intel_ddi.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. struct ddi_buf_trans {
  30. u32 trans1; /* balance leg enable, de-emph level */
  31. u32 trans2; /* vref sel, vswing */
  32. };
  33. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  34. * them for both DP and FDI transports, allowing those ports to
  35. * automatically adapt to HDMI connections as well
  36. */
  37. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  38. { 0x00FFFFFF, 0x0006000E },
  39. { 0x00D75FFF, 0x0005000A },
  40. { 0x00C30FFF, 0x00040006 },
  41. { 0x80AAAFFF, 0x000B0000 },
  42. { 0x00FFFFFF, 0x0005000A },
  43. { 0x00D75FFF, 0x000C0004 },
  44. { 0x80C30FFF, 0x000B0000 },
  45. { 0x00FFFFFF, 0x00040006 },
  46. { 0x80D75FFF, 0x000B0000 },
  47. };
  48. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  49. { 0x00FFFFFF, 0x0007000E },
  50. { 0x00D75FFF, 0x000F000A },
  51. { 0x00C30FFF, 0x00060006 },
  52. { 0x00AAAFFF, 0x001E0000 },
  53. { 0x00FFFFFF, 0x000F000A },
  54. { 0x00D75FFF, 0x00160004 },
  55. { 0x00C30FFF, 0x001E0000 },
  56. { 0x00FFFFFF, 0x00060006 },
  57. { 0x00D75FFF, 0x001E0000 },
  58. };
  59. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  60. /* Idx NT mV d T mV d db */
  61. { 0x00FFFFFF, 0x0006000E }, /* 0: 400 400 0 */
  62. { 0x00E79FFF, 0x000E000C }, /* 1: 400 500 2 */
  63. { 0x00D75FFF, 0x0005000A }, /* 2: 400 600 3.5 */
  64. { 0x00FFFFFF, 0x0005000A }, /* 3: 600 600 0 */
  65. { 0x00E79FFF, 0x001D0007 }, /* 4: 600 750 2 */
  66. { 0x00D75FFF, 0x000C0004 }, /* 5: 600 900 3.5 */
  67. { 0x00FFFFFF, 0x00040006 }, /* 6: 800 800 0 */
  68. { 0x80E79FFF, 0x00030002 }, /* 7: 800 1000 2 */
  69. { 0x00FFFFFF, 0x00140005 }, /* 8: 850 850 0 */
  70. { 0x00FFFFFF, 0x000C0004 }, /* 9: 900 900 0 */
  71. { 0x00FFFFFF, 0x001C0003 }, /* 10: 950 950 0 */
  72. { 0x80FFFFFF, 0x00030002 }, /* 11: 1000 1000 0 */
  73. };
  74. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  75. { 0x00FFFFFF, 0x00000012 },
  76. { 0x00EBAFFF, 0x00020011 },
  77. { 0x00C71FFF, 0x0006000F },
  78. { 0x00AAAFFF, 0x000E000A },
  79. { 0x00FFFFFF, 0x00020011 },
  80. { 0x00DB6FFF, 0x0005000F },
  81. { 0x00BEEFFF, 0x000A000C },
  82. { 0x00FFFFFF, 0x0005000F },
  83. { 0x00DB6FFF, 0x000A000C },
  84. };
  85. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  86. { 0x00FFFFFF, 0x0007000E },
  87. { 0x00D75FFF, 0x000E000A },
  88. { 0x00BEFFFF, 0x00140006 },
  89. { 0x80B2CFFF, 0x001B0002 },
  90. { 0x00FFFFFF, 0x000E000A },
  91. { 0x00DB6FFF, 0x00160005 },
  92. { 0x80C71FFF, 0x001A0002 },
  93. { 0x00F7DFFF, 0x00180004 },
  94. { 0x80D75FFF, 0x001B0002 },
  95. };
  96. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  97. { 0x00FFFFFF, 0x0001000E },
  98. { 0x00D75FFF, 0x0004000A },
  99. { 0x00C30FFF, 0x00070006 },
  100. { 0x00AAAFFF, 0x000C0000 },
  101. { 0x00FFFFFF, 0x0004000A },
  102. { 0x00D75FFF, 0x00090004 },
  103. { 0x00C30FFF, 0x000C0000 },
  104. { 0x00FFFFFF, 0x00070006 },
  105. { 0x00D75FFF, 0x000C0000 },
  106. };
  107. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  108. /* Idx NT mV d T mV df db */
  109. { 0x00FFFFFF, 0x0007000E }, /* 0: 400 400 0 */
  110. { 0x00D75FFF, 0x000E000A }, /* 1: 400 600 3.5 */
  111. { 0x00BEFFFF, 0x00140006 }, /* 2: 400 800 6 */
  112. { 0x00FFFFFF, 0x0009000D }, /* 3: 450 450 0 */
  113. { 0x00FFFFFF, 0x000E000A }, /* 4: 600 600 0 */
  114. { 0x00D7FFFF, 0x00140006 }, /* 5: 600 800 2.5 */
  115. { 0x80CB2FFF, 0x001B0002 }, /* 6: 600 1000 4.5 */
  116. { 0x00FFFFFF, 0x00140006 }, /* 7: 800 800 0 */
  117. { 0x80E79FFF, 0x001B0002 }, /* 8: 800 1000 2 */
  118. { 0x80FFFFFF, 0x001B0002 }, /* 9: 1000 1000 0 */
  119. };
  120. static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
  121. { 0x00000018, 0x000000a0 },
  122. { 0x00004014, 0x00000098 },
  123. { 0x00006012, 0x00000088 },
  124. { 0x00008010, 0x00000080 },
  125. { 0x00000018, 0x00000098 },
  126. { 0x00004014, 0x00000088 },
  127. { 0x00006012, 0x00000080 },
  128. { 0x00000018, 0x00000088 },
  129. { 0x00004014, 0x00000080 },
  130. };
  131. static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
  132. /* Idx NT mV T mV db */
  133. { 0x00000018, 0x000000a0 }, /* 0: 400 400 0 */
  134. { 0x00004014, 0x00000098 }, /* 1: 400 600 3.5 */
  135. { 0x00006012, 0x00000088 }, /* 2: 400 800 6 */
  136. { 0x00000018, 0x0000003c }, /* 3: 450 450 0 */
  137. { 0x00000018, 0x00000098 }, /* 4: 600 600 0 */
  138. { 0x00003015, 0x00000088 }, /* 5: 600 800 2.5 */
  139. { 0x00005013, 0x00000080 }, /* 6: 600 1000 4.5 */
  140. { 0x00000018, 0x00000088 }, /* 7: 800 800 0 */
  141. { 0x00000096, 0x00000080 }, /* 8: 800 1000 2 */
  142. { 0x00000018, 0x00000080 }, /* 9: 1200 1200 0 */
  143. };
  144. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  145. {
  146. struct drm_encoder *encoder = &intel_encoder->base;
  147. int type = intel_encoder->type;
  148. if (type == INTEL_OUTPUT_DP_MST) {
  149. struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
  150. return intel_dig_port->port;
  151. } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  152. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  153. struct intel_digital_port *intel_dig_port =
  154. enc_to_dig_port(encoder);
  155. return intel_dig_port->port;
  156. } else if (type == INTEL_OUTPUT_ANALOG) {
  157. return PORT_E;
  158. } else {
  159. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  160. BUG();
  161. }
  162. }
  163. /*
  164. * Starting with Haswell, DDI port buffers must be programmed with correct
  165. * values in advance. The buffer values are different for FDI and DP modes,
  166. * but the HDMI/DVI fields are shared among those. So we program the DDI
  167. * in either FDI or DP modes only, as HDMI connections will work with both
  168. * of those
  169. */
  170. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
  171. {
  172. struct drm_i915_private *dev_priv = dev->dev_private;
  173. u32 reg;
  174. int i, n_hdmi_entries, hdmi_800mV_0dB;
  175. int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  176. const struct ddi_buf_trans *ddi_translations_fdi;
  177. const struct ddi_buf_trans *ddi_translations_dp;
  178. const struct ddi_buf_trans *ddi_translations_edp;
  179. const struct ddi_buf_trans *ddi_translations_hdmi;
  180. const struct ddi_buf_trans *ddi_translations;
  181. if (IS_SKYLAKE(dev)) {
  182. ddi_translations_fdi = NULL;
  183. ddi_translations_dp = skl_ddi_translations_dp;
  184. ddi_translations_edp = skl_ddi_translations_dp;
  185. ddi_translations_hdmi = skl_ddi_translations_hdmi;
  186. n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
  187. hdmi_800mV_0dB = 7;
  188. } else if (IS_BROADWELL(dev)) {
  189. ddi_translations_fdi = bdw_ddi_translations_fdi;
  190. ddi_translations_dp = bdw_ddi_translations_dp;
  191. ddi_translations_edp = bdw_ddi_translations_edp;
  192. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  193. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  194. hdmi_800mV_0dB = 7;
  195. } else if (IS_HASWELL(dev)) {
  196. ddi_translations_fdi = hsw_ddi_translations_fdi;
  197. ddi_translations_dp = hsw_ddi_translations_dp;
  198. ddi_translations_edp = hsw_ddi_translations_dp;
  199. ddi_translations_hdmi = hsw_ddi_translations_hdmi;
  200. n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  201. hdmi_800mV_0dB = 6;
  202. } else {
  203. WARN(1, "ddi translation table missing\n");
  204. ddi_translations_edp = bdw_ddi_translations_dp;
  205. ddi_translations_fdi = bdw_ddi_translations_fdi;
  206. ddi_translations_dp = bdw_ddi_translations_dp;
  207. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  208. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  209. hdmi_800mV_0dB = 7;
  210. }
  211. switch (port) {
  212. case PORT_A:
  213. ddi_translations = ddi_translations_edp;
  214. break;
  215. case PORT_B:
  216. case PORT_C:
  217. ddi_translations = ddi_translations_dp;
  218. break;
  219. case PORT_D:
  220. if (intel_dp_is_edp(dev, PORT_D))
  221. ddi_translations = ddi_translations_edp;
  222. else
  223. ddi_translations = ddi_translations_dp;
  224. break;
  225. case PORT_E:
  226. if (ddi_translations_fdi)
  227. ddi_translations = ddi_translations_fdi;
  228. else
  229. ddi_translations = ddi_translations_dp;
  230. break;
  231. default:
  232. BUG();
  233. }
  234. for (i = 0, reg = DDI_BUF_TRANS(port);
  235. i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
  236. I915_WRITE(reg, ddi_translations[i].trans1);
  237. reg += 4;
  238. I915_WRITE(reg, ddi_translations[i].trans2);
  239. reg += 4;
  240. }
  241. /* Choose a good default if VBT is badly populated */
  242. if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
  243. hdmi_level >= n_hdmi_entries)
  244. hdmi_level = hdmi_800mV_0dB;
  245. /* Entry 9 is for HDMI: */
  246. I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
  247. reg += 4;
  248. I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
  249. reg += 4;
  250. }
  251. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  252. * mode and port E for FDI.
  253. */
  254. void intel_prepare_ddi(struct drm_device *dev)
  255. {
  256. int port;
  257. if (!HAS_DDI(dev))
  258. return;
  259. for (port = PORT_A; port <= PORT_E; port++)
  260. intel_prepare_ddi_buffers(dev, port);
  261. }
  262. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  263. enum port port)
  264. {
  265. uint32_t reg = DDI_BUF_CTL(port);
  266. int i;
  267. for (i = 0; i < 8; i++) {
  268. udelay(1);
  269. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  270. return;
  271. }
  272. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  273. }
  274. /* Starting with Haswell, different DDI ports can work in FDI mode for
  275. * connection to the PCH-located connectors. For this, it is necessary to train
  276. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  277. *
  278. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  279. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  280. * DDI A (which is used for eDP)
  281. */
  282. void hsw_fdi_link_train(struct drm_crtc *crtc)
  283. {
  284. struct drm_device *dev = crtc->dev;
  285. struct drm_i915_private *dev_priv = dev->dev_private;
  286. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  287. u32 temp, i, rx_ctl_val;
  288. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  289. * mode set "sequence for CRT port" document:
  290. * - TP1 to TP2 time with the default value
  291. * - FDI delay to 90h
  292. *
  293. * WaFDIAutoLinkSetTimingOverrride:hsw
  294. */
  295. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  296. FDI_RX_PWRDN_LANE0_VAL(2) |
  297. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  298. /* Enable the PCH Receiver FDI PLL */
  299. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  300. FDI_RX_PLL_ENABLE |
  301. FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  302. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  303. POSTING_READ(_FDI_RXA_CTL);
  304. udelay(220);
  305. /* Switch from Rawclk to PCDclk */
  306. rx_ctl_val |= FDI_PCDCLK;
  307. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  308. /* Configure Port Clock Select */
  309. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config.ddi_pll_sel);
  310. WARN_ON(intel_crtc->config.ddi_pll_sel != PORT_CLK_SEL_SPLL);
  311. /* Start the training iterating through available voltages and emphasis,
  312. * testing each value twice. */
  313. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  314. /* Configure DP_TP_CTL with auto-training */
  315. I915_WRITE(DP_TP_CTL(PORT_E),
  316. DP_TP_CTL_FDI_AUTOTRAIN |
  317. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  318. DP_TP_CTL_LINK_TRAIN_PAT1 |
  319. DP_TP_CTL_ENABLE);
  320. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  321. * DDI E does not support port reversal, the functionality is
  322. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  323. * port reversal bit */
  324. I915_WRITE(DDI_BUF_CTL(PORT_E),
  325. DDI_BUF_CTL_ENABLE |
  326. ((intel_crtc->config.fdi_lanes - 1) << 1) |
  327. DDI_BUF_TRANS_SELECT(i / 2));
  328. POSTING_READ(DDI_BUF_CTL(PORT_E));
  329. udelay(600);
  330. /* Program PCH FDI Receiver TU */
  331. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  332. /* Enable PCH FDI Receiver with auto-training */
  333. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  334. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  335. POSTING_READ(_FDI_RXA_CTL);
  336. /* Wait for FDI receiver lane calibration */
  337. udelay(30);
  338. /* Unset FDI_RX_MISC pwrdn lanes */
  339. temp = I915_READ(_FDI_RXA_MISC);
  340. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  341. I915_WRITE(_FDI_RXA_MISC, temp);
  342. POSTING_READ(_FDI_RXA_MISC);
  343. /* Wait for FDI auto training time */
  344. udelay(5);
  345. temp = I915_READ(DP_TP_STATUS(PORT_E));
  346. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  347. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  348. /* Enable normal pixel sending for FDI */
  349. I915_WRITE(DP_TP_CTL(PORT_E),
  350. DP_TP_CTL_FDI_AUTOTRAIN |
  351. DP_TP_CTL_LINK_TRAIN_NORMAL |
  352. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  353. DP_TP_CTL_ENABLE);
  354. return;
  355. }
  356. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  357. temp &= ~DDI_BUF_CTL_ENABLE;
  358. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  359. POSTING_READ(DDI_BUF_CTL(PORT_E));
  360. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  361. temp = I915_READ(DP_TP_CTL(PORT_E));
  362. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  363. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  364. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  365. POSTING_READ(DP_TP_CTL(PORT_E));
  366. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  367. rx_ctl_val &= ~FDI_RX_ENABLE;
  368. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  369. POSTING_READ(_FDI_RXA_CTL);
  370. /* Reset FDI_RX_MISC pwrdn lanes */
  371. temp = I915_READ(_FDI_RXA_MISC);
  372. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  373. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  374. I915_WRITE(_FDI_RXA_MISC, temp);
  375. POSTING_READ(_FDI_RXA_MISC);
  376. }
  377. DRM_ERROR("FDI link training failed!\n");
  378. }
  379. void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  380. {
  381. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  382. struct intel_digital_port *intel_dig_port =
  383. enc_to_dig_port(&encoder->base);
  384. intel_dp->DP = intel_dig_port->saved_port_bits |
  385. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  386. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  387. }
  388. static struct intel_encoder *
  389. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  390. {
  391. struct drm_device *dev = crtc->dev;
  392. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  393. struct intel_encoder *intel_encoder, *ret = NULL;
  394. int num_encoders = 0;
  395. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  396. ret = intel_encoder;
  397. num_encoders++;
  398. }
  399. if (num_encoders != 1)
  400. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  401. pipe_name(intel_crtc->pipe));
  402. BUG_ON(ret == NULL);
  403. return ret;
  404. }
  405. static struct intel_encoder *
  406. intel_ddi_get_crtc_new_encoder(struct intel_crtc *crtc)
  407. {
  408. struct drm_device *dev = crtc->base.dev;
  409. struct intel_encoder *intel_encoder, *ret = NULL;
  410. int num_encoders = 0;
  411. for_each_intel_encoder(dev, intel_encoder) {
  412. if (intel_encoder->new_crtc == crtc) {
  413. ret = intel_encoder;
  414. num_encoders++;
  415. }
  416. }
  417. WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
  418. pipe_name(crtc->pipe));
  419. BUG_ON(ret == NULL);
  420. return ret;
  421. }
  422. #define LC_FREQ 2700
  423. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  424. #define P_MIN 2
  425. #define P_MAX 64
  426. #define P_INC 2
  427. /* Constraints for PLL good behavior */
  428. #define REF_MIN 48
  429. #define REF_MAX 400
  430. #define VCO_MIN 2400
  431. #define VCO_MAX 4800
  432. #define abs_diff(a, b) ({ \
  433. typeof(a) __a = (a); \
  434. typeof(b) __b = (b); \
  435. (void) (&__a == &__b); \
  436. __a > __b ? (__a - __b) : (__b - __a); })
  437. struct wrpll_rnp {
  438. unsigned p, n2, r2;
  439. };
  440. static unsigned wrpll_get_budget_for_freq(int clock)
  441. {
  442. unsigned budget;
  443. switch (clock) {
  444. case 25175000:
  445. case 25200000:
  446. case 27000000:
  447. case 27027000:
  448. case 37762500:
  449. case 37800000:
  450. case 40500000:
  451. case 40541000:
  452. case 54000000:
  453. case 54054000:
  454. case 59341000:
  455. case 59400000:
  456. case 72000000:
  457. case 74176000:
  458. case 74250000:
  459. case 81000000:
  460. case 81081000:
  461. case 89012000:
  462. case 89100000:
  463. case 108000000:
  464. case 108108000:
  465. case 111264000:
  466. case 111375000:
  467. case 148352000:
  468. case 148500000:
  469. case 162000000:
  470. case 162162000:
  471. case 222525000:
  472. case 222750000:
  473. case 296703000:
  474. case 297000000:
  475. budget = 0;
  476. break;
  477. case 233500000:
  478. case 245250000:
  479. case 247750000:
  480. case 253250000:
  481. case 298000000:
  482. budget = 1500;
  483. break;
  484. case 169128000:
  485. case 169500000:
  486. case 179500000:
  487. case 202000000:
  488. budget = 2000;
  489. break;
  490. case 256250000:
  491. case 262500000:
  492. case 270000000:
  493. case 272500000:
  494. case 273750000:
  495. case 280750000:
  496. case 281250000:
  497. case 286000000:
  498. case 291750000:
  499. budget = 4000;
  500. break;
  501. case 267250000:
  502. case 268500000:
  503. budget = 5000;
  504. break;
  505. default:
  506. budget = 1000;
  507. break;
  508. }
  509. return budget;
  510. }
  511. static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  512. unsigned r2, unsigned n2, unsigned p,
  513. struct wrpll_rnp *best)
  514. {
  515. uint64_t a, b, c, d, diff, diff_best;
  516. /* No best (r,n,p) yet */
  517. if (best->p == 0) {
  518. best->p = p;
  519. best->n2 = n2;
  520. best->r2 = r2;
  521. return;
  522. }
  523. /*
  524. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  525. * freq2k.
  526. *
  527. * delta = 1e6 *
  528. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  529. * freq2k;
  530. *
  531. * and we would like delta <= budget.
  532. *
  533. * If the discrepancy is above the PPM-based budget, always prefer to
  534. * improve upon the previous solution. However, if you're within the
  535. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  536. */
  537. a = freq2k * budget * p * r2;
  538. b = freq2k * budget * best->p * best->r2;
  539. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  540. diff_best = abs_diff(freq2k * best->p * best->r2,
  541. LC_FREQ_2K * best->n2);
  542. c = 1000000 * diff;
  543. d = 1000000 * diff_best;
  544. if (a < c && b < d) {
  545. /* If both are above the budget, pick the closer */
  546. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  547. best->p = p;
  548. best->n2 = n2;
  549. best->r2 = r2;
  550. }
  551. } else if (a >= c && b < d) {
  552. /* If A is below the threshold but B is above it? Update. */
  553. best->p = p;
  554. best->n2 = n2;
  555. best->r2 = r2;
  556. } else if (a >= c && b >= d) {
  557. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  558. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  559. best->p = p;
  560. best->n2 = n2;
  561. best->r2 = r2;
  562. }
  563. }
  564. /* Otherwise a < c && b >= d, do nothing */
  565. }
  566. static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  567. int reg)
  568. {
  569. int refclk = LC_FREQ;
  570. int n, p, r;
  571. u32 wrpll;
  572. wrpll = I915_READ(reg);
  573. switch (wrpll & WRPLL_PLL_REF_MASK) {
  574. case WRPLL_PLL_SSC:
  575. case WRPLL_PLL_NON_SSC:
  576. /*
  577. * We could calculate spread here, but our checking
  578. * code only cares about 5% accuracy, and spread is a max of
  579. * 0.5% downspread.
  580. */
  581. refclk = 135;
  582. break;
  583. case WRPLL_PLL_LCPLL:
  584. refclk = LC_FREQ;
  585. break;
  586. default:
  587. WARN(1, "bad wrpll refclk\n");
  588. return 0;
  589. }
  590. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  591. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  592. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  593. /* Convert to KHz, p & r have a fixed point portion */
  594. return (refclk * n * 100) / (p * r);
  595. }
  596. static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  597. uint32_t dpll)
  598. {
  599. uint32_t cfgcr1_reg, cfgcr2_reg;
  600. uint32_t cfgcr1_val, cfgcr2_val;
  601. uint32_t p0, p1, p2, dco_freq;
  602. cfgcr1_reg = GET_CFG_CR1_REG(dpll);
  603. cfgcr2_reg = GET_CFG_CR2_REG(dpll);
  604. cfgcr1_val = I915_READ(cfgcr1_reg);
  605. cfgcr2_val = I915_READ(cfgcr2_reg);
  606. p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
  607. p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
  608. if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
  609. p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
  610. else
  611. p1 = 1;
  612. switch (p0) {
  613. case DPLL_CFGCR2_PDIV_1:
  614. p0 = 1;
  615. break;
  616. case DPLL_CFGCR2_PDIV_2:
  617. p0 = 2;
  618. break;
  619. case DPLL_CFGCR2_PDIV_3:
  620. p0 = 3;
  621. break;
  622. case DPLL_CFGCR2_PDIV_7:
  623. p0 = 7;
  624. break;
  625. }
  626. switch (p2) {
  627. case DPLL_CFGCR2_KDIV_5:
  628. p2 = 5;
  629. break;
  630. case DPLL_CFGCR2_KDIV_2:
  631. p2 = 2;
  632. break;
  633. case DPLL_CFGCR2_KDIV_3:
  634. p2 = 3;
  635. break;
  636. case DPLL_CFGCR2_KDIV_1:
  637. p2 = 1;
  638. break;
  639. }
  640. dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
  641. dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
  642. 1000) / 0x8000;
  643. return dco_freq / (p0 * p1 * p2 * 5);
  644. }
  645. static void skl_ddi_clock_get(struct intel_encoder *encoder,
  646. struct intel_crtc_config *pipe_config)
  647. {
  648. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  649. int link_clock = 0;
  650. uint32_t dpll_ctl1, dpll;
  651. dpll = pipe_config->ddi_pll_sel;
  652. dpll_ctl1 = I915_READ(DPLL_CTRL1);
  653. if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
  654. link_clock = skl_calc_wrpll_link(dev_priv, dpll);
  655. } else {
  656. link_clock = dpll_ctl1 & DPLL_CRTL1_LINK_RATE_MASK(dpll);
  657. link_clock >>= DPLL_CRTL1_LINK_RATE_SHIFT(dpll);
  658. switch (link_clock) {
  659. case DPLL_CRTL1_LINK_RATE_810:
  660. link_clock = 81000;
  661. break;
  662. case DPLL_CRTL1_LINK_RATE_1350:
  663. link_clock = 135000;
  664. break;
  665. case DPLL_CRTL1_LINK_RATE_2700:
  666. link_clock = 270000;
  667. break;
  668. default:
  669. WARN(1, "Unsupported link rate\n");
  670. break;
  671. }
  672. link_clock *= 2;
  673. }
  674. pipe_config->port_clock = link_clock;
  675. if (pipe_config->has_dp_encoder)
  676. pipe_config->adjusted_mode.crtc_clock =
  677. intel_dotclock_calculate(pipe_config->port_clock,
  678. &pipe_config->dp_m_n);
  679. else
  680. pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
  681. }
  682. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  683. struct intel_crtc_config *pipe_config)
  684. {
  685. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  686. int link_clock = 0;
  687. u32 val, pll;
  688. val = pipe_config->ddi_pll_sel;
  689. switch (val & PORT_CLK_SEL_MASK) {
  690. case PORT_CLK_SEL_LCPLL_810:
  691. link_clock = 81000;
  692. break;
  693. case PORT_CLK_SEL_LCPLL_1350:
  694. link_clock = 135000;
  695. break;
  696. case PORT_CLK_SEL_LCPLL_2700:
  697. link_clock = 270000;
  698. break;
  699. case PORT_CLK_SEL_WRPLL1:
  700. link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
  701. break;
  702. case PORT_CLK_SEL_WRPLL2:
  703. link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
  704. break;
  705. case PORT_CLK_SEL_SPLL:
  706. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  707. if (pll == SPLL_PLL_FREQ_810MHz)
  708. link_clock = 81000;
  709. else if (pll == SPLL_PLL_FREQ_1350MHz)
  710. link_clock = 135000;
  711. else if (pll == SPLL_PLL_FREQ_2700MHz)
  712. link_clock = 270000;
  713. else {
  714. WARN(1, "bad spll freq\n");
  715. return;
  716. }
  717. break;
  718. default:
  719. WARN(1, "bad port clock sel\n");
  720. return;
  721. }
  722. pipe_config->port_clock = link_clock * 2;
  723. if (pipe_config->has_pch_encoder)
  724. pipe_config->adjusted_mode.crtc_clock =
  725. intel_dotclock_calculate(pipe_config->port_clock,
  726. &pipe_config->fdi_m_n);
  727. else if (pipe_config->has_dp_encoder)
  728. pipe_config->adjusted_mode.crtc_clock =
  729. intel_dotclock_calculate(pipe_config->port_clock,
  730. &pipe_config->dp_m_n);
  731. else
  732. pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
  733. }
  734. void intel_ddi_clock_get(struct intel_encoder *encoder,
  735. struct intel_crtc_config *pipe_config)
  736. {
  737. hsw_ddi_clock_get(encoder, pipe_config);
  738. }
  739. static void
  740. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  741. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  742. {
  743. uint64_t freq2k;
  744. unsigned p, n2, r2;
  745. struct wrpll_rnp best = { 0, 0, 0 };
  746. unsigned budget;
  747. freq2k = clock / 100;
  748. budget = wrpll_get_budget_for_freq(clock);
  749. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  750. * and directly pass the LC PLL to it. */
  751. if (freq2k == 5400000) {
  752. *n2_out = 2;
  753. *p_out = 1;
  754. *r2_out = 2;
  755. return;
  756. }
  757. /*
  758. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  759. * the WR PLL.
  760. *
  761. * We want R so that REF_MIN <= Ref <= REF_MAX.
  762. * Injecting R2 = 2 * R gives:
  763. * REF_MAX * r2 > LC_FREQ * 2 and
  764. * REF_MIN * r2 < LC_FREQ * 2
  765. *
  766. * Which means the desired boundaries for r2 are:
  767. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  768. *
  769. */
  770. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  771. r2 <= LC_FREQ * 2 / REF_MIN;
  772. r2++) {
  773. /*
  774. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  775. *
  776. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  777. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  778. * VCO_MAX * r2 > n2 * LC_FREQ and
  779. * VCO_MIN * r2 < n2 * LC_FREQ)
  780. *
  781. * Which means the desired boundaries for n2 are:
  782. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  783. */
  784. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  785. n2 <= VCO_MAX * r2 / LC_FREQ;
  786. n2++) {
  787. for (p = P_MIN; p <= P_MAX; p += P_INC)
  788. wrpll_update_rnp(freq2k, budget,
  789. r2, n2, p, &best);
  790. }
  791. }
  792. *n2_out = best.n2;
  793. *p_out = best.p;
  794. *r2_out = best.r2;
  795. }
  796. static bool
  797. hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
  798. struct intel_encoder *intel_encoder,
  799. int clock)
  800. {
  801. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  802. struct intel_shared_dpll *pll;
  803. uint32_t val;
  804. unsigned p, n2, r2;
  805. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  806. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  807. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  808. WRPLL_DIVIDER_POST(p);
  809. intel_crtc->new_config->dpll_hw_state.wrpll = val;
  810. pll = intel_get_shared_dpll(intel_crtc);
  811. if (pll == NULL) {
  812. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  813. pipe_name(intel_crtc->pipe));
  814. return false;
  815. }
  816. intel_crtc->new_config->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
  817. }
  818. return true;
  819. }
  820. struct skl_wrpll_params {
  821. uint32_t dco_fraction;
  822. uint32_t dco_integer;
  823. uint32_t qdiv_ratio;
  824. uint32_t qdiv_mode;
  825. uint32_t kdiv;
  826. uint32_t pdiv;
  827. uint32_t central_freq;
  828. };
  829. static void
  830. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  831. struct skl_wrpll_params *wrpll_params)
  832. {
  833. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  834. uint64_t dco_central_freq[3] = {8400000000ULL,
  835. 9000000000ULL,
  836. 9600000000ULL};
  837. uint32_t min_dco_deviation = 400;
  838. uint32_t min_dco_index = 3;
  839. uint32_t P0[4] = {1, 2, 3, 7};
  840. uint32_t P2[4] = {1, 2, 3, 5};
  841. bool found = false;
  842. uint32_t candidate_p = 0;
  843. uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
  844. uint32_t candidate_p2[3] = {0};
  845. uint32_t dco_central_freq_deviation[3];
  846. uint32_t i, P1, k, dco_count;
  847. bool retry_with_odd = false;
  848. uint64_t dco_freq;
  849. /* Determine P0, P1 or P2 */
  850. for (dco_count = 0; dco_count < 3; dco_count++) {
  851. found = false;
  852. candidate_p =
  853. div64_u64(dco_central_freq[dco_count], afe_clock);
  854. if (retry_with_odd == false)
  855. candidate_p = (candidate_p % 2 == 0 ?
  856. candidate_p : candidate_p + 1);
  857. for (P1 = 1; P1 < candidate_p; P1++) {
  858. for (i = 0; i < 4; i++) {
  859. if (!(P0[i] != 1 || P1 == 1))
  860. continue;
  861. for (k = 0; k < 4; k++) {
  862. if (P1 != 1 && P2[k] != 2)
  863. continue;
  864. if (candidate_p == P0[i] * P1 * P2[k]) {
  865. /* Found possible P0, P1, P2 */
  866. found = true;
  867. candidate_p0[dco_count] = P0[i];
  868. candidate_p1[dco_count] = P1;
  869. candidate_p2[dco_count] = P2[k];
  870. goto found;
  871. }
  872. }
  873. }
  874. }
  875. found:
  876. if (found) {
  877. dco_central_freq_deviation[dco_count] =
  878. div64_u64(10000 *
  879. abs_diff((candidate_p * afe_clock),
  880. dco_central_freq[dco_count]),
  881. dco_central_freq[dco_count]);
  882. if (dco_central_freq_deviation[dco_count] <
  883. min_dco_deviation) {
  884. min_dco_deviation =
  885. dco_central_freq_deviation[dco_count];
  886. min_dco_index = dco_count;
  887. }
  888. }
  889. if (min_dco_index > 2 && dco_count == 2) {
  890. retry_with_odd = true;
  891. dco_count = 0;
  892. }
  893. }
  894. if (min_dco_index > 2) {
  895. WARN(1, "No valid values found for the given pixel clock\n");
  896. } else {
  897. wrpll_params->central_freq = dco_central_freq[min_dco_index];
  898. switch (dco_central_freq[min_dco_index]) {
  899. case 9600000000ULL:
  900. wrpll_params->central_freq = 0;
  901. break;
  902. case 9000000000ULL:
  903. wrpll_params->central_freq = 1;
  904. break;
  905. case 8400000000ULL:
  906. wrpll_params->central_freq = 3;
  907. }
  908. switch (candidate_p0[min_dco_index]) {
  909. case 1:
  910. wrpll_params->pdiv = 0;
  911. break;
  912. case 2:
  913. wrpll_params->pdiv = 1;
  914. break;
  915. case 3:
  916. wrpll_params->pdiv = 2;
  917. break;
  918. case 7:
  919. wrpll_params->pdiv = 4;
  920. break;
  921. default:
  922. WARN(1, "Incorrect PDiv\n");
  923. }
  924. switch (candidate_p2[min_dco_index]) {
  925. case 5:
  926. wrpll_params->kdiv = 0;
  927. break;
  928. case 2:
  929. wrpll_params->kdiv = 1;
  930. break;
  931. case 3:
  932. wrpll_params->kdiv = 2;
  933. break;
  934. case 1:
  935. wrpll_params->kdiv = 3;
  936. break;
  937. default:
  938. WARN(1, "Incorrect KDiv\n");
  939. }
  940. wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
  941. wrpll_params->qdiv_mode =
  942. (wrpll_params->qdiv_ratio == 1) ? 0 : 1;
  943. dco_freq = candidate_p0[min_dco_index] *
  944. candidate_p1[min_dco_index] *
  945. candidate_p2[min_dco_index] * afe_clock;
  946. /*
  947. * Intermediate values are in Hz.
  948. * Divide by MHz to match bsepc
  949. */
  950. wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
  951. wrpll_params->dco_fraction =
  952. div_u64(((div_u64(dco_freq, 24) -
  953. wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));
  954. }
  955. }
  956. static bool
  957. skl_ddi_pll_select(struct intel_crtc *intel_crtc,
  958. struct intel_encoder *intel_encoder,
  959. int clock)
  960. {
  961. struct intel_shared_dpll *pll;
  962. uint32_t ctrl1, cfgcr1, cfgcr2;
  963. /*
  964. * See comment in intel_dpll_hw_state to understand why we always use 0
  965. * as the DPLL id in this function.
  966. */
  967. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  968. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  969. struct skl_wrpll_params wrpll_params = { 0, };
  970. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  971. skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);
  972. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  973. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  974. wrpll_params.dco_integer;
  975. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  976. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  977. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  978. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  979. wrpll_params.central_freq;
  980. } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  981. struct drm_encoder *encoder = &intel_encoder->base;
  982. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  983. switch (intel_dp->link_bw) {
  984. case DP_LINK_BW_1_62:
  985. ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810, 0);
  986. break;
  987. case DP_LINK_BW_2_7:
  988. ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350, 0);
  989. break;
  990. case DP_LINK_BW_5_4:
  991. ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700, 0);
  992. break;
  993. }
  994. cfgcr1 = cfgcr2 = 0;
  995. } else /* eDP */
  996. return true;
  997. intel_crtc->new_config->dpll_hw_state.ctrl1 = ctrl1;
  998. intel_crtc->new_config->dpll_hw_state.cfgcr1 = cfgcr1;
  999. intel_crtc->new_config->dpll_hw_state.cfgcr2 = cfgcr2;
  1000. pll = intel_get_shared_dpll(intel_crtc);
  1001. if (pll == NULL) {
  1002. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1003. pipe_name(intel_crtc->pipe));
  1004. return false;
  1005. }
  1006. /* shared DPLL id 0 is DPLL 1 */
  1007. intel_crtc->new_config->ddi_pll_sel = pll->id + 1;
  1008. return true;
  1009. }
  1010. /*
  1011. * Tries to find a *shared* PLL for the CRTC and store it in
  1012. * intel_crtc->ddi_pll_sel.
  1013. *
  1014. * For private DPLLs, compute_config() should do the selection for us. This
  1015. * function should be folded into compute_config() eventually.
  1016. */
  1017. bool intel_ddi_pll_select(struct intel_crtc *intel_crtc)
  1018. {
  1019. struct drm_device *dev = intel_crtc->base.dev;
  1020. struct intel_encoder *intel_encoder =
  1021. intel_ddi_get_crtc_new_encoder(intel_crtc);
  1022. int clock = intel_crtc->new_config->port_clock;
  1023. if (IS_SKYLAKE(dev))
  1024. return skl_ddi_pll_select(intel_crtc, intel_encoder, clock);
  1025. else
  1026. return hsw_ddi_pll_select(intel_crtc, intel_encoder, clock);
  1027. }
  1028. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  1029. {
  1030. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1031. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1032. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1033. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1034. int type = intel_encoder->type;
  1035. uint32_t temp;
  1036. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
  1037. temp = TRANS_MSA_SYNC_CLK;
  1038. switch (intel_crtc->config.pipe_bpp) {
  1039. case 18:
  1040. temp |= TRANS_MSA_6_BPC;
  1041. break;
  1042. case 24:
  1043. temp |= TRANS_MSA_8_BPC;
  1044. break;
  1045. case 30:
  1046. temp |= TRANS_MSA_10_BPC;
  1047. break;
  1048. case 36:
  1049. temp |= TRANS_MSA_12_BPC;
  1050. break;
  1051. default:
  1052. BUG();
  1053. }
  1054. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  1055. }
  1056. }
  1057. void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
  1058. {
  1059. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1060. struct drm_device *dev = crtc->dev;
  1061. struct drm_i915_private *dev_priv = dev->dev_private;
  1062. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1063. uint32_t temp;
  1064. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1065. if (state == true)
  1066. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1067. else
  1068. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1069. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1070. }
  1071. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  1072. {
  1073. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1074. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1075. struct drm_encoder *encoder = &intel_encoder->base;
  1076. struct drm_device *dev = crtc->dev;
  1077. struct drm_i915_private *dev_priv = dev->dev_private;
  1078. enum pipe pipe = intel_crtc->pipe;
  1079. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1080. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1081. int type = intel_encoder->type;
  1082. uint32_t temp;
  1083. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  1084. temp = TRANS_DDI_FUNC_ENABLE;
  1085. temp |= TRANS_DDI_SELECT_PORT(port);
  1086. switch (intel_crtc->config.pipe_bpp) {
  1087. case 18:
  1088. temp |= TRANS_DDI_BPC_6;
  1089. break;
  1090. case 24:
  1091. temp |= TRANS_DDI_BPC_8;
  1092. break;
  1093. case 30:
  1094. temp |= TRANS_DDI_BPC_10;
  1095. break;
  1096. case 36:
  1097. temp |= TRANS_DDI_BPC_12;
  1098. break;
  1099. default:
  1100. BUG();
  1101. }
  1102. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  1103. temp |= TRANS_DDI_PVSYNC;
  1104. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  1105. temp |= TRANS_DDI_PHSYNC;
  1106. if (cpu_transcoder == TRANSCODER_EDP) {
  1107. switch (pipe) {
  1108. case PIPE_A:
  1109. /* On Haswell, can only use the always-on power well for
  1110. * eDP when not using the panel fitter, and when not
  1111. * using motion blur mitigation (which we don't
  1112. * support). */
  1113. if (IS_HASWELL(dev) &&
  1114. (intel_crtc->config.pch_pfit.enabled ||
  1115. intel_crtc->config.pch_pfit.force_thru))
  1116. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  1117. else
  1118. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  1119. break;
  1120. case PIPE_B:
  1121. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  1122. break;
  1123. case PIPE_C:
  1124. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  1125. break;
  1126. default:
  1127. BUG();
  1128. break;
  1129. }
  1130. }
  1131. if (type == INTEL_OUTPUT_HDMI) {
  1132. if (intel_crtc->config.has_hdmi_sink)
  1133. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  1134. else
  1135. temp |= TRANS_DDI_MODE_SELECT_DVI;
  1136. } else if (type == INTEL_OUTPUT_ANALOG) {
  1137. temp |= TRANS_DDI_MODE_SELECT_FDI;
  1138. temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
  1139. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  1140. type == INTEL_OUTPUT_EDP) {
  1141. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1142. if (intel_dp->is_mst) {
  1143. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1144. } else
  1145. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1146. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  1147. } else if (type == INTEL_OUTPUT_DP_MST) {
  1148. struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
  1149. if (intel_dp->is_mst) {
  1150. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1151. } else
  1152. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1153. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  1154. } else {
  1155. WARN(1, "Invalid encoder type %d for pipe %c\n",
  1156. intel_encoder->type, pipe_name(pipe));
  1157. }
  1158. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1159. }
  1160. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  1161. enum transcoder cpu_transcoder)
  1162. {
  1163. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1164. uint32_t val = I915_READ(reg);
  1165. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  1166. val |= TRANS_DDI_PORT_NONE;
  1167. I915_WRITE(reg, val);
  1168. }
  1169. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  1170. {
  1171. struct drm_device *dev = intel_connector->base.dev;
  1172. struct drm_i915_private *dev_priv = dev->dev_private;
  1173. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1174. int type = intel_connector->base.connector_type;
  1175. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1176. enum pipe pipe = 0;
  1177. enum transcoder cpu_transcoder;
  1178. enum intel_display_power_domain power_domain;
  1179. uint32_t tmp;
  1180. power_domain = intel_display_port_power_domain(intel_encoder);
  1181. if (!intel_display_power_is_enabled(dev_priv, power_domain))
  1182. return false;
  1183. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  1184. return false;
  1185. if (port == PORT_A)
  1186. cpu_transcoder = TRANSCODER_EDP;
  1187. else
  1188. cpu_transcoder = (enum transcoder) pipe;
  1189. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1190. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  1191. case TRANS_DDI_MODE_SELECT_HDMI:
  1192. case TRANS_DDI_MODE_SELECT_DVI:
  1193. return (type == DRM_MODE_CONNECTOR_HDMIA);
  1194. case TRANS_DDI_MODE_SELECT_DP_SST:
  1195. if (type == DRM_MODE_CONNECTOR_eDP)
  1196. return true;
  1197. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  1198. case TRANS_DDI_MODE_SELECT_DP_MST:
  1199. /* if the transcoder is in MST state then
  1200. * connector isn't connected */
  1201. return false;
  1202. case TRANS_DDI_MODE_SELECT_FDI:
  1203. return (type == DRM_MODE_CONNECTOR_VGA);
  1204. default:
  1205. return false;
  1206. }
  1207. }
  1208. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  1209. enum pipe *pipe)
  1210. {
  1211. struct drm_device *dev = encoder->base.dev;
  1212. struct drm_i915_private *dev_priv = dev->dev_private;
  1213. enum port port = intel_ddi_get_encoder_port(encoder);
  1214. enum intel_display_power_domain power_domain;
  1215. u32 tmp;
  1216. int i;
  1217. power_domain = intel_display_port_power_domain(encoder);
  1218. if (!intel_display_power_is_enabled(dev_priv, power_domain))
  1219. return false;
  1220. tmp = I915_READ(DDI_BUF_CTL(port));
  1221. if (!(tmp & DDI_BUF_CTL_ENABLE))
  1222. return false;
  1223. if (port == PORT_A) {
  1224. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  1225. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  1226. case TRANS_DDI_EDP_INPUT_A_ON:
  1227. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  1228. *pipe = PIPE_A;
  1229. break;
  1230. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  1231. *pipe = PIPE_B;
  1232. break;
  1233. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  1234. *pipe = PIPE_C;
  1235. break;
  1236. }
  1237. return true;
  1238. } else {
  1239. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  1240. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  1241. if ((tmp & TRANS_DDI_PORT_MASK)
  1242. == TRANS_DDI_SELECT_PORT(port)) {
  1243. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
  1244. return false;
  1245. *pipe = i;
  1246. return true;
  1247. }
  1248. }
  1249. }
  1250. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  1251. return false;
  1252. }
  1253. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  1254. {
  1255. struct drm_crtc *crtc = &intel_crtc->base;
  1256. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1257. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1258. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1259. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1260. if (cpu_transcoder != TRANSCODER_EDP)
  1261. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1262. TRANS_CLK_SEL_PORT(port));
  1263. }
  1264. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  1265. {
  1266. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1267. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1268. if (cpu_transcoder != TRANSCODER_EDP)
  1269. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1270. TRANS_CLK_SEL_DISABLED);
  1271. }
  1272. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  1273. {
  1274. struct drm_encoder *encoder = &intel_encoder->base;
  1275. struct drm_device *dev = encoder->dev;
  1276. struct drm_i915_private *dev_priv = dev->dev_private;
  1277. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  1278. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1279. int type = intel_encoder->type;
  1280. if (type == INTEL_OUTPUT_EDP) {
  1281. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1282. intel_edp_panel_on(intel_dp);
  1283. }
  1284. if (IS_SKYLAKE(dev)) {
  1285. uint32_t dpll = crtc->config.ddi_pll_sel;
  1286. uint32_t val;
  1287. /*
  1288. * DPLL0 is used for eDP and is the only "private" DPLL (as
  1289. * opposed to shared) on SKL
  1290. */
  1291. if (type == INTEL_OUTPUT_EDP) {
  1292. WARN_ON(dpll != SKL_DPLL0);
  1293. val = I915_READ(DPLL_CTRL1);
  1294. val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
  1295. DPLL_CTRL1_SSC(dpll) |
  1296. DPLL_CRTL1_LINK_RATE_MASK(dpll));
  1297. val |= crtc->config.dpll_hw_state.ctrl1 << (dpll * 6);
  1298. I915_WRITE(DPLL_CTRL1, val);
  1299. POSTING_READ(DPLL_CTRL1);
  1300. }
  1301. /* DDI -> PLL mapping */
  1302. val = I915_READ(DPLL_CTRL2);
  1303. val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
  1304. DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
  1305. val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
  1306. DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
  1307. I915_WRITE(DPLL_CTRL2, val);
  1308. } else {
  1309. WARN_ON(crtc->config.ddi_pll_sel == PORT_CLK_SEL_NONE);
  1310. I915_WRITE(PORT_CLK_SEL(port), crtc->config.ddi_pll_sel);
  1311. }
  1312. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  1313. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1314. intel_ddi_init_dp_buf_reg(intel_encoder);
  1315. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1316. intel_dp_start_link_train(intel_dp);
  1317. intel_dp_complete_link_train(intel_dp);
  1318. if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
  1319. intel_dp_stop_link_train(intel_dp);
  1320. } else if (type == INTEL_OUTPUT_HDMI) {
  1321. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  1322. intel_hdmi->set_infoframes(encoder,
  1323. crtc->config.has_hdmi_sink,
  1324. &crtc->config.adjusted_mode);
  1325. }
  1326. }
  1327. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  1328. {
  1329. struct drm_encoder *encoder = &intel_encoder->base;
  1330. struct drm_device *dev = encoder->dev;
  1331. struct drm_i915_private *dev_priv = dev->dev_private;
  1332. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1333. int type = intel_encoder->type;
  1334. uint32_t val;
  1335. bool wait = false;
  1336. val = I915_READ(DDI_BUF_CTL(port));
  1337. if (val & DDI_BUF_CTL_ENABLE) {
  1338. val &= ~DDI_BUF_CTL_ENABLE;
  1339. I915_WRITE(DDI_BUF_CTL(port), val);
  1340. wait = true;
  1341. }
  1342. val = I915_READ(DP_TP_CTL(port));
  1343. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1344. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1345. I915_WRITE(DP_TP_CTL(port), val);
  1346. if (wait)
  1347. intel_wait_ddi_buf_idle(dev_priv, port);
  1348. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  1349. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1350. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  1351. intel_edp_panel_vdd_on(intel_dp);
  1352. intel_edp_panel_off(intel_dp);
  1353. }
  1354. if (IS_SKYLAKE(dev))
  1355. I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
  1356. DPLL_CTRL2_DDI_CLK_OFF(port)));
  1357. else
  1358. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  1359. }
  1360. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  1361. {
  1362. struct drm_encoder *encoder = &intel_encoder->base;
  1363. struct drm_crtc *crtc = encoder->crtc;
  1364. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1365. struct drm_device *dev = encoder->dev;
  1366. struct drm_i915_private *dev_priv = dev->dev_private;
  1367. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1368. int type = intel_encoder->type;
  1369. if (type == INTEL_OUTPUT_HDMI) {
  1370. struct intel_digital_port *intel_dig_port =
  1371. enc_to_dig_port(encoder);
  1372. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  1373. * are ignored so nothing special needs to be done besides
  1374. * enabling the port.
  1375. */
  1376. I915_WRITE(DDI_BUF_CTL(port),
  1377. intel_dig_port->saved_port_bits |
  1378. DDI_BUF_CTL_ENABLE);
  1379. } else if (type == INTEL_OUTPUT_EDP) {
  1380. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1381. if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
  1382. intel_dp_stop_link_train(intel_dp);
  1383. intel_edp_backlight_on(intel_dp);
  1384. intel_psr_enable(intel_dp);
  1385. }
  1386. if (intel_crtc->config.has_audio) {
  1387. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  1388. intel_audio_codec_enable(intel_encoder);
  1389. }
  1390. }
  1391. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  1392. {
  1393. struct drm_encoder *encoder = &intel_encoder->base;
  1394. struct drm_crtc *crtc = encoder->crtc;
  1395. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1396. int type = intel_encoder->type;
  1397. struct drm_device *dev = encoder->dev;
  1398. struct drm_i915_private *dev_priv = dev->dev_private;
  1399. if (intel_crtc->config.has_audio) {
  1400. intel_audio_codec_disable(intel_encoder);
  1401. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  1402. }
  1403. if (type == INTEL_OUTPUT_EDP) {
  1404. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1405. intel_psr_disable(intel_dp);
  1406. intel_edp_backlight_off(intel_dp);
  1407. }
  1408. }
  1409. static int skl_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1410. {
  1411. uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
  1412. uint32_t cdctl = I915_READ(CDCLK_CTL);
  1413. uint32_t linkrate;
  1414. if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
  1415. WARN(1, "LCPLL1 not enabled\n");
  1416. return 24000; /* 24MHz is the cd freq with NSSC ref */
  1417. }
  1418. if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
  1419. return 540000;
  1420. linkrate = (I915_READ(DPLL_CTRL1) &
  1421. DPLL_CRTL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
  1422. if (linkrate == DPLL_CRTL1_LINK_RATE_2160 ||
  1423. linkrate == DPLL_CRTL1_LINK_RATE_1080) {
  1424. /* vco 8640 */
  1425. switch (cdctl & CDCLK_FREQ_SEL_MASK) {
  1426. case CDCLK_FREQ_450_432:
  1427. return 432000;
  1428. case CDCLK_FREQ_337_308:
  1429. return 308570;
  1430. case CDCLK_FREQ_675_617:
  1431. return 617140;
  1432. default:
  1433. WARN(1, "Unknown cd freq selection\n");
  1434. }
  1435. } else {
  1436. /* vco 8100 */
  1437. switch (cdctl & CDCLK_FREQ_SEL_MASK) {
  1438. case CDCLK_FREQ_450_432:
  1439. return 450000;
  1440. case CDCLK_FREQ_337_308:
  1441. return 337500;
  1442. case CDCLK_FREQ_675_617:
  1443. return 675000;
  1444. default:
  1445. WARN(1, "Unknown cd freq selection\n");
  1446. }
  1447. }
  1448. /* error case, do as if DPLL0 isn't enabled */
  1449. return 24000;
  1450. }
  1451. static int bdw_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1452. {
  1453. uint32_t lcpll = I915_READ(LCPLL_CTL);
  1454. uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  1455. if (lcpll & LCPLL_CD_SOURCE_FCLK)
  1456. return 800000;
  1457. else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  1458. return 450000;
  1459. else if (freq == LCPLL_CLK_FREQ_450)
  1460. return 450000;
  1461. else if (freq == LCPLL_CLK_FREQ_54O_BDW)
  1462. return 540000;
  1463. else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
  1464. return 337500;
  1465. else
  1466. return 675000;
  1467. }
  1468. static int hsw_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1469. {
  1470. struct drm_device *dev = dev_priv->dev;
  1471. uint32_t lcpll = I915_READ(LCPLL_CTL);
  1472. uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  1473. if (lcpll & LCPLL_CD_SOURCE_FCLK)
  1474. return 800000;
  1475. else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  1476. return 450000;
  1477. else if (freq == LCPLL_CLK_FREQ_450)
  1478. return 450000;
  1479. else if (IS_HSW_ULT(dev))
  1480. return 337500;
  1481. else
  1482. return 540000;
  1483. }
  1484. int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1485. {
  1486. struct drm_device *dev = dev_priv->dev;
  1487. if (IS_SKYLAKE(dev))
  1488. return skl_get_cdclk_freq(dev_priv);
  1489. if (IS_BROADWELL(dev))
  1490. return bdw_get_cdclk_freq(dev_priv);
  1491. /* Haswell */
  1492. return hsw_get_cdclk_freq(dev_priv);
  1493. }
  1494. static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1495. struct intel_shared_dpll *pll)
  1496. {
  1497. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  1498. POSTING_READ(WRPLL_CTL(pll->id));
  1499. udelay(20);
  1500. }
  1501. static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1502. struct intel_shared_dpll *pll)
  1503. {
  1504. uint32_t val;
  1505. val = I915_READ(WRPLL_CTL(pll->id));
  1506. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  1507. POSTING_READ(WRPLL_CTL(pll->id));
  1508. }
  1509. static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1510. struct intel_shared_dpll *pll,
  1511. struct intel_dpll_hw_state *hw_state)
  1512. {
  1513. uint32_t val;
  1514. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1515. return false;
  1516. val = I915_READ(WRPLL_CTL(pll->id));
  1517. hw_state->wrpll = val;
  1518. return val & WRPLL_PLL_ENABLE;
  1519. }
  1520. static const char * const hsw_ddi_pll_names[] = {
  1521. "WRPLL 1",
  1522. "WRPLL 2",
  1523. };
  1524. static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
  1525. {
  1526. int i;
  1527. dev_priv->num_shared_dpll = 2;
  1528. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  1529. dev_priv->shared_dplls[i].id = i;
  1530. dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
  1531. dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
  1532. dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
  1533. dev_priv->shared_dplls[i].get_hw_state =
  1534. hsw_ddi_pll_get_hw_state;
  1535. }
  1536. }
  1537. static const char * const skl_ddi_pll_names[] = {
  1538. "DPLL 1",
  1539. "DPLL 2",
  1540. "DPLL 3",
  1541. };
  1542. struct skl_dpll_regs {
  1543. u32 ctl, cfgcr1, cfgcr2;
  1544. };
  1545. /* this array is indexed by the *shared* pll id */
  1546. static const struct skl_dpll_regs skl_dpll_regs[3] = {
  1547. {
  1548. /* DPLL 1 */
  1549. .ctl = LCPLL2_CTL,
  1550. .cfgcr1 = DPLL1_CFGCR1,
  1551. .cfgcr2 = DPLL1_CFGCR2,
  1552. },
  1553. {
  1554. /* DPLL 2 */
  1555. .ctl = WRPLL_CTL1,
  1556. .cfgcr1 = DPLL2_CFGCR1,
  1557. .cfgcr2 = DPLL2_CFGCR2,
  1558. },
  1559. {
  1560. /* DPLL 3 */
  1561. .ctl = WRPLL_CTL2,
  1562. .cfgcr1 = DPLL3_CFGCR1,
  1563. .cfgcr2 = DPLL3_CFGCR2,
  1564. },
  1565. };
  1566. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1567. struct intel_shared_dpll *pll)
  1568. {
  1569. uint32_t val;
  1570. unsigned int dpll;
  1571. const struct skl_dpll_regs *regs = skl_dpll_regs;
  1572. /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
  1573. dpll = pll->id + 1;
  1574. val = I915_READ(DPLL_CTRL1);
  1575. val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
  1576. DPLL_CRTL1_LINK_RATE_MASK(dpll));
  1577. val |= pll->config.hw_state.ctrl1 << (dpll * 6);
  1578. I915_WRITE(DPLL_CTRL1, val);
  1579. POSTING_READ(DPLL_CTRL1);
  1580. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  1581. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  1582. POSTING_READ(regs[pll->id].cfgcr1);
  1583. POSTING_READ(regs[pll->id].cfgcr2);
  1584. /* the enable bit is always bit 31 */
  1585. I915_WRITE(regs[pll->id].ctl,
  1586. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  1587. if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
  1588. DRM_ERROR("DPLL %d not locked\n", dpll);
  1589. }
  1590. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1591. struct intel_shared_dpll *pll)
  1592. {
  1593. const struct skl_dpll_regs *regs = skl_dpll_regs;
  1594. /* the enable bit is always bit 31 */
  1595. I915_WRITE(regs[pll->id].ctl,
  1596. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  1597. POSTING_READ(regs[pll->id].ctl);
  1598. }
  1599. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1600. struct intel_shared_dpll *pll,
  1601. struct intel_dpll_hw_state *hw_state)
  1602. {
  1603. uint32_t val;
  1604. unsigned int dpll;
  1605. const struct skl_dpll_regs *regs = skl_dpll_regs;
  1606. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1607. return false;
  1608. /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
  1609. dpll = pll->id + 1;
  1610. val = I915_READ(regs[pll->id].ctl);
  1611. if (!(val & LCPLL_PLL_ENABLE))
  1612. return false;
  1613. val = I915_READ(DPLL_CTRL1);
  1614. hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
  1615. /* avoid reading back stale values if HDMI mode is not enabled */
  1616. if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
  1617. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  1618. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  1619. }
  1620. return true;
  1621. }
  1622. static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
  1623. {
  1624. int i;
  1625. dev_priv->num_shared_dpll = 3;
  1626. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  1627. dev_priv->shared_dplls[i].id = i;
  1628. dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
  1629. dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
  1630. dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
  1631. dev_priv->shared_dplls[i].get_hw_state =
  1632. skl_ddi_pll_get_hw_state;
  1633. }
  1634. }
  1635. void intel_ddi_pll_init(struct drm_device *dev)
  1636. {
  1637. struct drm_i915_private *dev_priv = dev->dev_private;
  1638. uint32_t val = I915_READ(LCPLL_CTL);
  1639. if (IS_SKYLAKE(dev))
  1640. skl_shared_dplls_init(dev_priv);
  1641. else
  1642. hsw_shared_dplls_init(dev_priv);
  1643. DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
  1644. intel_ddi_get_cdclk_freq(dev_priv));
  1645. if (IS_SKYLAKE(dev)) {
  1646. if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
  1647. DRM_ERROR("LCPLL1 is disabled\n");
  1648. } else {
  1649. /*
  1650. * The LCPLL register should be turned on by the BIOS. For now
  1651. * let's just check its state and print errors in case
  1652. * something is wrong. Don't even try to turn it on.
  1653. */
  1654. if (val & LCPLL_CD_SOURCE_FCLK)
  1655. DRM_ERROR("CDCLK source is not LCPLL\n");
  1656. if (val & LCPLL_PLL_DISABLE)
  1657. DRM_ERROR("LCPLL is disabled\n");
  1658. }
  1659. }
  1660. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  1661. {
  1662. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  1663. struct intel_dp *intel_dp = &intel_dig_port->dp;
  1664. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1665. enum port port = intel_dig_port->port;
  1666. uint32_t val;
  1667. bool wait = false;
  1668. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1669. val = I915_READ(DDI_BUF_CTL(port));
  1670. if (val & DDI_BUF_CTL_ENABLE) {
  1671. val &= ~DDI_BUF_CTL_ENABLE;
  1672. I915_WRITE(DDI_BUF_CTL(port), val);
  1673. wait = true;
  1674. }
  1675. val = I915_READ(DP_TP_CTL(port));
  1676. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1677. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1678. I915_WRITE(DP_TP_CTL(port), val);
  1679. POSTING_READ(DP_TP_CTL(port));
  1680. if (wait)
  1681. intel_wait_ddi_buf_idle(dev_priv, port);
  1682. }
  1683. val = DP_TP_CTL_ENABLE |
  1684. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1685. if (intel_dp->is_mst)
  1686. val |= DP_TP_CTL_MODE_MST;
  1687. else {
  1688. val |= DP_TP_CTL_MODE_SST;
  1689. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  1690. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1691. }
  1692. I915_WRITE(DP_TP_CTL(port), val);
  1693. POSTING_READ(DP_TP_CTL(port));
  1694. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1695. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1696. POSTING_READ(DDI_BUF_CTL(port));
  1697. udelay(600);
  1698. }
  1699. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1700. {
  1701. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1702. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1703. uint32_t val;
  1704. intel_ddi_post_disable(intel_encoder);
  1705. val = I915_READ(_FDI_RXA_CTL);
  1706. val &= ~FDI_RX_ENABLE;
  1707. I915_WRITE(_FDI_RXA_CTL, val);
  1708. val = I915_READ(_FDI_RXA_MISC);
  1709. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1710. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1711. I915_WRITE(_FDI_RXA_MISC, val);
  1712. val = I915_READ(_FDI_RXA_CTL);
  1713. val &= ~FDI_PCDCLK;
  1714. I915_WRITE(_FDI_RXA_CTL, val);
  1715. val = I915_READ(_FDI_RXA_CTL);
  1716. val &= ~FDI_RX_PLL_ENABLE;
  1717. I915_WRITE(_FDI_RXA_CTL, val);
  1718. }
  1719. static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
  1720. {
  1721. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  1722. int type = intel_dig_port->base.type;
  1723. if (type != INTEL_OUTPUT_DISPLAYPORT &&
  1724. type != INTEL_OUTPUT_EDP &&
  1725. type != INTEL_OUTPUT_UNKNOWN) {
  1726. return;
  1727. }
  1728. intel_dp_hot_plug(intel_encoder);
  1729. }
  1730. void intel_ddi_get_config(struct intel_encoder *encoder,
  1731. struct intel_crtc_config *pipe_config)
  1732. {
  1733. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1734. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1735. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1736. struct intel_hdmi *intel_hdmi;
  1737. u32 temp, flags = 0;
  1738. struct drm_device *dev = dev_priv->dev;
  1739. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1740. if (temp & TRANS_DDI_PHSYNC)
  1741. flags |= DRM_MODE_FLAG_PHSYNC;
  1742. else
  1743. flags |= DRM_MODE_FLAG_NHSYNC;
  1744. if (temp & TRANS_DDI_PVSYNC)
  1745. flags |= DRM_MODE_FLAG_PVSYNC;
  1746. else
  1747. flags |= DRM_MODE_FLAG_NVSYNC;
  1748. pipe_config->adjusted_mode.flags |= flags;
  1749. switch (temp & TRANS_DDI_BPC_MASK) {
  1750. case TRANS_DDI_BPC_6:
  1751. pipe_config->pipe_bpp = 18;
  1752. break;
  1753. case TRANS_DDI_BPC_8:
  1754. pipe_config->pipe_bpp = 24;
  1755. break;
  1756. case TRANS_DDI_BPC_10:
  1757. pipe_config->pipe_bpp = 30;
  1758. break;
  1759. case TRANS_DDI_BPC_12:
  1760. pipe_config->pipe_bpp = 36;
  1761. break;
  1762. default:
  1763. break;
  1764. }
  1765. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  1766. case TRANS_DDI_MODE_SELECT_HDMI:
  1767. pipe_config->has_hdmi_sink = true;
  1768. intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1769. if (intel_hdmi->infoframe_enabled(&encoder->base))
  1770. pipe_config->has_infoframe = true;
  1771. break;
  1772. case TRANS_DDI_MODE_SELECT_DVI:
  1773. case TRANS_DDI_MODE_SELECT_FDI:
  1774. break;
  1775. case TRANS_DDI_MODE_SELECT_DP_SST:
  1776. case TRANS_DDI_MODE_SELECT_DP_MST:
  1777. pipe_config->has_dp_encoder = true;
  1778. intel_dp_get_m_n(intel_crtc, pipe_config);
  1779. break;
  1780. default:
  1781. break;
  1782. }
  1783. if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
  1784. temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1785. if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
  1786. pipe_config->has_audio = true;
  1787. }
  1788. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
  1789. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  1790. /*
  1791. * This is a big fat ugly hack.
  1792. *
  1793. * Some machines in UEFI boot mode provide us a VBT that has 18
  1794. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  1795. * unknown we fail to light up. Yet the same BIOS boots up with
  1796. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  1797. * max, not what it tells us to use.
  1798. *
  1799. * Note: This will still be broken if the eDP panel is not lit
  1800. * up by the BIOS, and thus we can't get the mode at module
  1801. * load.
  1802. */
  1803. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  1804. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  1805. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  1806. }
  1807. if (INTEL_INFO(dev)->gen <= 8)
  1808. hsw_ddi_clock_get(encoder, pipe_config);
  1809. else
  1810. skl_ddi_clock_get(encoder, pipe_config);
  1811. }
  1812. static void intel_ddi_destroy(struct drm_encoder *encoder)
  1813. {
  1814. /* HDMI has nothing special to destroy, so we can go with this. */
  1815. intel_dp_encoder_destroy(encoder);
  1816. }
  1817. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1818. struct intel_crtc_config *pipe_config)
  1819. {
  1820. int type = encoder->type;
  1821. int port = intel_ddi_get_encoder_port(encoder);
  1822. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1823. if (port == PORT_A)
  1824. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1825. if (type == INTEL_OUTPUT_HDMI)
  1826. return intel_hdmi_compute_config(encoder, pipe_config);
  1827. else
  1828. return intel_dp_compute_config(encoder, pipe_config);
  1829. }
  1830. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1831. .destroy = intel_ddi_destroy,
  1832. };
  1833. static struct intel_connector *
  1834. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  1835. {
  1836. struct intel_connector *connector;
  1837. enum port port = intel_dig_port->port;
  1838. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1839. if (!connector)
  1840. return NULL;
  1841. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1842. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  1843. kfree(connector);
  1844. return NULL;
  1845. }
  1846. return connector;
  1847. }
  1848. static struct intel_connector *
  1849. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  1850. {
  1851. struct intel_connector *connector;
  1852. enum port port = intel_dig_port->port;
  1853. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1854. if (!connector)
  1855. return NULL;
  1856. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1857. intel_hdmi_init_connector(intel_dig_port, connector);
  1858. return connector;
  1859. }
  1860. void intel_ddi_init(struct drm_device *dev, enum port port)
  1861. {
  1862. struct drm_i915_private *dev_priv = dev->dev_private;
  1863. struct intel_digital_port *intel_dig_port;
  1864. struct intel_encoder *intel_encoder;
  1865. struct drm_encoder *encoder;
  1866. bool init_hdmi, init_dp;
  1867. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  1868. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  1869. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  1870. if (!init_dp && !init_hdmi) {
  1871. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
  1872. port_name(port));
  1873. init_hdmi = true;
  1874. init_dp = true;
  1875. }
  1876. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1877. if (!intel_dig_port)
  1878. return;
  1879. intel_encoder = &intel_dig_port->base;
  1880. encoder = &intel_encoder->base;
  1881. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  1882. DRM_MODE_ENCODER_TMDS);
  1883. intel_encoder->compute_config = intel_ddi_compute_config;
  1884. intel_encoder->enable = intel_enable_ddi;
  1885. intel_encoder->pre_enable = intel_ddi_pre_enable;
  1886. intel_encoder->disable = intel_disable_ddi;
  1887. intel_encoder->post_disable = intel_ddi_post_disable;
  1888. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  1889. intel_encoder->get_config = intel_ddi_get_config;
  1890. intel_dig_port->port = port;
  1891. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  1892. (DDI_BUF_PORT_REVERSAL |
  1893. DDI_A_4_LANES);
  1894. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  1895. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1896. intel_encoder->cloneable = 0;
  1897. intel_encoder->hot_plug = intel_ddi_hot_plug;
  1898. if (init_dp) {
  1899. if (!intel_ddi_init_dp_connector(intel_dig_port))
  1900. goto err;
  1901. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  1902. dev_priv->hpd_irq_port[port] = intel_dig_port;
  1903. }
  1904. /* In theory we don't need the encoder->type check, but leave it just in
  1905. * case we have some really bad VBTs... */
  1906. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  1907. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  1908. goto err;
  1909. }
  1910. return;
  1911. err:
  1912. drm_encoder_cleanup(encoder);
  1913. kfree(intel_dig_port);
  1914. }