mtdpart.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include "mtdcore.h"
  33. /* Our partition linked list */
  34. static LIST_HEAD(mtd_partitions);
  35. static DEFINE_MUTEX(mtd_partitions_mutex);
  36. /* Our partition node structure */
  37. struct mtd_part {
  38. struct mtd_info mtd;
  39. struct mtd_info *master;
  40. uint64_t offset;
  41. struct list_head list;
  42. };
  43. /*
  44. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  45. * the pointer to that structure with this macro.
  46. */
  47. #define PART(x) ((struct mtd_part *)(x))
  48. /*
  49. * MTD methods which simply translate the effective address and pass through
  50. * to the _real_ device.
  51. */
  52. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  53. size_t *retlen, u_char *buf)
  54. {
  55. struct mtd_part *part = PART(mtd);
  56. struct mtd_ecc_stats stats;
  57. int res;
  58. stats = part->master->ecc_stats;
  59. res = part->master->_read(part->master, from + part->offset, len,
  60. retlen, buf);
  61. if (unlikely(mtd_is_eccerr(res)))
  62. mtd->ecc_stats.failed +=
  63. part->master->ecc_stats.failed - stats.failed;
  64. else
  65. mtd->ecc_stats.corrected +=
  66. part->master->ecc_stats.corrected - stats.corrected;
  67. return res;
  68. }
  69. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  70. size_t *retlen, void **virt, resource_size_t *phys)
  71. {
  72. struct mtd_part *part = PART(mtd);
  73. return part->master->_point(part->master, from + part->offset, len,
  74. retlen, virt, phys);
  75. }
  76. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  77. {
  78. struct mtd_part *part = PART(mtd);
  79. return part->master->_unpoint(part->master, from + part->offset, len);
  80. }
  81. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  82. unsigned long len,
  83. unsigned long offset,
  84. unsigned long flags)
  85. {
  86. struct mtd_part *part = PART(mtd);
  87. offset += part->offset;
  88. return part->master->_get_unmapped_area(part->master, len, offset,
  89. flags);
  90. }
  91. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  92. struct mtd_oob_ops *ops)
  93. {
  94. struct mtd_part *part = PART(mtd);
  95. int res;
  96. if (from >= mtd->size)
  97. return -EINVAL;
  98. if (ops->datbuf && from + ops->len > mtd->size)
  99. return -EINVAL;
  100. /*
  101. * If OOB is also requested, make sure that we do not read past the end
  102. * of this partition.
  103. */
  104. if (ops->oobbuf) {
  105. size_t len, pages;
  106. if (ops->mode == MTD_OPS_AUTO_OOB)
  107. len = mtd->oobavail;
  108. else
  109. len = mtd->oobsize;
  110. pages = mtd_div_by_ws(mtd->size, mtd);
  111. pages -= mtd_div_by_ws(from, mtd);
  112. if (ops->ooboffs + ops->ooblen > pages * len)
  113. return -EINVAL;
  114. }
  115. res = part->master->_read_oob(part->master, from + part->offset, ops);
  116. if (unlikely(res)) {
  117. if (mtd_is_bitflip(res))
  118. mtd->ecc_stats.corrected++;
  119. if (mtd_is_eccerr(res))
  120. mtd->ecc_stats.failed++;
  121. }
  122. return res;
  123. }
  124. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  125. size_t len, size_t *retlen, u_char *buf)
  126. {
  127. struct mtd_part *part = PART(mtd);
  128. return part->master->_read_user_prot_reg(part->master, from, len,
  129. retlen, buf);
  130. }
  131. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  132. size_t *retlen, struct otp_info *buf)
  133. {
  134. struct mtd_part *part = PART(mtd);
  135. return part->master->_get_user_prot_info(part->master, len, retlen,
  136. buf);
  137. }
  138. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  139. size_t len, size_t *retlen, u_char *buf)
  140. {
  141. struct mtd_part *part = PART(mtd);
  142. return part->master->_read_fact_prot_reg(part->master, from, len,
  143. retlen, buf);
  144. }
  145. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  146. size_t *retlen, struct otp_info *buf)
  147. {
  148. struct mtd_part *part = PART(mtd);
  149. return part->master->_get_fact_prot_info(part->master, len, retlen,
  150. buf);
  151. }
  152. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  153. size_t *retlen, const u_char *buf)
  154. {
  155. struct mtd_part *part = PART(mtd);
  156. return part->master->_write(part->master, to + part->offset, len,
  157. retlen, buf);
  158. }
  159. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  160. size_t *retlen, const u_char *buf)
  161. {
  162. struct mtd_part *part = PART(mtd);
  163. return part->master->_panic_write(part->master, to + part->offset, len,
  164. retlen, buf);
  165. }
  166. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  167. struct mtd_oob_ops *ops)
  168. {
  169. struct mtd_part *part = PART(mtd);
  170. if (to >= mtd->size)
  171. return -EINVAL;
  172. if (ops->datbuf && to + ops->len > mtd->size)
  173. return -EINVAL;
  174. return part->master->_write_oob(part->master, to + part->offset, ops);
  175. }
  176. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  177. size_t len, size_t *retlen, u_char *buf)
  178. {
  179. struct mtd_part *part = PART(mtd);
  180. return part->master->_write_user_prot_reg(part->master, from, len,
  181. retlen, buf);
  182. }
  183. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  184. size_t len)
  185. {
  186. struct mtd_part *part = PART(mtd);
  187. return part->master->_lock_user_prot_reg(part->master, from, len);
  188. }
  189. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  190. unsigned long count, loff_t to, size_t *retlen)
  191. {
  192. struct mtd_part *part = PART(mtd);
  193. return part->master->_writev(part->master, vecs, count,
  194. to + part->offset, retlen);
  195. }
  196. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  197. {
  198. struct mtd_part *part = PART(mtd);
  199. int ret;
  200. instr->addr += part->offset;
  201. ret = part->master->_erase(part->master, instr);
  202. if (ret) {
  203. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  204. instr->fail_addr -= part->offset;
  205. instr->addr -= part->offset;
  206. }
  207. return ret;
  208. }
  209. void mtd_erase_callback(struct erase_info *instr)
  210. {
  211. if (instr->mtd->_erase == part_erase) {
  212. struct mtd_part *part = PART(instr->mtd);
  213. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  214. instr->fail_addr -= part->offset;
  215. instr->addr -= part->offset;
  216. }
  217. if (instr->callback)
  218. instr->callback(instr);
  219. }
  220. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  221. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  222. {
  223. struct mtd_part *part = PART(mtd);
  224. return part->master->_lock(part->master, ofs + part->offset, len);
  225. }
  226. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  227. {
  228. struct mtd_part *part = PART(mtd);
  229. return part->master->_unlock(part->master, ofs + part->offset, len);
  230. }
  231. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  232. {
  233. struct mtd_part *part = PART(mtd);
  234. return part->master->_is_locked(part->master, ofs + part->offset, len);
  235. }
  236. static void part_sync(struct mtd_info *mtd)
  237. {
  238. struct mtd_part *part = PART(mtd);
  239. part->master->_sync(part->master);
  240. }
  241. static int part_suspend(struct mtd_info *mtd)
  242. {
  243. struct mtd_part *part = PART(mtd);
  244. return part->master->_suspend(part->master);
  245. }
  246. static void part_resume(struct mtd_info *mtd)
  247. {
  248. struct mtd_part *part = PART(mtd);
  249. part->master->_resume(part->master);
  250. }
  251. static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  252. {
  253. struct mtd_part *part = PART(mtd);
  254. ofs += part->offset;
  255. return part->master->_block_isreserved(part->master, ofs);
  256. }
  257. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  258. {
  259. struct mtd_part *part = PART(mtd);
  260. ofs += part->offset;
  261. return part->master->_block_isbad(part->master, ofs);
  262. }
  263. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  264. {
  265. struct mtd_part *part = PART(mtd);
  266. int res;
  267. ofs += part->offset;
  268. res = part->master->_block_markbad(part->master, ofs);
  269. if (!res)
  270. mtd->ecc_stats.badblocks++;
  271. return res;
  272. }
  273. static inline void free_partition(struct mtd_part *p)
  274. {
  275. kfree(p->mtd.name);
  276. kfree(p);
  277. }
  278. /*
  279. * This function unregisters and destroy all slave MTD objects which are
  280. * attached to the given master MTD object.
  281. */
  282. int del_mtd_partitions(struct mtd_info *master)
  283. {
  284. struct mtd_part *slave, *next;
  285. int ret, err = 0;
  286. mutex_lock(&mtd_partitions_mutex);
  287. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  288. if (slave->master == master) {
  289. ret = del_mtd_device(&slave->mtd);
  290. if (ret < 0) {
  291. err = ret;
  292. continue;
  293. }
  294. list_del(&slave->list);
  295. free_partition(slave);
  296. }
  297. mutex_unlock(&mtd_partitions_mutex);
  298. return err;
  299. }
  300. static struct mtd_part *allocate_partition(struct mtd_info *master,
  301. const struct mtd_partition *part, int partno,
  302. uint64_t cur_offset)
  303. {
  304. struct mtd_part *slave;
  305. char *name;
  306. /* allocate the partition structure */
  307. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  308. name = kstrdup(part->name, GFP_KERNEL);
  309. if (!name || !slave) {
  310. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  311. master->name);
  312. kfree(name);
  313. kfree(slave);
  314. return ERR_PTR(-ENOMEM);
  315. }
  316. /* set up the MTD object for this partition */
  317. slave->mtd.type = master->type;
  318. slave->mtd.flags = master->flags & ~part->mask_flags;
  319. slave->mtd.size = part->size;
  320. slave->mtd.writesize = master->writesize;
  321. slave->mtd.writebufsize = master->writebufsize;
  322. slave->mtd.oobsize = master->oobsize;
  323. slave->mtd.oobavail = master->oobavail;
  324. slave->mtd.subpage_sft = master->subpage_sft;
  325. slave->mtd.name = name;
  326. slave->mtd.owner = master->owner;
  327. slave->mtd.backing_dev_info = master->backing_dev_info;
  328. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  329. * to have the same data be in two different partitions.
  330. */
  331. slave->mtd.dev.parent = master->dev.parent;
  332. slave->mtd._read = part_read;
  333. slave->mtd._write = part_write;
  334. if (master->_panic_write)
  335. slave->mtd._panic_write = part_panic_write;
  336. if (master->_point && master->_unpoint) {
  337. slave->mtd._point = part_point;
  338. slave->mtd._unpoint = part_unpoint;
  339. }
  340. if (master->_get_unmapped_area)
  341. slave->mtd._get_unmapped_area = part_get_unmapped_area;
  342. if (master->_read_oob)
  343. slave->mtd._read_oob = part_read_oob;
  344. if (master->_write_oob)
  345. slave->mtd._write_oob = part_write_oob;
  346. if (master->_read_user_prot_reg)
  347. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  348. if (master->_read_fact_prot_reg)
  349. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  350. if (master->_write_user_prot_reg)
  351. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  352. if (master->_lock_user_prot_reg)
  353. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  354. if (master->_get_user_prot_info)
  355. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  356. if (master->_get_fact_prot_info)
  357. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  358. if (master->_sync)
  359. slave->mtd._sync = part_sync;
  360. if (!partno && !master->dev.class && master->_suspend &&
  361. master->_resume) {
  362. slave->mtd._suspend = part_suspend;
  363. slave->mtd._resume = part_resume;
  364. }
  365. if (master->_writev)
  366. slave->mtd._writev = part_writev;
  367. if (master->_lock)
  368. slave->mtd._lock = part_lock;
  369. if (master->_unlock)
  370. slave->mtd._unlock = part_unlock;
  371. if (master->_is_locked)
  372. slave->mtd._is_locked = part_is_locked;
  373. if (master->_block_isreserved)
  374. slave->mtd._block_isreserved = part_block_isreserved;
  375. if (master->_block_isbad)
  376. slave->mtd._block_isbad = part_block_isbad;
  377. if (master->_block_markbad)
  378. slave->mtd._block_markbad = part_block_markbad;
  379. slave->mtd._erase = part_erase;
  380. slave->master = master;
  381. slave->offset = part->offset;
  382. if (slave->offset == MTDPART_OFS_APPEND)
  383. slave->offset = cur_offset;
  384. if (slave->offset == MTDPART_OFS_NXTBLK) {
  385. slave->offset = cur_offset;
  386. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  387. /* Round up to next erasesize */
  388. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  389. printk(KERN_NOTICE "Moving partition %d: "
  390. "0x%012llx -> 0x%012llx\n", partno,
  391. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  392. }
  393. }
  394. if (slave->offset == MTDPART_OFS_RETAIN) {
  395. slave->offset = cur_offset;
  396. if (master->size - slave->offset >= slave->mtd.size) {
  397. slave->mtd.size = master->size - slave->offset
  398. - slave->mtd.size;
  399. } else {
  400. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  401. part->name, master->size - slave->offset,
  402. slave->mtd.size);
  403. /* register to preserve ordering */
  404. goto out_register;
  405. }
  406. }
  407. if (slave->mtd.size == MTDPART_SIZ_FULL)
  408. slave->mtd.size = master->size - slave->offset;
  409. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  410. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  411. /* let's do some sanity checks */
  412. if (slave->offset >= master->size) {
  413. /* let's register it anyway to preserve ordering */
  414. slave->offset = 0;
  415. slave->mtd.size = 0;
  416. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  417. part->name);
  418. goto out_register;
  419. }
  420. if (slave->offset + slave->mtd.size > master->size) {
  421. slave->mtd.size = master->size - slave->offset;
  422. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  423. part->name, master->name, (unsigned long long)slave->mtd.size);
  424. }
  425. if (master->numeraseregions > 1) {
  426. /* Deal with variable erase size stuff */
  427. int i, max = master->numeraseregions;
  428. u64 end = slave->offset + slave->mtd.size;
  429. struct mtd_erase_region_info *regions = master->eraseregions;
  430. /* Find the first erase regions which is part of this
  431. * partition. */
  432. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  433. ;
  434. /* The loop searched for the region _behind_ the first one */
  435. if (i > 0)
  436. i--;
  437. /* Pick biggest erasesize */
  438. for (; i < max && regions[i].offset < end; i++) {
  439. if (slave->mtd.erasesize < regions[i].erasesize) {
  440. slave->mtd.erasesize = regions[i].erasesize;
  441. }
  442. }
  443. BUG_ON(slave->mtd.erasesize == 0);
  444. } else {
  445. /* Single erase size */
  446. slave->mtd.erasesize = master->erasesize;
  447. }
  448. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  449. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  450. /* Doesn't start on a boundary of major erase size */
  451. /* FIXME: Let it be writable if it is on a boundary of
  452. * _minor_ erase size though */
  453. slave->mtd.flags &= ~MTD_WRITEABLE;
  454. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  455. part->name);
  456. }
  457. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  458. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  459. slave->mtd.flags &= ~MTD_WRITEABLE;
  460. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  461. part->name);
  462. }
  463. slave->mtd.ecclayout = master->ecclayout;
  464. slave->mtd.ecc_step_size = master->ecc_step_size;
  465. slave->mtd.ecc_strength = master->ecc_strength;
  466. slave->mtd.bitflip_threshold = master->bitflip_threshold;
  467. if (master->_block_isbad) {
  468. uint64_t offs = 0;
  469. while (offs < slave->mtd.size) {
  470. if (mtd_block_isreserved(master, offs + slave->offset))
  471. slave->mtd.ecc_stats.bbtblocks++;
  472. else if (mtd_block_isbad(master, offs + slave->offset))
  473. slave->mtd.ecc_stats.badblocks++;
  474. offs += slave->mtd.erasesize;
  475. }
  476. }
  477. out_register:
  478. return slave;
  479. }
  480. int mtd_add_partition(struct mtd_info *master, const char *name,
  481. long long offset, long long length)
  482. {
  483. struct mtd_partition part;
  484. struct mtd_part *p, *new;
  485. uint64_t start, end;
  486. int ret = 0;
  487. /* the direct offset is expected */
  488. if (offset == MTDPART_OFS_APPEND ||
  489. offset == MTDPART_OFS_NXTBLK)
  490. return -EINVAL;
  491. if (length == MTDPART_SIZ_FULL)
  492. length = master->size - offset;
  493. if (length <= 0)
  494. return -EINVAL;
  495. part.name = name;
  496. part.size = length;
  497. part.offset = offset;
  498. part.mask_flags = 0;
  499. part.ecclayout = NULL;
  500. new = allocate_partition(master, &part, -1, offset);
  501. if (IS_ERR(new))
  502. return PTR_ERR(new);
  503. start = offset;
  504. end = offset + length;
  505. mutex_lock(&mtd_partitions_mutex);
  506. list_for_each_entry(p, &mtd_partitions, list)
  507. if (p->master == master) {
  508. if ((start >= p->offset) &&
  509. (start < (p->offset + p->mtd.size)))
  510. goto err_inv;
  511. if ((end >= p->offset) &&
  512. (end < (p->offset + p->mtd.size)))
  513. goto err_inv;
  514. }
  515. list_add(&new->list, &mtd_partitions);
  516. mutex_unlock(&mtd_partitions_mutex);
  517. add_mtd_device(&new->mtd);
  518. return ret;
  519. err_inv:
  520. mutex_unlock(&mtd_partitions_mutex);
  521. free_partition(new);
  522. return -EINVAL;
  523. }
  524. EXPORT_SYMBOL_GPL(mtd_add_partition);
  525. int mtd_del_partition(struct mtd_info *master, int partno)
  526. {
  527. struct mtd_part *slave, *next;
  528. int ret = -EINVAL;
  529. mutex_lock(&mtd_partitions_mutex);
  530. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  531. if ((slave->master == master) &&
  532. (slave->mtd.index == partno)) {
  533. ret = del_mtd_device(&slave->mtd);
  534. if (ret < 0)
  535. break;
  536. list_del(&slave->list);
  537. free_partition(slave);
  538. break;
  539. }
  540. mutex_unlock(&mtd_partitions_mutex);
  541. return ret;
  542. }
  543. EXPORT_SYMBOL_GPL(mtd_del_partition);
  544. /*
  545. * This function, given a master MTD object and a partition table, creates
  546. * and registers slave MTD objects which are bound to the master according to
  547. * the partition definitions.
  548. *
  549. * We don't register the master, or expect the caller to have done so,
  550. * for reasons of data integrity.
  551. */
  552. int add_mtd_partitions(struct mtd_info *master,
  553. const struct mtd_partition *parts,
  554. int nbparts)
  555. {
  556. struct mtd_part *slave;
  557. uint64_t cur_offset = 0;
  558. int i;
  559. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  560. for (i = 0; i < nbparts; i++) {
  561. slave = allocate_partition(master, parts + i, i, cur_offset);
  562. if (IS_ERR(slave))
  563. return PTR_ERR(slave);
  564. mutex_lock(&mtd_partitions_mutex);
  565. list_add(&slave->list, &mtd_partitions);
  566. mutex_unlock(&mtd_partitions_mutex);
  567. add_mtd_device(&slave->mtd);
  568. cur_offset = slave->offset + slave->mtd.size;
  569. }
  570. return 0;
  571. }
  572. static DEFINE_SPINLOCK(part_parser_lock);
  573. static LIST_HEAD(part_parsers);
  574. static struct mtd_part_parser *get_partition_parser(const char *name)
  575. {
  576. struct mtd_part_parser *p, *ret = NULL;
  577. spin_lock(&part_parser_lock);
  578. list_for_each_entry(p, &part_parsers, list)
  579. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  580. ret = p;
  581. break;
  582. }
  583. spin_unlock(&part_parser_lock);
  584. return ret;
  585. }
  586. #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
  587. void register_mtd_parser(struct mtd_part_parser *p)
  588. {
  589. spin_lock(&part_parser_lock);
  590. list_add(&p->list, &part_parsers);
  591. spin_unlock(&part_parser_lock);
  592. }
  593. EXPORT_SYMBOL_GPL(register_mtd_parser);
  594. void deregister_mtd_parser(struct mtd_part_parser *p)
  595. {
  596. spin_lock(&part_parser_lock);
  597. list_del(&p->list);
  598. spin_unlock(&part_parser_lock);
  599. }
  600. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  601. /*
  602. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  603. * are changing this array!
  604. */
  605. static const char * const default_mtd_part_types[] = {
  606. "cmdlinepart",
  607. "ofpart",
  608. NULL
  609. };
  610. /**
  611. * parse_mtd_partitions - parse MTD partitions
  612. * @master: the master partition (describes whole MTD device)
  613. * @types: names of partition parsers to try or %NULL
  614. * @pparts: array of partitions found is returned here
  615. * @data: MTD partition parser-specific data
  616. *
  617. * This function tries to find partition on MTD device @master. It uses MTD
  618. * partition parsers, specified in @types. However, if @types is %NULL, then
  619. * the default list of parsers is used. The default list contains only the
  620. * "cmdlinepart" and "ofpart" parsers ATM.
  621. * Note: If there are more then one parser in @types, the kernel only takes the
  622. * partitions parsed out by the first parser.
  623. *
  624. * This function may return:
  625. * o a negative error code in case of failure
  626. * o zero if no partitions were found
  627. * o a positive number of found partitions, in which case on exit @pparts will
  628. * point to an array containing this number of &struct mtd_info objects.
  629. */
  630. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  631. struct mtd_partition **pparts,
  632. struct mtd_part_parser_data *data)
  633. {
  634. struct mtd_part_parser *parser;
  635. int ret = 0;
  636. if (!types)
  637. types = default_mtd_part_types;
  638. for ( ; ret <= 0 && *types; types++) {
  639. parser = get_partition_parser(*types);
  640. if (!parser && !request_module("%s", *types))
  641. parser = get_partition_parser(*types);
  642. if (!parser)
  643. continue;
  644. ret = (*parser->parse_fn)(master, pparts, data);
  645. put_partition_parser(parser);
  646. if (ret > 0) {
  647. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  648. ret, parser->name, master->name);
  649. break;
  650. }
  651. }
  652. return ret;
  653. }
  654. int mtd_is_partition(const struct mtd_info *mtd)
  655. {
  656. struct mtd_part *part;
  657. int ispart = 0;
  658. mutex_lock(&mtd_partitions_mutex);
  659. list_for_each_entry(part, &mtd_partitions, list)
  660. if (&part->mtd == mtd) {
  661. ispart = 1;
  662. break;
  663. }
  664. mutex_unlock(&mtd_partitions_mutex);
  665. return ispart;
  666. }
  667. EXPORT_SYMBOL_GPL(mtd_is_partition);
  668. /* Returns the size of the entire flash chip */
  669. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  670. {
  671. if (!mtd_is_partition(mtd))
  672. return mtd->size;
  673. return PART(mtd)->master->size;
  674. }
  675. EXPORT_SYMBOL_GPL(mtd_get_device_size);