intel_ringbuffer.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. #ifndef _INTEL_RINGBUFFER_H_
  2. #define _INTEL_RINGBUFFER_H_
  3. #include <linux/hashtable.h>
  4. #define I915_CMD_HASH_ORDER 9
  5. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  6. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  7. * to give some inclination as to some of the magic values used in the various
  8. * workarounds!
  9. */
  10. #define CACHELINE_BYTES 64
  11. /*
  12. * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  13. * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  14. * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  15. *
  16. * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  17. * cacheline, the Head Pointer must not be greater than the Tail
  18. * Pointer."
  19. */
  20. #define I915_RING_FREE_SPACE 64
  21. struct intel_hw_status_page {
  22. u32 *page_addr;
  23. unsigned int gfx_addr;
  24. struct drm_i915_gem_object *obj;
  25. };
  26. #define I915_READ_TAIL(ring) I915_READ(RING_TAIL((ring)->mmio_base))
  27. #define I915_WRITE_TAIL(ring, val) I915_WRITE(RING_TAIL((ring)->mmio_base), val)
  28. #define I915_READ_START(ring) I915_READ(RING_START((ring)->mmio_base))
  29. #define I915_WRITE_START(ring, val) I915_WRITE(RING_START((ring)->mmio_base), val)
  30. #define I915_READ_HEAD(ring) I915_READ(RING_HEAD((ring)->mmio_base))
  31. #define I915_WRITE_HEAD(ring, val) I915_WRITE(RING_HEAD((ring)->mmio_base), val)
  32. #define I915_READ_CTL(ring) I915_READ(RING_CTL((ring)->mmio_base))
  33. #define I915_WRITE_CTL(ring, val) I915_WRITE(RING_CTL((ring)->mmio_base), val)
  34. #define I915_READ_IMR(ring) I915_READ(RING_IMR((ring)->mmio_base))
  35. #define I915_WRITE_IMR(ring, val) I915_WRITE(RING_IMR((ring)->mmio_base), val)
  36. #define I915_READ_MODE(ring) I915_READ(RING_MI_MODE((ring)->mmio_base))
  37. #define I915_WRITE_MODE(ring, val) I915_WRITE(RING_MI_MODE((ring)->mmio_base), val)
  38. /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  39. * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  40. */
  41. #define i915_semaphore_seqno_size sizeof(uint64_t)
  42. #define GEN8_SIGNAL_OFFSET(__ring, to) \
  43. (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
  44. ((__ring)->id * I915_NUM_RINGS * i915_semaphore_seqno_size) + \
  45. (i915_semaphore_seqno_size * (to)))
  46. #define GEN8_WAIT_OFFSET(__ring, from) \
  47. (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
  48. ((from) * I915_NUM_RINGS * i915_semaphore_seqno_size) + \
  49. (i915_semaphore_seqno_size * (__ring)->id))
  50. #define GEN8_RING_SEMAPHORE_INIT do { \
  51. if (!dev_priv->semaphore_obj) { \
  52. break; \
  53. } \
  54. ring->semaphore.signal_ggtt[RCS] = GEN8_SIGNAL_OFFSET(ring, RCS); \
  55. ring->semaphore.signal_ggtt[VCS] = GEN8_SIGNAL_OFFSET(ring, VCS); \
  56. ring->semaphore.signal_ggtt[BCS] = GEN8_SIGNAL_OFFSET(ring, BCS); \
  57. ring->semaphore.signal_ggtt[VECS] = GEN8_SIGNAL_OFFSET(ring, VECS); \
  58. ring->semaphore.signal_ggtt[VCS2] = GEN8_SIGNAL_OFFSET(ring, VCS2); \
  59. ring->semaphore.signal_ggtt[ring->id] = MI_SEMAPHORE_SYNC_INVALID; \
  60. } while(0)
  61. enum intel_ring_hangcheck_action {
  62. HANGCHECK_IDLE = 0,
  63. HANGCHECK_WAIT,
  64. HANGCHECK_ACTIVE,
  65. HANGCHECK_ACTIVE_LOOP,
  66. HANGCHECK_KICK,
  67. HANGCHECK_HUNG,
  68. };
  69. #define HANGCHECK_SCORE_RING_HUNG 31
  70. struct intel_ring_hangcheck {
  71. u64 acthd;
  72. u64 max_acthd;
  73. u32 seqno;
  74. int score;
  75. enum intel_ring_hangcheck_action action;
  76. int deadlock;
  77. };
  78. struct intel_ringbuffer {
  79. struct drm_i915_gem_object *obj;
  80. void __iomem *virtual_start;
  81. struct intel_engine_cs *ring;
  82. /*
  83. * FIXME: This backpointer is an artifact of the history of how the
  84. * execlist patches came into being. It will get removed once the basic
  85. * code has landed.
  86. */
  87. struct intel_context *FIXME_lrc_ctx;
  88. u32 head;
  89. u32 tail;
  90. int space;
  91. int size;
  92. int effective_size;
  93. /** We track the position of the requests in the ring buffer, and
  94. * when each is retired we increment last_retired_head as the GPU
  95. * must have finished processing the request and so we know we
  96. * can advance the ringbuffer up to that position.
  97. *
  98. * last_retired_head is set to -1 after the value is consumed so
  99. * we can detect new retirements.
  100. */
  101. u32 last_retired_head;
  102. };
  103. struct intel_engine_cs {
  104. const char *name;
  105. enum intel_ring_id {
  106. RCS = 0x0,
  107. VCS,
  108. BCS,
  109. VECS,
  110. VCS2
  111. } id;
  112. #define I915_NUM_RINGS 5
  113. #define LAST_USER_RING (VECS + 1)
  114. u32 mmio_base;
  115. struct drm_device *dev;
  116. struct intel_ringbuffer *buffer;
  117. struct intel_hw_status_page status_page;
  118. unsigned irq_refcount; /* protected by dev_priv->irq_lock */
  119. u32 irq_enable_mask; /* bitmask to enable ring interrupt */
  120. u32 trace_irq_seqno;
  121. bool __must_check (*irq_get)(struct intel_engine_cs *ring);
  122. void (*irq_put)(struct intel_engine_cs *ring);
  123. int (*init)(struct intel_engine_cs *ring);
  124. int (*init_context)(struct intel_engine_cs *ring,
  125. struct intel_context *ctx);
  126. void (*write_tail)(struct intel_engine_cs *ring,
  127. u32 value);
  128. int __must_check (*flush)(struct intel_engine_cs *ring,
  129. u32 invalidate_domains,
  130. u32 flush_domains);
  131. int (*add_request)(struct intel_engine_cs *ring);
  132. /* Some chipsets are not quite as coherent as advertised and need
  133. * an expensive kick to force a true read of the up-to-date seqno.
  134. * However, the up-to-date seqno is not always required and the last
  135. * seen value is good enough. Note that the seqno will always be
  136. * monotonic, even if not coherent.
  137. */
  138. u32 (*get_seqno)(struct intel_engine_cs *ring,
  139. bool lazy_coherency);
  140. void (*set_seqno)(struct intel_engine_cs *ring,
  141. u32 seqno);
  142. int (*dispatch_execbuffer)(struct intel_engine_cs *ring,
  143. u64 offset, u32 length,
  144. unsigned flags);
  145. #define I915_DISPATCH_SECURE 0x1
  146. #define I915_DISPATCH_PINNED 0x2
  147. void (*cleanup)(struct intel_engine_cs *ring);
  148. /* GEN8 signal/wait table - never trust comments!
  149. * signal to signal to signal to signal to signal to
  150. * RCS VCS BCS VECS VCS2
  151. * --------------------------------------------------------------------
  152. * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
  153. * |-------------------------------------------------------------------
  154. * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
  155. * |-------------------------------------------------------------------
  156. * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
  157. * |-------------------------------------------------------------------
  158. * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
  159. * |-------------------------------------------------------------------
  160. * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
  161. * |-------------------------------------------------------------------
  162. *
  163. * Generalization:
  164. * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
  165. * ie. transpose of g(x, y)
  166. *
  167. * sync from sync from sync from sync from sync from
  168. * RCS VCS BCS VECS VCS2
  169. * --------------------------------------------------------------------
  170. * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
  171. * |-------------------------------------------------------------------
  172. * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
  173. * |-------------------------------------------------------------------
  174. * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
  175. * |-------------------------------------------------------------------
  176. * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
  177. * |-------------------------------------------------------------------
  178. * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
  179. * |-------------------------------------------------------------------
  180. *
  181. * Generalization:
  182. * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
  183. * ie. transpose of f(x, y)
  184. */
  185. struct {
  186. u32 sync_seqno[I915_NUM_RINGS-1];
  187. union {
  188. struct {
  189. /* our mbox written by others */
  190. u32 wait[I915_NUM_RINGS];
  191. /* mboxes this ring signals to */
  192. u32 signal[I915_NUM_RINGS];
  193. } mbox;
  194. u64 signal_ggtt[I915_NUM_RINGS];
  195. };
  196. /* AKA wait() */
  197. int (*sync_to)(struct intel_engine_cs *ring,
  198. struct intel_engine_cs *to,
  199. u32 seqno);
  200. int (*signal)(struct intel_engine_cs *signaller,
  201. /* num_dwords needed by caller */
  202. unsigned int num_dwords);
  203. } semaphore;
  204. /* Execlists */
  205. spinlock_t execlist_lock;
  206. struct list_head execlist_queue;
  207. struct list_head execlist_retired_req_list;
  208. u8 next_context_status_buffer;
  209. u32 irq_keep_mask; /* bitmask for interrupts that should not be masked */
  210. int (*emit_request)(struct intel_ringbuffer *ringbuf);
  211. int (*emit_flush)(struct intel_ringbuffer *ringbuf,
  212. u32 invalidate_domains,
  213. u32 flush_domains);
  214. int (*emit_bb_start)(struct intel_ringbuffer *ringbuf,
  215. u64 offset, unsigned flags);
  216. /**
  217. * List of objects currently involved in rendering from the
  218. * ringbuffer.
  219. *
  220. * Includes buffers having the contents of their GPU caches
  221. * flushed, not necessarily primitives. last_rendering_seqno
  222. * represents when the rendering involved will be completed.
  223. *
  224. * A reference is held on the buffer while on this list.
  225. */
  226. struct list_head active_list;
  227. /**
  228. * List of breadcrumbs associated with GPU requests currently
  229. * outstanding.
  230. */
  231. struct list_head request_list;
  232. /**
  233. * Do we have some not yet emitted requests outstanding?
  234. */
  235. struct drm_i915_gem_request *preallocated_lazy_request;
  236. u32 outstanding_lazy_seqno;
  237. bool gpu_caches_dirty;
  238. bool fbc_dirty;
  239. wait_queue_head_t irq_queue;
  240. struct intel_context *default_context;
  241. struct intel_context *last_context;
  242. struct intel_ring_hangcheck hangcheck;
  243. struct {
  244. struct drm_i915_gem_object *obj;
  245. u32 gtt_offset;
  246. volatile u32 *cpu_page;
  247. } scratch;
  248. bool needs_cmd_parser;
  249. /*
  250. * Table of commands the command parser needs to know about
  251. * for this ring.
  252. */
  253. DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
  254. /*
  255. * Table of registers allowed in commands that read/write registers.
  256. */
  257. const u32 *reg_table;
  258. int reg_count;
  259. /*
  260. * Table of registers allowed in commands that read/write registers, but
  261. * only from the DRM master.
  262. */
  263. const u32 *master_reg_table;
  264. int master_reg_count;
  265. /*
  266. * Returns the bitmask for the length field of the specified command.
  267. * Return 0 for an unrecognized/invalid command.
  268. *
  269. * If the command parser finds an entry for a command in the ring's
  270. * cmd_tables, it gets the command's length based on the table entry.
  271. * If not, it calls this function to determine the per-ring length field
  272. * encoding for the command (i.e. certain opcode ranges use certain bits
  273. * to encode the command length in the header).
  274. */
  275. u32 (*get_cmd_length_mask)(u32 cmd_header);
  276. };
  277. bool intel_ring_initialized(struct intel_engine_cs *ring);
  278. static inline unsigned
  279. intel_ring_flag(struct intel_engine_cs *ring)
  280. {
  281. return 1 << ring->id;
  282. }
  283. static inline u32
  284. intel_ring_sync_index(struct intel_engine_cs *ring,
  285. struct intel_engine_cs *other)
  286. {
  287. int idx;
  288. /*
  289. * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
  290. * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
  291. * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
  292. * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
  293. * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
  294. */
  295. idx = (other - ring) - 1;
  296. if (idx < 0)
  297. idx += I915_NUM_RINGS;
  298. return idx;
  299. }
  300. static inline u32
  301. intel_read_status_page(struct intel_engine_cs *ring,
  302. int reg)
  303. {
  304. /* Ensure that the compiler doesn't optimize away the load. */
  305. barrier();
  306. return ring->status_page.page_addr[reg];
  307. }
  308. static inline void
  309. intel_write_status_page(struct intel_engine_cs *ring,
  310. int reg, u32 value)
  311. {
  312. ring->status_page.page_addr[reg] = value;
  313. }
  314. /**
  315. * Reads a dword out of the status page, which is written to from the command
  316. * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
  317. * MI_STORE_DATA_IMM.
  318. *
  319. * The following dwords have a reserved meaning:
  320. * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
  321. * 0x04: ring 0 head pointer
  322. * 0x05: ring 1 head pointer (915-class)
  323. * 0x06: ring 2 head pointer (915-class)
  324. * 0x10-0x1b: Context status DWords (GM45)
  325. * 0x1f: Last written status offset. (GM45)
  326. *
  327. * The area from dword 0x20 to 0x3ff is available for driver usage.
  328. */
  329. #define I915_GEM_HWS_INDEX 0x20
  330. #define I915_GEM_HWS_SCRATCH_INDEX 0x30
  331. #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  332. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf);
  333. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  334. struct intel_ringbuffer *ringbuf);
  335. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf);
  336. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  337. struct intel_ringbuffer *ringbuf);
  338. void intel_stop_ring_buffer(struct intel_engine_cs *ring);
  339. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring);
  340. int __must_check intel_ring_begin(struct intel_engine_cs *ring, int n);
  341. int __must_check intel_ring_cacheline_align(struct intel_engine_cs *ring);
  342. static inline void intel_ring_emit(struct intel_engine_cs *ring,
  343. u32 data)
  344. {
  345. struct intel_ringbuffer *ringbuf = ring->buffer;
  346. iowrite32(data, ringbuf->virtual_start + ringbuf->tail);
  347. ringbuf->tail += 4;
  348. }
  349. static inline void intel_ring_advance(struct intel_engine_cs *ring)
  350. {
  351. struct intel_ringbuffer *ringbuf = ring->buffer;
  352. ringbuf->tail &= ringbuf->size - 1;
  353. }
  354. int __intel_ring_space(int head, int tail, int size);
  355. int intel_ring_space(struct intel_ringbuffer *ringbuf);
  356. bool intel_ring_stopped(struct intel_engine_cs *ring);
  357. void __intel_ring_advance(struct intel_engine_cs *ring);
  358. int __must_check intel_ring_idle(struct intel_engine_cs *ring);
  359. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno);
  360. int intel_ring_flush_all_caches(struct intel_engine_cs *ring);
  361. int intel_ring_invalidate_all_caches(struct intel_engine_cs *ring);
  362. void intel_fini_pipe_control(struct intel_engine_cs *ring);
  363. int intel_init_pipe_control(struct intel_engine_cs *ring);
  364. int intel_init_render_ring_buffer(struct drm_device *dev);
  365. int intel_init_bsd_ring_buffer(struct drm_device *dev);
  366. int intel_init_bsd2_ring_buffer(struct drm_device *dev);
  367. int intel_init_blt_ring_buffer(struct drm_device *dev);
  368. int intel_init_vebox_ring_buffer(struct drm_device *dev);
  369. u64 intel_ring_get_active_head(struct intel_engine_cs *ring);
  370. void intel_ring_setup_status_page(struct intel_engine_cs *ring);
  371. int init_workarounds_ring(struct intel_engine_cs *ring);
  372. static inline u32 intel_ring_get_tail(struct intel_ringbuffer *ringbuf)
  373. {
  374. return ringbuf->tail;
  375. }
  376. static inline u32 intel_ring_get_seqno(struct intel_engine_cs *ring)
  377. {
  378. BUG_ON(ring->outstanding_lazy_seqno == 0);
  379. return ring->outstanding_lazy_seqno;
  380. }
  381. static inline void i915_trace_irq_get(struct intel_engine_cs *ring, u32 seqno)
  382. {
  383. if (ring->trace_irq_seqno == 0 && ring->irq_get(ring))
  384. ring->trace_irq_seqno = seqno;
  385. }
  386. #endif /* _INTEL_RINGBUFFER_H_ */