intel_ringbuffer.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - (tail + I915_RING_FREE_SPACE);
  50. if (space < 0)
  51. space += size;
  52. return space;
  53. }
  54. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. return __intel_ring_space(ringbuf->head & HEAD_ADDR,
  57. ringbuf->tail, ringbuf->size);
  58. }
  59. bool intel_ring_stopped(struct intel_engine_cs *ring)
  60. {
  61. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  62. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  63. }
  64. void __intel_ring_advance(struct intel_engine_cs *ring)
  65. {
  66. struct intel_ringbuffer *ringbuf = ring->buffer;
  67. ringbuf->tail &= ringbuf->size - 1;
  68. if (intel_ring_stopped(ring))
  69. return;
  70. ring->write_tail(ring, ringbuf->tail);
  71. }
  72. static int
  73. gen2_render_ring_flush(struct intel_engine_cs *ring,
  74. u32 invalidate_domains,
  75. u32 flush_domains)
  76. {
  77. u32 cmd;
  78. int ret;
  79. cmd = MI_FLUSH;
  80. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  81. cmd |= MI_NO_WRITE_FLUSH;
  82. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  83. cmd |= MI_READ_FLUSH;
  84. ret = intel_ring_begin(ring, 2);
  85. if (ret)
  86. return ret;
  87. intel_ring_emit(ring, cmd);
  88. intel_ring_emit(ring, MI_NOOP);
  89. intel_ring_advance(ring);
  90. return 0;
  91. }
  92. static int
  93. gen4_render_ring_flush(struct intel_engine_cs *ring,
  94. u32 invalidate_domains,
  95. u32 flush_domains)
  96. {
  97. struct drm_device *dev = ring->dev;
  98. u32 cmd;
  99. int ret;
  100. /*
  101. * read/write caches:
  102. *
  103. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  104. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  105. * also flushed at 2d versus 3d pipeline switches.
  106. *
  107. * read-only caches:
  108. *
  109. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  110. * MI_READ_FLUSH is set, and is always flushed on 965.
  111. *
  112. * I915_GEM_DOMAIN_COMMAND may not exist?
  113. *
  114. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  115. * invalidated when MI_EXE_FLUSH is set.
  116. *
  117. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  118. * invalidated with every MI_FLUSH.
  119. *
  120. * TLBs:
  121. *
  122. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  123. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  124. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  125. * are flushed at any MI_FLUSH.
  126. */
  127. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  128. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  129. cmd &= ~MI_NO_WRITE_FLUSH;
  130. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  131. cmd |= MI_EXE_FLUSH;
  132. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  133. (IS_G4X(dev) || IS_GEN5(dev)))
  134. cmd |= MI_INVALIDATE_ISP;
  135. ret = intel_ring_begin(ring, 2);
  136. if (ret)
  137. return ret;
  138. intel_ring_emit(ring, cmd);
  139. intel_ring_emit(ring, MI_NOOP);
  140. intel_ring_advance(ring);
  141. return 0;
  142. }
  143. /**
  144. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  145. * implementing two workarounds on gen6. From section 1.4.7.1
  146. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  147. *
  148. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  149. * produced by non-pipelined state commands), software needs to first
  150. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  151. * 0.
  152. *
  153. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  154. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  155. *
  156. * And the workaround for these two requires this workaround first:
  157. *
  158. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  159. * BEFORE the pipe-control with a post-sync op and no write-cache
  160. * flushes.
  161. *
  162. * And this last workaround is tricky because of the requirements on
  163. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  164. * volume 2 part 1:
  165. *
  166. * "1 of the following must also be set:
  167. * - Render Target Cache Flush Enable ([12] of DW1)
  168. * - Depth Cache Flush Enable ([0] of DW1)
  169. * - Stall at Pixel Scoreboard ([1] of DW1)
  170. * - Depth Stall ([13] of DW1)
  171. * - Post-Sync Operation ([13] of DW1)
  172. * - Notify Enable ([8] of DW1)"
  173. *
  174. * The cache flushes require the workaround flush that triggered this
  175. * one, so we can't use it. Depth stall would trigger the same.
  176. * Post-sync nonzero is what triggered this second workaround, so we
  177. * can't use that one either. Notify enable is IRQs, which aren't
  178. * really our business. That leaves only stall at scoreboard.
  179. */
  180. static int
  181. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  182. {
  183. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(ring, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(ring, 0); /* low dword */
  193. intel_ring_emit(ring, 0); /* high dword */
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. ret = intel_ring_begin(ring, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(ring, 0);
  203. intel_ring_emit(ring, 0);
  204. intel_ring_emit(ring, MI_NOOP);
  205. intel_ring_advance(ring);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct intel_engine_cs *ring,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. u32 flags = 0;
  213. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  214. int ret;
  215. /* Force SNB workarounds for PIPE_CONTROL flushes */
  216. ret = intel_emit_post_sync_nonzero_flush(ring);
  217. if (ret)
  218. return ret;
  219. /* Just flush everything. Experiments have shown that reducing the
  220. * number of bits based on the write domains has little performance
  221. * impact.
  222. */
  223. if (flush_domains) {
  224. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  225. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  226. /*
  227. * Ensure that any following seqno writes only happen
  228. * when the render cache is indeed flushed.
  229. */
  230. flags |= PIPE_CONTROL_CS_STALL;
  231. }
  232. if (invalidate_domains) {
  233. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  234. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  239. /*
  240. * TLB invalidate requires a post-sync write.
  241. */
  242. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  243. }
  244. ret = intel_ring_begin(ring, 4);
  245. if (ret)
  246. return ret;
  247. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  248. intel_ring_emit(ring, flags);
  249. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  250. intel_ring_emit(ring, 0);
  251. intel_ring_advance(ring);
  252. return 0;
  253. }
  254. static int
  255. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  256. {
  257. int ret;
  258. ret = intel_ring_begin(ring, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(ring, 0);
  265. intel_ring_emit(ring, 0);
  266. intel_ring_advance(ring);
  267. return 0;
  268. }
  269. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  270. {
  271. int ret;
  272. if (!ring->fbc_dirty)
  273. return 0;
  274. ret = intel_ring_begin(ring, 6);
  275. if (ret)
  276. return ret;
  277. /* WaFbcNukeOn3DBlt:ivb/hsw */
  278. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  279. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  280. intel_ring_emit(ring, value);
  281. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  282. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  283. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  284. intel_ring_advance(ring);
  285. ring->fbc_dirty = false;
  286. return 0;
  287. }
  288. static int
  289. gen7_render_ring_flush(struct intel_engine_cs *ring,
  290. u32 invalidate_domains, u32 flush_domains)
  291. {
  292. u32 flags = 0;
  293. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  294. int ret;
  295. /*
  296. * Ensure that any following seqno writes only happen when the render
  297. * cache is indeed flushed.
  298. *
  299. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  300. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  301. * don't try to be clever and just set it unconditionally.
  302. */
  303. flags |= PIPE_CONTROL_CS_STALL;
  304. /* Just flush everything. Experiments have shown that reducing the
  305. * number of bits based on the write domains has little performance
  306. * impact.
  307. */
  308. if (flush_domains) {
  309. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  310. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  311. }
  312. if (invalidate_domains) {
  313. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  314. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  316. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  317. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  318. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  319. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  320. /*
  321. * TLB invalidate requires a post-sync write.
  322. */
  323. flags |= PIPE_CONTROL_QW_WRITE;
  324. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  325. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  326. /* Workaround: we must issue a pipe_control with CS-stall bit
  327. * set before a pipe_control command that has the state cache
  328. * invalidate bit set. */
  329. gen7_render_ring_cs_stall_wa(ring);
  330. }
  331. ret = intel_ring_begin(ring, 4);
  332. if (ret)
  333. return ret;
  334. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  335. intel_ring_emit(ring, flags);
  336. intel_ring_emit(ring, scratch_addr);
  337. intel_ring_emit(ring, 0);
  338. intel_ring_advance(ring);
  339. if (!invalidate_domains && flush_domains)
  340. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  341. return 0;
  342. }
  343. static int
  344. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  345. u32 flags, u32 scratch_addr)
  346. {
  347. int ret;
  348. ret = intel_ring_begin(ring, 6);
  349. if (ret)
  350. return ret;
  351. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  352. intel_ring_emit(ring, flags);
  353. intel_ring_emit(ring, scratch_addr);
  354. intel_ring_emit(ring, 0);
  355. intel_ring_emit(ring, 0);
  356. intel_ring_emit(ring, 0);
  357. intel_ring_advance(ring);
  358. return 0;
  359. }
  360. static int
  361. gen8_render_ring_flush(struct intel_engine_cs *ring,
  362. u32 invalidate_domains, u32 flush_domains)
  363. {
  364. u32 flags = 0;
  365. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  366. int ret;
  367. flags |= PIPE_CONTROL_CS_STALL;
  368. if (flush_domains) {
  369. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  370. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  371. }
  372. if (invalidate_domains) {
  373. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  374. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  375. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  376. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  377. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  378. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  379. flags |= PIPE_CONTROL_QW_WRITE;
  380. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  381. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  382. ret = gen8_emit_pipe_control(ring,
  383. PIPE_CONTROL_CS_STALL |
  384. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  385. 0);
  386. if (ret)
  387. return ret;
  388. }
  389. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  390. if (ret)
  391. return ret;
  392. if (!invalidate_domains && flush_domains)
  393. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  394. return 0;
  395. }
  396. static void ring_write_tail(struct intel_engine_cs *ring,
  397. u32 value)
  398. {
  399. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  400. I915_WRITE_TAIL(ring, value);
  401. }
  402. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  403. {
  404. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  405. u64 acthd;
  406. if (INTEL_INFO(ring->dev)->gen >= 8)
  407. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  408. RING_ACTHD_UDW(ring->mmio_base));
  409. else if (INTEL_INFO(ring->dev)->gen >= 4)
  410. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  411. else
  412. acthd = I915_READ(ACTHD);
  413. return acthd;
  414. }
  415. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  416. {
  417. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  418. u32 addr;
  419. addr = dev_priv->status_page_dmah->busaddr;
  420. if (INTEL_INFO(ring->dev)->gen >= 4)
  421. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  422. I915_WRITE(HWS_PGA, addr);
  423. }
  424. static bool stop_ring(struct intel_engine_cs *ring)
  425. {
  426. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  427. if (!IS_GEN2(ring->dev)) {
  428. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  429. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  430. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  431. /* Sometimes we observe that the idle flag is not
  432. * set even though the ring is empty. So double
  433. * check before giving up.
  434. */
  435. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  436. return false;
  437. }
  438. }
  439. I915_WRITE_CTL(ring, 0);
  440. I915_WRITE_HEAD(ring, 0);
  441. ring->write_tail(ring, 0);
  442. if (!IS_GEN2(ring->dev)) {
  443. (void)I915_READ_CTL(ring);
  444. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  445. }
  446. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  447. }
  448. static int init_ring_common(struct intel_engine_cs *ring)
  449. {
  450. struct drm_device *dev = ring->dev;
  451. struct drm_i915_private *dev_priv = dev->dev_private;
  452. struct intel_ringbuffer *ringbuf = ring->buffer;
  453. struct drm_i915_gem_object *obj = ringbuf->obj;
  454. int ret = 0;
  455. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  456. if (!stop_ring(ring)) {
  457. /* G45 ring initialization often fails to reset head to zero */
  458. DRM_DEBUG_KMS("%s head not reset to zero "
  459. "ctl %08x head %08x tail %08x start %08x\n",
  460. ring->name,
  461. I915_READ_CTL(ring),
  462. I915_READ_HEAD(ring),
  463. I915_READ_TAIL(ring),
  464. I915_READ_START(ring));
  465. if (!stop_ring(ring)) {
  466. DRM_ERROR("failed to set %s head to zero "
  467. "ctl %08x head %08x tail %08x start %08x\n",
  468. ring->name,
  469. I915_READ_CTL(ring),
  470. I915_READ_HEAD(ring),
  471. I915_READ_TAIL(ring),
  472. I915_READ_START(ring));
  473. ret = -EIO;
  474. goto out;
  475. }
  476. }
  477. if (I915_NEED_GFX_HWS(dev))
  478. intel_ring_setup_status_page(ring);
  479. else
  480. ring_setup_phys_status_page(ring);
  481. /* Enforce ordering by reading HEAD register back */
  482. I915_READ_HEAD(ring);
  483. /* Initialize the ring. This must happen _after_ we've cleared the ring
  484. * registers with the above sequence (the readback of the HEAD registers
  485. * also enforces ordering), otherwise the hw might lose the new ring
  486. * register values. */
  487. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  488. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  489. if (I915_READ_HEAD(ring))
  490. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  491. ring->name, I915_READ_HEAD(ring));
  492. I915_WRITE_HEAD(ring, 0);
  493. (void)I915_READ_HEAD(ring);
  494. I915_WRITE_CTL(ring,
  495. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  496. | RING_VALID);
  497. /* If the head is still not zero, the ring is dead */
  498. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  499. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  500. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  501. DRM_ERROR("%s initialization failed "
  502. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  503. ring->name,
  504. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  505. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  506. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  507. ret = -EIO;
  508. goto out;
  509. }
  510. ringbuf->head = I915_READ_HEAD(ring);
  511. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  512. ringbuf->space = intel_ring_space(ringbuf);
  513. ringbuf->last_retired_head = -1;
  514. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  515. out:
  516. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  517. return ret;
  518. }
  519. void
  520. intel_fini_pipe_control(struct intel_engine_cs *ring)
  521. {
  522. struct drm_device *dev = ring->dev;
  523. if (ring->scratch.obj == NULL)
  524. return;
  525. if (INTEL_INFO(dev)->gen >= 5) {
  526. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  527. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  528. }
  529. drm_gem_object_unreference(&ring->scratch.obj->base);
  530. ring->scratch.obj = NULL;
  531. }
  532. int
  533. intel_init_pipe_control(struct intel_engine_cs *ring)
  534. {
  535. int ret;
  536. if (ring->scratch.obj)
  537. return 0;
  538. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  539. if (ring->scratch.obj == NULL) {
  540. DRM_ERROR("Failed to allocate seqno page\n");
  541. ret = -ENOMEM;
  542. goto err;
  543. }
  544. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  545. if (ret)
  546. goto err_unref;
  547. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  548. if (ret)
  549. goto err_unref;
  550. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  551. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  552. if (ring->scratch.cpu_page == NULL) {
  553. ret = -ENOMEM;
  554. goto err_unpin;
  555. }
  556. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  557. ring->name, ring->scratch.gtt_offset);
  558. return 0;
  559. err_unpin:
  560. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  561. err_unref:
  562. drm_gem_object_unreference(&ring->scratch.obj->base);
  563. err:
  564. return ret;
  565. }
  566. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  567. struct intel_context *ctx)
  568. {
  569. int ret, i;
  570. struct drm_device *dev = ring->dev;
  571. struct drm_i915_private *dev_priv = dev->dev_private;
  572. struct i915_workarounds *w = &dev_priv->workarounds;
  573. if (WARN_ON(w->count == 0))
  574. return 0;
  575. ring->gpu_caches_dirty = true;
  576. ret = intel_ring_flush_all_caches(ring);
  577. if (ret)
  578. return ret;
  579. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  580. if (ret)
  581. return ret;
  582. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  583. for (i = 0; i < w->count; i++) {
  584. intel_ring_emit(ring, w->reg[i].addr);
  585. intel_ring_emit(ring, w->reg[i].value);
  586. }
  587. intel_ring_emit(ring, MI_NOOP);
  588. intel_ring_advance(ring);
  589. ring->gpu_caches_dirty = true;
  590. ret = intel_ring_flush_all_caches(ring);
  591. if (ret)
  592. return ret;
  593. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  594. return 0;
  595. }
  596. static int wa_add(struct drm_i915_private *dev_priv,
  597. const u32 addr, const u32 mask, const u32 val)
  598. {
  599. const u32 idx = dev_priv->workarounds.count;
  600. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  601. return -ENOSPC;
  602. dev_priv->workarounds.reg[idx].addr = addr;
  603. dev_priv->workarounds.reg[idx].value = val;
  604. dev_priv->workarounds.reg[idx].mask = mask;
  605. dev_priv->workarounds.count++;
  606. return 0;
  607. }
  608. #define WA_REG(addr, mask, val) { \
  609. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  610. if (r) \
  611. return r; \
  612. }
  613. #define WA_SET_BIT_MASKED(addr, mask) \
  614. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  615. #define WA_CLR_BIT_MASKED(addr, mask) \
  616. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  617. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  618. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  619. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  620. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  621. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  622. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  623. {
  624. struct drm_device *dev = ring->dev;
  625. struct drm_i915_private *dev_priv = dev->dev_private;
  626. /* WaDisablePartialInstShootdown:bdw */
  627. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  628. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  629. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  630. STALL_DOP_GATING_DISABLE);
  631. /* WaDisableDopClockGating:bdw */
  632. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  633. DOP_CLOCK_GATING_DISABLE);
  634. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  635. GEN8_SAMPLER_POWER_BYPASS_DIS);
  636. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  637. * workaround for for a possible hang in the unlikely event a TLB
  638. * invalidation occurs during a PSD flush.
  639. */
  640. /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
  641. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  642. HDC_FORCE_NON_COHERENT |
  643. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  644. /* Wa4x4STCOptimizationDisable:bdw */
  645. WA_SET_BIT_MASKED(CACHE_MODE_1,
  646. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  647. /*
  648. * BSpec recommends 8x4 when MSAA is used,
  649. * however in practice 16x4 seems fastest.
  650. *
  651. * Note that PS/WM thread counts depend on the WIZ hashing
  652. * disable bit, which we don't touch here, but it's good
  653. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  654. */
  655. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  656. GEN6_WIZ_HASHING_MASK,
  657. GEN6_WIZ_HASHING_16x4);
  658. return 0;
  659. }
  660. static int chv_init_workarounds(struct intel_engine_cs *ring)
  661. {
  662. struct drm_device *dev = ring->dev;
  663. struct drm_i915_private *dev_priv = dev->dev_private;
  664. /* WaDisablePartialInstShootdown:chv */
  665. /* WaDisableThreadStallDopClockGating:chv */
  666. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  667. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  668. STALL_DOP_GATING_DISABLE);
  669. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  670. * workaround for a possible hang in the unlikely event a TLB
  671. * invalidation occurs during a PSD flush.
  672. */
  673. /* WaForceEnableNonCoherent:chv */
  674. /* WaHdcDisableFetchWhenMasked:chv */
  675. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  676. HDC_FORCE_NON_COHERENT |
  677. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  678. return 0;
  679. }
  680. int init_workarounds_ring(struct intel_engine_cs *ring)
  681. {
  682. struct drm_device *dev = ring->dev;
  683. struct drm_i915_private *dev_priv = dev->dev_private;
  684. WARN_ON(ring->id != RCS);
  685. dev_priv->workarounds.count = 0;
  686. if (IS_BROADWELL(dev))
  687. return bdw_init_workarounds(ring);
  688. if (IS_CHERRYVIEW(dev))
  689. return chv_init_workarounds(ring);
  690. return 0;
  691. }
  692. static int init_render_ring(struct intel_engine_cs *ring)
  693. {
  694. struct drm_device *dev = ring->dev;
  695. struct drm_i915_private *dev_priv = dev->dev_private;
  696. int ret = init_ring_common(ring);
  697. if (ret)
  698. return ret;
  699. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  700. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  701. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  702. /* We need to disable the AsyncFlip performance optimisations in order
  703. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  704. * programmed to '1' on all products.
  705. *
  706. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  707. */
  708. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  709. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  710. /* Required for the hardware to program scanline values for waiting */
  711. /* WaEnableFlushTlbInvalidationMode:snb */
  712. if (INTEL_INFO(dev)->gen == 6)
  713. I915_WRITE(GFX_MODE,
  714. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  715. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  716. if (IS_GEN7(dev))
  717. I915_WRITE(GFX_MODE_GEN7,
  718. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  719. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  720. if (INTEL_INFO(dev)->gen >= 5) {
  721. ret = intel_init_pipe_control(ring);
  722. if (ret)
  723. return ret;
  724. }
  725. if (IS_GEN6(dev)) {
  726. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  727. * "If this bit is set, STCunit will have LRA as replacement
  728. * policy. [...] This bit must be reset. LRA replacement
  729. * policy is not supported."
  730. */
  731. I915_WRITE(CACHE_MODE_0,
  732. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  733. }
  734. if (INTEL_INFO(dev)->gen >= 6)
  735. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  736. if (HAS_L3_DPF(dev))
  737. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  738. return init_workarounds_ring(ring);
  739. }
  740. static void render_ring_cleanup(struct intel_engine_cs *ring)
  741. {
  742. struct drm_device *dev = ring->dev;
  743. struct drm_i915_private *dev_priv = dev->dev_private;
  744. if (dev_priv->semaphore_obj) {
  745. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  746. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  747. dev_priv->semaphore_obj = NULL;
  748. }
  749. intel_fini_pipe_control(ring);
  750. }
  751. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  752. unsigned int num_dwords)
  753. {
  754. #define MBOX_UPDATE_DWORDS 8
  755. struct drm_device *dev = signaller->dev;
  756. struct drm_i915_private *dev_priv = dev->dev_private;
  757. struct intel_engine_cs *waiter;
  758. int i, ret, num_rings;
  759. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  760. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  761. #undef MBOX_UPDATE_DWORDS
  762. ret = intel_ring_begin(signaller, num_dwords);
  763. if (ret)
  764. return ret;
  765. for_each_ring(waiter, dev_priv, i) {
  766. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  767. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  768. continue;
  769. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  770. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  771. PIPE_CONTROL_QW_WRITE |
  772. PIPE_CONTROL_FLUSH_ENABLE);
  773. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  774. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  775. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  776. intel_ring_emit(signaller, 0);
  777. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  778. MI_SEMAPHORE_TARGET(waiter->id));
  779. intel_ring_emit(signaller, 0);
  780. }
  781. return 0;
  782. }
  783. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  784. unsigned int num_dwords)
  785. {
  786. #define MBOX_UPDATE_DWORDS 6
  787. struct drm_device *dev = signaller->dev;
  788. struct drm_i915_private *dev_priv = dev->dev_private;
  789. struct intel_engine_cs *waiter;
  790. int i, ret, num_rings;
  791. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  792. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  793. #undef MBOX_UPDATE_DWORDS
  794. ret = intel_ring_begin(signaller, num_dwords);
  795. if (ret)
  796. return ret;
  797. for_each_ring(waiter, dev_priv, i) {
  798. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  799. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  800. continue;
  801. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  802. MI_FLUSH_DW_OP_STOREDW);
  803. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  804. MI_FLUSH_DW_USE_GTT);
  805. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  806. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  807. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  808. MI_SEMAPHORE_TARGET(waiter->id));
  809. intel_ring_emit(signaller, 0);
  810. }
  811. return 0;
  812. }
  813. static int gen6_signal(struct intel_engine_cs *signaller,
  814. unsigned int num_dwords)
  815. {
  816. struct drm_device *dev = signaller->dev;
  817. struct drm_i915_private *dev_priv = dev->dev_private;
  818. struct intel_engine_cs *useless;
  819. int i, ret, num_rings;
  820. #define MBOX_UPDATE_DWORDS 3
  821. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  822. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  823. #undef MBOX_UPDATE_DWORDS
  824. ret = intel_ring_begin(signaller, num_dwords);
  825. if (ret)
  826. return ret;
  827. for_each_ring(useless, dev_priv, i) {
  828. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  829. if (mbox_reg != GEN6_NOSYNC) {
  830. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  831. intel_ring_emit(signaller, mbox_reg);
  832. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  833. }
  834. }
  835. /* If num_dwords was rounded, make sure the tail pointer is correct */
  836. if (num_rings % 2 == 0)
  837. intel_ring_emit(signaller, MI_NOOP);
  838. return 0;
  839. }
  840. /**
  841. * gen6_add_request - Update the semaphore mailbox registers
  842. *
  843. * @ring - ring that is adding a request
  844. * @seqno - return seqno stuck into the ring
  845. *
  846. * Update the mailbox registers in the *other* rings with the current seqno.
  847. * This acts like a signal in the canonical semaphore.
  848. */
  849. static int
  850. gen6_add_request(struct intel_engine_cs *ring)
  851. {
  852. int ret;
  853. if (ring->semaphore.signal)
  854. ret = ring->semaphore.signal(ring, 4);
  855. else
  856. ret = intel_ring_begin(ring, 4);
  857. if (ret)
  858. return ret;
  859. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  860. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  861. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  862. intel_ring_emit(ring, MI_USER_INTERRUPT);
  863. __intel_ring_advance(ring);
  864. return 0;
  865. }
  866. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  867. u32 seqno)
  868. {
  869. struct drm_i915_private *dev_priv = dev->dev_private;
  870. return dev_priv->last_seqno < seqno;
  871. }
  872. /**
  873. * intel_ring_sync - sync the waiter to the signaller on seqno
  874. *
  875. * @waiter - ring that is waiting
  876. * @signaller - ring which has, or will signal
  877. * @seqno - seqno which the waiter will block on
  878. */
  879. static int
  880. gen8_ring_sync(struct intel_engine_cs *waiter,
  881. struct intel_engine_cs *signaller,
  882. u32 seqno)
  883. {
  884. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  885. int ret;
  886. ret = intel_ring_begin(waiter, 4);
  887. if (ret)
  888. return ret;
  889. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  890. MI_SEMAPHORE_GLOBAL_GTT |
  891. MI_SEMAPHORE_POLL |
  892. MI_SEMAPHORE_SAD_GTE_SDD);
  893. intel_ring_emit(waiter, seqno);
  894. intel_ring_emit(waiter,
  895. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  896. intel_ring_emit(waiter,
  897. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  898. intel_ring_advance(waiter);
  899. return 0;
  900. }
  901. static int
  902. gen6_ring_sync(struct intel_engine_cs *waiter,
  903. struct intel_engine_cs *signaller,
  904. u32 seqno)
  905. {
  906. u32 dw1 = MI_SEMAPHORE_MBOX |
  907. MI_SEMAPHORE_COMPARE |
  908. MI_SEMAPHORE_REGISTER;
  909. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  910. int ret;
  911. /* Throughout all of the GEM code, seqno passed implies our current
  912. * seqno is >= the last seqno executed. However for hardware the
  913. * comparison is strictly greater than.
  914. */
  915. seqno -= 1;
  916. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  917. ret = intel_ring_begin(waiter, 4);
  918. if (ret)
  919. return ret;
  920. /* If seqno wrap happened, omit the wait with no-ops */
  921. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  922. intel_ring_emit(waiter, dw1 | wait_mbox);
  923. intel_ring_emit(waiter, seqno);
  924. intel_ring_emit(waiter, 0);
  925. intel_ring_emit(waiter, MI_NOOP);
  926. } else {
  927. intel_ring_emit(waiter, MI_NOOP);
  928. intel_ring_emit(waiter, MI_NOOP);
  929. intel_ring_emit(waiter, MI_NOOP);
  930. intel_ring_emit(waiter, MI_NOOP);
  931. }
  932. intel_ring_advance(waiter);
  933. return 0;
  934. }
  935. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  936. do { \
  937. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  938. PIPE_CONTROL_DEPTH_STALL); \
  939. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  940. intel_ring_emit(ring__, 0); \
  941. intel_ring_emit(ring__, 0); \
  942. } while (0)
  943. static int
  944. pc_render_add_request(struct intel_engine_cs *ring)
  945. {
  946. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  947. int ret;
  948. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  949. * incoherent with writes to memory, i.e. completely fubar,
  950. * so we need to use PIPE_NOTIFY instead.
  951. *
  952. * However, we also need to workaround the qword write
  953. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  954. * memory before requesting an interrupt.
  955. */
  956. ret = intel_ring_begin(ring, 32);
  957. if (ret)
  958. return ret;
  959. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  960. PIPE_CONTROL_WRITE_FLUSH |
  961. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  962. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  963. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  964. intel_ring_emit(ring, 0);
  965. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  966. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  967. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  968. scratch_addr += 2 * CACHELINE_BYTES;
  969. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  970. scratch_addr += 2 * CACHELINE_BYTES;
  971. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  972. scratch_addr += 2 * CACHELINE_BYTES;
  973. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  974. scratch_addr += 2 * CACHELINE_BYTES;
  975. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  976. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  977. PIPE_CONTROL_WRITE_FLUSH |
  978. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  979. PIPE_CONTROL_NOTIFY);
  980. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  981. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  982. intel_ring_emit(ring, 0);
  983. __intel_ring_advance(ring);
  984. return 0;
  985. }
  986. static u32
  987. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  988. {
  989. /* Workaround to force correct ordering between irq and seqno writes on
  990. * ivb (and maybe also on snb) by reading from a CS register (like
  991. * ACTHD) before reading the status page. */
  992. if (!lazy_coherency) {
  993. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  994. POSTING_READ(RING_ACTHD(ring->mmio_base));
  995. }
  996. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  997. }
  998. static u32
  999. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1000. {
  1001. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1002. }
  1003. static void
  1004. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1005. {
  1006. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1007. }
  1008. static u32
  1009. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1010. {
  1011. return ring->scratch.cpu_page[0];
  1012. }
  1013. static void
  1014. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1015. {
  1016. ring->scratch.cpu_page[0] = seqno;
  1017. }
  1018. static bool
  1019. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1020. {
  1021. struct drm_device *dev = ring->dev;
  1022. struct drm_i915_private *dev_priv = dev->dev_private;
  1023. unsigned long flags;
  1024. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1025. return false;
  1026. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1027. if (ring->irq_refcount++ == 0)
  1028. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1029. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1030. return true;
  1031. }
  1032. static void
  1033. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1034. {
  1035. struct drm_device *dev = ring->dev;
  1036. struct drm_i915_private *dev_priv = dev->dev_private;
  1037. unsigned long flags;
  1038. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1039. if (--ring->irq_refcount == 0)
  1040. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1041. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1042. }
  1043. static bool
  1044. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1045. {
  1046. struct drm_device *dev = ring->dev;
  1047. struct drm_i915_private *dev_priv = dev->dev_private;
  1048. unsigned long flags;
  1049. if (!intel_irqs_enabled(dev_priv))
  1050. return false;
  1051. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1052. if (ring->irq_refcount++ == 0) {
  1053. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1054. I915_WRITE(IMR, dev_priv->irq_mask);
  1055. POSTING_READ(IMR);
  1056. }
  1057. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1058. return true;
  1059. }
  1060. static void
  1061. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1062. {
  1063. struct drm_device *dev = ring->dev;
  1064. struct drm_i915_private *dev_priv = dev->dev_private;
  1065. unsigned long flags;
  1066. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1067. if (--ring->irq_refcount == 0) {
  1068. dev_priv->irq_mask |= ring->irq_enable_mask;
  1069. I915_WRITE(IMR, dev_priv->irq_mask);
  1070. POSTING_READ(IMR);
  1071. }
  1072. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1073. }
  1074. static bool
  1075. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1076. {
  1077. struct drm_device *dev = ring->dev;
  1078. struct drm_i915_private *dev_priv = dev->dev_private;
  1079. unsigned long flags;
  1080. if (!intel_irqs_enabled(dev_priv))
  1081. return false;
  1082. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1083. if (ring->irq_refcount++ == 0) {
  1084. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1085. I915_WRITE16(IMR, dev_priv->irq_mask);
  1086. POSTING_READ16(IMR);
  1087. }
  1088. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1089. return true;
  1090. }
  1091. static void
  1092. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1093. {
  1094. struct drm_device *dev = ring->dev;
  1095. struct drm_i915_private *dev_priv = dev->dev_private;
  1096. unsigned long flags;
  1097. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1098. if (--ring->irq_refcount == 0) {
  1099. dev_priv->irq_mask |= ring->irq_enable_mask;
  1100. I915_WRITE16(IMR, dev_priv->irq_mask);
  1101. POSTING_READ16(IMR);
  1102. }
  1103. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1104. }
  1105. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  1106. {
  1107. struct drm_device *dev = ring->dev;
  1108. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1109. u32 mmio = 0;
  1110. /* The ring status page addresses are no longer next to the rest of
  1111. * the ring registers as of gen7.
  1112. */
  1113. if (IS_GEN7(dev)) {
  1114. switch (ring->id) {
  1115. case RCS:
  1116. mmio = RENDER_HWS_PGA_GEN7;
  1117. break;
  1118. case BCS:
  1119. mmio = BLT_HWS_PGA_GEN7;
  1120. break;
  1121. /*
  1122. * VCS2 actually doesn't exist on Gen7. Only shut up
  1123. * gcc switch check warning
  1124. */
  1125. case VCS2:
  1126. case VCS:
  1127. mmio = BSD_HWS_PGA_GEN7;
  1128. break;
  1129. case VECS:
  1130. mmio = VEBOX_HWS_PGA_GEN7;
  1131. break;
  1132. }
  1133. } else if (IS_GEN6(ring->dev)) {
  1134. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1135. } else {
  1136. /* XXX: gen8 returns to sanity */
  1137. mmio = RING_HWS_PGA(ring->mmio_base);
  1138. }
  1139. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1140. POSTING_READ(mmio);
  1141. /*
  1142. * Flush the TLB for this page
  1143. *
  1144. * FIXME: These two bits have disappeared on gen8, so a question
  1145. * arises: do we still need this and if so how should we go about
  1146. * invalidating the TLB?
  1147. */
  1148. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1149. u32 reg = RING_INSTPM(ring->mmio_base);
  1150. /* ring should be idle before issuing a sync flush*/
  1151. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1152. I915_WRITE(reg,
  1153. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1154. INSTPM_SYNC_FLUSH));
  1155. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1156. 1000))
  1157. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1158. ring->name);
  1159. }
  1160. }
  1161. static int
  1162. bsd_ring_flush(struct intel_engine_cs *ring,
  1163. u32 invalidate_domains,
  1164. u32 flush_domains)
  1165. {
  1166. int ret;
  1167. ret = intel_ring_begin(ring, 2);
  1168. if (ret)
  1169. return ret;
  1170. intel_ring_emit(ring, MI_FLUSH);
  1171. intel_ring_emit(ring, MI_NOOP);
  1172. intel_ring_advance(ring);
  1173. return 0;
  1174. }
  1175. static int
  1176. i9xx_add_request(struct intel_engine_cs *ring)
  1177. {
  1178. int ret;
  1179. ret = intel_ring_begin(ring, 4);
  1180. if (ret)
  1181. return ret;
  1182. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1183. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1184. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  1185. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1186. __intel_ring_advance(ring);
  1187. return 0;
  1188. }
  1189. static bool
  1190. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1191. {
  1192. struct drm_device *dev = ring->dev;
  1193. struct drm_i915_private *dev_priv = dev->dev_private;
  1194. unsigned long flags;
  1195. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1196. return false;
  1197. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1198. if (ring->irq_refcount++ == 0) {
  1199. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1200. I915_WRITE_IMR(ring,
  1201. ~(ring->irq_enable_mask |
  1202. GT_PARITY_ERROR(dev)));
  1203. else
  1204. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1205. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1206. }
  1207. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1208. return true;
  1209. }
  1210. static void
  1211. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1212. {
  1213. struct drm_device *dev = ring->dev;
  1214. struct drm_i915_private *dev_priv = dev->dev_private;
  1215. unsigned long flags;
  1216. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1217. if (--ring->irq_refcount == 0) {
  1218. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1219. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1220. else
  1221. I915_WRITE_IMR(ring, ~0);
  1222. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1223. }
  1224. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1225. }
  1226. static bool
  1227. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1228. {
  1229. struct drm_device *dev = ring->dev;
  1230. struct drm_i915_private *dev_priv = dev->dev_private;
  1231. unsigned long flags;
  1232. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1233. return false;
  1234. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1235. if (ring->irq_refcount++ == 0) {
  1236. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1237. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1238. }
  1239. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1240. return true;
  1241. }
  1242. static void
  1243. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1244. {
  1245. struct drm_device *dev = ring->dev;
  1246. struct drm_i915_private *dev_priv = dev->dev_private;
  1247. unsigned long flags;
  1248. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1249. if (--ring->irq_refcount == 0) {
  1250. I915_WRITE_IMR(ring, ~0);
  1251. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1252. }
  1253. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1254. }
  1255. static bool
  1256. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1257. {
  1258. struct drm_device *dev = ring->dev;
  1259. struct drm_i915_private *dev_priv = dev->dev_private;
  1260. unsigned long flags;
  1261. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1262. return false;
  1263. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1264. if (ring->irq_refcount++ == 0) {
  1265. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1266. I915_WRITE_IMR(ring,
  1267. ~(ring->irq_enable_mask |
  1268. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1269. } else {
  1270. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1271. }
  1272. POSTING_READ(RING_IMR(ring->mmio_base));
  1273. }
  1274. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1275. return true;
  1276. }
  1277. static void
  1278. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1279. {
  1280. struct drm_device *dev = ring->dev;
  1281. struct drm_i915_private *dev_priv = dev->dev_private;
  1282. unsigned long flags;
  1283. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1284. if (--ring->irq_refcount == 0) {
  1285. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1286. I915_WRITE_IMR(ring,
  1287. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1288. } else {
  1289. I915_WRITE_IMR(ring, ~0);
  1290. }
  1291. POSTING_READ(RING_IMR(ring->mmio_base));
  1292. }
  1293. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1294. }
  1295. static int
  1296. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1297. u64 offset, u32 length,
  1298. unsigned flags)
  1299. {
  1300. int ret;
  1301. ret = intel_ring_begin(ring, 2);
  1302. if (ret)
  1303. return ret;
  1304. intel_ring_emit(ring,
  1305. MI_BATCH_BUFFER_START |
  1306. MI_BATCH_GTT |
  1307. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1308. intel_ring_emit(ring, offset);
  1309. intel_ring_advance(ring);
  1310. return 0;
  1311. }
  1312. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1313. #define I830_BATCH_LIMIT (256*1024)
  1314. #define I830_TLB_ENTRIES (2)
  1315. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1316. static int
  1317. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1318. u64 offset, u32 len,
  1319. unsigned flags)
  1320. {
  1321. u32 cs_offset = ring->scratch.gtt_offset;
  1322. int ret;
  1323. ret = intel_ring_begin(ring, 6);
  1324. if (ret)
  1325. return ret;
  1326. /* Evict the invalid PTE TLBs */
  1327. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1328. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1329. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1330. intel_ring_emit(ring, cs_offset);
  1331. intel_ring_emit(ring, 0xdeadbeef);
  1332. intel_ring_emit(ring, MI_NOOP);
  1333. intel_ring_advance(ring);
  1334. if ((flags & I915_DISPATCH_PINNED) == 0) {
  1335. if (len > I830_BATCH_LIMIT)
  1336. return -ENOSPC;
  1337. ret = intel_ring_begin(ring, 6 + 2);
  1338. if (ret)
  1339. return ret;
  1340. /* Blit the batch (which has now all relocs applied) to the
  1341. * stable batch scratch bo area (so that the CS never
  1342. * stumbles over its tlb invalidation bug) ...
  1343. */
  1344. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1345. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1346. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1347. intel_ring_emit(ring, cs_offset);
  1348. intel_ring_emit(ring, 4096);
  1349. intel_ring_emit(ring, offset);
  1350. intel_ring_emit(ring, MI_FLUSH);
  1351. intel_ring_emit(ring, MI_NOOP);
  1352. intel_ring_advance(ring);
  1353. /* ... and execute it. */
  1354. offset = cs_offset;
  1355. }
  1356. ret = intel_ring_begin(ring, 4);
  1357. if (ret)
  1358. return ret;
  1359. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1360. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1361. intel_ring_emit(ring, offset + len - 8);
  1362. intel_ring_emit(ring, MI_NOOP);
  1363. intel_ring_advance(ring);
  1364. return 0;
  1365. }
  1366. static int
  1367. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1368. u64 offset, u32 len,
  1369. unsigned flags)
  1370. {
  1371. int ret;
  1372. ret = intel_ring_begin(ring, 2);
  1373. if (ret)
  1374. return ret;
  1375. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1376. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1377. intel_ring_advance(ring);
  1378. return 0;
  1379. }
  1380. static void cleanup_status_page(struct intel_engine_cs *ring)
  1381. {
  1382. struct drm_i915_gem_object *obj;
  1383. obj = ring->status_page.obj;
  1384. if (obj == NULL)
  1385. return;
  1386. kunmap(sg_page(obj->pages->sgl));
  1387. i915_gem_object_ggtt_unpin(obj);
  1388. drm_gem_object_unreference(&obj->base);
  1389. ring->status_page.obj = NULL;
  1390. }
  1391. static int init_status_page(struct intel_engine_cs *ring)
  1392. {
  1393. struct drm_i915_gem_object *obj;
  1394. if ((obj = ring->status_page.obj) == NULL) {
  1395. unsigned flags;
  1396. int ret;
  1397. obj = i915_gem_alloc_object(ring->dev, 4096);
  1398. if (obj == NULL) {
  1399. DRM_ERROR("Failed to allocate status page\n");
  1400. return -ENOMEM;
  1401. }
  1402. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1403. if (ret)
  1404. goto err_unref;
  1405. flags = 0;
  1406. if (!HAS_LLC(ring->dev))
  1407. /* On g33, we cannot place HWS above 256MiB, so
  1408. * restrict its pinning to the low mappable arena.
  1409. * Though this restriction is not documented for
  1410. * gen4, gen5, or byt, they also behave similarly
  1411. * and hang if the HWS is placed at the top of the
  1412. * GTT. To generalise, it appears that all !llc
  1413. * platforms have issues with us placing the HWS
  1414. * above the mappable region (even though we never
  1415. * actualy map it).
  1416. */
  1417. flags |= PIN_MAPPABLE;
  1418. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1419. if (ret) {
  1420. err_unref:
  1421. drm_gem_object_unreference(&obj->base);
  1422. return ret;
  1423. }
  1424. ring->status_page.obj = obj;
  1425. }
  1426. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1427. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1428. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1429. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1430. ring->name, ring->status_page.gfx_addr);
  1431. return 0;
  1432. }
  1433. static int init_phys_status_page(struct intel_engine_cs *ring)
  1434. {
  1435. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1436. if (!dev_priv->status_page_dmah) {
  1437. dev_priv->status_page_dmah =
  1438. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1439. if (!dev_priv->status_page_dmah)
  1440. return -ENOMEM;
  1441. }
  1442. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1443. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1444. return 0;
  1445. }
  1446. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1447. {
  1448. iounmap(ringbuf->virtual_start);
  1449. ringbuf->virtual_start = NULL;
  1450. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1451. }
  1452. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1453. struct intel_ringbuffer *ringbuf)
  1454. {
  1455. struct drm_i915_private *dev_priv = to_i915(dev);
  1456. struct drm_i915_gem_object *obj = ringbuf->obj;
  1457. int ret;
  1458. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1459. if (ret)
  1460. return ret;
  1461. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1462. if (ret) {
  1463. i915_gem_object_ggtt_unpin(obj);
  1464. return ret;
  1465. }
  1466. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1467. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1468. if (ringbuf->virtual_start == NULL) {
  1469. i915_gem_object_ggtt_unpin(obj);
  1470. return -EINVAL;
  1471. }
  1472. return 0;
  1473. }
  1474. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1475. {
  1476. drm_gem_object_unreference(&ringbuf->obj->base);
  1477. ringbuf->obj = NULL;
  1478. }
  1479. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1480. struct intel_ringbuffer *ringbuf)
  1481. {
  1482. struct drm_i915_gem_object *obj;
  1483. obj = NULL;
  1484. if (!HAS_LLC(dev))
  1485. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1486. if (obj == NULL)
  1487. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1488. if (obj == NULL)
  1489. return -ENOMEM;
  1490. /* mark ring buffers as read-only from GPU side by default */
  1491. obj->gt_ro = 1;
  1492. ringbuf->obj = obj;
  1493. return 0;
  1494. }
  1495. static int intel_init_ring_buffer(struct drm_device *dev,
  1496. struct intel_engine_cs *ring)
  1497. {
  1498. struct intel_ringbuffer *ringbuf = ring->buffer;
  1499. int ret;
  1500. if (ringbuf == NULL) {
  1501. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1502. if (!ringbuf)
  1503. return -ENOMEM;
  1504. ring->buffer = ringbuf;
  1505. }
  1506. ring->dev = dev;
  1507. INIT_LIST_HEAD(&ring->active_list);
  1508. INIT_LIST_HEAD(&ring->request_list);
  1509. INIT_LIST_HEAD(&ring->execlist_queue);
  1510. ringbuf->size = 32 * PAGE_SIZE;
  1511. ringbuf->ring = ring;
  1512. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1513. init_waitqueue_head(&ring->irq_queue);
  1514. if (I915_NEED_GFX_HWS(dev)) {
  1515. ret = init_status_page(ring);
  1516. if (ret)
  1517. goto error;
  1518. } else {
  1519. BUG_ON(ring->id != RCS);
  1520. ret = init_phys_status_page(ring);
  1521. if (ret)
  1522. goto error;
  1523. }
  1524. if (ringbuf->obj == NULL) {
  1525. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1526. if (ret) {
  1527. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1528. ring->name, ret);
  1529. goto error;
  1530. }
  1531. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1532. if (ret) {
  1533. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1534. ring->name, ret);
  1535. intel_destroy_ringbuffer_obj(ringbuf);
  1536. goto error;
  1537. }
  1538. }
  1539. /* Workaround an erratum on the i830 which causes a hang if
  1540. * the TAIL pointer points to within the last 2 cachelines
  1541. * of the buffer.
  1542. */
  1543. ringbuf->effective_size = ringbuf->size;
  1544. if (IS_I830(dev) || IS_845G(dev))
  1545. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1546. ret = i915_cmd_parser_init_ring(ring);
  1547. if (ret)
  1548. goto error;
  1549. ret = ring->init(ring);
  1550. if (ret)
  1551. goto error;
  1552. return 0;
  1553. error:
  1554. kfree(ringbuf);
  1555. ring->buffer = NULL;
  1556. return ret;
  1557. }
  1558. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1559. {
  1560. struct drm_i915_private *dev_priv;
  1561. struct intel_ringbuffer *ringbuf;
  1562. if (!intel_ring_initialized(ring))
  1563. return;
  1564. dev_priv = to_i915(ring->dev);
  1565. ringbuf = ring->buffer;
  1566. intel_stop_ring_buffer(ring);
  1567. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1568. intel_unpin_ringbuffer_obj(ringbuf);
  1569. intel_destroy_ringbuffer_obj(ringbuf);
  1570. ring->preallocated_lazy_request = NULL;
  1571. ring->outstanding_lazy_seqno = 0;
  1572. if (ring->cleanup)
  1573. ring->cleanup(ring);
  1574. cleanup_status_page(ring);
  1575. i915_cmd_parser_fini_ring(ring);
  1576. kfree(ringbuf);
  1577. ring->buffer = NULL;
  1578. }
  1579. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1580. {
  1581. struct intel_ringbuffer *ringbuf = ring->buffer;
  1582. struct drm_i915_gem_request *request;
  1583. u32 seqno = 0;
  1584. int ret;
  1585. if (ringbuf->last_retired_head != -1) {
  1586. ringbuf->head = ringbuf->last_retired_head;
  1587. ringbuf->last_retired_head = -1;
  1588. ringbuf->space = intel_ring_space(ringbuf);
  1589. if (ringbuf->space >= n)
  1590. return 0;
  1591. }
  1592. list_for_each_entry(request, &ring->request_list, list) {
  1593. if (__intel_ring_space(request->tail, ringbuf->tail,
  1594. ringbuf->size) >= n) {
  1595. seqno = request->seqno;
  1596. break;
  1597. }
  1598. }
  1599. if (seqno == 0)
  1600. return -ENOSPC;
  1601. ret = i915_wait_seqno(ring, seqno);
  1602. if (ret)
  1603. return ret;
  1604. i915_gem_retire_requests_ring(ring);
  1605. ringbuf->head = ringbuf->last_retired_head;
  1606. ringbuf->last_retired_head = -1;
  1607. ringbuf->space = intel_ring_space(ringbuf);
  1608. return 0;
  1609. }
  1610. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1611. {
  1612. struct drm_device *dev = ring->dev;
  1613. struct drm_i915_private *dev_priv = dev->dev_private;
  1614. struct intel_ringbuffer *ringbuf = ring->buffer;
  1615. unsigned long end;
  1616. int ret;
  1617. ret = intel_ring_wait_request(ring, n);
  1618. if (ret != -ENOSPC)
  1619. return ret;
  1620. /* force the tail write in case we have been skipping them */
  1621. __intel_ring_advance(ring);
  1622. /* With GEM the hangcheck timer should kick us out of the loop,
  1623. * leaving it early runs the risk of corrupting GEM state (due
  1624. * to running on almost untested codepaths). But on resume
  1625. * timers don't work yet, so prevent a complete hang in that
  1626. * case by choosing an insanely large timeout. */
  1627. end = jiffies + 60 * HZ;
  1628. trace_i915_ring_wait_begin(ring);
  1629. do {
  1630. ringbuf->head = I915_READ_HEAD(ring);
  1631. ringbuf->space = intel_ring_space(ringbuf);
  1632. if (ringbuf->space >= n) {
  1633. ret = 0;
  1634. break;
  1635. }
  1636. msleep(1);
  1637. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1638. ret = -ERESTARTSYS;
  1639. break;
  1640. }
  1641. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1642. dev_priv->mm.interruptible);
  1643. if (ret)
  1644. break;
  1645. if (time_after(jiffies, end)) {
  1646. ret = -EBUSY;
  1647. break;
  1648. }
  1649. } while (1);
  1650. trace_i915_ring_wait_end(ring);
  1651. return ret;
  1652. }
  1653. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1654. {
  1655. uint32_t __iomem *virt;
  1656. struct intel_ringbuffer *ringbuf = ring->buffer;
  1657. int rem = ringbuf->size - ringbuf->tail;
  1658. if (ringbuf->space < rem) {
  1659. int ret = ring_wait_for_space(ring, rem);
  1660. if (ret)
  1661. return ret;
  1662. }
  1663. virt = ringbuf->virtual_start + ringbuf->tail;
  1664. rem /= 4;
  1665. while (rem--)
  1666. iowrite32(MI_NOOP, virt++);
  1667. ringbuf->tail = 0;
  1668. ringbuf->space = intel_ring_space(ringbuf);
  1669. return 0;
  1670. }
  1671. int intel_ring_idle(struct intel_engine_cs *ring)
  1672. {
  1673. u32 seqno;
  1674. int ret;
  1675. /* We need to add any requests required to flush the objects and ring */
  1676. if (ring->outstanding_lazy_seqno) {
  1677. ret = i915_add_request(ring, NULL);
  1678. if (ret)
  1679. return ret;
  1680. }
  1681. /* Wait upon the last request to be completed */
  1682. if (list_empty(&ring->request_list))
  1683. return 0;
  1684. seqno = list_entry(ring->request_list.prev,
  1685. struct drm_i915_gem_request,
  1686. list)->seqno;
  1687. return i915_wait_seqno(ring, seqno);
  1688. }
  1689. static int
  1690. intel_ring_alloc_seqno(struct intel_engine_cs *ring)
  1691. {
  1692. if (ring->outstanding_lazy_seqno)
  1693. return 0;
  1694. if (ring->preallocated_lazy_request == NULL) {
  1695. struct drm_i915_gem_request *request;
  1696. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1697. if (request == NULL)
  1698. return -ENOMEM;
  1699. ring->preallocated_lazy_request = request;
  1700. }
  1701. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1702. }
  1703. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1704. int bytes)
  1705. {
  1706. struct intel_ringbuffer *ringbuf = ring->buffer;
  1707. int ret;
  1708. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1709. ret = intel_wrap_ring_buffer(ring);
  1710. if (unlikely(ret))
  1711. return ret;
  1712. }
  1713. if (unlikely(ringbuf->space < bytes)) {
  1714. ret = ring_wait_for_space(ring, bytes);
  1715. if (unlikely(ret))
  1716. return ret;
  1717. }
  1718. return 0;
  1719. }
  1720. int intel_ring_begin(struct intel_engine_cs *ring,
  1721. int num_dwords)
  1722. {
  1723. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1724. int ret;
  1725. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1726. dev_priv->mm.interruptible);
  1727. if (ret)
  1728. return ret;
  1729. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1730. if (ret)
  1731. return ret;
  1732. /* Preallocate the olr before touching the ring */
  1733. ret = intel_ring_alloc_seqno(ring);
  1734. if (ret)
  1735. return ret;
  1736. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1737. return 0;
  1738. }
  1739. /* Align the ring tail to a cacheline boundary */
  1740. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1741. {
  1742. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1743. int ret;
  1744. if (num_dwords == 0)
  1745. return 0;
  1746. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1747. ret = intel_ring_begin(ring, num_dwords);
  1748. if (ret)
  1749. return ret;
  1750. while (num_dwords--)
  1751. intel_ring_emit(ring, MI_NOOP);
  1752. intel_ring_advance(ring);
  1753. return 0;
  1754. }
  1755. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1756. {
  1757. struct drm_device *dev = ring->dev;
  1758. struct drm_i915_private *dev_priv = dev->dev_private;
  1759. BUG_ON(ring->outstanding_lazy_seqno);
  1760. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1761. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1762. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1763. if (HAS_VEBOX(dev))
  1764. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1765. }
  1766. ring->set_seqno(ring, seqno);
  1767. ring->hangcheck.seqno = seqno;
  1768. }
  1769. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1770. u32 value)
  1771. {
  1772. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1773. /* Every tail move must follow the sequence below */
  1774. /* Disable notification that the ring is IDLE. The GT
  1775. * will then assume that it is busy and bring it out of rc6.
  1776. */
  1777. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1778. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1779. /* Clear the context id. Here be magic! */
  1780. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1781. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1782. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1783. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1784. 50))
  1785. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1786. /* Now that the ring is fully powered up, update the tail */
  1787. I915_WRITE_TAIL(ring, value);
  1788. POSTING_READ(RING_TAIL(ring->mmio_base));
  1789. /* Let the ring send IDLE messages to the GT again,
  1790. * and so let it sleep to conserve power when idle.
  1791. */
  1792. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1793. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1794. }
  1795. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1796. u32 invalidate, u32 flush)
  1797. {
  1798. uint32_t cmd;
  1799. int ret;
  1800. ret = intel_ring_begin(ring, 4);
  1801. if (ret)
  1802. return ret;
  1803. cmd = MI_FLUSH_DW;
  1804. if (INTEL_INFO(ring->dev)->gen >= 8)
  1805. cmd += 1;
  1806. /*
  1807. * Bspec vol 1c.5 - video engine command streamer:
  1808. * "If ENABLED, all TLBs will be invalidated once the flush
  1809. * operation is complete. This bit is only valid when the
  1810. * Post-Sync Operation field is a value of 1h or 3h."
  1811. */
  1812. if (invalidate & I915_GEM_GPU_DOMAINS)
  1813. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1814. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1815. intel_ring_emit(ring, cmd);
  1816. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1817. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1818. intel_ring_emit(ring, 0); /* upper addr */
  1819. intel_ring_emit(ring, 0); /* value */
  1820. } else {
  1821. intel_ring_emit(ring, 0);
  1822. intel_ring_emit(ring, MI_NOOP);
  1823. }
  1824. intel_ring_advance(ring);
  1825. return 0;
  1826. }
  1827. static int
  1828. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1829. u64 offset, u32 len,
  1830. unsigned flags)
  1831. {
  1832. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1833. int ret;
  1834. ret = intel_ring_begin(ring, 4);
  1835. if (ret)
  1836. return ret;
  1837. /* FIXME(BDW): Address space and security selectors. */
  1838. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1839. intel_ring_emit(ring, lower_32_bits(offset));
  1840. intel_ring_emit(ring, upper_32_bits(offset));
  1841. intel_ring_emit(ring, MI_NOOP);
  1842. intel_ring_advance(ring);
  1843. return 0;
  1844. }
  1845. static int
  1846. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1847. u64 offset, u32 len,
  1848. unsigned flags)
  1849. {
  1850. int ret;
  1851. ret = intel_ring_begin(ring, 2);
  1852. if (ret)
  1853. return ret;
  1854. intel_ring_emit(ring,
  1855. MI_BATCH_BUFFER_START |
  1856. (flags & I915_DISPATCH_SECURE ?
  1857. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1858. /* bit0-7 is the length on GEN6+ */
  1859. intel_ring_emit(ring, offset);
  1860. intel_ring_advance(ring);
  1861. return 0;
  1862. }
  1863. static int
  1864. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1865. u64 offset, u32 len,
  1866. unsigned flags)
  1867. {
  1868. int ret;
  1869. ret = intel_ring_begin(ring, 2);
  1870. if (ret)
  1871. return ret;
  1872. intel_ring_emit(ring,
  1873. MI_BATCH_BUFFER_START |
  1874. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1875. /* bit0-7 is the length on GEN6+ */
  1876. intel_ring_emit(ring, offset);
  1877. intel_ring_advance(ring);
  1878. return 0;
  1879. }
  1880. /* Blitter support (SandyBridge+) */
  1881. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1882. u32 invalidate, u32 flush)
  1883. {
  1884. struct drm_device *dev = ring->dev;
  1885. struct drm_i915_private *dev_priv = dev->dev_private;
  1886. uint32_t cmd;
  1887. int ret;
  1888. ret = intel_ring_begin(ring, 4);
  1889. if (ret)
  1890. return ret;
  1891. cmd = MI_FLUSH_DW;
  1892. if (INTEL_INFO(ring->dev)->gen >= 8)
  1893. cmd += 1;
  1894. /*
  1895. * Bspec vol 1c.3 - blitter engine command streamer:
  1896. * "If ENABLED, all TLBs will be invalidated once the flush
  1897. * operation is complete. This bit is only valid when the
  1898. * Post-Sync Operation field is a value of 1h or 3h."
  1899. */
  1900. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1901. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1902. MI_FLUSH_DW_OP_STOREDW;
  1903. intel_ring_emit(ring, cmd);
  1904. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1905. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1906. intel_ring_emit(ring, 0); /* upper addr */
  1907. intel_ring_emit(ring, 0); /* value */
  1908. } else {
  1909. intel_ring_emit(ring, 0);
  1910. intel_ring_emit(ring, MI_NOOP);
  1911. }
  1912. intel_ring_advance(ring);
  1913. if (!invalidate && flush) {
  1914. if (IS_GEN7(dev))
  1915. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1916. else if (IS_BROADWELL(dev))
  1917. dev_priv->fbc.need_sw_cache_clean = true;
  1918. }
  1919. return 0;
  1920. }
  1921. int intel_init_render_ring_buffer(struct drm_device *dev)
  1922. {
  1923. struct drm_i915_private *dev_priv = dev->dev_private;
  1924. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1925. struct drm_i915_gem_object *obj;
  1926. int ret;
  1927. ring->name = "render ring";
  1928. ring->id = RCS;
  1929. ring->mmio_base = RENDER_RING_BASE;
  1930. if (INTEL_INFO(dev)->gen >= 8) {
  1931. if (i915_semaphore_is_enabled(dev)) {
  1932. obj = i915_gem_alloc_object(dev, 4096);
  1933. if (obj == NULL) {
  1934. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1935. i915.semaphores = 0;
  1936. } else {
  1937. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1938. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1939. if (ret != 0) {
  1940. drm_gem_object_unreference(&obj->base);
  1941. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1942. i915.semaphores = 0;
  1943. } else
  1944. dev_priv->semaphore_obj = obj;
  1945. }
  1946. }
  1947. ring->init_context = intel_ring_workarounds_emit;
  1948. ring->add_request = gen6_add_request;
  1949. ring->flush = gen8_render_ring_flush;
  1950. ring->irq_get = gen8_ring_get_irq;
  1951. ring->irq_put = gen8_ring_put_irq;
  1952. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1953. ring->get_seqno = gen6_ring_get_seqno;
  1954. ring->set_seqno = ring_set_seqno;
  1955. if (i915_semaphore_is_enabled(dev)) {
  1956. WARN_ON(!dev_priv->semaphore_obj);
  1957. ring->semaphore.sync_to = gen8_ring_sync;
  1958. ring->semaphore.signal = gen8_rcs_signal;
  1959. GEN8_RING_SEMAPHORE_INIT;
  1960. }
  1961. } else if (INTEL_INFO(dev)->gen >= 6) {
  1962. ring->add_request = gen6_add_request;
  1963. ring->flush = gen7_render_ring_flush;
  1964. if (INTEL_INFO(dev)->gen == 6)
  1965. ring->flush = gen6_render_ring_flush;
  1966. ring->irq_get = gen6_ring_get_irq;
  1967. ring->irq_put = gen6_ring_put_irq;
  1968. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1969. ring->get_seqno = gen6_ring_get_seqno;
  1970. ring->set_seqno = ring_set_seqno;
  1971. if (i915_semaphore_is_enabled(dev)) {
  1972. ring->semaphore.sync_to = gen6_ring_sync;
  1973. ring->semaphore.signal = gen6_signal;
  1974. /*
  1975. * The current semaphore is only applied on pre-gen8
  1976. * platform. And there is no VCS2 ring on the pre-gen8
  1977. * platform. So the semaphore between RCS and VCS2 is
  1978. * initialized as INVALID. Gen8 will initialize the
  1979. * sema between VCS2 and RCS later.
  1980. */
  1981. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1982. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1983. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1984. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1985. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1986. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1987. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1988. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1989. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1990. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1991. }
  1992. } else if (IS_GEN5(dev)) {
  1993. ring->add_request = pc_render_add_request;
  1994. ring->flush = gen4_render_ring_flush;
  1995. ring->get_seqno = pc_render_get_seqno;
  1996. ring->set_seqno = pc_render_set_seqno;
  1997. ring->irq_get = gen5_ring_get_irq;
  1998. ring->irq_put = gen5_ring_put_irq;
  1999. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2000. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2001. } else {
  2002. ring->add_request = i9xx_add_request;
  2003. if (INTEL_INFO(dev)->gen < 4)
  2004. ring->flush = gen2_render_ring_flush;
  2005. else
  2006. ring->flush = gen4_render_ring_flush;
  2007. ring->get_seqno = ring_get_seqno;
  2008. ring->set_seqno = ring_set_seqno;
  2009. if (IS_GEN2(dev)) {
  2010. ring->irq_get = i8xx_ring_get_irq;
  2011. ring->irq_put = i8xx_ring_put_irq;
  2012. } else {
  2013. ring->irq_get = i9xx_ring_get_irq;
  2014. ring->irq_put = i9xx_ring_put_irq;
  2015. }
  2016. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2017. }
  2018. ring->write_tail = ring_write_tail;
  2019. if (IS_HASWELL(dev))
  2020. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2021. else if (IS_GEN8(dev))
  2022. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2023. else if (INTEL_INFO(dev)->gen >= 6)
  2024. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2025. else if (INTEL_INFO(dev)->gen >= 4)
  2026. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2027. else if (IS_I830(dev) || IS_845G(dev))
  2028. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2029. else
  2030. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2031. ring->init = init_render_ring;
  2032. ring->cleanup = render_ring_cleanup;
  2033. /* Workaround batchbuffer to combat CS tlb bug. */
  2034. if (HAS_BROKEN_CS_TLB(dev)) {
  2035. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2036. if (obj == NULL) {
  2037. DRM_ERROR("Failed to allocate batch bo\n");
  2038. return -ENOMEM;
  2039. }
  2040. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2041. if (ret != 0) {
  2042. drm_gem_object_unreference(&obj->base);
  2043. DRM_ERROR("Failed to ping batch bo\n");
  2044. return ret;
  2045. }
  2046. ring->scratch.obj = obj;
  2047. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2048. }
  2049. return intel_init_ring_buffer(dev, ring);
  2050. }
  2051. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2052. {
  2053. struct drm_i915_private *dev_priv = dev->dev_private;
  2054. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2055. ring->name = "bsd ring";
  2056. ring->id = VCS;
  2057. ring->write_tail = ring_write_tail;
  2058. if (INTEL_INFO(dev)->gen >= 6) {
  2059. ring->mmio_base = GEN6_BSD_RING_BASE;
  2060. /* gen6 bsd needs a special wa for tail updates */
  2061. if (IS_GEN6(dev))
  2062. ring->write_tail = gen6_bsd_ring_write_tail;
  2063. ring->flush = gen6_bsd_ring_flush;
  2064. ring->add_request = gen6_add_request;
  2065. ring->get_seqno = gen6_ring_get_seqno;
  2066. ring->set_seqno = ring_set_seqno;
  2067. if (INTEL_INFO(dev)->gen >= 8) {
  2068. ring->irq_enable_mask =
  2069. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2070. ring->irq_get = gen8_ring_get_irq;
  2071. ring->irq_put = gen8_ring_put_irq;
  2072. ring->dispatch_execbuffer =
  2073. gen8_ring_dispatch_execbuffer;
  2074. if (i915_semaphore_is_enabled(dev)) {
  2075. ring->semaphore.sync_to = gen8_ring_sync;
  2076. ring->semaphore.signal = gen8_xcs_signal;
  2077. GEN8_RING_SEMAPHORE_INIT;
  2078. }
  2079. } else {
  2080. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2081. ring->irq_get = gen6_ring_get_irq;
  2082. ring->irq_put = gen6_ring_put_irq;
  2083. ring->dispatch_execbuffer =
  2084. gen6_ring_dispatch_execbuffer;
  2085. if (i915_semaphore_is_enabled(dev)) {
  2086. ring->semaphore.sync_to = gen6_ring_sync;
  2087. ring->semaphore.signal = gen6_signal;
  2088. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2089. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2090. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2091. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2092. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2093. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2094. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2095. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2096. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2097. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2098. }
  2099. }
  2100. } else {
  2101. ring->mmio_base = BSD_RING_BASE;
  2102. ring->flush = bsd_ring_flush;
  2103. ring->add_request = i9xx_add_request;
  2104. ring->get_seqno = ring_get_seqno;
  2105. ring->set_seqno = ring_set_seqno;
  2106. if (IS_GEN5(dev)) {
  2107. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2108. ring->irq_get = gen5_ring_get_irq;
  2109. ring->irq_put = gen5_ring_put_irq;
  2110. } else {
  2111. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2112. ring->irq_get = i9xx_ring_get_irq;
  2113. ring->irq_put = i9xx_ring_put_irq;
  2114. }
  2115. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2116. }
  2117. ring->init = init_ring_common;
  2118. return intel_init_ring_buffer(dev, ring);
  2119. }
  2120. /**
  2121. * Initialize the second BSD ring for Broadwell GT3.
  2122. * It is noted that this only exists on Broadwell GT3.
  2123. */
  2124. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2125. {
  2126. struct drm_i915_private *dev_priv = dev->dev_private;
  2127. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2128. if ((INTEL_INFO(dev)->gen != 8)) {
  2129. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  2130. return -EINVAL;
  2131. }
  2132. ring->name = "bsd2 ring";
  2133. ring->id = VCS2;
  2134. ring->write_tail = ring_write_tail;
  2135. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2136. ring->flush = gen6_bsd_ring_flush;
  2137. ring->add_request = gen6_add_request;
  2138. ring->get_seqno = gen6_ring_get_seqno;
  2139. ring->set_seqno = ring_set_seqno;
  2140. ring->irq_enable_mask =
  2141. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2142. ring->irq_get = gen8_ring_get_irq;
  2143. ring->irq_put = gen8_ring_put_irq;
  2144. ring->dispatch_execbuffer =
  2145. gen8_ring_dispatch_execbuffer;
  2146. if (i915_semaphore_is_enabled(dev)) {
  2147. ring->semaphore.sync_to = gen8_ring_sync;
  2148. ring->semaphore.signal = gen8_xcs_signal;
  2149. GEN8_RING_SEMAPHORE_INIT;
  2150. }
  2151. ring->init = init_ring_common;
  2152. return intel_init_ring_buffer(dev, ring);
  2153. }
  2154. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2155. {
  2156. struct drm_i915_private *dev_priv = dev->dev_private;
  2157. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2158. ring->name = "blitter ring";
  2159. ring->id = BCS;
  2160. ring->mmio_base = BLT_RING_BASE;
  2161. ring->write_tail = ring_write_tail;
  2162. ring->flush = gen6_ring_flush;
  2163. ring->add_request = gen6_add_request;
  2164. ring->get_seqno = gen6_ring_get_seqno;
  2165. ring->set_seqno = ring_set_seqno;
  2166. if (INTEL_INFO(dev)->gen >= 8) {
  2167. ring->irq_enable_mask =
  2168. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2169. ring->irq_get = gen8_ring_get_irq;
  2170. ring->irq_put = gen8_ring_put_irq;
  2171. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2172. if (i915_semaphore_is_enabled(dev)) {
  2173. ring->semaphore.sync_to = gen8_ring_sync;
  2174. ring->semaphore.signal = gen8_xcs_signal;
  2175. GEN8_RING_SEMAPHORE_INIT;
  2176. }
  2177. } else {
  2178. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2179. ring->irq_get = gen6_ring_get_irq;
  2180. ring->irq_put = gen6_ring_put_irq;
  2181. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2182. if (i915_semaphore_is_enabled(dev)) {
  2183. ring->semaphore.signal = gen6_signal;
  2184. ring->semaphore.sync_to = gen6_ring_sync;
  2185. /*
  2186. * The current semaphore is only applied on pre-gen8
  2187. * platform. And there is no VCS2 ring on the pre-gen8
  2188. * platform. So the semaphore between BCS and VCS2 is
  2189. * initialized as INVALID. Gen8 will initialize the
  2190. * sema between BCS and VCS2 later.
  2191. */
  2192. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2193. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2194. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2195. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2196. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2197. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2198. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2199. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2200. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2201. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2202. }
  2203. }
  2204. ring->init = init_ring_common;
  2205. return intel_init_ring_buffer(dev, ring);
  2206. }
  2207. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2208. {
  2209. struct drm_i915_private *dev_priv = dev->dev_private;
  2210. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2211. ring->name = "video enhancement ring";
  2212. ring->id = VECS;
  2213. ring->mmio_base = VEBOX_RING_BASE;
  2214. ring->write_tail = ring_write_tail;
  2215. ring->flush = gen6_ring_flush;
  2216. ring->add_request = gen6_add_request;
  2217. ring->get_seqno = gen6_ring_get_seqno;
  2218. ring->set_seqno = ring_set_seqno;
  2219. if (INTEL_INFO(dev)->gen >= 8) {
  2220. ring->irq_enable_mask =
  2221. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2222. ring->irq_get = gen8_ring_get_irq;
  2223. ring->irq_put = gen8_ring_put_irq;
  2224. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2225. if (i915_semaphore_is_enabled(dev)) {
  2226. ring->semaphore.sync_to = gen8_ring_sync;
  2227. ring->semaphore.signal = gen8_xcs_signal;
  2228. GEN8_RING_SEMAPHORE_INIT;
  2229. }
  2230. } else {
  2231. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2232. ring->irq_get = hsw_vebox_get_irq;
  2233. ring->irq_put = hsw_vebox_put_irq;
  2234. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2235. if (i915_semaphore_is_enabled(dev)) {
  2236. ring->semaphore.sync_to = gen6_ring_sync;
  2237. ring->semaphore.signal = gen6_signal;
  2238. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2239. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2240. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2241. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2242. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2243. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2244. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2245. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2246. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2247. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2248. }
  2249. }
  2250. ring->init = init_ring_common;
  2251. return intel_init_ring_buffer(dev, ring);
  2252. }
  2253. int
  2254. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2255. {
  2256. int ret;
  2257. if (!ring->gpu_caches_dirty)
  2258. return 0;
  2259. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2260. if (ret)
  2261. return ret;
  2262. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2263. ring->gpu_caches_dirty = false;
  2264. return 0;
  2265. }
  2266. int
  2267. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2268. {
  2269. uint32_t flush_domains;
  2270. int ret;
  2271. flush_domains = 0;
  2272. if (ring->gpu_caches_dirty)
  2273. flush_domains = I915_GEM_GPU_DOMAINS;
  2274. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2275. if (ret)
  2276. return ret;
  2277. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2278. ring->gpu_caches_dirty = false;
  2279. return 0;
  2280. }
  2281. void
  2282. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2283. {
  2284. int ret;
  2285. if (!intel_ring_initialized(ring))
  2286. return;
  2287. ret = intel_ring_idle(ring);
  2288. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2289. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2290. ring->name, ret);
  2291. stop_ring(ring);
  2292. }