lm85.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652
  1. /*
  2. * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
  3. * monitoring
  4. * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
  5. * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
  6. * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
  7. * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
  8. * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
  9. *
  10. * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/init.h>
  28. #include <linux/slab.h>
  29. #include <linux/jiffies.h>
  30. #include <linux/i2c.h>
  31. #include <linux/hwmon.h>
  32. #include <linux/hwmon-vid.h>
  33. #include <linux/hwmon-sysfs.h>
  34. #include <linux/err.h>
  35. #include <linux/mutex.h>
  36. /* Addresses to scan */
  37. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  38. enum chips {
  39. lm85,
  40. adm1027, adt7463, adt7468,
  41. emc6d100, emc6d102, emc6d103, emc6d103s
  42. };
  43. /* The LM85 registers */
  44. #define LM85_REG_IN(nr) (0x20 + (nr))
  45. #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
  46. #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
  47. #define LM85_REG_TEMP(nr) (0x25 + (nr))
  48. #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
  49. #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
  50. /* Fan speeds are LSB, MSB (2 bytes) */
  51. #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
  52. #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
  53. #define LM85_REG_PWM(nr) (0x30 + (nr))
  54. #define LM85_REG_COMPANY 0x3e
  55. #define LM85_REG_VERSTEP 0x3f
  56. #define ADT7468_REG_CFG5 0x7c
  57. #define ADT7468_OFF64 (1 << 0)
  58. #define ADT7468_HFPWM (1 << 1)
  59. #define IS_ADT7468_OFF64(data) \
  60. ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  61. #define IS_ADT7468_HFPWM(data) \
  62. ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  63. /* These are the recognized values for the above regs */
  64. #define LM85_COMPANY_NATIONAL 0x01
  65. #define LM85_COMPANY_ANALOG_DEV 0x41
  66. #define LM85_COMPANY_SMSC 0x5c
  67. #define LM85_VERSTEP_LM85C 0x60
  68. #define LM85_VERSTEP_LM85B 0x62
  69. #define LM85_VERSTEP_LM96000_1 0x68
  70. #define LM85_VERSTEP_LM96000_2 0x69
  71. #define LM85_VERSTEP_ADM1027 0x60
  72. #define LM85_VERSTEP_ADT7463 0x62
  73. #define LM85_VERSTEP_ADT7463C 0x6A
  74. #define LM85_VERSTEP_ADT7468_1 0x71
  75. #define LM85_VERSTEP_ADT7468_2 0x72
  76. #define LM85_VERSTEP_EMC6D100_A0 0x60
  77. #define LM85_VERSTEP_EMC6D100_A1 0x61
  78. #define LM85_VERSTEP_EMC6D102 0x65
  79. #define LM85_VERSTEP_EMC6D103_A0 0x68
  80. #define LM85_VERSTEP_EMC6D103_A1 0x69
  81. #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
  82. #define LM85_REG_CONFIG 0x40
  83. #define LM85_REG_ALARM1 0x41
  84. #define LM85_REG_ALARM2 0x42
  85. #define LM85_REG_VID 0x43
  86. /* Automated FAN control */
  87. #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
  88. #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
  89. #define LM85_REG_AFAN_SPIKE1 0x62
  90. #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
  91. #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
  92. #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
  93. #define LM85_REG_AFAN_HYST1 0x6d
  94. #define LM85_REG_AFAN_HYST2 0x6e
  95. #define ADM1027_REG_EXTEND_ADC1 0x76
  96. #define ADM1027_REG_EXTEND_ADC2 0x77
  97. #define EMC6D100_REG_ALARM3 0x7d
  98. /* IN5, IN6 and IN7 */
  99. #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
  100. #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
  101. #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
  102. #define EMC6D102_REG_EXTEND_ADC1 0x85
  103. #define EMC6D102_REG_EXTEND_ADC2 0x86
  104. #define EMC6D102_REG_EXTEND_ADC3 0x87
  105. #define EMC6D102_REG_EXTEND_ADC4 0x88
  106. /*
  107. * Conversions. Rounding and limit checking is only done on the TO_REG
  108. * variants. Note that you should be a bit careful with which arguments
  109. * these macros are called: arguments may be evaluated more than once.
  110. */
  111. /* IN are scaled according to built-in resistors */
  112. static const int lm85_scaling[] = { /* .001 Volts */
  113. 2500, 2250, 3300, 5000, 12000,
  114. 3300, 1500, 1800 /*EMC6D100*/
  115. };
  116. #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
  117. #define INS_TO_REG(n, val) \
  118. clamp_val(SCALE(val, lm85_scaling[n], 192), 0, 255)
  119. #define INSEXT_FROM_REG(n, val, ext) \
  120. SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
  121. #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
  122. /* FAN speed is measured using 90kHz clock */
  123. static inline u16 FAN_TO_REG(unsigned long val)
  124. {
  125. if (!val)
  126. return 0xffff;
  127. return clamp_val(5400000 / val, 1, 0xfffe);
  128. }
  129. #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
  130. 5400000 / (val))
  131. /* Temperature is reported in .001 degC increments */
  132. #define TEMP_TO_REG(val) \
  133. DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
  134. #define TEMPEXT_FROM_REG(val, ext) \
  135. SCALE(((val) << 4) + (ext), 16, 1000)
  136. #define TEMP_FROM_REG(val) ((val) * 1000)
  137. #define PWM_TO_REG(val) clamp_val(val, 0, 255)
  138. #define PWM_FROM_REG(val) (val)
  139. /*
  140. * ZONEs have the following parameters:
  141. * Limit (low) temp, 1. degC
  142. * Hysteresis (below limit), 1. degC (0-15)
  143. * Range of speed control, .1 degC (2-80)
  144. * Critical (high) temp, 1. degC
  145. *
  146. * FAN PWMs have the following parameters:
  147. * Reference Zone, 1, 2, 3, etc.
  148. * Spinup time, .05 sec
  149. * PWM value at limit/low temp, 1 count
  150. * PWM Frequency, 1. Hz
  151. * PWM is Min or OFF below limit, flag
  152. * Invert PWM output, flag
  153. *
  154. * Some chips filter the temp, others the fan.
  155. * Filter constant (or disabled) .1 seconds
  156. */
  157. /* These are the zone temperature range encodings in .001 degree C */
  158. static const int lm85_range_map[] = {
  159. 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
  160. 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
  161. };
  162. static int RANGE_TO_REG(long range)
  163. {
  164. int i;
  165. /* Find the closest match */
  166. for (i = 0; i < 15; ++i) {
  167. if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2)
  168. break;
  169. }
  170. return i;
  171. }
  172. #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
  173. /* These are the PWM frequency encodings */
  174. static const int lm85_freq_map[8] = { /* 1 Hz */
  175. 10, 15, 23, 30, 38, 47, 61, 94
  176. };
  177. static const int adm1027_freq_map[8] = { /* 1 Hz */
  178. 11, 15, 22, 29, 35, 44, 59, 88
  179. };
  180. static int FREQ_TO_REG(const int *map, unsigned long freq)
  181. {
  182. int i;
  183. /* Find the closest match */
  184. for (i = 0; i < 7; ++i)
  185. if (freq <= (map[i] + map[i + 1]) / 2)
  186. break;
  187. return i;
  188. }
  189. static int FREQ_FROM_REG(const int *map, u8 reg)
  190. {
  191. return map[reg & 0x07];
  192. }
  193. /*
  194. * Since we can't use strings, I'm abusing these numbers
  195. * to stand in for the following meanings:
  196. * 1 -- PWM responds to Zone 1
  197. * 2 -- PWM responds to Zone 2
  198. * 3 -- PWM responds to Zone 3
  199. * 23 -- PWM responds to the higher temp of Zone 2 or 3
  200. * 123 -- PWM responds to highest of Zone 1, 2, or 3
  201. * 0 -- PWM is always at 0% (ie, off)
  202. * -1 -- PWM is always at 100%
  203. * -2 -- PWM responds to manual control
  204. */
  205. static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
  206. #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
  207. static int ZONE_TO_REG(int zone)
  208. {
  209. int i;
  210. for (i = 0; i <= 7; ++i)
  211. if (zone == lm85_zone_map[i])
  212. break;
  213. if (i > 7) /* Not found. */
  214. i = 3; /* Always 100% */
  215. return i << 5;
  216. }
  217. #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
  218. #define HYST_FROM_REG(val) ((val) * 1000)
  219. /*
  220. * Chip sampling rates
  221. *
  222. * Some sensors are not updated more frequently than once per second
  223. * so it doesn't make sense to read them more often than that.
  224. * We cache the results and return the saved data if the driver
  225. * is called again before a second has elapsed.
  226. *
  227. * Also, there is significant configuration data for this chip
  228. * given the automatic PWM fan control that is possible. There
  229. * are about 47 bytes of config data to only 22 bytes of actual
  230. * readings. So, we keep the config data up to date in the cache
  231. * when it is written and only sample it once every 1 *minute*
  232. */
  233. #define LM85_DATA_INTERVAL (HZ + HZ / 2)
  234. #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
  235. /*
  236. * LM85 can automatically adjust fan speeds based on temperature
  237. * This structure encapsulates an entire Zone config. There are
  238. * three zones (one for each temperature input) on the lm85
  239. */
  240. struct lm85_zone {
  241. s8 limit; /* Low temp limit */
  242. u8 hyst; /* Low limit hysteresis. (0-15) */
  243. u8 range; /* Temp range, encoded */
  244. s8 critical; /* "All fans ON" temp limit */
  245. u8 max_desired; /*
  246. * Actual "max" temperature specified. Preserved
  247. * to prevent "drift" as other autofan control
  248. * values change.
  249. */
  250. };
  251. struct lm85_autofan {
  252. u8 config; /* Register value */
  253. u8 min_pwm; /* Minimum PWM value, encoded */
  254. u8 min_off; /* Min PWM or OFF below "limit", flag */
  255. };
  256. /*
  257. * For each registered chip, we need to keep some data in memory.
  258. * The structure is dynamically allocated.
  259. */
  260. struct lm85_data {
  261. struct i2c_client *client;
  262. const struct attribute_group *groups[6];
  263. const int *freq_map;
  264. enum chips type;
  265. bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
  266. struct mutex update_lock;
  267. int valid; /* !=0 if following fields are valid */
  268. unsigned long last_reading; /* In jiffies */
  269. unsigned long last_config; /* In jiffies */
  270. u8 in[8]; /* Register value */
  271. u8 in_max[8]; /* Register value */
  272. u8 in_min[8]; /* Register value */
  273. s8 temp[3]; /* Register value */
  274. s8 temp_min[3]; /* Register value */
  275. s8 temp_max[3]; /* Register value */
  276. u16 fan[4]; /* Register value */
  277. u16 fan_min[4]; /* Register value */
  278. u8 pwm[3]; /* Register value */
  279. u8 pwm_freq[3]; /* Register encoding */
  280. u8 temp_ext[3]; /* Decoded values */
  281. u8 in_ext[8]; /* Decoded values */
  282. u8 vid; /* Register value */
  283. u8 vrm; /* VRM version */
  284. u32 alarms; /* Register encoding, combined */
  285. u8 cfg5; /* Config Register 5 on ADT7468 */
  286. struct lm85_autofan autofan[3];
  287. struct lm85_zone zone[3];
  288. };
  289. static int lm85_read_value(struct i2c_client *client, u8 reg)
  290. {
  291. int res;
  292. /* What size location is it? */
  293. switch (reg) {
  294. case LM85_REG_FAN(0): /* Read WORD data */
  295. case LM85_REG_FAN(1):
  296. case LM85_REG_FAN(2):
  297. case LM85_REG_FAN(3):
  298. case LM85_REG_FAN_MIN(0):
  299. case LM85_REG_FAN_MIN(1):
  300. case LM85_REG_FAN_MIN(2):
  301. case LM85_REG_FAN_MIN(3):
  302. case LM85_REG_ALARM1: /* Read both bytes at once */
  303. res = i2c_smbus_read_byte_data(client, reg) & 0xff;
  304. res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
  305. break;
  306. default: /* Read BYTE data */
  307. res = i2c_smbus_read_byte_data(client, reg);
  308. break;
  309. }
  310. return res;
  311. }
  312. static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
  313. {
  314. switch (reg) {
  315. case LM85_REG_FAN(0): /* Write WORD data */
  316. case LM85_REG_FAN(1):
  317. case LM85_REG_FAN(2):
  318. case LM85_REG_FAN(3):
  319. case LM85_REG_FAN_MIN(0):
  320. case LM85_REG_FAN_MIN(1):
  321. case LM85_REG_FAN_MIN(2):
  322. case LM85_REG_FAN_MIN(3):
  323. /* NOTE: ALARM is read only, so not included here */
  324. i2c_smbus_write_byte_data(client, reg, value & 0xff);
  325. i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
  326. break;
  327. default: /* Write BYTE data */
  328. i2c_smbus_write_byte_data(client, reg, value);
  329. break;
  330. }
  331. }
  332. static struct lm85_data *lm85_update_device(struct device *dev)
  333. {
  334. struct lm85_data *data = dev_get_drvdata(dev);
  335. struct i2c_client *client = data->client;
  336. int i;
  337. mutex_lock(&data->update_lock);
  338. if (!data->valid ||
  339. time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
  340. /* Things that change quickly */
  341. dev_dbg(&client->dev, "Reading sensor values\n");
  342. /*
  343. * Have to read extended bits first to "freeze" the
  344. * more significant bits that are read later.
  345. * There are 2 additional resolution bits per channel and we
  346. * have room for 4, so we shift them to the left.
  347. */
  348. if (data->type == adm1027 || data->type == adt7463 ||
  349. data->type == adt7468) {
  350. int ext1 = lm85_read_value(client,
  351. ADM1027_REG_EXTEND_ADC1);
  352. int ext2 = lm85_read_value(client,
  353. ADM1027_REG_EXTEND_ADC2);
  354. int val = (ext1 << 8) + ext2;
  355. for (i = 0; i <= 4; i++)
  356. data->in_ext[i] =
  357. ((val >> (i * 2)) & 0x03) << 2;
  358. for (i = 0; i <= 2; i++)
  359. data->temp_ext[i] =
  360. (val >> ((i + 4) * 2)) & 0x0c;
  361. }
  362. data->vid = lm85_read_value(client, LM85_REG_VID);
  363. for (i = 0; i <= 3; ++i) {
  364. data->in[i] =
  365. lm85_read_value(client, LM85_REG_IN(i));
  366. data->fan[i] =
  367. lm85_read_value(client, LM85_REG_FAN(i));
  368. }
  369. if (!data->has_vid5)
  370. data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
  371. if (data->type == adt7468)
  372. data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
  373. for (i = 0; i <= 2; ++i) {
  374. data->temp[i] =
  375. lm85_read_value(client, LM85_REG_TEMP(i));
  376. data->pwm[i] =
  377. lm85_read_value(client, LM85_REG_PWM(i));
  378. if (IS_ADT7468_OFF64(data))
  379. data->temp[i] -= 64;
  380. }
  381. data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
  382. if (data->type == emc6d100) {
  383. /* Three more voltage sensors */
  384. for (i = 5; i <= 7; ++i) {
  385. data->in[i] = lm85_read_value(client,
  386. EMC6D100_REG_IN(i));
  387. }
  388. /* More alarm bits */
  389. data->alarms |= lm85_read_value(client,
  390. EMC6D100_REG_ALARM3) << 16;
  391. } else if (data->type == emc6d102 || data->type == emc6d103 ||
  392. data->type == emc6d103s) {
  393. /*
  394. * Have to read LSB bits after the MSB ones because
  395. * the reading of the MSB bits has frozen the
  396. * LSBs (backward from the ADM1027).
  397. */
  398. int ext1 = lm85_read_value(client,
  399. EMC6D102_REG_EXTEND_ADC1);
  400. int ext2 = lm85_read_value(client,
  401. EMC6D102_REG_EXTEND_ADC2);
  402. int ext3 = lm85_read_value(client,
  403. EMC6D102_REG_EXTEND_ADC3);
  404. int ext4 = lm85_read_value(client,
  405. EMC6D102_REG_EXTEND_ADC4);
  406. data->in_ext[0] = ext3 & 0x0f;
  407. data->in_ext[1] = ext4 & 0x0f;
  408. data->in_ext[2] = ext4 >> 4;
  409. data->in_ext[3] = ext3 >> 4;
  410. data->in_ext[4] = ext2 >> 4;
  411. data->temp_ext[0] = ext1 & 0x0f;
  412. data->temp_ext[1] = ext2 & 0x0f;
  413. data->temp_ext[2] = ext1 >> 4;
  414. }
  415. data->last_reading = jiffies;
  416. } /* last_reading */
  417. if (!data->valid ||
  418. time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
  419. /* Things that don't change often */
  420. dev_dbg(&client->dev, "Reading config values\n");
  421. for (i = 0; i <= 3; ++i) {
  422. data->in_min[i] =
  423. lm85_read_value(client, LM85_REG_IN_MIN(i));
  424. data->in_max[i] =
  425. lm85_read_value(client, LM85_REG_IN_MAX(i));
  426. data->fan_min[i] =
  427. lm85_read_value(client, LM85_REG_FAN_MIN(i));
  428. }
  429. if (!data->has_vid5) {
  430. data->in_min[4] = lm85_read_value(client,
  431. LM85_REG_IN_MIN(4));
  432. data->in_max[4] = lm85_read_value(client,
  433. LM85_REG_IN_MAX(4));
  434. }
  435. if (data->type == emc6d100) {
  436. for (i = 5; i <= 7; ++i) {
  437. data->in_min[i] = lm85_read_value(client,
  438. EMC6D100_REG_IN_MIN(i));
  439. data->in_max[i] = lm85_read_value(client,
  440. EMC6D100_REG_IN_MAX(i));
  441. }
  442. }
  443. for (i = 0; i <= 2; ++i) {
  444. int val;
  445. data->temp_min[i] =
  446. lm85_read_value(client, LM85_REG_TEMP_MIN(i));
  447. data->temp_max[i] =
  448. lm85_read_value(client, LM85_REG_TEMP_MAX(i));
  449. data->autofan[i].config =
  450. lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
  451. val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
  452. data->pwm_freq[i] = val & 0x07;
  453. data->zone[i].range = val >> 4;
  454. data->autofan[i].min_pwm =
  455. lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
  456. data->zone[i].limit =
  457. lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
  458. data->zone[i].critical =
  459. lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
  460. if (IS_ADT7468_OFF64(data)) {
  461. data->temp_min[i] -= 64;
  462. data->temp_max[i] -= 64;
  463. data->zone[i].limit -= 64;
  464. data->zone[i].critical -= 64;
  465. }
  466. }
  467. if (data->type != emc6d103s) {
  468. i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  469. data->autofan[0].min_off = (i & 0x20) != 0;
  470. data->autofan[1].min_off = (i & 0x40) != 0;
  471. data->autofan[2].min_off = (i & 0x80) != 0;
  472. i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
  473. data->zone[0].hyst = i >> 4;
  474. data->zone[1].hyst = i & 0x0f;
  475. i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
  476. data->zone[2].hyst = i >> 4;
  477. }
  478. data->last_config = jiffies;
  479. } /* last_config */
  480. data->valid = 1;
  481. mutex_unlock(&data->update_lock);
  482. return data;
  483. }
  484. /* 4 Fans */
  485. static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
  486. char *buf)
  487. {
  488. int nr = to_sensor_dev_attr(attr)->index;
  489. struct lm85_data *data = lm85_update_device(dev);
  490. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
  491. }
  492. static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
  493. char *buf)
  494. {
  495. int nr = to_sensor_dev_attr(attr)->index;
  496. struct lm85_data *data = lm85_update_device(dev);
  497. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
  498. }
  499. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  500. const char *buf, size_t count)
  501. {
  502. int nr = to_sensor_dev_attr(attr)->index;
  503. struct lm85_data *data = dev_get_drvdata(dev);
  504. struct i2c_client *client = data->client;
  505. unsigned long val;
  506. int err;
  507. err = kstrtoul(buf, 10, &val);
  508. if (err)
  509. return err;
  510. mutex_lock(&data->update_lock);
  511. data->fan_min[nr] = FAN_TO_REG(val);
  512. lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
  513. mutex_unlock(&data->update_lock);
  514. return count;
  515. }
  516. #define show_fan_offset(offset) \
  517. static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
  518. show_fan, NULL, offset - 1); \
  519. static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
  520. show_fan_min, set_fan_min, offset - 1)
  521. show_fan_offset(1);
  522. show_fan_offset(2);
  523. show_fan_offset(3);
  524. show_fan_offset(4);
  525. /* vid, vrm, alarms */
  526. static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
  527. char *buf)
  528. {
  529. struct lm85_data *data = lm85_update_device(dev);
  530. int vid;
  531. if (data->has_vid5) {
  532. /* 6-pin VID (VRM 10) */
  533. vid = vid_from_reg(data->vid & 0x3f, data->vrm);
  534. } else {
  535. /* 5-pin VID (VRM 9) */
  536. vid = vid_from_reg(data->vid & 0x1f, data->vrm);
  537. }
  538. return sprintf(buf, "%d\n", vid);
  539. }
  540. static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
  541. static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
  542. char *buf)
  543. {
  544. struct lm85_data *data = dev_get_drvdata(dev);
  545. return sprintf(buf, "%ld\n", (long) data->vrm);
  546. }
  547. static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
  548. const char *buf, size_t count)
  549. {
  550. struct lm85_data *data = dev_get_drvdata(dev);
  551. unsigned long val;
  552. int err;
  553. err = kstrtoul(buf, 10, &val);
  554. if (err)
  555. return err;
  556. if (val > 255)
  557. return -EINVAL;
  558. data->vrm = val;
  559. return count;
  560. }
  561. static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
  562. static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
  563. *attr, char *buf)
  564. {
  565. struct lm85_data *data = lm85_update_device(dev);
  566. return sprintf(buf, "%u\n", data->alarms);
  567. }
  568. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
  569. static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
  570. char *buf)
  571. {
  572. int nr = to_sensor_dev_attr(attr)->index;
  573. struct lm85_data *data = lm85_update_device(dev);
  574. return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
  575. }
  576. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  577. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  578. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  579. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  580. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
  581. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
  582. static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
  583. static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
  584. static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
  585. static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
  586. static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
  587. static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
  588. static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
  589. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
  590. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
  591. static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
  592. static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
  593. /* pwm */
  594. static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
  595. char *buf)
  596. {
  597. int nr = to_sensor_dev_attr(attr)->index;
  598. struct lm85_data *data = lm85_update_device(dev);
  599. return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
  600. }
  601. static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
  602. const char *buf, size_t count)
  603. {
  604. int nr = to_sensor_dev_attr(attr)->index;
  605. struct lm85_data *data = dev_get_drvdata(dev);
  606. struct i2c_client *client = data->client;
  607. unsigned long val;
  608. int err;
  609. err = kstrtoul(buf, 10, &val);
  610. if (err)
  611. return err;
  612. mutex_lock(&data->update_lock);
  613. data->pwm[nr] = PWM_TO_REG(val);
  614. lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
  615. mutex_unlock(&data->update_lock);
  616. return count;
  617. }
  618. static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
  619. *attr, char *buf)
  620. {
  621. int nr = to_sensor_dev_attr(attr)->index;
  622. struct lm85_data *data = lm85_update_device(dev);
  623. int pwm_zone, enable;
  624. pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
  625. switch (pwm_zone) {
  626. case -1: /* PWM is always at 100% */
  627. enable = 0;
  628. break;
  629. case 0: /* PWM is always at 0% */
  630. case -2: /* PWM responds to manual control */
  631. enable = 1;
  632. break;
  633. default: /* PWM in automatic mode */
  634. enable = 2;
  635. }
  636. return sprintf(buf, "%d\n", enable);
  637. }
  638. static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
  639. *attr, const char *buf, size_t count)
  640. {
  641. int nr = to_sensor_dev_attr(attr)->index;
  642. struct lm85_data *data = dev_get_drvdata(dev);
  643. struct i2c_client *client = data->client;
  644. u8 config;
  645. unsigned long val;
  646. int err;
  647. err = kstrtoul(buf, 10, &val);
  648. if (err)
  649. return err;
  650. switch (val) {
  651. case 0:
  652. config = 3;
  653. break;
  654. case 1:
  655. config = 7;
  656. break;
  657. case 2:
  658. /*
  659. * Here we have to choose arbitrarily one of the 5 possible
  660. * configurations; I go for the safest
  661. */
  662. config = 6;
  663. break;
  664. default:
  665. return -EINVAL;
  666. }
  667. mutex_lock(&data->update_lock);
  668. data->autofan[nr].config = lm85_read_value(client,
  669. LM85_REG_AFAN_CONFIG(nr));
  670. data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
  671. | (config << 5);
  672. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  673. data->autofan[nr].config);
  674. mutex_unlock(&data->update_lock);
  675. return count;
  676. }
  677. static ssize_t show_pwm_freq(struct device *dev,
  678. struct device_attribute *attr, char *buf)
  679. {
  680. int nr = to_sensor_dev_attr(attr)->index;
  681. struct lm85_data *data = lm85_update_device(dev);
  682. int freq;
  683. if (IS_ADT7468_HFPWM(data))
  684. freq = 22500;
  685. else
  686. freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
  687. return sprintf(buf, "%d\n", freq);
  688. }
  689. static ssize_t set_pwm_freq(struct device *dev,
  690. struct device_attribute *attr, const char *buf, size_t count)
  691. {
  692. int nr = to_sensor_dev_attr(attr)->index;
  693. struct lm85_data *data = dev_get_drvdata(dev);
  694. struct i2c_client *client = data->client;
  695. unsigned long val;
  696. int err;
  697. err = kstrtoul(buf, 10, &val);
  698. if (err)
  699. return err;
  700. mutex_lock(&data->update_lock);
  701. /*
  702. * The ADT7468 has a special high-frequency PWM output mode,
  703. * where all PWM outputs are driven by a 22.5 kHz clock.
  704. * This might confuse the user, but there's not much we can do.
  705. */
  706. if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
  707. data->cfg5 &= ~ADT7468_HFPWM;
  708. lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
  709. } else { /* Low freq. mode */
  710. data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
  711. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  712. (data->zone[nr].range << 4)
  713. | data->pwm_freq[nr]);
  714. if (data->type == adt7468) {
  715. data->cfg5 |= ADT7468_HFPWM;
  716. lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
  717. }
  718. }
  719. mutex_unlock(&data->update_lock);
  720. return count;
  721. }
  722. #define show_pwm_reg(offset) \
  723. static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
  724. show_pwm, set_pwm, offset - 1); \
  725. static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
  726. show_pwm_enable, set_pwm_enable, offset - 1); \
  727. static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
  728. show_pwm_freq, set_pwm_freq, offset - 1)
  729. show_pwm_reg(1);
  730. show_pwm_reg(2);
  731. show_pwm_reg(3);
  732. /* Voltages */
  733. static ssize_t show_in(struct device *dev, struct device_attribute *attr,
  734. char *buf)
  735. {
  736. int nr = to_sensor_dev_attr(attr)->index;
  737. struct lm85_data *data = lm85_update_device(dev);
  738. return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
  739. data->in_ext[nr]));
  740. }
  741. static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
  742. char *buf)
  743. {
  744. int nr = to_sensor_dev_attr(attr)->index;
  745. struct lm85_data *data = lm85_update_device(dev);
  746. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
  747. }
  748. static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
  749. const char *buf, size_t count)
  750. {
  751. int nr = to_sensor_dev_attr(attr)->index;
  752. struct lm85_data *data = dev_get_drvdata(dev);
  753. struct i2c_client *client = data->client;
  754. long val;
  755. int err;
  756. err = kstrtol(buf, 10, &val);
  757. if (err)
  758. return err;
  759. mutex_lock(&data->update_lock);
  760. data->in_min[nr] = INS_TO_REG(nr, val);
  761. lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
  762. mutex_unlock(&data->update_lock);
  763. return count;
  764. }
  765. static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
  766. char *buf)
  767. {
  768. int nr = to_sensor_dev_attr(attr)->index;
  769. struct lm85_data *data = lm85_update_device(dev);
  770. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
  771. }
  772. static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
  773. const char *buf, size_t count)
  774. {
  775. int nr = to_sensor_dev_attr(attr)->index;
  776. struct lm85_data *data = dev_get_drvdata(dev);
  777. struct i2c_client *client = data->client;
  778. long val;
  779. int err;
  780. err = kstrtol(buf, 10, &val);
  781. if (err)
  782. return err;
  783. mutex_lock(&data->update_lock);
  784. data->in_max[nr] = INS_TO_REG(nr, val);
  785. lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
  786. mutex_unlock(&data->update_lock);
  787. return count;
  788. }
  789. #define show_in_reg(offset) \
  790. static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
  791. show_in, NULL, offset); \
  792. static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
  793. show_in_min, set_in_min, offset); \
  794. static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
  795. show_in_max, set_in_max, offset)
  796. show_in_reg(0);
  797. show_in_reg(1);
  798. show_in_reg(2);
  799. show_in_reg(3);
  800. show_in_reg(4);
  801. show_in_reg(5);
  802. show_in_reg(6);
  803. show_in_reg(7);
  804. /* Temps */
  805. static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
  806. char *buf)
  807. {
  808. int nr = to_sensor_dev_attr(attr)->index;
  809. struct lm85_data *data = lm85_update_device(dev);
  810. return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
  811. data->temp_ext[nr]));
  812. }
  813. static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
  814. char *buf)
  815. {
  816. int nr = to_sensor_dev_attr(attr)->index;
  817. struct lm85_data *data = lm85_update_device(dev);
  818. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
  819. }
  820. static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
  821. const char *buf, size_t count)
  822. {
  823. int nr = to_sensor_dev_attr(attr)->index;
  824. struct lm85_data *data = dev_get_drvdata(dev);
  825. struct i2c_client *client = data->client;
  826. long val;
  827. int err;
  828. err = kstrtol(buf, 10, &val);
  829. if (err)
  830. return err;
  831. if (IS_ADT7468_OFF64(data))
  832. val += 64;
  833. mutex_lock(&data->update_lock);
  834. data->temp_min[nr] = TEMP_TO_REG(val);
  835. lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
  836. mutex_unlock(&data->update_lock);
  837. return count;
  838. }
  839. static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
  840. char *buf)
  841. {
  842. int nr = to_sensor_dev_attr(attr)->index;
  843. struct lm85_data *data = lm85_update_device(dev);
  844. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
  845. }
  846. static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
  847. const char *buf, size_t count)
  848. {
  849. int nr = to_sensor_dev_attr(attr)->index;
  850. struct lm85_data *data = dev_get_drvdata(dev);
  851. struct i2c_client *client = data->client;
  852. long val;
  853. int err;
  854. err = kstrtol(buf, 10, &val);
  855. if (err)
  856. return err;
  857. if (IS_ADT7468_OFF64(data))
  858. val += 64;
  859. mutex_lock(&data->update_lock);
  860. data->temp_max[nr] = TEMP_TO_REG(val);
  861. lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
  862. mutex_unlock(&data->update_lock);
  863. return count;
  864. }
  865. #define show_temp_reg(offset) \
  866. static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
  867. show_temp, NULL, offset - 1); \
  868. static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
  869. show_temp_min, set_temp_min, offset - 1); \
  870. static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
  871. show_temp_max, set_temp_max, offset - 1);
  872. show_temp_reg(1);
  873. show_temp_reg(2);
  874. show_temp_reg(3);
  875. /* Automatic PWM control */
  876. static ssize_t show_pwm_auto_channels(struct device *dev,
  877. struct device_attribute *attr, char *buf)
  878. {
  879. int nr = to_sensor_dev_attr(attr)->index;
  880. struct lm85_data *data = lm85_update_device(dev);
  881. return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
  882. }
  883. static ssize_t set_pwm_auto_channels(struct device *dev,
  884. struct device_attribute *attr, const char *buf, size_t count)
  885. {
  886. int nr = to_sensor_dev_attr(attr)->index;
  887. struct lm85_data *data = dev_get_drvdata(dev);
  888. struct i2c_client *client = data->client;
  889. long val;
  890. int err;
  891. err = kstrtol(buf, 10, &val);
  892. if (err)
  893. return err;
  894. mutex_lock(&data->update_lock);
  895. data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
  896. | ZONE_TO_REG(val);
  897. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  898. data->autofan[nr].config);
  899. mutex_unlock(&data->update_lock);
  900. return count;
  901. }
  902. static ssize_t show_pwm_auto_pwm_min(struct device *dev,
  903. struct device_attribute *attr, char *buf)
  904. {
  905. int nr = to_sensor_dev_attr(attr)->index;
  906. struct lm85_data *data = lm85_update_device(dev);
  907. return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
  908. }
  909. static ssize_t set_pwm_auto_pwm_min(struct device *dev,
  910. struct device_attribute *attr, const char *buf, size_t count)
  911. {
  912. int nr = to_sensor_dev_attr(attr)->index;
  913. struct lm85_data *data = dev_get_drvdata(dev);
  914. struct i2c_client *client = data->client;
  915. unsigned long val;
  916. int err;
  917. err = kstrtoul(buf, 10, &val);
  918. if (err)
  919. return err;
  920. mutex_lock(&data->update_lock);
  921. data->autofan[nr].min_pwm = PWM_TO_REG(val);
  922. lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
  923. data->autofan[nr].min_pwm);
  924. mutex_unlock(&data->update_lock);
  925. return count;
  926. }
  927. static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
  928. struct device_attribute *attr, char *buf)
  929. {
  930. int nr = to_sensor_dev_attr(attr)->index;
  931. struct lm85_data *data = lm85_update_device(dev);
  932. return sprintf(buf, "%d\n", data->autofan[nr].min_off);
  933. }
  934. static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
  935. struct device_attribute *attr, const char *buf, size_t count)
  936. {
  937. int nr = to_sensor_dev_attr(attr)->index;
  938. struct lm85_data *data = dev_get_drvdata(dev);
  939. struct i2c_client *client = data->client;
  940. u8 tmp;
  941. long val;
  942. int err;
  943. err = kstrtol(buf, 10, &val);
  944. if (err)
  945. return err;
  946. mutex_lock(&data->update_lock);
  947. data->autofan[nr].min_off = val;
  948. tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  949. tmp &= ~(0x20 << nr);
  950. if (data->autofan[nr].min_off)
  951. tmp |= 0x20 << nr;
  952. lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
  953. mutex_unlock(&data->update_lock);
  954. return count;
  955. }
  956. #define pwm_auto(offset) \
  957. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
  958. S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
  959. set_pwm_auto_channels, offset - 1); \
  960. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
  961. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
  962. set_pwm_auto_pwm_min, offset - 1); \
  963. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
  964. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
  965. set_pwm_auto_pwm_minctl, offset - 1)
  966. pwm_auto(1);
  967. pwm_auto(2);
  968. pwm_auto(3);
  969. /* Temperature settings for automatic PWM control */
  970. static ssize_t show_temp_auto_temp_off(struct device *dev,
  971. struct device_attribute *attr, char *buf)
  972. {
  973. int nr = to_sensor_dev_attr(attr)->index;
  974. struct lm85_data *data = lm85_update_device(dev);
  975. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
  976. HYST_FROM_REG(data->zone[nr].hyst));
  977. }
  978. static ssize_t set_temp_auto_temp_off(struct device *dev,
  979. struct device_attribute *attr, const char *buf, size_t count)
  980. {
  981. int nr = to_sensor_dev_attr(attr)->index;
  982. struct lm85_data *data = dev_get_drvdata(dev);
  983. struct i2c_client *client = data->client;
  984. int min;
  985. long val;
  986. int err;
  987. err = kstrtol(buf, 10, &val);
  988. if (err)
  989. return err;
  990. mutex_lock(&data->update_lock);
  991. min = TEMP_FROM_REG(data->zone[nr].limit);
  992. data->zone[nr].hyst = HYST_TO_REG(min - val);
  993. if (nr == 0 || nr == 1) {
  994. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  995. (data->zone[0].hyst << 4)
  996. | data->zone[1].hyst);
  997. } else {
  998. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  999. (data->zone[2].hyst << 4));
  1000. }
  1001. mutex_unlock(&data->update_lock);
  1002. return count;
  1003. }
  1004. static ssize_t show_temp_auto_temp_min(struct device *dev,
  1005. struct device_attribute *attr, char *buf)
  1006. {
  1007. int nr = to_sensor_dev_attr(attr)->index;
  1008. struct lm85_data *data = lm85_update_device(dev);
  1009. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
  1010. }
  1011. static ssize_t set_temp_auto_temp_min(struct device *dev,
  1012. struct device_attribute *attr, const char *buf, size_t count)
  1013. {
  1014. int nr = to_sensor_dev_attr(attr)->index;
  1015. struct lm85_data *data = dev_get_drvdata(dev);
  1016. struct i2c_client *client = data->client;
  1017. long val;
  1018. int err;
  1019. err = kstrtol(buf, 10, &val);
  1020. if (err)
  1021. return err;
  1022. mutex_lock(&data->update_lock);
  1023. data->zone[nr].limit = TEMP_TO_REG(val);
  1024. lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
  1025. data->zone[nr].limit);
  1026. /* Update temp_auto_max and temp_auto_range */
  1027. data->zone[nr].range = RANGE_TO_REG(
  1028. TEMP_FROM_REG(data->zone[nr].max_desired) -
  1029. TEMP_FROM_REG(data->zone[nr].limit));
  1030. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  1031. ((data->zone[nr].range & 0x0f) << 4)
  1032. | (data->pwm_freq[nr] & 0x07));
  1033. mutex_unlock(&data->update_lock);
  1034. return count;
  1035. }
  1036. static ssize_t show_temp_auto_temp_max(struct device *dev,
  1037. struct device_attribute *attr, char *buf)
  1038. {
  1039. int nr = to_sensor_dev_attr(attr)->index;
  1040. struct lm85_data *data = lm85_update_device(dev);
  1041. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
  1042. RANGE_FROM_REG(data->zone[nr].range));
  1043. }
  1044. static ssize_t set_temp_auto_temp_max(struct device *dev,
  1045. struct device_attribute *attr, const char *buf, size_t count)
  1046. {
  1047. int nr = to_sensor_dev_attr(attr)->index;
  1048. struct lm85_data *data = dev_get_drvdata(dev);
  1049. struct i2c_client *client = data->client;
  1050. int min;
  1051. long val;
  1052. int err;
  1053. err = kstrtol(buf, 10, &val);
  1054. if (err)
  1055. return err;
  1056. mutex_lock(&data->update_lock);
  1057. min = TEMP_FROM_REG(data->zone[nr].limit);
  1058. data->zone[nr].max_desired = TEMP_TO_REG(val);
  1059. data->zone[nr].range = RANGE_TO_REG(
  1060. val - min);
  1061. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  1062. ((data->zone[nr].range & 0x0f) << 4)
  1063. | (data->pwm_freq[nr] & 0x07));
  1064. mutex_unlock(&data->update_lock);
  1065. return count;
  1066. }
  1067. static ssize_t show_temp_auto_temp_crit(struct device *dev,
  1068. struct device_attribute *attr, char *buf)
  1069. {
  1070. int nr = to_sensor_dev_attr(attr)->index;
  1071. struct lm85_data *data = lm85_update_device(dev);
  1072. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
  1073. }
  1074. static ssize_t set_temp_auto_temp_crit(struct device *dev,
  1075. struct device_attribute *attr, const char *buf, size_t count)
  1076. {
  1077. int nr = to_sensor_dev_attr(attr)->index;
  1078. struct lm85_data *data = dev_get_drvdata(dev);
  1079. struct i2c_client *client = data->client;
  1080. long val;
  1081. int err;
  1082. err = kstrtol(buf, 10, &val);
  1083. if (err)
  1084. return err;
  1085. mutex_lock(&data->update_lock);
  1086. data->zone[nr].critical = TEMP_TO_REG(val);
  1087. lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
  1088. data->zone[nr].critical);
  1089. mutex_unlock(&data->update_lock);
  1090. return count;
  1091. }
  1092. #define temp_auto(offset) \
  1093. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
  1094. S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
  1095. set_temp_auto_temp_off, offset - 1); \
  1096. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
  1097. S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
  1098. set_temp_auto_temp_min, offset - 1); \
  1099. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
  1100. S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
  1101. set_temp_auto_temp_max, offset - 1); \
  1102. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
  1103. S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
  1104. set_temp_auto_temp_crit, offset - 1);
  1105. temp_auto(1);
  1106. temp_auto(2);
  1107. temp_auto(3);
  1108. static struct attribute *lm85_attributes[] = {
  1109. &sensor_dev_attr_fan1_input.dev_attr.attr,
  1110. &sensor_dev_attr_fan2_input.dev_attr.attr,
  1111. &sensor_dev_attr_fan3_input.dev_attr.attr,
  1112. &sensor_dev_attr_fan4_input.dev_attr.attr,
  1113. &sensor_dev_attr_fan1_min.dev_attr.attr,
  1114. &sensor_dev_attr_fan2_min.dev_attr.attr,
  1115. &sensor_dev_attr_fan3_min.dev_attr.attr,
  1116. &sensor_dev_attr_fan4_min.dev_attr.attr,
  1117. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  1118. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  1119. &sensor_dev_attr_fan3_alarm.dev_attr.attr,
  1120. &sensor_dev_attr_fan4_alarm.dev_attr.attr,
  1121. &sensor_dev_attr_pwm1.dev_attr.attr,
  1122. &sensor_dev_attr_pwm2.dev_attr.attr,
  1123. &sensor_dev_attr_pwm3.dev_attr.attr,
  1124. &sensor_dev_attr_pwm1_enable.dev_attr.attr,
  1125. &sensor_dev_attr_pwm2_enable.dev_attr.attr,
  1126. &sensor_dev_attr_pwm3_enable.dev_attr.attr,
  1127. &sensor_dev_attr_pwm1_freq.dev_attr.attr,
  1128. &sensor_dev_attr_pwm2_freq.dev_attr.attr,
  1129. &sensor_dev_attr_pwm3_freq.dev_attr.attr,
  1130. &sensor_dev_attr_in0_input.dev_attr.attr,
  1131. &sensor_dev_attr_in1_input.dev_attr.attr,
  1132. &sensor_dev_attr_in2_input.dev_attr.attr,
  1133. &sensor_dev_attr_in3_input.dev_attr.attr,
  1134. &sensor_dev_attr_in0_min.dev_attr.attr,
  1135. &sensor_dev_attr_in1_min.dev_attr.attr,
  1136. &sensor_dev_attr_in2_min.dev_attr.attr,
  1137. &sensor_dev_attr_in3_min.dev_attr.attr,
  1138. &sensor_dev_attr_in0_max.dev_attr.attr,
  1139. &sensor_dev_attr_in1_max.dev_attr.attr,
  1140. &sensor_dev_attr_in2_max.dev_attr.attr,
  1141. &sensor_dev_attr_in3_max.dev_attr.attr,
  1142. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  1143. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  1144. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  1145. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  1146. &sensor_dev_attr_temp1_input.dev_attr.attr,
  1147. &sensor_dev_attr_temp2_input.dev_attr.attr,
  1148. &sensor_dev_attr_temp3_input.dev_attr.attr,
  1149. &sensor_dev_attr_temp1_min.dev_attr.attr,
  1150. &sensor_dev_attr_temp2_min.dev_attr.attr,
  1151. &sensor_dev_attr_temp3_min.dev_attr.attr,
  1152. &sensor_dev_attr_temp1_max.dev_attr.attr,
  1153. &sensor_dev_attr_temp2_max.dev_attr.attr,
  1154. &sensor_dev_attr_temp3_max.dev_attr.attr,
  1155. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  1156. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  1157. &sensor_dev_attr_temp3_alarm.dev_attr.attr,
  1158. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  1159. &sensor_dev_attr_temp3_fault.dev_attr.attr,
  1160. &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
  1161. &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
  1162. &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
  1163. &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
  1164. &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
  1165. &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
  1166. &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
  1167. &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
  1168. &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
  1169. &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
  1170. &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
  1171. &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
  1172. &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
  1173. &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
  1174. &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
  1175. &dev_attr_vrm.attr,
  1176. &dev_attr_cpu0_vid.attr,
  1177. &dev_attr_alarms.attr,
  1178. NULL
  1179. };
  1180. static const struct attribute_group lm85_group = {
  1181. .attrs = lm85_attributes,
  1182. };
  1183. static struct attribute *lm85_attributes_minctl[] = {
  1184. &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
  1185. &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
  1186. &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
  1187. NULL
  1188. };
  1189. static const struct attribute_group lm85_group_minctl = {
  1190. .attrs = lm85_attributes_minctl,
  1191. };
  1192. static struct attribute *lm85_attributes_temp_off[] = {
  1193. &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
  1194. &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
  1195. &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
  1196. NULL
  1197. };
  1198. static const struct attribute_group lm85_group_temp_off = {
  1199. .attrs = lm85_attributes_temp_off,
  1200. };
  1201. static struct attribute *lm85_attributes_in4[] = {
  1202. &sensor_dev_attr_in4_input.dev_attr.attr,
  1203. &sensor_dev_attr_in4_min.dev_attr.attr,
  1204. &sensor_dev_attr_in4_max.dev_attr.attr,
  1205. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  1206. NULL
  1207. };
  1208. static const struct attribute_group lm85_group_in4 = {
  1209. .attrs = lm85_attributes_in4,
  1210. };
  1211. static struct attribute *lm85_attributes_in567[] = {
  1212. &sensor_dev_attr_in5_input.dev_attr.attr,
  1213. &sensor_dev_attr_in6_input.dev_attr.attr,
  1214. &sensor_dev_attr_in7_input.dev_attr.attr,
  1215. &sensor_dev_attr_in5_min.dev_attr.attr,
  1216. &sensor_dev_attr_in6_min.dev_attr.attr,
  1217. &sensor_dev_attr_in7_min.dev_attr.attr,
  1218. &sensor_dev_attr_in5_max.dev_attr.attr,
  1219. &sensor_dev_attr_in6_max.dev_attr.attr,
  1220. &sensor_dev_attr_in7_max.dev_attr.attr,
  1221. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  1222. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  1223. &sensor_dev_attr_in7_alarm.dev_attr.attr,
  1224. NULL
  1225. };
  1226. static const struct attribute_group lm85_group_in567 = {
  1227. .attrs = lm85_attributes_in567,
  1228. };
  1229. static void lm85_init_client(struct i2c_client *client)
  1230. {
  1231. int value;
  1232. /* Start monitoring if needed */
  1233. value = lm85_read_value(client, LM85_REG_CONFIG);
  1234. if (!(value & 0x01)) {
  1235. dev_info(&client->dev, "Starting monitoring\n");
  1236. lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
  1237. }
  1238. /* Warn about unusual configuration bits */
  1239. if (value & 0x02)
  1240. dev_warn(&client->dev, "Device configuration is locked\n");
  1241. if (!(value & 0x04))
  1242. dev_warn(&client->dev, "Device is not ready\n");
  1243. }
  1244. static int lm85_is_fake(struct i2c_client *client)
  1245. {
  1246. /*
  1247. * Differenciate between real LM96000 and Winbond WPCD377I. The latter
  1248. * emulate the former except that it has no hardware monitoring function
  1249. * so the readings are always 0.
  1250. */
  1251. int i;
  1252. u8 in_temp, fan;
  1253. for (i = 0; i < 8; i++) {
  1254. in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
  1255. fan = i2c_smbus_read_byte_data(client, 0x28 + i);
  1256. if (in_temp != 0x00 || fan != 0xff)
  1257. return 0;
  1258. }
  1259. return 1;
  1260. }
  1261. /* Return 0 if detection is successful, -ENODEV otherwise */
  1262. static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
  1263. {
  1264. struct i2c_adapter *adapter = client->adapter;
  1265. int address = client->addr;
  1266. const char *type_name = NULL;
  1267. int company, verstep;
  1268. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
  1269. /* We need to be able to do byte I/O */
  1270. return -ENODEV;
  1271. }
  1272. /* Determine the chip type */
  1273. company = lm85_read_value(client, LM85_REG_COMPANY);
  1274. verstep = lm85_read_value(client, LM85_REG_VERSTEP);
  1275. dev_dbg(&adapter->dev,
  1276. "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
  1277. address, company, verstep);
  1278. if (company == LM85_COMPANY_NATIONAL) {
  1279. switch (verstep) {
  1280. case LM85_VERSTEP_LM85C:
  1281. type_name = "lm85c";
  1282. break;
  1283. case LM85_VERSTEP_LM85B:
  1284. type_name = "lm85b";
  1285. break;
  1286. case LM85_VERSTEP_LM96000_1:
  1287. case LM85_VERSTEP_LM96000_2:
  1288. /* Check for Winbond WPCD377I */
  1289. if (lm85_is_fake(client)) {
  1290. dev_dbg(&adapter->dev,
  1291. "Found Winbond WPCD377I, ignoring\n");
  1292. return -ENODEV;
  1293. }
  1294. type_name = "lm85";
  1295. break;
  1296. }
  1297. } else if (company == LM85_COMPANY_ANALOG_DEV) {
  1298. switch (verstep) {
  1299. case LM85_VERSTEP_ADM1027:
  1300. type_name = "adm1027";
  1301. break;
  1302. case LM85_VERSTEP_ADT7463:
  1303. case LM85_VERSTEP_ADT7463C:
  1304. type_name = "adt7463";
  1305. break;
  1306. case LM85_VERSTEP_ADT7468_1:
  1307. case LM85_VERSTEP_ADT7468_2:
  1308. type_name = "adt7468";
  1309. break;
  1310. }
  1311. } else if (company == LM85_COMPANY_SMSC) {
  1312. switch (verstep) {
  1313. case LM85_VERSTEP_EMC6D100_A0:
  1314. case LM85_VERSTEP_EMC6D100_A1:
  1315. /* Note: we can't tell a '100 from a '101 */
  1316. type_name = "emc6d100";
  1317. break;
  1318. case LM85_VERSTEP_EMC6D102:
  1319. type_name = "emc6d102";
  1320. break;
  1321. case LM85_VERSTEP_EMC6D103_A0:
  1322. case LM85_VERSTEP_EMC6D103_A1:
  1323. type_name = "emc6d103";
  1324. break;
  1325. case LM85_VERSTEP_EMC6D103S:
  1326. type_name = "emc6d103s";
  1327. break;
  1328. }
  1329. }
  1330. if (!type_name)
  1331. return -ENODEV;
  1332. strlcpy(info->type, type_name, I2C_NAME_SIZE);
  1333. return 0;
  1334. }
  1335. static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
  1336. {
  1337. struct device *dev = &client->dev;
  1338. struct device *hwmon_dev;
  1339. struct lm85_data *data;
  1340. int idx = 0;
  1341. data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
  1342. if (!data)
  1343. return -ENOMEM;
  1344. data->client = client;
  1345. data->type = id->driver_data;
  1346. mutex_init(&data->update_lock);
  1347. /* Fill in the chip specific driver values */
  1348. switch (data->type) {
  1349. case adm1027:
  1350. case adt7463:
  1351. case adt7468:
  1352. case emc6d100:
  1353. case emc6d102:
  1354. case emc6d103:
  1355. case emc6d103s:
  1356. data->freq_map = adm1027_freq_map;
  1357. break;
  1358. default:
  1359. data->freq_map = lm85_freq_map;
  1360. }
  1361. /* Set the VRM version */
  1362. data->vrm = vid_which_vrm();
  1363. /* Initialize the LM85 chip */
  1364. lm85_init_client(client);
  1365. /* sysfs hooks */
  1366. data->groups[idx++] = &lm85_group;
  1367. /* minctl and temp_off exist on all chips except emc6d103s */
  1368. if (data->type != emc6d103s) {
  1369. data->groups[idx++] = &lm85_group_minctl;
  1370. data->groups[idx++] = &lm85_group_temp_off;
  1371. }
  1372. /*
  1373. * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
  1374. * as a sixth digital VID input rather than an analog input.
  1375. */
  1376. if (data->type == adt7463 || data->type == adt7468) {
  1377. u8 vid = lm85_read_value(client, LM85_REG_VID);
  1378. if (vid & 0x80)
  1379. data->has_vid5 = true;
  1380. }
  1381. if (!data->has_vid5)
  1382. data->groups[idx++] = &lm85_group_in4;
  1383. /* The EMC6D100 has 3 additional voltage inputs */
  1384. if (data->type == emc6d100)
  1385. data->groups[idx++] = &lm85_group_in567;
  1386. hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
  1387. data, data->groups);
  1388. return PTR_ERR_OR_ZERO(hwmon_dev);
  1389. }
  1390. static const struct i2c_device_id lm85_id[] = {
  1391. { "adm1027", adm1027 },
  1392. { "adt7463", adt7463 },
  1393. { "adt7468", adt7468 },
  1394. { "lm85", lm85 },
  1395. { "lm85b", lm85 },
  1396. { "lm85c", lm85 },
  1397. { "emc6d100", emc6d100 },
  1398. { "emc6d101", emc6d100 },
  1399. { "emc6d102", emc6d102 },
  1400. { "emc6d103", emc6d103 },
  1401. { "emc6d103s", emc6d103s },
  1402. { }
  1403. };
  1404. MODULE_DEVICE_TABLE(i2c, lm85_id);
  1405. static struct i2c_driver lm85_driver = {
  1406. .class = I2C_CLASS_HWMON,
  1407. .driver = {
  1408. .name = "lm85",
  1409. },
  1410. .probe = lm85_probe,
  1411. .id_table = lm85_id,
  1412. .detect = lm85_detect,
  1413. .address_list = normal_i2c,
  1414. };
  1415. module_i2c_driver(lm85_driver);
  1416. MODULE_LICENSE("GPL");
  1417. MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
  1418. "Margit Schubert-While <margitsw@t-online.de>, "
  1419. "Justin Thiessen <jthiessen@penguincomputing.com>");
  1420. MODULE_DESCRIPTION("LM85-B, LM85-C driver");