3,
  1044. .send_cmd = send_cmd_v3,
  1045. .send_addr = send_addr_v3,
  1046. .send_page = send_page_v3,
  1047. .send_read_id = send_read_id_v3,
  1048. .get_dev_status = get_dev_status_v3,
  1049. .check_int = check_int_v3,
  1050. .irq_control = irq_control_v3,
  1051. .get_ecc_status = get_ecc_status_v3,
  1052. .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
  1053. .ecclayout_2k = &nandv2_hw_eccoob_largepage,
  1054. .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
  1055. .select_chip = mxc_nand_select_chip_v1_v3,
  1056. .correct_data = mxc_nand_correct_data_v2_v3,
  1057. .irqpending_quirk = 0,
  1058. .needs_ip = 1,
  1059. .regs_offset = 0,
  1060. .spare0_offset = 0x1000,
  1061. .axi_offset = 0x1e00,
  1062. .spare_len = 64,
  1063. .eccbytes = 0,
  1064. .eccsize = 0,
  1065. .ppb_shift = 8,
  1066. };
  1067. static inline int is_imx21_nfc(struct mxc_nand_host *host)
  1068. {
  1069. return host->devtype_data == &imx21_nand_devtype_data;
  1070. }
  1071. static inline int is_imx27_nfc(struct mxc_nand_host *host)
  1072. {
  1073. return host->devtype_data == &imx27_nand_devtype_data;
  1074. }
  1075. static inline int is_imx25_nfc(struct mxc_nand_host *host)
  1076. {
  1077. return host->devtype_data == &imx25_nand_devtype_data;
  1078. }
  1079. static inline int is_imx51_nfc(struct mxc_nand_host *host)
  1080. {
  1081. return host->devtype_data == &imx51_nand_devtype_data;
  1082. }
  1083. static inline int is_imx53_nfc(struct mxc_nand_host *host)
  1084. {
  1085. return host->devtype_data == &imx53_nand_devtype_data;
  1086. }
  1087. static struct platform_device_id mxcnd_devtype[] = {
  1088. {
  1089. .name = "imx21-nand",
  1090. .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
  1091. }, {
  1092. .name = "imx27-nand",
  1093. .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
  1094. }, {
  1095. .name = "imx25-nand",
  1096. .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
  1097. }, {
  1098. .name = "imx51-nand",
  1099. .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
  1100. }, {
  1101. .name = "imx53-nand",
  1102. .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
  1103. }, {
  1104. /* sentinel */
  1105. }
  1106. };
  1107. MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
  1108. #ifdef CONFIG_OF_MTD
  1109. static const struct of_device_id mxcnd_dt_ids[] = {
  1110. {
  1111. .compatible = "fsl,imx21-nand",
  1112. .data = &imx21_nand_devtype_data,
  1113. }, {
  1114. .compatible = "fsl,imx27-nand",
  1115. .data = &imx27_nand_devtype_data,
  1116. }, {
  1117. .compatible = "fsl,imx25-nand",
  1118. .data = &imx25_nand_devtype_data,
  1119. }, {
  1120. .compatible = "fsl,imx51-nand",
  1121. .data = &imx51_nand_devtype_data,
  1122. }, {
  1123. .compatible = "fsl,imx53-nand",
  1124. .data = &imx53_nand_devtype_data,
  1125. },
  1126. { /* sentinel */ }
  1127. };
  1128. static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
  1129. {
  1130. struct device_node *np = host->dev->of_node;
  1131. struct mxc_nand_platform_data *pdata = &host->pdata;
  1132. const struct of_device_id *of_id =
  1133. of_match_device(mxcnd_dt_ids, host->dev);
  1134. int buswidth;
  1135. if (!np)
  1136. return 1;
  1137. if (of_get_nand_ecc_mode(np) >= 0)
  1138. pdata->hw_ecc = 1;
  1139. pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
  1140. buswidth = of_get_nand_bus_width(np);
  1141. if (buswidth < 0)
  1142. return buswidth;
  1143. pdata->width = buswidth / 8;
  1144. host->devtype_data = of_id->data;
  1145. return 0;
  1146. }
  1147. #else
  1148. static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
  1149. {
  1150. return 1;
  1151. }
  1152. #endif
  1153. static int mxcnd_probe(struct platform_device *pdev)
  1154. {
  1155. struct nand_chip *this;
  1156. struct mtd_info *mtd;
  1157. struct mxc_nand_host *host;
  1158. struct resource *res;
  1159. int err = 0;
  1160. /* Allocate memory for MTD device structure and private data */
  1161. host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
  1162. GFP_KERNEL);
  1163. if (!host)
  1164. return -ENOMEM;
  1165. /* allocate a temporary buffer for the nand_scan_ident() */
  1166. host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
  1167. if (!host->data_buf)
  1168. return -ENOMEM;
  1169. host->dev = &pdev->dev;
  1170. /* structures must be linked */
  1171. this = &host->nand;
  1172. mtd = &host->mtd;
  1173. mtd->priv = this;
  1174. mtd->owner = THIS_MODULE;
  1175. mtd->dev.parent = &pdev->dev;
  1176. mtd->name = DRIVER_NAME;
  1177. /* 50 us command delay time */
  1178. this->chip_delay = 5;
  1179. this->priv = host;
  1180. this->dev_ready = mxc_nand_dev_ready;
  1181. this->cmdfunc = mxc_nand_command;
  1182. this->read_byte = mxc_nand_read_byte;
  1183. this->read_word = mxc_nand_read_word;
  1184. this->write_buf = mxc_nand_write_buf;
  1185. this->read_buf = mxc_nand_read_buf;
  1186. host->clk = devm_clk_get(&pdev->dev, NULL);
  1187. if (IS_ERR(host->clk))
  1188. return PTR_ERR(host->clk);
  1189. err = mxcnd_probe_dt(host);
  1190. if (err > 0) {
  1191. struct mxc_nand_platform_data *pdata =
  1192. dev_get_platdata(&pdev->dev);
  1193. if (pdata) {
  1194. host->pdata = *pdata;
  1195. host->devtype_data = (struct mxc_nand_devtype_data *)
  1196. pdev->id_entry->driver_data;
  1197. } else {
  1198. err = -ENODEV;
  1199. }
  1200. }
  1201. if (err < 0)
  1202. return err;
  1203. if (host->devtype_data->needs_ip) {
  1204. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1205. host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
  1206. if (IS_ERR(host->regs_ip))
  1207. return PTR_ERR(host->regs_ip);
  1208. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1209. } else {
  1210. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1211. }
  1212. host->base = devm_ioremap_resource(&pdev->dev, res);
  1213. if (IS_ERR(host->base))
  1214. return PTR_ERR(host->base);
  1215. host->main_area0 = host->base;
  1216. if (host->devtype_data->regs_offset)
  1217. host->regs = host->base + host->devtype_data->regs_offset;
  1218. host->spare0 = host->base + host->devtype_data->spare0_offset;
  1219. if (host->devtype_data->axi_offset)
  1220. host->regs_axi = host->base + host->devtype_data->axi_offset;
  1221. this->ecc.bytes = host->devtype_data->eccbytes;
  1222. host->eccsize = host->devtype_data->eccsize;
  1223. this->select_chip = host->devtype_data->select_chip;
  1224. this->ecc.size = 512;
  1225. this->ecc.layout = host->devtype_data->ecclayout_512;
  1226. if (host->pdata.hw_ecc) {
  1227. this->ecc.calculate = mxc_nand_calculate_ecc;
  1228. this->ecc.hwctl = mxc_nand_enable_hwecc;
  1229. this->ecc.correct = host->devtype_data->correct_data;
  1230. this->ecc.mode = NAND_ECC_HW;
  1231. } else {
  1232. this->ecc.mode = NAND_ECC_SOFT;
  1233. }
  1234. /* NAND bus width determines access functions used by upper layer */
  1235. if (host->pdata.width == 2)
  1236. this->options |= NAND_BUSWIDTH_16;
  1237. if (host->pdata.flash_bbt) {
  1238. this->bbt_td = &bbt_main_descr;
  1239. this->bbt_md = &bbt_mirror_descr;
  1240. /* update flash based bbt */
  1241. this->bbt_options |= NAND_BBT_USE_FLASH;
  1242. }
  1243. init_completion(&host->op_completion);
  1244. host->irq = platform_get_irq(pdev, 0);
  1245. if (host->irq < 0)
  1246. return host->irq;
  1247. /*
  1248. * Use host->devtype_data->irq_control() here instead of irq_control()
  1249. * because we must not disable_irq_nosync without having requested the
  1250. * irq.
  1251. */
  1252. host->devtype_data->irq_control(host, 0);
  1253. err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
  1254. 0, DRIVER_NAME, host);
  1255. if (err)
  1256. return err;
  1257. err = clk_prepare_enable(host->clk);
  1258. if (err)
  1259. return err;
  1260. host->clk_act = 1;
  1261. /*
  1262. * Now that we "own" the interrupt make sure the interrupt mask bit is
  1263. * cleared on i.MX21. Otherwise we can't read the interrupt status bit
  1264. * on this machine.
  1265. */
  1266. if (host->devtype_data->irqpending_quirk) {
  1267. disable_irq_nosync(host->irq);
  1268. host->devtype_data->irq_control(host, 1);
  1269. }
  1270. /* first scan to find the device and get the page size */
  1271. if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
  1272. err = -ENXIO;
  1273. goto escan;
  1274. }
  1275. /* allocate the right size buffer now */
  1276. devm_kfree(&pdev->dev, (void *)host->data_buf);
  1277. host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
  1278. GFP_KERNEL);
  1279. if (!host->data_buf) {
  1280. err = -ENOMEM;
  1281. goto escan;
  1282. }
  1283. /* Call preset again, with correct writesize this time */
  1284. host->devtype_data->preset(mtd);
  1285. if (mtd->writesize == 2048)
  1286. this->ecc.layout = host->devtype_data->ecclayout_2k;
  1287. else if (mtd->writesize == 4096)
  1288. this->ecc.layout = host->devtype_data->ecclayout_4k;
  1289. if (this->ecc.mode == NAND_ECC_HW) {
  1290. if (is_imx21_nfc(host) || is_imx27_nfc(host))
  1291. this->ecc.strength = 1;
  1292. else
  1293. this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
  1294. }
  1295. /* second phase scan */
  1296. if (nand_scan_tail(mtd)) {
  1297. err = -ENXIO;
  1298. goto escan;
  1299. }
  1300. /* Register the partitions */
  1301. mtd_device_parse_register(mtd, part_probes,
  1302. &(struct mtd_part_parser_data){
  1303. .of_node = pdev->dev.of_node,
  1304. },
  1305. host->pdata.parts,
  1306. host->pdata.nr_parts);
  1307. platform_set_drvdata(pdev, host);
  1308. return 0;
  1309. escan:
  1310. if (host->clk_act)
  1311. clk_disable_unprepare(host->clk);
  1312. return err;
  1313. }
  1314. static int mxcnd_remove(struct platform_device *pdev)
  1315. {
  1316. struct mxc_nand_host *host = platform_get_drvdata(pdev);
  1317. nand_release(&host->mtd);
  1318. if (host->clk_act)
  1319. clk_disable_unprepare(host->clk);
  1320. return 0;
  1321. }
  1322. static struct platform_driver mxcnd_driver = {
  1323. .driver = {
  1324. .name = DRIVER_NAME,
  1325. .of_match_table = of_match_ptr(mxcnd_dt_ids),
  1326. },
  1327. .id_table = mxcnd_devtype,
  1328. .probe = mxcnd_probe,
  1329. .remove = mxcnd_remove,
  1330. };
  1331. module_platform_driver(mxcnd_driver);
  1332. MODULE_AUTHOR("Freescale Semiconductor, Inc.");
  1333. MODULE_DESCRIPTION("MXC NAND MTD driver");
  1334. MODULE_LICENSE("GPL");