smiapp-core.c 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011
  1. /*
  2. * drivers/media/i2c/smiapp/smiapp-core.c
  3. *
  4. * Generic driver for SMIA/SMIA++ compliant camera modules
  5. *
  6. * Copyright (C) 2010--2012 Nokia Corporation
  7. * Contact: Sakari Ailus <sakari.ailus@iki.fi>
  8. *
  9. * Based on smiapp driver by Vimarsh Zutshi
  10. * Based on jt8ev1.c by Vimarsh Zutshi
  11. * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
  12. *
  13. * This program is free software; you can redistribute it and/or
  14. * modify it under the terms of the GNU General Public License
  15. * version 2 as published by the Free Software Foundation.
  16. *
  17. * This program is distributed in the hope that it will be useful, but
  18. * WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  20. * General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
  25. * 02110-1301 USA
  26. *
  27. */
  28. #include <linux/clk.h>
  29. #include <linux/delay.h>
  30. #include <linux/device.h>
  31. #include <linux/gpio.h>
  32. #include <linux/module.h>
  33. #include <linux/regulator/consumer.h>
  34. #include <linux/slab.h>
  35. #include <linux/smiapp.h>
  36. #include <linux/v4l2-mediabus.h>
  37. #include <media/v4l2-device.h>
  38. #include "smiapp.h"
  39. #define SMIAPP_ALIGN_DIM(dim, flags) \
  40. ((flags) & V4L2_SEL_FLAG_GE \
  41. ? ALIGN((dim), 2) \
  42. : (dim) & ~1)
  43. /*
  44. * smiapp_module_idents - supported camera modules
  45. */
  46. static const struct smiapp_module_ident smiapp_module_idents[] = {
  47. SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
  48. SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
  49. SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
  50. SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
  51. SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
  52. SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
  53. SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
  54. SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
  55. SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
  56. SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
  57. SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
  58. };
  59. /*
  60. *
  61. * Dynamic Capability Identification
  62. *
  63. */
  64. static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
  65. {
  66. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  67. u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
  68. unsigned int i;
  69. int rval;
  70. int line_count = 0;
  71. int embedded_start = -1, embedded_end = -1;
  72. int image_start = 0;
  73. rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
  74. &fmt_model_type);
  75. if (rval)
  76. return rval;
  77. rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
  78. &fmt_model_subtype);
  79. if (rval)
  80. return rval;
  81. ncol_desc = (fmt_model_subtype
  82. & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
  83. >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
  84. nrow_desc = fmt_model_subtype
  85. & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
  86. dev_dbg(&client->dev, "format_model_type %s\n",
  87. fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
  88. ? "2 byte" :
  89. fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
  90. ? "4 byte" : "is simply bad");
  91. for (i = 0; i < ncol_desc + nrow_desc; i++) {
  92. u32 desc;
  93. u32 pixelcode;
  94. u32 pixels;
  95. char *which;
  96. char *what;
  97. if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
  98. rval = smiapp_read(
  99. sensor,
  100. SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
  101. &desc);
  102. if (rval)
  103. return rval;
  104. pixelcode =
  105. (desc
  106. & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
  107. >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
  108. pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
  109. } else if (fmt_model_type
  110. == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
  111. rval = smiapp_read(
  112. sensor,
  113. SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
  114. &desc);
  115. if (rval)
  116. return rval;
  117. pixelcode =
  118. (desc
  119. & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
  120. >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
  121. pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
  122. } else {
  123. dev_dbg(&client->dev,
  124. "invalid frame format model type %d\n",
  125. fmt_model_type);
  126. return -EINVAL;
  127. }
  128. if (i < ncol_desc)
  129. which = "columns";
  130. else
  131. which = "rows";
  132. switch (pixelcode) {
  133. case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
  134. what = "embedded";
  135. break;
  136. case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
  137. what = "dummy";
  138. break;
  139. case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
  140. what = "black";
  141. break;
  142. case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
  143. what = "dark";
  144. break;
  145. case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
  146. what = "visible";
  147. break;
  148. default:
  149. what = "invalid";
  150. dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
  151. break;
  152. }
  153. dev_dbg(&client->dev, "%s pixels: %d %s\n",
  154. what, pixels, which);
  155. if (i < ncol_desc)
  156. continue;
  157. /* Handle row descriptors */
  158. if (pixelcode
  159. == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
  160. embedded_start = line_count;
  161. } else {
  162. if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
  163. || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
  164. image_start = line_count;
  165. if (embedded_start != -1 && embedded_end == -1)
  166. embedded_end = line_count;
  167. }
  168. line_count += pixels;
  169. }
  170. if (embedded_start == -1 || embedded_end == -1) {
  171. embedded_start = 0;
  172. embedded_end = 0;
  173. }
  174. dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
  175. embedded_start, embedded_end);
  176. dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
  177. return 0;
  178. }
  179. static int smiapp_pll_configure(struct smiapp_sensor *sensor)
  180. {
  181. struct smiapp_pll *pll = &sensor->pll;
  182. int rval;
  183. rval = smiapp_write(
  184. sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
  185. if (rval < 0)
  186. return rval;
  187. rval = smiapp_write(
  188. sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
  189. if (rval < 0)
  190. return rval;
  191. rval = smiapp_write(
  192. sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
  193. if (rval < 0)
  194. return rval;
  195. rval = smiapp_write(
  196. sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
  197. if (rval < 0)
  198. return rval;
  199. /* Lane op clock ratio does not apply here. */
  200. rval = smiapp_write(
  201. sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
  202. DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
  203. if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
  204. return rval;
  205. rval = smiapp_write(
  206. sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
  207. if (rval < 0)
  208. return rval;
  209. return smiapp_write(
  210. sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
  211. }
  212. static int smiapp_pll_try(struct smiapp_sensor *sensor,
  213. struct smiapp_pll *pll)
  214. {
  215. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  216. struct smiapp_pll_limits lim = {
  217. .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
  218. .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
  219. .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
  220. .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
  221. .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
  222. .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
  223. .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
  224. .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
  225. .op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
  226. .op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
  227. .op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
  228. .op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
  229. .op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
  230. .op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
  231. .op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
  232. .op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
  233. .vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
  234. .vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
  235. .vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
  236. .vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
  237. .vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
  238. .vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
  239. .vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
  240. .vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
  241. .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
  242. .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
  243. };
  244. return smiapp_pll_calculate(&client->dev, &lim, pll);
  245. }
  246. static int smiapp_pll_update(struct smiapp_sensor *sensor)
  247. {
  248. struct smiapp_pll *pll = &sensor->pll;
  249. int rval;
  250. pll->binning_horizontal = sensor->binning_horizontal;
  251. pll->binning_vertical = sensor->binning_vertical;
  252. pll->link_freq =
  253. sensor->link_freq->qmenu_int[sensor->link_freq->val];
  254. pll->scale_m = sensor->scale_m;
  255. pll->bits_per_pixel = sensor->csi_format->compressed;
  256. rval = smiapp_pll_try(sensor, pll);
  257. if (rval < 0)
  258. return rval;
  259. __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
  260. pll->pixel_rate_pixel_array);
  261. __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
  262. return 0;
  263. }
  264. /*
  265. *
  266. * V4L2 Controls handling
  267. *
  268. */
  269. static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
  270. {
  271. struct v4l2_ctrl *ctrl = sensor->exposure;
  272. int max;
  273. max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
  274. + sensor->vblank->val
  275. - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
  276. __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
  277. }
  278. /*
  279. * Order matters.
  280. *
  281. * 1. Bits-per-pixel, descending.
  282. * 2. Bits-per-pixel compressed, descending.
  283. * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
  284. * orders must be defined.
  285. */
  286. static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
  287. { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
  288. { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
  289. { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
  290. { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
  291. { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
  292. { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
  293. { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
  294. { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
  295. { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
  296. { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
  297. { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
  298. { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
  299. { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
  300. { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
  301. { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
  302. { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
  303. };
  304. const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
  305. #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
  306. - (unsigned long)smiapp_csi_data_formats) \
  307. / sizeof(*smiapp_csi_data_formats))
  308. static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
  309. {
  310. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  311. int flip = 0;
  312. if (sensor->hflip) {
  313. if (sensor->hflip->val)
  314. flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
  315. if (sensor->vflip->val)
  316. flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
  317. }
  318. flip ^= sensor->hvflip_inv_mask;
  319. dev_dbg(&client->dev, "flip %d\n", flip);
  320. return sensor->default_pixel_order ^ flip;
  321. }
  322. static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
  323. {
  324. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  325. unsigned int csi_format_idx =
  326. to_csi_format_idx(sensor->csi_format) & ~3;
  327. unsigned int internal_csi_format_idx =
  328. to_csi_format_idx(sensor->internal_csi_format) & ~3;
  329. unsigned int pixel_order = smiapp_pixel_order(sensor);
  330. sensor->mbus_frame_fmts =
  331. sensor->default_mbus_frame_fmts << pixel_order;
  332. sensor->csi_format =
  333. &smiapp_csi_data_formats[csi_format_idx + pixel_order];
  334. sensor->internal_csi_format =
  335. &smiapp_csi_data_formats[internal_csi_format_idx
  336. + pixel_order];
  337. BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
  338. >= ARRAY_SIZE(smiapp_csi_data_formats));
  339. dev_dbg(&client->dev, "new pixel order %s\n",
  340. pixel_order_str[pixel_order]);
  341. }
  342. static const char * const smiapp_test_patterns[] = {
  343. "Disabled",
  344. "Solid Colour",
  345. "Eight Vertical Colour Bars",
  346. "Colour Bars With Fade to Grey",
  347. "Pseudorandom Sequence (PN9)",
  348. };
  349. static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
  350. {
  351. struct smiapp_sensor *sensor =
  352. container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
  353. ->sensor;
  354. u32 orient = 0;
  355. int exposure;
  356. int rval;
  357. switch (ctrl->id) {
  358. case V4L2_CID_ANALOGUE_GAIN:
  359. return smiapp_write(
  360. sensor,
  361. SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
  362. case V4L2_CID_EXPOSURE:
  363. return smiapp_write(
  364. sensor,
  365. SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
  366. case V4L2_CID_HFLIP:
  367. case V4L2_CID_VFLIP:
  368. if (sensor->streaming)
  369. return -EBUSY;
  370. if (sensor->hflip->val)
  371. orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
  372. if (sensor->vflip->val)
  373. orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
  374. orient ^= sensor->hvflip_inv_mask;
  375. rval = smiapp_write(sensor,
  376. SMIAPP_REG_U8_IMAGE_ORIENTATION,
  377. orient);
  378. if (rval < 0)
  379. return rval;
  380. smiapp_update_mbus_formats(sensor);
  381. return 0;
  382. case V4L2_CID_VBLANK:
  383. exposure = sensor->exposure->val;
  384. __smiapp_update_exposure_limits(sensor);
  385. if (exposure > sensor->exposure->maximum) {
  386. sensor->exposure->val =
  387. sensor->exposure->maximum;
  388. rval = smiapp_set_ctrl(
  389. sensor->exposure);
  390. if (rval < 0)
  391. return rval;
  392. }
  393. return smiapp_write(
  394. sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
  395. sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
  396. + ctrl->val);
  397. case V4L2_CID_HBLANK:
  398. return smiapp_write(
  399. sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
  400. sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
  401. + ctrl->val);
  402. case V4L2_CID_LINK_FREQ:
  403. if (sensor->streaming)
  404. return -EBUSY;
  405. return smiapp_pll_update(sensor);
  406. case V4L2_CID_TEST_PATTERN: {
  407. unsigned int i;
  408. for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
  409. v4l2_ctrl_activate(
  410. sensor->test_data[i],
  411. ctrl->val ==
  412. V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
  413. return smiapp_write(
  414. sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
  415. }
  416. case V4L2_CID_TEST_PATTERN_RED:
  417. return smiapp_write(
  418. sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
  419. case V4L2_CID_TEST_PATTERN_GREENR:
  420. return smiapp_write(
  421. sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
  422. case V4L2_CID_TEST_PATTERN_BLUE:
  423. return smiapp_write(
  424. sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
  425. case V4L2_CID_TEST_PATTERN_GREENB:
  426. return smiapp_write(
  427. sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
  428. case V4L2_CID_PIXEL_RATE:
  429. /* For v4l2_ctrl_s_ctrl_int64() used internally. */
  430. return 0;
  431. default:
  432. return -EINVAL;
  433. }
  434. }
  435. static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
  436. .s_ctrl = smiapp_set_ctrl,
  437. };
  438. static int smiapp_init_controls(struct smiapp_sensor *sensor)
  439. {
  440. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  441. unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
  442. sensor->csi_format->compressed - SMIAPP_COMPRESSED_BASE];
  443. unsigned int max, i;
  444. int rval;
  445. rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
  446. if (rval)
  447. return rval;
  448. sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
  449. sensor->analog_gain = v4l2_ctrl_new_std(
  450. &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
  451. V4L2_CID_ANALOGUE_GAIN,
  452. sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
  453. sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
  454. max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
  455. sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
  456. /* Exposure limits will be updated soon, use just something here. */
  457. sensor->exposure = v4l2_ctrl_new_std(
  458. &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
  459. V4L2_CID_EXPOSURE, 0, 0, 1, 0);
  460. sensor->hflip = v4l2_ctrl_new_std(
  461. &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
  462. V4L2_CID_HFLIP, 0, 1, 1, 0);
  463. sensor->vflip = v4l2_ctrl_new_std(
  464. &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
  465. V4L2_CID_VFLIP, 0, 1, 1, 0);
  466. sensor->vblank = v4l2_ctrl_new_std(
  467. &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
  468. V4L2_CID_VBLANK, 0, 1, 1, 0);
  469. if (sensor->vblank)
  470. sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
  471. sensor->hblank = v4l2_ctrl_new_std(
  472. &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
  473. V4L2_CID_HBLANK, 0, 1, 1, 0);
  474. if (sensor->hblank)
  475. sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
  476. sensor->pixel_rate_parray = v4l2_ctrl_new_std(
  477. &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
  478. V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
  479. v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
  480. &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
  481. ARRAY_SIZE(smiapp_test_patterns) - 1,
  482. 0, 0, smiapp_test_patterns);
  483. for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
  484. int max_value = (1 << sensor->csi_format->width) - 1;
  485. sensor->test_data[i] =
  486. v4l2_ctrl_new_std(
  487. &sensor->pixel_array->ctrl_handler,
  488. &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
  489. 0, max_value, 1, max_value);
  490. }
  491. if (sensor->pixel_array->ctrl_handler.error) {
  492. dev_err(&client->dev,
  493. "pixel array controls initialization failed (%d)\n",
  494. sensor->pixel_array->ctrl_handler.error);
  495. rval = sensor->pixel_array->ctrl_handler.error;
  496. goto error;
  497. }
  498. sensor->pixel_array->sd.ctrl_handler =
  499. &sensor->pixel_array->ctrl_handler;
  500. v4l2_ctrl_cluster(2, &sensor->hflip);
  501. rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
  502. if (rval)
  503. goto error;
  504. sensor->src->ctrl_handler.lock = &sensor->mutex;
  505. for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
  506. sensor->link_freq = v4l2_ctrl_new_int_menu(
  507. &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
  508. V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
  509. __ffs(*valid_link_freqs), sensor->platform_data->op_sys_clock);
  510. sensor->pixel_rate_csi = v4l2_ctrl_new_std(
  511. &sensor->src->ctrl_handler, &smiapp_ctrl_ops,
  512. V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
  513. if (sensor->src->ctrl_handler.error) {
  514. dev_err(&client->dev,
  515. "src controls initialization failed (%d)\n",
  516. sensor->src->ctrl_handler.error);
  517. rval = sensor->src->ctrl_handler.error;
  518. goto error;
  519. }
  520. sensor->src->sd.ctrl_handler =
  521. &sensor->src->ctrl_handler;
  522. return 0;
  523. error:
  524. v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
  525. v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
  526. return rval;
  527. }
  528. static void smiapp_free_controls(struct smiapp_sensor *sensor)
  529. {
  530. unsigned int i;
  531. for (i = 0; i < sensor->ssds_used; i++)
  532. v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
  533. }
  534. static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
  535. unsigned int n)
  536. {
  537. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  538. unsigned int i;
  539. u32 val;
  540. int rval;
  541. for (i = 0; i < n; i++) {
  542. rval = smiapp_read(
  543. sensor, smiapp_reg_limits[limit[i]].addr, &val);
  544. if (rval)
  545. return rval;
  546. sensor->limits[limit[i]] = val;
  547. dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
  548. smiapp_reg_limits[limit[i]].addr,
  549. smiapp_reg_limits[limit[i]].what, val, val);
  550. }
  551. return 0;
  552. }
  553. static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
  554. {
  555. unsigned int i;
  556. int rval;
  557. for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
  558. rval = smiapp_get_limits(sensor, &i, 1);
  559. if (rval < 0)
  560. return rval;
  561. }
  562. if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
  563. smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
  564. return 0;
  565. }
  566. static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
  567. {
  568. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  569. static u32 const limits[] = {
  570. SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
  571. SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
  572. SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
  573. SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
  574. SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
  575. SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
  576. SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
  577. };
  578. static u32 const limits_replace[] = {
  579. SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
  580. SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
  581. SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
  582. SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
  583. SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
  584. SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
  585. SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
  586. };
  587. unsigned int i;
  588. int rval;
  589. if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
  590. SMIAPP_BINNING_CAPABILITY_NO) {
  591. for (i = 0; i < ARRAY_SIZE(limits); i++)
  592. sensor->limits[limits[i]] =
  593. sensor->limits[limits_replace[i]];
  594. return 0;
  595. }
  596. rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
  597. if (rval < 0)
  598. return rval;
  599. /*
  600. * Sanity check whether the binning limits are valid. If not,
  601. * use the non-binning ones.
  602. */
  603. if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
  604. && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
  605. && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
  606. return 0;
  607. for (i = 0; i < ARRAY_SIZE(limits); i++) {
  608. dev_dbg(&client->dev,
  609. "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
  610. smiapp_reg_limits[limits[i]].addr,
  611. smiapp_reg_limits[limits[i]].what,
  612. sensor->limits[limits_replace[i]],
  613. sensor->limits[limits_replace[i]]);
  614. sensor->limits[limits[i]] =
  615. sensor->limits[limits_replace[i]];
  616. }
  617. return 0;
  618. }
  619. static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
  620. {
  621. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  622. struct smiapp_pll *pll = &sensor->pll;
  623. unsigned int type, n;
  624. unsigned int i, pixel_order;
  625. int rval;
  626. rval = smiapp_read(
  627. sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
  628. if (rval)
  629. return rval;
  630. dev_dbg(&client->dev, "data_format_model_type %d\n", type);
  631. rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
  632. &pixel_order);
  633. if (rval)
  634. return rval;
  635. if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
  636. dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
  637. return -EINVAL;
  638. }
  639. dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
  640. pixel_order_str[pixel_order]);
  641. switch (type) {
  642. case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
  643. n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
  644. break;
  645. case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
  646. n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
  647. break;
  648. default:
  649. return -EINVAL;
  650. }
  651. sensor->default_pixel_order = pixel_order;
  652. sensor->mbus_frame_fmts = 0;
  653. for (i = 0; i < n; i++) {
  654. unsigned int fmt, j;
  655. rval = smiapp_read(
  656. sensor,
  657. SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
  658. if (rval)
  659. return rval;
  660. dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
  661. i, fmt >> 8, (u8)fmt);
  662. for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
  663. const struct smiapp_csi_data_format *f =
  664. &smiapp_csi_data_formats[j];
  665. if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
  666. continue;
  667. if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
  668. continue;
  669. dev_dbg(&client->dev, "jolly good! %d\n", j);
  670. sensor->default_mbus_frame_fmts |= 1 << j;
  671. }
  672. }
  673. /* Figure out which BPP values can be used with which formats. */
  674. pll->binning_horizontal = 1;
  675. pll->binning_vertical = 1;
  676. pll->scale_m = sensor->scale_m;
  677. for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
  678. const struct smiapp_csi_data_format *f =
  679. &smiapp_csi_data_formats[i];
  680. unsigned long *valid_link_freqs =
  681. &sensor->valid_link_freqs[
  682. f->compressed - SMIAPP_COMPRESSED_BASE];
  683. unsigned int j;
  684. BUG_ON(f->compressed < SMIAPP_COMPRESSED_BASE);
  685. BUG_ON(f->compressed > SMIAPP_COMPRESSED_MAX);
  686. if (!(sensor->default_mbus_frame_fmts & 1 << i))
  687. continue;
  688. pll->bits_per_pixel = f->compressed;
  689. for (j = 0; sensor->platform_data->op_sys_clock[j]; j++) {
  690. pll->link_freq = sensor->platform_data->op_sys_clock[j];
  691. rval = smiapp_pll_try(sensor, pll);
  692. dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
  693. pll->link_freq, pll->bits_per_pixel,
  694. rval ? "not ok" : "ok");
  695. if (rval)
  696. continue;
  697. set_bit(j, valid_link_freqs);
  698. }
  699. if (!*valid_link_freqs) {
  700. dev_info(&client->dev,
  701. "no valid link frequencies for %u bpp\n",
  702. f->compressed);
  703. sensor->default_mbus_frame_fmts &= ~BIT(i);
  704. continue;
  705. }
  706. if (!sensor->csi_format
  707. || f->width > sensor->csi_format->width
  708. || (f->width == sensor->csi_format->width
  709. && f->compressed > sensor->csi_format->compressed)) {
  710. sensor->csi_format = f;
  711. sensor->internal_csi_format = f;
  712. }
  713. }
  714. if (!sensor->csi_format) {
  715. dev_err(&client->dev, "no supported mbus code found\n");
  716. return -EINVAL;
  717. }
  718. smiapp_update_mbus_formats(sensor);
  719. return 0;
  720. }
  721. static void smiapp_update_blanking(struct smiapp_sensor *sensor)
  722. {
  723. struct v4l2_ctrl *vblank = sensor->vblank;
  724. struct v4l2_ctrl *hblank = sensor->hblank;
  725. int min, max;
  726. min = max_t(int,
  727. sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
  728. sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
  729. sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
  730. max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
  731. sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
  732. __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
  733. min = max_t(int,
  734. sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
  735. sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
  736. sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
  737. max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
  738. sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
  739. __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
  740. __smiapp_update_exposure_limits(sensor);
  741. }
  742. static int smiapp_update_mode(struct smiapp_sensor *sensor)
  743. {
  744. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  745. unsigned int binning_mode;
  746. int rval;
  747. dev_dbg(&client->dev, "frame size: %dx%d\n",
  748. sensor->src->crop[SMIAPP_PAD_SRC].width,
  749. sensor->src->crop[SMIAPP_PAD_SRC].height);
  750. dev_dbg(&client->dev, "csi format width: %d\n",
  751. sensor->csi_format->width);
  752. /* Binning has to be set up here; it affects limits */
  753. if (sensor->binning_horizontal == 1 &&
  754. sensor->binning_vertical == 1) {
  755. binning_mode = 0;
  756. } else {
  757. u8 binning_type =
  758. (sensor->binning_horizontal << 4)
  759. | sensor->binning_vertical;
  760. rval = smiapp_write(
  761. sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
  762. if (rval < 0)
  763. return rval;
  764. binning_mode = 1;
  765. }
  766. rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
  767. if (rval < 0)
  768. return rval;
  769. /* Get updated limits due to binning */
  770. rval = smiapp_get_limits_binning(sensor);
  771. if (rval < 0)
  772. return rval;
  773. rval = smiapp_pll_update(sensor);
  774. if (rval < 0)
  775. return rval;
  776. /* Output from pixel array, including blanking */
  777. smiapp_update_blanking(sensor);
  778. dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
  779. dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
  780. dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
  781. sensor->pll.pixel_rate_pixel_array /
  782. ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
  783. + sensor->hblank->val) *
  784. (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
  785. + sensor->vblank->val) / 100));
  786. return 0;
  787. }
  788. /*
  789. *
  790. * SMIA++ NVM handling
  791. *
  792. */
  793. static int smiapp_read_nvm(struct smiapp_sensor *sensor,
  794. unsigned char *nvm)
  795. {
  796. u32 i, s, p, np, v;
  797. int rval = 0, rval2;
  798. np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
  799. for (p = 0; p < np; p++) {
  800. rval = smiapp_write(
  801. sensor,
  802. SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
  803. if (rval)
  804. goto out;
  805. rval = smiapp_write(sensor,
  806. SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
  807. SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
  808. SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
  809. if (rval)
  810. goto out;
  811. for (i = 0; i < 1000; i++) {
  812. rval = smiapp_read(
  813. sensor,
  814. SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
  815. if (rval)
  816. goto out;
  817. if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
  818. break;
  819. if (--i == 0) {
  820. rval = -ETIMEDOUT;
  821. goto out;
  822. }
  823. }
  824. for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
  825. rval = smiapp_read(
  826. sensor,
  827. SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
  828. &v);
  829. if (rval)
  830. goto out;
  831. *nvm++ = v;
  832. }
  833. }
  834. out:
  835. rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
  836. if (rval < 0)
  837. return rval;
  838. else
  839. return rval2;
  840. }
  841. /*
  842. *
  843. * SMIA++ CCI address control
  844. *
  845. */
  846. static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
  847. {
  848. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  849. int rval;
  850. u32 val;
  851. client->addr = sensor->platform_data->i2c_addr_dfl;
  852. rval = smiapp_write(sensor,
  853. SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
  854. sensor->platform_data->i2c_addr_alt << 1);
  855. if (rval)
  856. return rval;
  857. client->addr = sensor->platform_data->i2c_addr_alt;
  858. /* verify addr change went ok */
  859. rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
  860. if (rval)
  861. return rval;
  862. if (val != sensor->platform_data->i2c_addr_alt << 1)
  863. return -ENODEV;
  864. return 0;
  865. }
  866. /*
  867. *
  868. * SMIA++ Mode Control
  869. *
  870. */
  871. static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
  872. {
  873. struct smiapp_flash_strobe_parms *strobe_setup;
  874. unsigned int ext_freq = sensor->platform_data->ext_clk;
  875. u32 tmp;
  876. u32 strobe_adjustment;
  877. u32 strobe_width_high_rs;
  878. int rval;
  879. strobe_setup = sensor->platform_data->strobe_setup;
  880. /*
  881. * How to calculate registers related to strobe length. Please
  882. * do not change, or if you do at least know what you're
  883. * doing. :-)
  884. *
  885. * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
  886. *
  887. * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
  888. * / EXTCLK freq [Hz]) * flash_strobe_adjustment
  889. *
  890. * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
  891. * flash_strobe_adjustment E N, [1 - 0xff]
  892. *
  893. * The formula above is written as below to keep it on one
  894. * line:
  895. *
  896. * l / 10^6 = w / e * a
  897. *
  898. * Let's mark w * a by x:
  899. *
  900. * x = w * a
  901. *
  902. * Thus, we get:
  903. *
  904. * x = l * e / 10^6
  905. *
  906. * The strobe width must be at least as long as requested,
  907. * thus rounding upwards is needed.
  908. *
  909. * x = (l * e + 10^6 - 1) / 10^6
  910. * -----------------------------
  911. *
  912. * Maximum possible accuracy is wanted at all times. Thus keep
  913. * a as small as possible.
  914. *
  915. * Calculate a, assuming maximum w, with rounding upwards:
  916. *
  917. * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
  918. * -------------------------------------
  919. *
  920. * Thus, we also get w, with that a, with rounding upwards:
  921. *
  922. * w = (x + a - 1) / a
  923. * -------------------
  924. *
  925. * To get limits:
  926. *
  927. * x E [1, (2^16 - 1) * (2^8 - 1)]
  928. *
  929. * Substituting maximum x to the original formula (with rounding),
  930. * the maximum l is thus
  931. *
  932. * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
  933. *
  934. * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
  935. * --------------------------------------------------
  936. *
  937. * flash_strobe_length must be clamped between 1 and
  938. * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
  939. *
  940. * Then,
  941. *
  942. * flash_strobe_adjustment = ((flash_strobe_length *
  943. * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
  944. *
  945. * tFlash_strobe_width_ctrl = ((flash_strobe_length *
  946. * EXTCLK freq + 10^6 - 1) / 10^6 +
  947. * flash_strobe_adjustment - 1) / flash_strobe_adjustment
  948. */
  949. tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
  950. 1000000 + 1, ext_freq);
  951. strobe_setup->strobe_width_high_us =
  952. clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
  953. tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
  954. 1000000 - 1), 1000000ULL);
  955. strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
  956. strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
  957. strobe_adjustment;
  958. rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
  959. strobe_setup->mode);
  960. if (rval < 0)
  961. goto out;
  962. rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
  963. strobe_adjustment);
  964. if (rval < 0)
  965. goto out;
  966. rval = smiapp_write(
  967. sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
  968. strobe_width_high_rs);
  969. if (rval < 0)
  970. goto out;
  971. rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
  972. strobe_setup->strobe_delay);
  973. if (rval < 0)
  974. goto out;
  975. rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
  976. strobe_setup->stobe_start_point);
  977. if (rval < 0)
  978. goto out;
  979. rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
  980. strobe_setup->trigger);
  981. out:
  982. sensor->platform_data->strobe_setup->trigger = 0;
  983. return rval;
  984. }
  985. /* -----------------------------------------------------------------------------
  986. * Power management
  987. */
  988. static int smiapp_power_on(struct smiapp_sensor *sensor)
  989. {
  990. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  991. unsigned int sleep;
  992. int rval;
  993. rval = regulator_enable(sensor->vana);
  994. if (rval) {
  995. dev_err(&client->dev, "failed to enable vana regulator\n");
  996. return rval;
  997. }
  998. usleep_range(1000, 1000);
  999. if (sensor->platform_data->set_xclk)
  1000. rval = sensor->platform_data->set_xclk(
  1001. &sensor->src->sd, sensor->platform_data->ext_clk);
  1002. else
  1003. rval = clk_prepare_enable(sensor->ext_clk);
  1004. if (rval < 0) {
  1005. dev_dbg(&client->dev, "failed to enable xclk\n");
  1006. goto out_xclk_fail;
  1007. }
  1008. usleep_range(1000, 1000);
  1009. if (gpio_is_valid(sensor->platform_data->xshutdown))
  1010. gpio_set_value(sensor->platform_data->xshutdown, 1);
  1011. sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
  1012. usleep_range(sleep, sleep);
  1013. /*
  1014. * Failures to respond to the address change command have been noticed.
  1015. * Those failures seem to be caused by the sensor requiring a longer
  1016. * boot time than advertised. An additional 10ms delay seems to work
  1017. * around the issue, but the SMIA++ I2C write retry hack makes the delay
  1018. * unnecessary. The failures need to be investigated to find a proper
  1019. * fix, and a delay will likely need to be added here if the I2C write
  1020. * retry hack is reverted before the root cause of the boot time issue
  1021. * is found.
  1022. */
  1023. if (sensor->platform_data->i2c_addr_alt) {
  1024. rval = smiapp_change_cci_addr(sensor);
  1025. if (rval) {
  1026. dev_err(&client->dev, "cci address change error\n");
  1027. goto out_cci_addr_fail;
  1028. }
  1029. }
  1030. rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
  1031. SMIAPP_SOFTWARE_RESET);
  1032. if (rval < 0) {
  1033. dev_err(&client->dev, "software reset failed\n");
  1034. goto out_cci_addr_fail;
  1035. }
  1036. if (sensor->platform_data->i2c_addr_alt) {
  1037. rval = smiapp_change_cci_addr(sensor);
  1038. if (rval) {
  1039. dev_err(&client->dev, "cci address change error\n");
  1040. goto out_cci_addr_fail;
  1041. }
  1042. }
  1043. rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
  1044. SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
  1045. if (rval) {
  1046. dev_err(&client->dev, "compression mode set failed\n");
  1047. goto out_cci_addr_fail;
  1048. }
  1049. rval = smiapp_write(
  1050. sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
  1051. sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
  1052. if (rval) {
  1053. dev_err(&client->dev, "extclk frequency set failed\n");
  1054. goto out_cci_addr_fail;
  1055. }
  1056. rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
  1057. sensor->platform_data->lanes - 1);
  1058. if (rval) {
  1059. dev_err(&client->dev, "csi lane mode set failed\n");
  1060. goto out_cci_addr_fail;
  1061. }
  1062. rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
  1063. SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
  1064. if (rval) {
  1065. dev_err(&client->dev, "fast standby set failed\n");
  1066. goto out_cci_addr_fail;
  1067. }
  1068. rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
  1069. sensor->platform_data->csi_signalling_mode);
  1070. if (rval) {
  1071. dev_err(&client->dev, "csi signalling mode set failed\n");
  1072. goto out_cci_addr_fail;
  1073. }
  1074. /* DPHY control done by sensor based on requested link rate */
  1075. rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
  1076. SMIAPP_DPHY_CTRL_UI);
  1077. if (rval < 0)
  1078. return rval;
  1079. rval = smiapp_call_quirk(sensor, post_poweron);
  1080. if (rval) {
  1081. dev_err(&client->dev, "post_poweron quirks failed\n");
  1082. goto out_cci_addr_fail;
  1083. }
  1084. /* Are we still initialising...? If yes, return here. */
  1085. if (!sensor->pixel_array)
  1086. return 0;
  1087. rval = v4l2_ctrl_handler_setup(
  1088. &sensor->pixel_array->ctrl_handler);
  1089. if (rval)
  1090. goto out_cci_addr_fail;
  1091. rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
  1092. if (rval)
  1093. goto out_cci_addr_fail;
  1094. mutex_lock(&sensor->mutex);
  1095. rval = smiapp_update_mode(sensor);
  1096. mutex_unlock(&sensor->mutex);
  1097. if (rval < 0)
  1098. goto out_cci_addr_fail;
  1099. return 0;
  1100. out_cci_addr_fail:
  1101. if (gpio_is_valid(sensor->platform_data->xshutdown))
  1102. gpio_set_value(sensor->platform_data->xshutdown, 0);
  1103. if (sensor->platform_data->set_xclk)
  1104. sensor->platform_data->set_xclk(&sensor->src->sd, 0);
  1105. else
  1106. clk_disable_unprepare(sensor->ext_clk);
  1107. out_xclk_fail:
  1108. regulator_disable(sensor->vana);
  1109. return rval;
  1110. }
  1111. static void smiapp_power_off(struct smiapp_sensor *sensor)
  1112. {
  1113. /*
  1114. * Currently power/clock to lens are enable/disabled separately
  1115. * but they are essentially the same signals. So if the sensor is
  1116. * powered off while the lens is powered on the sensor does not
  1117. * really see a power off and next time the cci address change
  1118. * will fail. So do a soft reset explicitly here.
  1119. */
  1120. if (sensor->platform_data->i2c_addr_alt)
  1121. smiapp_write(sensor,
  1122. SMIAPP_REG_U8_SOFTWARE_RESET,
  1123. SMIAPP_SOFTWARE_RESET);
  1124. if (gpio_is_valid(sensor->platform_data->xshutdown))
  1125. gpio_set_value(sensor->platform_data->xshutdown, 0);
  1126. if (sensor->platform_data->set_xclk)
  1127. sensor->platform_data->set_xclk(&sensor->src->sd, 0);
  1128. else
  1129. clk_disable_unprepare(sensor->ext_clk);
  1130. usleep_range(5000, 5000);
  1131. regulator_disable(sensor->vana);
  1132. sensor->streaming = false;
  1133. }
  1134. static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
  1135. {
  1136. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1137. int ret = 0;
  1138. mutex_lock(&sensor->power_mutex);
  1139. if (on && !sensor->power_count) {
  1140. /* Power on and perform initialisation. */
  1141. ret = smiapp_power_on(sensor);
  1142. if (ret < 0)
  1143. goto out;
  1144. } else if (!on && sensor->power_count == 1) {
  1145. smiapp_power_off(sensor);
  1146. }
  1147. /* Update the power count. */
  1148. sensor->power_count += on ? 1 : -1;
  1149. WARN_ON(sensor->power_count < 0);
  1150. out:
  1151. mutex_unlock(&sensor->power_mutex);
  1152. return ret;
  1153. }
  1154. /* -----------------------------------------------------------------------------
  1155. * Video stream management
  1156. */
  1157. static int smiapp_start_streaming(struct smiapp_sensor *sensor)
  1158. {
  1159. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  1160. int rval;
  1161. mutex_lock(&sensor->mutex);
  1162. rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
  1163. (sensor->csi_format->width << 8) |
  1164. sensor->csi_format->compressed);
  1165. if (rval)
  1166. goto out;
  1167. rval = smiapp_pll_configure(sensor);
  1168. if (rval)
  1169. goto out;
  1170. /* Analog crop start coordinates */
  1171. rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
  1172. sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
  1173. if (rval < 0)
  1174. goto out;
  1175. rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
  1176. sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
  1177. if (rval < 0)
  1178. goto out;
  1179. /* Analog crop end coordinates */
  1180. rval = smiapp_write(
  1181. sensor, SMIAPP_REG_U16_X_ADDR_END,
  1182. sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
  1183. + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
  1184. if (rval < 0)
  1185. goto out;
  1186. rval = smiapp_write(
  1187. sensor, SMIAPP_REG_U16_Y_ADDR_END,
  1188. sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
  1189. + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
  1190. if (rval < 0)
  1191. goto out;
  1192. /*
  1193. * Output from pixel array, including blanking, is set using
  1194. * controls below. No need to set here.
  1195. */
  1196. /* Digital crop */
  1197. if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
  1198. == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
  1199. rval = smiapp_write(
  1200. sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
  1201. sensor->scaler->crop[SMIAPP_PAD_SINK].left);
  1202. if (rval < 0)
  1203. goto out;
  1204. rval = smiapp_write(
  1205. sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
  1206. sensor->scaler->crop[SMIAPP_PAD_SINK].top);
  1207. if (rval < 0)
  1208. goto out;
  1209. rval = smiapp_write(
  1210. sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
  1211. sensor->scaler->crop[SMIAPP_PAD_SINK].width);
  1212. if (rval < 0)
  1213. goto out;
  1214. rval = smiapp_write(
  1215. sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
  1216. sensor->scaler->crop[SMIAPP_PAD_SINK].height);
  1217. if (rval < 0)
  1218. goto out;
  1219. }
  1220. /* Scaling */
  1221. if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
  1222. != SMIAPP_SCALING_CAPABILITY_NONE) {
  1223. rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
  1224. sensor->scaling_mode);
  1225. if (rval < 0)
  1226. goto out;
  1227. rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
  1228. sensor->scale_m);
  1229. if (rval < 0)
  1230. goto out;
  1231. }
  1232. /* Output size from sensor */
  1233. rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
  1234. sensor->src->crop[SMIAPP_PAD_SRC].width);
  1235. if (rval < 0)
  1236. goto out;
  1237. rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
  1238. sensor->src->crop[SMIAPP_PAD_SRC].height);
  1239. if (rval < 0)
  1240. goto out;
  1241. if ((sensor->flash_capability &
  1242. (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
  1243. SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
  1244. sensor->platform_data->strobe_setup != NULL &&
  1245. sensor->platform_data->strobe_setup->trigger != 0) {
  1246. rval = smiapp_setup_flash_strobe(sensor);
  1247. if (rval)
  1248. goto out;
  1249. }
  1250. rval = smiapp_call_quirk(sensor, pre_streamon);
  1251. if (rval) {
  1252. dev_err(&client->dev, "pre_streamon quirks failed\n");
  1253. goto out;
  1254. }
  1255. rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
  1256. SMIAPP_MODE_SELECT_STREAMING);
  1257. out:
  1258. mutex_unlock(&sensor->mutex);
  1259. return rval;
  1260. }
  1261. static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
  1262. {
  1263. struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  1264. int rval;
  1265. mutex_lock(&sensor->mutex);
  1266. rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
  1267. SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
  1268. if (rval)
  1269. goto out;
  1270. rval = smiapp_call_quirk(sensor, post_streamoff);
  1271. if (rval)
  1272. dev_err(&client->dev, "post_streamoff quirks failed\n");
  1273. out:
  1274. mutex_unlock(&sensor->mutex);
  1275. return rval;
  1276. }
  1277. /* -----------------------------------------------------------------------------
  1278. * V4L2 subdev video operations
  1279. */
  1280. static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
  1281. {
  1282. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1283. int rval;
  1284. if (sensor->streaming == enable)
  1285. return 0;
  1286. if (enable) {
  1287. sensor->streaming = true;
  1288. rval = smiapp_start_streaming(sensor);
  1289. if (rval < 0)
  1290. sensor->streaming = false;
  1291. } else {
  1292. rval = smiapp_stop_streaming(sensor);
  1293. sensor->streaming = false;
  1294. }
  1295. return rval;
  1296. }
  1297. static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
  1298. struct v4l2_subdev_fh *fh,
  1299. struct v4l2_subdev_mbus_code_enum *code)
  1300. {
  1301. struct i2c_client *client = v4l2_get_subdevdata(subdev);
  1302. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1303. unsigned int i;
  1304. int idx = -1;
  1305. int rval = -EINVAL;
  1306. mutex_lock(&sensor->mutex);
  1307. dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
  1308. subdev->name, code->pad, code->index);
  1309. if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
  1310. if (code->index)
  1311. goto out;
  1312. code->code = sensor->internal_csi_format->code;
  1313. rval = 0;
  1314. goto out;
  1315. }
  1316. for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
  1317. if (sensor->mbus_frame_fmts & (1 << i))
  1318. idx++;
  1319. if (idx == code->index) {
  1320. code->code = smiapp_csi_data_formats[i].code;
  1321. dev_err(&client->dev, "found index %d, i %d, code %x\n",
  1322. code->index, i, code->code);
  1323. rval = 0;
  1324. break;
  1325. }
  1326. }
  1327. out:
  1328. mutex_unlock(&sensor->mutex);
  1329. return rval;
  1330. }
  1331. static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
  1332. unsigned int pad)
  1333. {
  1334. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1335. if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
  1336. return sensor->csi_format->code;
  1337. else
  1338. return sensor->internal_csi_format->code;
  1339. }
  1340. static int __smiapp_get_format(struct v4l2_subdev *subdev,
  1341. struct v4l2_subdev_fh *fh,
  1342. struct v4l2_subdev_format *fmt)
  1343. {
  1344. struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
  1345. if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
  1346. fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
  1347. } else {
  1348. struct v4l2_rect *r;
  1349. if (fmt->pad == ssd->source_pad)
  1350. r = &ssd->crop[ssd->source_pad];
  1351. else
  1352. r = &ssd->sink_fmt;
  1353. fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
  1354. fmt->format.width = r->width;
  1355. fmt->format.height = r->height;
  1356. fmt->format.field = V4L2_FIELD_NONE;
  1357. }
  1358. return 0;
  1359. }
  1360. static int smiapp_get_format(struct v4l2_subdev *subdev,
  1361. struct v4l2_subdev_fh *fh,
  1362. struct v4l2_subdev_format *fmt)
  1363. {
  1364. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1365. int rval;
  1366. mutex_lock(&sensor->mutex);
  1367. rval = __smiapp_get_format(subdev, fh, fmt);
  1368. mutex_unlock(&sensor->mutex);
  1369. return rval;
  1370. }
  1371. static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
  1372. struct v4l2_subdev_fh *fh,
  1373. struct v4l2_rect **crops,
  1374. struct v4l2_rect **comps, int which)
  1375. {
  1376. struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
  1377. unsigned int i;
  1378. if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
  1379. if (crops)
  1380. for (i = 0; i < subdev->entity.num_pads; i++)
  1381. crops[i] = &ssd->crop[i];
  1382. if (comps)
  1383. *comps = &ssd->compose;
  1384. } else {
  1385. if (crops) {
  1386. for (i = 0; i < subdev->entity.num_pads; i++) {
  1387. crops[i] = v4l2_subdev_get_try_crop(fh, i);
  1388. BUG_ON(!crops[i]);
  1389. }
  1390. }
  1391. if (comps) {
  1392. *comps = v4l2_subdev_get_try_compose(fh,
  1393. SMIAPP_PAD_SINK);
  1394. BUG_ON(!*comps);
  1395. }
  1396. }
  1397. }
  1398. /* Changes require propagation only on sink pad. */
  1399. static void smiapp_propagate(struct v4l2_subdev *subdev,
  1400. struct v4l2_subdev_fh *fh, int which,
  1401. int target)
  1402. {
  1403. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1404. struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
  1405. struct v4l2_rect *comp, *crops[SMIAPP_PADS];
  1406. smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
  1407. switch (target) {
  1408. case V4L2_SEL_TGT_CROP:
  1409. comp->width = crops[SMIAPP_PAD_SINK]->width;
  1410. comp->height = crops[SMIAPP_PAD_SINK]->height;
  1411. if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
  1412. if (ssd == sensor->scaler) {
  1413. sensor->scale_m =
  1414. sensor->limits[
  1415. SMIAPP_LIMIT_SCALER_N_MIN];
  1416. sensor->scaling_mode =
  1417. SMIAPP_SCALING_MODE_NONE;
  1418. } else if (ssd == sensor->binner) {
  1419. sensor->binning_horizontal = 1;
  1420. sensor->binning_vertical = 1;
  1421. }
  1422. }
  1423. /* Fall through */
  1424. case V4L2_SEL_TGT_COMPOSE:
  1425. *crops[SMIAPP_PAD_SRC] = *comp;
  1426. break;
  1427. default:
  1428. BUG();
  1429. }
  1430. }
  1431. static const struct smiapp_csi_data_format
  1432. *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
  1433. {
  1434. const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
  1435. unsigned int i;
  1436. for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
  1437. if (sensor->mbus_frame_fmts & (1 << i)
  1438. && smiapp_csi_data_formats[i].code == code)
  1439. return &smiapp_csi_data_formats[i];
  1440. }
  1441. return csi_format;
  1442. }
  1443. static int smiapp_set_format_source(struct v4l2_subdev *subdev,
  1444. struct v4l2_subdev_fh *fh,
  1445. struct v4l2_subdev_format *fmt)
  1446. {
  1447. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1448. const struct smiapp_csi_data_format *csi_format,
  1449. *old_csi_format = sensor->csi_format;
  1450. unsigned long *valid_link_freqs;
  1451. u32 code = fmt->format.code;
  1452. unsigned int i;
  1453. int rval;
  1454. rval = __smiapp_get_format(subdev, fh, fmt);
  1455. if (rval)
  1456. return rval;
  1457. /*
  1458. * Media bus code is changeable on src subdev's source pad. On
  1459. * other source pads we just get format here.
  1460. */
  1461. if (subdev != &sensor->src->sd)
  1462. return 0;
  1463. csi_format = smiapp_validate_csi_data_format(sensor, code);
  1464. fmt->format.code = csi_format->code;
  1465. if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
  1466. return 0;
  1467. sensor->csi_format = csi_format;
  1468. if (csi_format->width != old_csi_format->width)
  1469. for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
  1470. __v4l2_ctrl_modify_range(
  1471. sensor->test_data[i], 0,
  1472. (1 << csi_format->width) - 1, 1, 0);
  1473. if (csi_format->compressed == old_csi_format->compressed)
  1474. return 0;
  1475. valid_link_freqs =
  1476. &sensor->valid_link_freqs[sensor->csi_format->compressed
  1477. - SMIAPP_COMPRESSED_BASE];
  1478. __v4l2_ctrl_modify_range(
  1479. sensor->link_freq, 0,
  1480. __fls(*valid_link_freqs), ~*valid_link_freqs,
  1481. __ffs(*valid_link_freqs));
  1482. return smiapp_pll_update(sensor);
  1483. }
  1484. static int smiapp_set_format(struct v4l2_subdev *subdev,
  1485. struct v4l2_subdev_fh *fh,
  1486. struct v4l2_subdev_format *fmt)
  1487. {
  1488. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1489. struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
  1490. struct v4l2_rect *crops[SMIAPP_PADS];
  1491. mutex_lock(&sensor->mutex);
  1492. if (fmt->pad == ssd->source_pad) {
  1493. int rval;
  1494. rval = smiapp_set_format_source(subdev, fh, fmt);
  1495. mutex_unlock(&sensor->mutex);
  1496. return rval;
  1497. }
  1498. /* Sink pad. Width and height are changeable here. */
  1499. fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
  1500. fmt->format.width &= ~1;
  1501. fmt->format.height &= ~1;
  1502. fmt->format.field = V4L2_FIELD_NONE;
  1503. fmt->format.width =
  1504. clamp(fmt->format.width,
  1505. sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
  1506. sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
  1507. fmt->format.height =
  1508. clamp(fmt->format.height,
  1509. sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
  1510. sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
  1511. smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
  1512. crops[ssd->sink_pad]->left = 0;
  1513. crops[ssd->sink_pad]->top = 0;
  1514. crops[ssd->sink_pad]->width = fmt->format.width;
  1515. crops[ssd->sink_pad]->height = fmt->format.height;
  1516. if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
  1517. ssd->sink_fmt = *crops[ssd->sink_pad];
  1518. smiapp_propagate(subdev, fh, fmt->which,
  1519. V4L2_SEL_TGT_CROP);
  1520. mutex_unlock(&sensor->mutex);
  1521. return 0;
  1522. }
  1523. /*
  1524. * Calculate goodness of scaled image size compared to expected image
  1525. * size and flags provided.
  1526. */
  1527. #define SCALING_GOODNESS 100000
  1528. #define SCALING_GOODNESS_EXTREME 100000000
  1529. static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
  1530. int h, int ask_h, u32 flags)
  1531. {
  1532. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1533. struct i2c_client *client = v4l2_get_subdevdata(subdev);
  1534. int val = 0;
  1535. w &= ~1;
  1536. ask_w &= ~1;
  1537. h &= ~1;
  1538. ask_h &= ~1;
  1539. if (flags & V4L2_SEL_FLAG_GE) {
  1540. if (w < ask_w)
  1541. val -= SCALING_GOODNESS;
  1542. if (h < ask_h)
  1543. val -= SCALING_GOODNESS;
  1544. }
  1545. if (flags & V4L2_SEL_FLAG_LE) {
  1546. if (w > ask_w)
  1547. val -= SCALING_GOODNESS;
  1548. if (h > ask_h)
  1549. val -= SCALING_GOODNESS;
  1550. }
  1551. val -= abs(w - ask_w);
  1552. val -= abs(h - ask_h);
  1553. if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
  1554. val -= SCALING_GOODNESS_EXTREME;
  1555. dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
  1556. w, ask_h, h, ask_h, val);
  1557. return val;
  1558. }
  1559. static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
  1560. struct v4l2_subdev_fh *fh,
  1561. struct v4l2_subdev_selection *sel,
  1562. struct v4l2_rect **crops,
  1563. struct v4l2_rect *comp)
  1564. {
  1565. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1566. unsigned int i;
  1567. unsigned int binh = 1, binv = 1;
  1568. int best = scaling_goodness(
  1569. subdev,
  1570. crops[SMIAPP_PAD_SINK]->width, sel->r.width,
  1571. crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
  1572. for (i = 0; i < sensor->nbinning_subtypes; i++) {
  1573. int this = scaling_goodness(
  1574. subdev,
  1575. crops[SMIAPP_PAD_SINK]->width
  1576. / sensor->binning_subtypes[i].horizontal,
  1577. sel->r.width,
  1578. crops[SMIAPP_PAD_SINK]->height
  1579. / sensor->binning_subtypes[i].vertical,
  1580. sel->r.height, sel->flags);
  1581. if (this > best) {
  1582. binh = sensor->binning_subtypes[i].horizontal;
  1583. binv = sensor->binning_subtypes[i].vertical;
  1584. best = this;
  1585. }
  1586. }
  1587. if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
  1588. sensor->binning_vertical = binv;
  1589. sensor->binning_horizontal = binh;
  1590. }
  1591. sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
  1592. sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
  1593. }
  1594. /*
  1595. * Calculate best scaling ratio and mode for given output resolution.
  1596. *
  1597. * Try all of these: horizontal ratio, vertical ratio and smallest
  1598. * size possible (horizontally).
  1599. *
  1600. * Also try whether horizontal scaler or full scaler gives a better
  1601. * result.
  1602. */
  1603. static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
  1604. struct v4l2_subdev_fh *fh,
  1605. struct v4l2_subdev_selection *sel,
  1606. struct v4l2_rect **crops,
  1607. struct v4l2_rect *comp)
  1608. {
  1609. struct i2c_client *client = v4l2_get_subdevdata(subdev);
  1610. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1611. u32 min, max, a, b, max_m;
  1612. u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
  1613. int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
  1614. u32 try[4];
  1615. u32 ntry = 0;
  1616. unsigned int i;
  1617. int best = INT_MIN;
  1618. sel->r.width = min_t(unsigned int, sel->r.width,
  1619. crops[SMIAPP_PAD_SINK]->width);
  1620. sel->r.height = min_t(unsigned int, sel->r.height,
  1621. crops[SMIAPP_PAD_SINK]->height);
  1622. a = crops[SMIAPP_PAD_SINK]->width
  1623. * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
  1624. b = crops[SMIAPP_PAD_SINK]->height
  1625. * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
  1626. max_m = crops[SMIAPP_PAD_SINK]->width
  1627. * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
  1628. / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
  1629. a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
  1630. sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
  1631. b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
  1632. sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
  1633. max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
  1634. sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
  1635. dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
  1636. min = min(max_m, min(a, b));
  1637. max = min(max_m, max(a, b));
  1638. try[ntry] = min;
  1639. ntry++;
  1640. if (min != max) {
  1641. try[ntry] = max;
  1642. ntry++;
  1643. }
  1644. if (max != max_m) {
  1645. try[ntry] = min + 1;
  1646. ntry++;
  1647. if (min != max) {
  1648. try[ntry] = max + 1;
  1649. ntry++;
  1650. }
  1651. }
  1652. for (i = 0; i < ntry; i++) {
  1653. int this = scaling_goodness(
  1654. subdev,
  1655. crops[SMIAPP_PAD_SINK]->width
  1656. / try[i]
  1657. * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
  1658. sel->r.width,
  1659. crops[SMIAPP_PAD_SINK]->height,
  1660. sel->r.height,
  1661. sel->flags);
  1662. dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
  1663. if (this > best) {
  1664. scale_m = try[i];
  1665. mode = SMIAPP_SCALING_MODE_HORIZONTAL;
  1666. best = this;
  1667. }
  1668. if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
  1669. == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
  1670. continue;
  1671. this = scaling_goodness(
  1672. subdev, crops[SMIAPP_PAD_SINK]->width
  1673. / try[i]
  1674. * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
  1675. sel->r.width,
  1676. crops[SMIAPP_PAD_SINK]->height
  1677. / try[i]
  1678. * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
  1679. sel->r.height,
  1680. sel->flags);
  1681. if (this > best) {
  1682. scale_m = try[i];
  1683. mode = SMIAPP_SCALING_MODE_BOTH;
  1684. best = this;
  1685. }
  1686. }
  1687. sel->r.width =
  1688. (crops[SMIAPP_PAD_SINK]->width
  1689. / scale_m
  1690. * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
  1691. if (mode == SMIAPP_SCALING_MODE_BOTH)
  1692. sel->r.height =
  1693. (crops[SMIAPP_PAD_SINK]->height
  1694. / scale_m
  1695. * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
  1696. & ~1;
  1697. else
  1698. sel->r.height = crops[SMIAPP_PAD_SINK]->height;
  1699. if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
  1700. sensor->scale_m = scale_m;
  1701. sensor->scaling_mode = mode;
  1702. }
  1703. }
  1704. /* We're only called on source pads. This function sets scaling. */
  1705. static int smiapp_set_compose(struct v4l2_subdev *subdev,
  1706. struct v4l2_subdev_fh *fh,
  1707. struct v4l2_subdev_selection *sel)
  1708. {
  1709. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1710. struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
  1711. struct v4l2_rect *comp, *crops[SMIAPP_PADS];
  1712. smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
  1713. sel->r.top = 0;
  1714. sel->r.left = 0;
  1715. if (ssd == sensor->binner)
  1716. smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
  1717. else
  1718. smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
  1719. *comp = sel->r;
  1720. smiapp_propagate(subdev, fh, sel->which,
  1721. V4L2_SEL_TGT_COMPOSE);
  1722. if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
  1723. return smiapp_update_mode(sensor);
  1724. return 0;
  1725. }
  1726. static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
  1727. struct v4l2_subdev_selection *sel)
  1728. {
  1729. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1730. struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
  1731. /* We only implement crop in three places. */
  1732. switch (sel->target) {
  1733. case V4L2_SEL_TGT_CROP:
  1734. case V4L2_SEL_TGT_CROP_BOUNDS:
  1735. if (ssd == sensor->pixel_array
  1736. && sel->pad == SMIAPP_PA_PAD_SRC)
  1737. return 0;
  1738. if (ssd == sensor->src
  1739. && sel->pad == SMIAPP_PAD_SRC)
  1740. return 0;
  1741. if (ssd == sensor->scaler
  1742. && sel->pad == SMIAPP_PAD_SINK
  1743. && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
  1744. == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
  1745. return 0;
  1746. return -EINVAL;
  1747. case V4L2_SEL_TGT_NATIVE_SIZE:
  1748. if (ssd == sensor->pixel_array
  1749. && sel->pad == SMIAPP_PA_PAD_SRC)
  1750. return 0;
  1751. return -EINVAL;
  1752. case V4L2_SEL_TGT_COMPOSE:
  1753. case V4L2_SEL_TGT_COMPOSE_BOUNDS:
  1754. if (sel->pad == ssd->source_pad)
  1755. return -EINVAL;
  1756. if (ssd == sensor->binner)
  1757. return 0;
  1758. if (ssd == sensor->scaler
  1759. && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
  1760. != SMIAPP_SCALING_CAPABILITY_NONE)
  1761. return 0;
  1762. /* Fall through */
  1763. default:
  1764. return -EINVAL;
  1765. }
  1766. }
  1767. static int smiapp_set_crop(struct v4l2_subdev *subdev,
  1768. struct v4l2_subdev_fh *fh,
  1769. struct v4l2_subdev_selection *sel)
  1770. {
  1771. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1772. struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
  1773. struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
  1774. struct v4l2_rect _r;
  1775. smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
  1776. if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
  1777. if (sel->pad == ssd->sink_pad)
  1778. src_size = &ssd->sink_fmt;
  1779. else
  1780. src_size = &ssd->compose;
  1781. } else {
  1782. if (sel->pad == ssd->sink_pad) {
  1783. _r.left = 0;
  1784. _r.top = 0;
  1785. _r.width = v4l2_subdev_get_try_format(fh, sel->pad)
  1786. ->width;
  1787. _r.height = v4l2_subdev_get_try_format(fh, sel->pad)
  1788. ->height;
  1789. src_size = &_r;
  1790. } else {
  1791. src_size =
  1792. v4l2_subdev_get_try_compose(
  1793. fh, ssd->sink_pad);
  1794. }
  1795. }
  1796. if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
  1797. sel->r.left = 0;
  1798. sel->r.top = 0;
  1799. }
  1800. sel->r.width = min(sel->r.width, src_size->width);
  1801. sel->r.height = min(sel->r.height, src_size->height);
  1802. sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
  1803. sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
  1804. *crops[sel->pad] = sel->r;
  1805. if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
  1806. smiapp_propagate(subdev, fh, sel->which,
  1807. V4L2_SEL_TGT_CROP);
  1808. return 0;
  1809. }
  1810. static int __smiapp_get_selection(struct v4l2_subdev *subdev,
  1811. struct v4l2_subdev_fh *fh,
  1812. struct v4l2_subdev_selection *sel)
  1813. {
  1814. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1815. struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
  1816. struct v4l2_rect *comp, *crops[SMIAPP_PADS];
  1817. struct v4l2_rect sink_fmt;
  1818. int ret;
  1819. ret = __smiapp_sel_supported(subdev, sel);
  1820. if (ret)
  1821. return ret;
  1822. smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
  1823. if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
  1824. sink_fmt = ssd->sink_fmt;
  1825. } else {
  1826. struct v4l2_mbus_framefmt *fmt =
  1827. v4l2_subdev_get_try_format(fh, ssd->sink_pad);
  1828. sink_fmt.left = 0;
  1829. sink_fmt.top = 0;
  1830. sink_fmt.width = fmt->width;
  1831. sink_fmt.height = fmt->height;
  1832. }
  1833. switch (sel->target) {
  1834. case V4L2_SEL_TGT_CROP_BOUNDS:
  1835. case V4L2_SEL_TGT_NATIVE_SIZE:
  1836. if (ssd == sensor->pixel_array) {
  1837. sel->r.left = sel->r.top = 0;
  1838. sel->r.width =
  1839. sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
  1840. sel->r.height =
  1841. sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
  1842. } else if (sel->pad == ssd->sink_pad) {
  1843. sel->r = sink_fmt;
  1844. } else {
  1845. sel->r = *comp;
  1846. }
  1847. break;
  1848. case V4L2_SEL_TGT_CROP:
  1849. case V4L2_SEL_TGT_COMPOSE_BOUNDS:
  1850. sel->r = *crops[sel->pad];
  1851. break;
  1852. case V4L2_SEL_TGT_COMPOSE:
  1853. sel->r = *comp;
  1854. break;
  1855. }
  1856. return 0;
  1857. }
  1858. static int smiapp_get_selection(struct v4l2_subdev *subdev,
  1859. struct v4l2_subdev_fh *fh,
  1860. struct v4l2_subdev_selection *sel)
  1861. {
  1862. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1863. int rval;
  1864. mutex_lock(&sensor->mutex);
  1865. rval = __smiapp_get_selection(subdev, fh, sel);
  1866. mutex_unlock(&sensor->mutex);
  1867. return rval;
  1868. }
  1869. static int smiapp_set_selection(struct v4l2_subdev *subdev,
  1870. struct v4l2_subdev_fh *fh,
  1871. struct v4l2_subdev_selection *sel)
  1872. {
  1873. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1874. int ret;
  1875. ret = __smiapp_sel_supported(subdev, sel);
  1876. if (ret)
  1877. return ret;
  1878. mutex_lock(&sensor->mutex);
  1879. sel->r.left = max(0, sel->r.left & ~1);
  1880. sel->r.top = max(0, sel->r.top & ~1);
  1881. sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
  1882. sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
  1883. sel->r.width = max_t(unsigned int,
  1884. sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
  1885. sel->r.width);
  1886. sel->r.height = max_t(unsigned int,
  1887. sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
  1888. sel->r.height);
  1889. switch (sel->target) {
  1890. case V4L2_SEL_TGT_CROP:
  1891. ret = smiapp_set_crop(subdev, fh, sel);
  1892. break;
  1893. case V4L2_SEL_TGT_COMPOSE:
  1894. ret = smiapp_set_compose(subdev, fh, sel);
  1895. break;
  1896. default:
  1897. ret = -EINVAL;
  1898. }
  1899. mutex_unlock(&sensor->mutex);
  1900. return ret;
  1901. }
  1902. static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
  1903. {
  1904. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1905. *frames = sensor->frame_skip;
  1906. return 0;
  1907. }
  1908. /* -----------------------------------------------------------------------------
  1909. * sysfs attributes
  1910. */
  1911. static ssize_t
  1912. smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
  1913. char *buf)
  1914. {
  1915. struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
  1916. struct i2c_client *client = v4l2_get_subdevdata(subdev);
  1917. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1918. unsigned int nbytes;
  1919. if (!sensor->dev_init_done)
  1920. return -EBUSY;
  1921. if (!sensor->nvm_size) {
  1922. /* NVM not read yet - read it now */
  1923. sensor->nvm_size = sensor->platform_data->nvm_size;
  1924. if (smiapp_set_power(subdev, 1) < 0)
  1925. return -ENODEV;
  1926. if (smiapp_read_nvm(sensor, sensor->nvm)) {
  1927. dev_err(&client->dev, "nvm read failed\n");
  1928. return -ENODEV;
  1929. }
  1930. smiapp_set_power(subdev, 0);
  1931. }
  1932. /*
  1933. * NVM is still way below a PAGE_SIZE, so we can safely
  1934. * assume this for now.
  1935. */
  1936. nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
  1937. memcpy(buf, sensor->nvm, nbytes);
  1938. return nbytes;
  1939. }
  1940. static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
  1941. static ssize_t
  1942. smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
  1943. char *buf)
  1944. {
  1945. struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
  1946. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1947. struct smiapp_module_info *minfo = &sensor->minfo;
  1948. return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
  1949. minfo->manufacturer_id, minfo->model_id,
  1950. minfo->revision_number_major) + 1;
  1951. }
  1952. static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
  1953. /* -----------------------------------------------------------------------------
  1954. * V4L2 subdev core operations
  1955. */
  1956. static int smiapp_identify_module(struct v4l2_subdev *subdev)
  1957. {
  1958. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  1959. struct i2c_client *client = v4l2_get_subdevdata(subdev);
  1960. struct smiapp_module_info *minfo = &sensor->minfo;
  1961. unsigned int i;
  1962. int rval = 0;
  1963. minfo->name = SMIAPP_NAME;
  1964. /* Module info */
  1965. rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
  1966. &minfo->manufacturer_id);
  1967. if (!rval)
  1968. rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
  1969. &minfo->model_id);
  1970. if (!rval)
  1971. rval = smiapp_read_8only(sensor,
  1972. SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
  1973. &minfo->revision_number_major);
  1974. if (!rval)
  1975. rval = smiapp_read_8only(sensor,
  1976. SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
  1977. &minfo->revision_number_minor);
  1978. if (!rval)
  1979. rval = smiapp_read_8only(sensor,
  1980. SMIAPP_REG_U8_MODULE_DATE_YEAR,
  1981. &minfo->module_year);
  1982. if (!rval)
  1983. rval = smiapp_read_8only(sensor,
  1984. SMIAPP_REG_U8_MODULE_DATE_MONTH,
  1985. &minfo->module_month);
  1986. if (!rval)
  1987. rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
  1988. &minfo->module_day);
  1989. /* Sensor info */
  1990. if (!rval)
  1991. rval = smiapp_read_8only(sensor,
  1992. SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
  1993. &minfo->sensor_manufacturer_id);
  1994. if (!rval)
  1995. rval = smiapp_read_8only(sensor,
  1996. SMIAPP_REG_U16_SENSOR_MODEL_ID,
  1997. &minfo->sensor_model_id);
  1998. if (!rval)
  1999. rval = smiapp_read_8only(sensor,
  2000. SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
  2001. &minfo->sensor_revision_number);
  2002. if (!rval)
  2003. rval = smiapp_read_8only(sensor,
  2004. SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
  2005. &minfo->sensor_firmware_version);
  2006. /* SMIA */
  2007. if (!rval)
  2008. rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
  2009. &minfo->smia_version);
  2010. if (!rval)
  2011. rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
  2012. &minfo->smiapp_version);
  2013. if (rval) {
  2014. dev_err(&client->dev, "sensor detection failed\n");
  2015. return -ENODEV;
  2016. }
  2017. dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
  2018. minfo->manufacturer_id, minfo->model_id);
  2019. dev_dbg(&client->dev,
  2020. "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
  2021. minfo->revision_number_major, minfo->revision_number_minor,
  2022. minfo->module_year, minfo->module_month, minfo->module_day);
  2023. dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
  2024. minfo->sensor_manufacturer_id, minfo->sensor_model_id);
  2025. dev_dbg(&client->dev,
  2026. "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
  2027. minfo->sensor_revision_number, minfo->sensor_firmware_version);
  2028. dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
  2029. minfo->smia_version, minfo->smiapp_version);
  2030. /*
  2031. * Some modules have bad data in the lvalues below. Hope the
  2032. * rvalues have better stuff. The lvalues are module
  2033. * parameters whereas the rvalues are sensor parameters.
  2034. */
  2035. if (!minfo->manufacturer_id && !minfo->model_id) {
  2036. minfo->manufacturer_id = minfo->sensor_manufacturer_id;
  2037. minfo->model_id = minfo->sensor_model_id;
  2038. minfo->revision_number_major = minfo->sensor_revision_number;
  2039. }
  2040. for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
  2041. if (smiapp_module_idents[i].manufacturer_id
  2042. != minfo->manufacturer_id)
  2043. continue;
  2044. if (smiapp_module_idents[i].model_id != minfo->model_id)
  2045. continue;
  2046. if (smiapp_module_idents[i].flags
  2047. & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
  2048. if (smiapp_module_idents[i].revision_number_major
  2049. < minfo->revision_number_major)
  2050. continue;
  2051. } else {
  2052. if (smiapp_module_idents[i].revision_number_major
  2053. != minfo->revision_number_major)
  2054. continue;
  2055. }
  2056. minfo->name = smiapp_module_idents[i].name;
  2057. minfo->quirk = smiapp_module_idents[i].quirk;
  2058. break;
  2059. }
  2060. if (i >= ARRAY_SIZE(smiapp_module_idents))
  2061. dev_warn(&client->dev,
  2062. "no quirks for this module; let's hope it's fully compliant\n");
  2063. dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
  2064. minfo->name, minfo->manufacturer_id, minfo->model_id,
  2065. minfo->revision_number_major);
  2066. strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
  2067. return 0;
  2068. }
  2069. static const struct v4l2_subdev_ops smiapp_ops;
  2070. static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
  2071. static const struct media_entity_operations smiapp_entity_ops;
  2072. static int smiapp_registered(struct v4l2_subdev *subdev)
  2073. {
  2074. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  2075. struct i2c_client *client = v4l2_get_subdevdata(subdev);
  2076. struct smiapp_pll *pll = &sensor->pll;
  2077. struct smiapp_subdev *last = NULL;
  2078. u32 tmp;
  2079. unsigned int i;
  2080. int rval;
  2081. sensor->vana = devm_regulator_get(&client->dev, "vana");
  2082. if (IS_ERR(sensor->vana)) {
  2083. dev_err(&client->dev, "could not get regulator for vana\n");
  2084. return PTR_ERR(sensor->vana);
  2085. }
  2086. if (!sensor->platform_data->set_xclk) {
  2087. sensor->ext_clk = devm_clk_get(&client->dev, "ext_clk");
  2088. if (IS_ERR(sensor->ext_clk)) {
  2089. dev_err(&client->dev, "could not get clock\n");
  2090. return PTR_ERR(sensor->ext_clk);
  2091. }
  2092. rval = clk_set_rate(sensor->ext_clk,
  2093. sensor->platform_data->ext_clk);
  2094. if (rval < 0) {
  2095. dev_err(&client->dev,
  2096. "unable to set clock freq to %u\n",
  2097. sensor->platform_data->ext_clk);
  2098. return rval;
  2099. }
  2100. }
  2101. if (gpio_is_valid(sensor->platform_data->xshutdown)) {
  2102. rval = devm_gpio_request_one(
  2103. &client->dev, sensor->platform_data->xshutdown, 0,
  2104. "SMIA++ xshutdown");
  2105. if (rval < 0) {
  2106. dev_err(&client->dev,
  2107. "unable to acquire reset gpio %d\n",
  2108. sensor->platform_data->xshutdown);
  2109. return rval;
  2110. }
  2111. }
  2112. rval = smiapp_power_on(sensor);
  2113. if (rval)
  2114. return -ENODEV;
  2115. rval = smiapp_identify_module(subdev);
  2116. if (rval) {
  2117. rval = -ENODEV;
  2118. goto out_power_off;
  2119. }
  2120. rval = smiapp_get_all_limits(sensor);
  2121. if (rval) {
  2122. rval = -ENODEV;
  2123. goto out_power_off;
  2124. }
  2125. /*
  2126. * Handle Sensor Module orientation on the board.
  2127. *
  2128. * The application of H-FLIP and V-FLIP on the sensor is modified by
  2129. * the sensor orientation on the board.
  2130. *
  2131. * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
  2132. * both H-FLIP and V-FLIP for normal operation which also implies
  2133. * that a set/unset operation for user space HFLIP and VFLIP v4l2
  2134. * controls will need to be internally inverted.
  2135. *
  2136. * Rotation also changes the bayer pattern.
  2137. */
  2138. if (sensor->platform_data->module_board_orient ==
  2139. SMIAPP_MODULE_BOARD_ORIENT_180)
  2140. sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
  2141. SMIAPP_IMAGE_ORIENTATION_VFLIP;
  2142. rval = smiapp_call_quirk(sensor, limits);
  2143. if (rval) {
  2144. dev_err(&client->dev, "limits quirks failed\n");
  2145. goto out_power_off;
  2146. }
  2147. if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
  2148. u32 val;
  2149. rval = smiapp_read(sensor,
  2150. SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
  2151. if (rval < 0) {
  2152. rval = -ENODEV;
  2153. goto out_power_off;
  2154. }
  2155. sensor->nbinning_subtypes = min_t(u8, val,
  2156. SMIAPP_BINNING_SUBTYPES);
  2157. for (i = 0; i < sensor->nbinning_subtypes; i++) {
  2158. rval = smiapp_read(
  2159. sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
  2160. if (rval < 0) {
  2161. rval = -ENODEV;
  2162. goto out_power_off;
  2163. }
  2164. sensor->binning_subtypes[i] =
  2165. *(struct smiapp_binning_subtype *)&val;
  2166. dev_dbg(&client->dev, "binning %xx%x\n",
  2167. sensor->binning_subtypes[i].horizontal,
  2168. sensor->binning_subtypes[i].vertical);
  2169. }
  2170. }
  2171. sensor->binning_horizontal = 1;
  2172. sensor->binning_vertical = 1;
  2173. if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
  2174. dev_err(&client->dev, "sysfs ident entry creation failed\n");
  2175. rval = -ENOENT;
  2176. goto out_power_off;
  2177. }
  2178. /* SMIA++ NVM initialization - it will be read from the sensor
  2179. * when it is first requested by userspace.
  2180. */
  2181. if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
  2182. sensor->nvm = devm_kzalloc(&client->dev,
  2183. sensor->platform_data->nvm_size, GFP_KERNEL);
  2184. if (sensor->nvm == NULL) {
  2185. dev_err(&client->dev, "nvm buf allocation failed\n");
  2186. rval = -ENOMEM;
  2187. goto out_ident_release;
  2188. }
  2189. if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
  2190. dev_err(&client->dev, "sysfs nvm entry failed\n");
  2191. rval = -EBUSY;
  2192. goto out_ident_release;
  2193. }
  2194. }
  2195. /* We consider this as profile 0 sensor if any of these are zero. */
  2196. if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
  2197. !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
  2198. !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
  2199. !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
  2200. sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
  2201. } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
  2202. != SMIAPP_SCALING_CAPABILITY_NONE) {
  2203. if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
  2204. == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
  2205. sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
  2206. else
  2207. sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
  2208. sensor->scaler = &sensor->ssds[sensor->ssds_used];
  2209. sensor->ssds_used++;
  2210. } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
  2211. == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
  2212. sensor->scaler = &sensor->ssds[sensor->ssds_used];
  2213. sensor->ssds_used++;
  2214. }
  2215. sensor->binner = &sensor->ssds[sensor->ssds_used];
  2216. sensor->ssds_used++;
  2217. sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
  2218. sensor->ssds_used++;
  2219. sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
  2220. /* prepare PLL configuration input values */
  2221. pll->bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
  2222. pll->csi2.lanes = sensor->platform_data->lanes;
  2223. pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
  2224. pll->flags = smiapp_call_quirk(sensor, pll_flags);
  2225. pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
  2226. /* Profile 0 sensors have no separate OP clock branch. */
  2227. if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
  2228. pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
  2229. rval = smiapp_get_mbus_formats(sensor);
  2230. if (rval) {
  2231. rval = -ENODEV;
  2232. goto out_nvm_release;
  2233. }
  2234. for (i = 0; i < SMIAPP_SUBDEVS; i++) {
  2235. struct {
  2236. struct smiapp_subdev *ssd;
  2237. char *name;
  2238. } const __this[] = {
  2239. { sensor->scaler, "scaler", },
  2240. { sensor->binner, "binner", },
  2241. { sensor->pixel_array, "pixel array", },
  2242. }, *_this = &__this[i];
  2243. struct smiapp_subdev *this = _this->ssd;
  2244. if (!this)
  2245. continue;
  2246. if (this != sensor->src)
  2247. v4l2_subdev_init(&this->sd, &smiapp_ops);
  2248. this->sensor = sensor;
  2249. if (this == sensor->pixel_array) {
  2250. this->npads = 1;
  2251. } else {
  2252. this->npads = 2;
  2253. this->source_pad = 1;
  2254. }
  2255. snprintf(this->sd.name,
  2256. sizeof(this->sd.name), "%s %s %d-%4.4x",
  2257. sensor->minfo.name, _this->name,
  2258. i2c_adapter_id(client->adapter), client->addr);
  2259. this->sink_fmt.width =
  2260. sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
  2261. this->sink_fmt.height =
  2262. sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
  2263. this->compose.width = this->sink_fmt.width;
  2264. this->compose.height = this->sink_fmt.height;
  2265. this->crop[this->source_pad] = this->compose;
  2266. this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
  2267. if (this != sensor->pixel_array) {
  2268. this->crop[this->sink_pad] = this->compose;
  2269. this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
  2270. }
  2271. this->sd.entity.ops = &smiapp_entity_ops;
  2272. if (last == NULL) {
  2273. last = this;
  2274. continue;
  2275. }
  2276. this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
  2277. this->sd.internal_ops = &smiapp_internal_ops;
  2278. this->sd.owner = THIS_MODULE;
  2279. v4l2_set_subdevdata(&this->sd, client);
  2280. rval = media_entity_init(&this->sd.entity,
  2281. this->npads, this->pads, 0);
  2282. if (rval) {
  2283. dev_err(&client->dev,
  2284. "media_entity_init failed\n");
  2285. goto out_nvm_release;
  2286. }
  2287. rval = media_entity_create_link(&this->sd.entity,
  2288. this->source_pad,
  2289. &last->sd.entity,
  2290. last->sink_pad,
  2291. MEDIA_LNK_FL_ENABLED |
  2292. MEDIA_LNK_FL_IMMUTABLE);
  2293. if (rval) {
  2294. dev_err(&client->dev,
  2295. "media_entity_create_link failed\n");
  2296. goto out_nvm_release;
  2297. }
  2298. rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
  2299. &this->sd);
  2300. if (rval) {
  2301. dev_err(&client->dev,
  2302. "v4l2_device_register_subdev failed\n");
  2303. goto out_nvm_release;
  2304. }
  2305. last = this;
  2306. }
  2307. dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
  2308. sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
  2309. /* final steps */
  2310. smiapp_read_frame_fmt(sensor);
  2311. rval = smiapp_init_controls(sensor);
  2312. if (rval < 0)
  2313. goto out_nvm_release;
  2314. mutex_lock(&sensor->mutex);
  2315. rval = smiapp_update_mode(sensor);
  2316. mutex_unlock(&sensor->mutex);
  2317. if (rval) {
  2318. dev_err(&client->dev, "update mode failed\n");
  2319. goto out_nvm_release;
  2320. }
  2321. sensor->streaming = false;
  2322. sensor->dev_init_done = true;
  2323. /* check flash capability */
  2324. rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
  2325. sensor->flash_capability = tmp;
  2326. if (rval)
  2327. goto out_nvm_release;
  2328. smiapp_power_off(sensor);
  2329. return 0;
  2330. out_nvm_release:
  2331. device_remove_file(&client->dev, &dev_attr_nvm);
  2332. out_ident_release:
  2333. device_remove_file(&client->dev, &dev_attr_ident);
  2334. out_power_off:
  2335. smiapp_power_off(sensor);
  2336. return rval;
  2337. }
  2338. static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
  2339. {
  2340. struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
  2341. struct smiapp_sensor *sensor = ssd->sensor;
  2342. u32 mbus_code =
  2343. smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
  2344. unsigned int i;
  2345. mutex_lock(&sensor->mutex);
  2346. for (i = 0; i < ssd->npads; i++) {
  2347. struct v4l2_mbus_framefmt *try_fmt =
  2348. v4l2_subdev_get_try_format(fh, i);
  2349. struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
  2350. struct v4l2_rect *try_comp;
  2351. try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
  2352. try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
  2353. try_fmt->code = mbus_code;
  2354. try_fmt->field = V4L2_FIELD_NONE;
  2355. try_crop->top = 0;
  2356. try_crop->left = 0;
  2357. try_crop->width = try_fmt->width;
  2358. try_crop->height = try_fmt->height;
  2359. if (ssd != sensor->pixel_array)
  2360. continue;
  2361. try_comp = v4l2_subdev_get_try_compose(fh, i);
  2362. *try_comp = *try_crop;
  2363. }
  2364. mutex_unlock(&sensor->mutex);
  2365. return smiapp_set_power(sd, 1);
  2366. }
  2367. static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
  2368. {
  2369. return smiapp_set_power(sd, 0);
  2370. }
  2371. static const struct v4l2_subdev_video_ops smiapp_video_ops = {
  2372. .s_stream = smiapp_set_stream,
  2373. };
  2374. static const struct v4l2_subdev_core_ops smiapp_core_ops = {
  2375. .s_power = smiapp_set_power,
  2376. };
  2377. static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
  2378. .enum_mbus_code = smiapp_enum_mbus_code,
  2379. .get_fmt = smiapp_get_format,
  2380. .set_fmt = smiapp_set_format,
  2381. .get_selection = smiapp_get_selection,
  2382. .set_selection = smiapp_set_selection,
  2383. };
  2384. static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
  2385. .g_skip_frames = smiapp_get_skip_frames,
  2386. };
  2387. static const struct v4l2_subdev_ops smiapp_ops = {
  2388. .core = &smiapp_core_ops,
  2389. .video = &smiapp_video_ops,
  2390. .pad = &smiapp_pad_ops,
  2391. .sensor = &smiapp_sensor_ops,
  2392. };
  2393. static const struct media_entity_operations smiapp_entity_ops = {
  2394. .link_validate = v4l2_subdev_link_validate,
  2395. };
  2396. static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
  2397. .registered = smiapp_registered,
  2398. .open = smiapp_open,
  2399. .close = smiapp_close,
  2400. };
  2401. static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
  2402. .open = smiapp_open,
  2403. .close = smiapp_close,
  2404. };
  2405. /* -----------------------------------------------------------------------------
  2406. * I2C Driver
  2407. */
  2408. #ifdef CONFIG_PM
  2409. static int smiapp_suspend(struct device *dev)
  2410. {
  2411. struct i2c_client *client = to_i2c_client(dev);
  2412. struct v4l2_subdev *subdev = i2c_get_clientdata(client);
  2413. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  2414. bool streaming;
  2415. BUG_ON(mutex_is_locked(&sensor->mutex));
  2416. if (sensor->power_count == 0)
  2417. return 0;
  2418. if (sensor->streaming)
  2419. smiapp_stop_streaming(sensor);
  2420. streaming = sensor->streaming;
  2421. smiapp_power_off(sensor);
  2422. /* save state for resume */
  2423. sensor->streaming = streaming;
  2424. return 0;
  2425. }
  2426. static int smiapp_resume(struct device *dev)
  2427. {
  2428. struct i2c_client *client = to_i2c_client(dev);
  2429. struct v4l2_subdev *subdev = i2c_get_clientdata(client);
  2430. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  2431. int rval;
  2432. if (sensor->power_count == 0)
  2433. return 0;
  2434. rval = smiapp_power_on(sensor);
  2435. if (rval)
  2436. return rval;
  2437. if (sensor->streaming)
  2438. rval = smiapp_start_streaming(sensor);
  2439. return rval;
  2440. }
  2441. #else
  2442. #define smiapp_suspend NULL
  2443. #define smiapp_resume NULL
  2444. #endif /* CONFIG_PM */
  2445. static int smiapp_probe(struct i2c_client *client,
  2446. const struct i2c_device_id *devid)
  2447. {
  2448. struct smiapp_sensor *sensor;
  2449. if (client->dev.platform_data == NULL)
  2450. return -ENODEV;
  2451. sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
  2452. if (sensor == NULL)
  2453. return -ENOMEM;
  2454. sensor->platform_data = client->dev.platform_data;
  2455. mutex_init(&sensor->mutex);
  2456. mutex_init(&sensor->power_mutex);
  2457. sensor->src = &sensor->ssds[sensor->ssds_used];
  2458. v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
  2459. sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
  2460. sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
  2461. sensor->src->sensor = sensor;
  2462. sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
  2463. return media_entity_init(&sensor->src->sd.entity, 2,
  2464. sensor->src->pads, 0);
  2465. }
  2466. static int smiapp_remove(struct i2c_client *client)
  2467. {
  2468. struct v4l2_subdev *subdev = i2c_get_clientdata(client);
  2469. struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
  2470. unsigned int i;
  2471. if (sensor->power_count) {
  2472. if (gpio_is_valid(sensor->platform_data->xshutdown))
  2473. gpio_set_value(sensor->platform_data->xshutdown, 0);
  2474. if (sensor->platform_data->set_xclk)
  2475. sensor->platform_data->set_xclk(&sensor->src->sd, 0);
  2476. else
  2477. clk_disable_unprepare(sensor->ext_clk);
  2478. sensor->power_count = 0;
  2479. }
  2480. device_remove_file(&client->dev, &dev_attr_ident);
  2481. if (sensor->nvm)
  2482. device_remove_file(&client->dev, &dev_attr_nvm);
  2483. for (i = 0; i < sensor->ssds_used; i++) {
  2484. v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
  2485. media_entity_cleanup(&sensor->ssds[i].sd.entity);
  2486. }
  2487. smiapp_free_controls(sensor);
  2488. return 0;
  2489. }
  2490. static const struct i2c_device_id smiapp_id_table[] = {
  2491. { SMIAPP_NAME, 0 },
  2492. { },
  2493. };
  2494. MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
  2495. static const struct dev_pm_ops smiapp_pm_ops = {
  2496. .suspend = smiapp_suspend,
  2497. .resume = smiapp_resume,
  2498. };
  2499. static struct i2c_driver smiapp_i2c_driver = {
  2500. .driver = {
  2501. .name = SMIAPP_NAME,
  2502. .pm = &smiapp_pm_ops,
  2503. },
  2504. .probe = smiapp_probe,
  2505. .remove = smiapp_remove,
  2506. .id_table = smiapp_id_table,
  2507. };
  2508. module_i2c_driver(smiapp_i2c_driver);
  2509. MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
  2510. MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
  2511. MODULE_LICENSE("GPL");